JP3184201B2 - Flat Fe-Ni-based alloy fine powder and method for producing the same - Google Patents

Flat Fe-Ni-based alloy fine powder and method for producing the same

Info

Publication number
JP3184201B2
JP3184201B2 JP08970590A JP8970590A JP3184201B2 JP 3184201 B2 JP3184201 B2 JP 3184201B2 JP 08970590 A JP08970590 A JP 08970590A JP 8970590 A JP8970590 A JP 8970590A JP 3184201 B2 JP3184201 B2 JP 3184201B2
Authority
JP
Japan
Prior art keywords
powder
flat
less
fine powder
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08970590A
Other languages
Japanese (ja)
Other versions
JPH03223401A (en
Inventor
卓 目黒
秀樹 中村
洋一 持田
勉 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP08970590A priority Critical patent/JP3184201B2/en
Priority to US07/619,448 priority patent/US5135586A/en
Publication of JPH03223401A publication Critical patent/JPH03223401A/en
Priority to US08/019,657 priority patent/US5352268A/en
Application granted granted Critical
Publication of JP3184201B2 publication Critical patent/JP3184201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平均粒径0.1〜30μm、平均厚さ2μm以
下、望ましくは平均粒径0.1〜20μm、平均厚さ1μm
以下の扁平状で軟磁性に優れたFe−Ni系合金微粉末およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an average particle size of 0.1 to 30 μm and an average thickness of 2 μm or less, preferably an average particle size of 0.1 to 20 μm and an average thickness of 1 μm.
The present invention relates to the following flat Fe-Ni-based alloy fine powder having excellent soft magnetism and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年銀行カード、クレジットカード等で代表される個
人機密に関わる磁気カードの分野では、磁気シールドを
目的として、カード表層に高透磁率材料の微粉末からな
る塗布膜被覆を施すニーズが増大してきた。このような
塗布用粉末には、高透磁率で微粉であるとともに、粉末
形状が扁平状であることが求められる。これは、塗布の
し易さ、塗布膜の表面平滑性の上から必要なばかりでな
く、塗布の際の剪断力によって扁平状微粉末が最も反磁
場係数の低い扁平方向、すなわちカード基体方向に平行
に整列されることで、面内長手方向の高透磁率が得られ
る要因からも不可欠のことである。
In recent years, in the field of magnetic cards related to personal confidentiality represented by bank cards, credit cards, and the like, there has been an increasing need to apply a coating film made of fine powder of a high magnetic permeability material on the card surface layer for the purpose of magnetic shielding. Such application powder is required to be fine powder with high magnetic permeability and to have a flat powder shape. This is not only necessary from the viewpoint of ease of application and surface smoothness of the coating film, but also due to the shearing force at the time of application, the flat fine powder is moved in the flat direction having the lowest demagnetizing coefficient, that is, in the direction of the card base. It is indispensable from the factor that high magnetic permeability in the in-plane longitudinal direction can be obtained by being aligned in parallel.

本用途に対して具体的に要求される粉末の諸特性は、
平均粒径が0.1〜30μm、平均厚さ2μm以下で反磁場
を無視したランダムな集合状態での粉末の保持力が400A
/m以下、望ましくは240A/m以下というものである。な
お、粉末の厚さは、粉末を磁界中で扁平方向に配向させ
つつ、樹脂粉末中に埋め込み固化させた後、この埋め込
み試料の断面を顕微鏡で検鏡して評価した値とする。
Various properties of the powder specifically required for this application are:
Average particle size is 0.1-30μm, average thickness is 2μm or less, and powder holding power is 400A in random aggregate state ignoring demagnetizing field
/ m or less, preferably 240 A / m or less. The thickness of the powder is a value obtained by embedding and solidifying the powder in a resin powder while orienting the powder in a flat direction in a magnetic field, and then evaluating the cross section of the embedded sample with a microscope.

このような粉末としては、材質的に高透磁率であると
ともに塑性変形して扁平化し易いFe−Ni系合金の適用が
考えられる。しかしながら、Fe−Ni系合金において前記
粉末諸元および特性を得るための量産的手法はまだ提示
されていない。
As such a powder, it is conceivable to use an Fe-Ni-based alloy which has a high magnetic permeability as a material and is easily plastically deformed and flattened. However, a mass-production method for obtaining the above-mentioned powder characteristics and characteristics in an Fe-Ni-based alloy has not been proposed yet.

特開昭63−35701号および特開昭63−35706号では、厚
さ2μm以下、厚さと直径の比率が1/10以下で、高透磁
性の純金属または合金の材料からなる鱗片状高透磁性金
属粉を湿式ボールミル法によって製造することが提案さ
れており、具体的には44μmの篩をパスした純鉄粉を96
時間かけて粉砕し、25μmの篩を98%通過する肉厚1.0
μmの鱗片状粉末を、および44μmの篩をパスしたセン
ダスト合金粉を96時間かけて粉砕し、25μmの篩を96%
通過する肉厚1.0〜1.5μmの鱗片状粉末を得ている。
In JP-A-63-35701 and JP-A-63-35706, a flaky high permeability made of a highly magnetically permeable pure metal or alloy material having a thickness of 2 μm or less and a ratio of thickness to diameter of 1/10 or less. It has been proposed to produce magnetic metal powder by a wet ball mill method. Specifically, pure iron powder passed through a 44 μm sieve was mixed with 96 powder.
Crushed over time, and passed through a 25 μm sieve 98% to a wall thickness of 1.0
The scaly powder of μm and the Sendust alloy powder that passed through a sieve of 44 μm were crushed for 96 hours, and the sieve of 25 μm was 96%
A scaly powder having a wall thickness of 1.0 to 1.5 μm that passes is obtained.

上記の方法は、確かに厚さ2μm以下の磁性材料粉末
を得ることは可能であるが、96時間もの長時間の粉砕を
必要とすること、平均粒径30または20μm以下の微粉末
を高い歩留で得ることは困難であることが問題点であ
り、さらに得られた粉末の保磁力は、粉砕歪によって著
しく劣化しており、保磁力Hcが高い。上記純Fe粉では、
43Oe(3440A/m)、センダスト合金粉では9Oe(720A/m)
が報告されている。
Although the above-described method can certainly obtain a magnetic material powder having a thickness of 2 μm or less, it requires a long grinding time of 96 hours, and a fine powder having an average particle size of 30 or 20 μm or less is required. The problem is that it is difficult to obtain by powdering. Further, the coercive force of the obtained powder is remarkably deteriorated by crushing strain, and the coercive force Hc is high. In the above pure Fe powder,
43Oe (3440A / m), 9Oe (720A / m) for sendust alloy powder
Have been reported.

またセンダスト合金の場合、特開昭62−238305号で、
結晶粒径100μm以下となるよう水アトマイズによって
粉末とし、高エネルギー密度を有する粉砕機により単結
晶で長径/短径比が10以上の片状化粉末に粉砕する方法
が示されている。しかしながら、これら片状粉末、扁平
状粉末は、粉砕によって極めて大きな変形を受けている
ため、粉砕歪に起因する高い保磁力を有するまま供せら
れており、本願の主眼とする磁気カードの磁気シールド
用等の粉末の製造方法としては不十分なものである。
In the case of Sendust alloy, JP-A-62-238305 describes:
A method is disclosed in which a powder is formed by water atomization so as to have a crystal grain size of 100 μm or less, and then pulverized by a pulverizer having a high energy density into a single crystal flake powder having a major axis / minor axis ratio of 10 or more. However, since these flaky powders and flat powders have undergone extremely large deformation due to pulverization, they are provided with a high coercive force due to the pulverization strain, and the magnetic shield of the magnetic card, which is the main subject of the present application. It is insufficient as a method for producing powder for use.

粉砕歪を除去する方法として、特開昭58−59268号で
は、インゴットから多段階で粉砕すりつぶし工程を繰り
返し扁平状としたセンダスト粉を、必要により水素雰囲
気中で焼鈍を追加することが、その明細書の中で言及さ
れている。しかし、粉末の保持力は規定されず、保磁力
を向上させるための具体的な焼鈍方法について知見を与
えるものではなく、やはり本願の対象の磁気カードの磁
気シールド用等の粉末製造法としては不十分である。
As a method of removing grinding strain, JP-A-58-59268 discloses that a flat sendust powder obtained by repeating a grinding and grinding step in multiple stages from an ingot, and adding annealing in a hydrogen atmosphere as necessary. It is mentioned in the book. However, the coercive force of the powder is not specified, and does not give any knowledge on a specific annealing method for improving the coercive force, which is also unsuitable as a powder manufacturing method for magnetic shielding of a magnetic card of the present application. It is enough.

また、前述の各開示例はいずれも飽和磁歪定数に関し
て一切言及していない。
In addition, none of the above-mentioned disclosure examples mentions the saturation magnetostriction constant at all.

Fe−Ni系合金のうち、パーマロイ系扁平状微粉末につ
いては、具体例が見出せず、本発明者は特願昭63−1234
94号により、水アトマイズによる平均粒系10μm以下の
Fe−Ni系合金粉末を機械的に粉砕し、平均粒系0.1〜10
μm、厚さ1μm以下の扁平状微粉末を得る方法を提案
した。すなわち、ここでは、Fe−Ni系合金は、塑性変形
能が大で、展伸され易く、扁平化は比較的容易である
が、微粉化には難があり、初期粉末の粒径を小さくする
ことが、粉砕効率の上から重要なことを指摘した。
Among the Fe-Ni-based alloys, no specific example was found for permalloy-based flat fine powder, and the present inventor disclosed in Japanese Patent Application No. 63-1234.
According to No. 94, average particle size of 10μm or less by water atomization
Fe-Ni alloy powder is mechanically pulverized to an average grain size of 0.1 to 10
A method for obtaining a flat fine powder having a thickness of 1 μm or less was proposed. That is, here, the Fe-Ni-based alloy has a large plastic deformability, is easily spread, and is relatively easy to flatten, but is difficult to pulverize, and reduces the particle size of the initial powder. It was pointed out that this was important from the viewpoint of grinding efficiency.

上記提案の方法によって、Fe−Ni系合金の扁平状微粉
化が容易になるが、初期粉末の粒径を小さくすること
は、アトマイズの面からは量産的方法と言えない現状で
ある。すなわち、水アトマイズ法はアトマイズの中で最
も量産的で、かつ粒径を細かくし易いプロセスではある
が、平均粒径10μm以下については、1000kgf/cm2以上
の水圧で溶湯を噴霧させねばならないため、高圧供給ポ
ンプの設置や、配管等の設備費が膨大となったり、維持
管理が煩雑となること、溶湯ビーム径を数mmφに絞る必
要から、単位時間当りの出湯量が少ないこと、および歩
留よく10μm以下を得ることに困難があることなどの問
題があり、上記特願昭63−123494号の方法は、原料粉末
からトータルして考えた場合、量産性に限度のある状況
である。
The proposed method facilitates flat fine powdering of an Fe—Ni alloy, but reducing the particle size of the initial powder is not presently a mass production method from the atomization point of view. In other words, the water atomizing method is the most mass-produced atomizing process, and is a process that can easily reduce the particle size.However, for an average particle size of 10 μm or less, the molten metal must be sprayed with a water pressure of 1000 kgf / cm 2 or more. The installation cost of the high-pressure supply pump and the equipment such as piping become enormous, the maintenance is complicated, and the melt beam diameter needs to be reduced to several mmφ. There are problems such as difficulty in obtaining a thickness of 10 μm or less easily, and the method of Japanese Patent Application No. 63-123494 mentioned above is limited in mass productivity when considered in total from raw material powders.

本願が対象としている平均粒径0.1〜30μm、平均厚
さ2μm以下の扁平状微粉末は、微粉であることに加え
て甚だしい歪を受けており、通常のバルク材と同条件で
焼鈍すると、粉末粒子の凝集すなわち焼結現象が生じ
て、粉砕して得た扁平形状が損なわれてしまう。したが
って、実際の焼鈍は粉末の凝集が起こらない低温、すな
わち通常のバルク材の焼鈍温度の1100℃付近より大幅に
下げざるを得ず、扁平粉の保持力は500A/mを越える大き
な値となっていた。
The flat fine powder having an average particle diameter of 0.1 to 30 μm and an average thickness of 2 μm or less, which is the subject of the present application, is severely strained in addition to being a fine powder. Agglomeration of particles, that is, sintering phenomenon occurs, and the flat shape obtained by pulverization is impaired. Therefore, the actual annealing has to be significantly lower than the low temperature at which powder agglomeration does not occur, that is, the annealing temperature of ordinary bulk material around 1100 ° C, and the holding power of flat powder is a large value exceeding 500 A / m I was

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、前記従来技術の問題点に留意してなされた
ものであり、平均粒系が0.1〜30μm、平均厚さ2μm
以下で、かつ保磁力Hcが400A/m以下の扁平状Fe−Ni系合
金微粉末および該粉末を量産的に製造する方法を提供す
るものである。
The present invention has been made in consideration of the above-mentioned problems of the prior art, and has an average grain size of 0.1 to 30 μm and an average thickness of 2 μm.
The present invention provides a flat Fe-Ni-based alloy fine powder having a coercive force Hc of 400 A / m or less and a method for mass-producing the powder.

〔課題を解決するための手段〕[Means for solving the problem]

本発明はバルク材で測定される飽和磁歪定数λsが±
15×10-6以内である組成のFe−Ni系合金原料を粉砕し
て、平均粒系0.1〜30μm、平均厚さ2μm以下とな
し、然る後非酸化性雰囲気中で、ほぼ上記形状(扁平状
微粉末形状)を維持しつつ、焼鈍を施すことで、保磁力
を400A/m以下とした微粉末、このうち、特に、Ni70〜83
%、Mo2〜6%、Cu3〜6%、Mn1〜2%、C0.05%以下、
残部が鉄および付随的不純物よりなるもの、およびその
製造方法であり、また特に、粉砕原料中に、B、P、A
s、Sb、Bi、S、Se、Teよりなる元素群のうち、一種ま
たは二種以上を0.1〜2%添加して被粉砕性を向上する
ことを含むものである。
In the present invention, the saturation magnetostriction constant λs
A Fe-Ni alloy raw material having a composition of 15 × 10 −6 or less is pulverized into an average grain size of 0.1 to 30 μm and an average thickness of 2 μm or less. Fine powder with a coercive force of 400 A / m or less by annealing while maintaining the flat fine powder shape), among which Ni70-83
%, Mo2-6%, Cu3-6%, Mn1-2%, C0.05% or less,
The balance consists of iron and incidental impurities, and a method for producing the same. In particular, B, P, A
Among the element group consisting of s, Sb, Bi, S, Se, and Te, one or two or more elements are added in an amount of 0.1 to 2% to improve grindability.

すなわち本発明は、バルク材で測定される飽和磁歪定
数λsが±15×10-6以内である組成を有し、平均粒系0.
1〜30μm、平均厚さ2μm以下であり、保磁力Hcが400
A/m以下であり、原料粉末に機械的粉砕と焼鈍を施して
得られるものであることを特徴とする扁平状Fe−Ni系合
金微粉末、このうち、前記特定成分範囲のPCパーマロイ
とすることをよしとするもの、ならびに、バルク材で測
定される飽和磁歪定数λsが±15×10-6以内である組成
を有する原料を粉砕によって、平均粒径0.1〜30μm、
平均厚さ2μm以下となし、然る後非酸化性雰囲気中で
ほぼ上記の扁平微粉末状を維持しつつ焼鈍を施して、粉
末の保磁力Hcを400A/m以下とすることを特徴とする扁平
状Fe−Ni径合金微粉末の製造方法である。
That is, the present invention has a composition in which the saturation magnetostriction constant λs measured in the bulk material is within ± 15 × 10 -6 , and has an average grain size of 0.1.
1-30 μm, average thickness 2 μm or less, coercive force Hc is 400
A / m or less, flat Fe-Ni alloy fine powder characterized by being obtained by subjecting the raw material powder to mechanical pulverization and annealing, of which PC permalloy in the specific component range is used. What is good, and a raw material having a composition whose saturation magnetostriction constant λs measured within the bulk material is within ± 15 × 10 -6 is pulverized to have an average particle size of 0.1 to 30 μm,
An average thickness of 2 μm or less, and thereafter, annealing is performed in a non-oxidizing atmosphere while maintaining the above-mentioned flat fine powder state, so that the coercive force Hc of the powder is 400 A / m or less. This is a method for producing flat Fe-Ni diameter alloy fine powder.

本発明の製造方法において、粉砕された粉末の焼鈍
は、粒子相互の凝集を防止しつつ高温処理するために、
流動層等流動ないし、移動させつつ行なうことが望まし
い。
In the production method of the present invention, the annealing of the pulverized powder is performed at a high temperature while preventing agglomeration of particles,
It is desirable to carry out the process while moving or moving the fluidized bed.

また、粉砕用原料として、B、P、As、Sb、Bi、S、
Se、Teよりなる元素群のうち、一種または二種以上を0.
1〜2%含むものを用いることが有利で、この場合にお
いては、特に粉砕が先立って、原料粉末を抑制された酸
素ポテンシャルを有する雰囲気下、つまり弱酸化雰囲気
下で加熱して酸化させること、さらに、原料として合金
溶湯を水アトマイズして得た不規則形状の粉末を用いる
こと、粉砕を粉砕助剤との共存下で行なうこと等が、粉
砕能率向上の点から有効である。
In addition, B, P, As, Sb, Bi, S,
Of the element group consisting of Se and Te, one or two or more elements are 0.
It is advantageous to use one containing 1 to 2%. In this case, the raw material powder is heated and oxidized under an atmosphere having a suppressed oxygen potential, that is, under a weakly oxidizing atmosphere, particularly before the pulverization. Further, it is effective from the viewpoint of improving the pulverizing efficiency to use an irregularly shaped powder obtained by atomizing a molten alloy as a raw material and to perform pulverization in the presence of a pulverization aid.

〔作用〕[Action]

本発明において、平均粒径0.1〜30μm、平均厚さ2
μm以下であって、反磁場を無視したランダムな集合状
態での粉末の保磁力を400A/m以下とするための方法は、
合金組成としてそのバルク材で測定される飽和磁歪定数
が±15×10-6以内となるようなFe−Ni系合金を選定する
こと、粉砕後の焼鈍を粉末同志の凝集を回避すべく、非
酸化性雰囲気中で高温焼鈍すること、より具体的に好ま
しくは粉末を流動ないし移動させつつ高温焼鈍するこ
と、に要約される。
In the present invention, the average particle size is 0.1 to 30 μm and the average thickness is 2
μm or less, a method for making the coercive force of the powder in a random aggregate state ignoring the demagnetizing field 400 A / m or less,
As an alloy composition, it is necessary to select an Fe-Ni-based alloy such that the saturation magnetostriction constant measured in the bulk material is within ± 15 × 10 −6. High-temperature annealing in an oxidizing atmosphere, more specifically, preferably high-temperature annealing while the powder is flowing or moving.

本願対象の扁平状微粉末は、粉砕の工程が不可避であ
る。溶湯から直接扁平粉を製造する手法も存在するが、
溶湯の表面張力の面で溶湯から直接製造される扁平粉の
厚さには限界があり、薄くても10μm程度までであり、
何らかの加工によって肉圧を減じ、扁平化しつつ粒径を
細かくしなければならない。それ故、平均粒径0.1〜30
μm、平均厚さ2μm以下なる粉末は極めて大きな変形
を受け、大きな歪を有しており、本来の軟磁性が甚だし
く損なわれた状態にある。すなわち、反磁場を無視した
ランダムな集合状態での粉末の保磁力は、最小でも500A
/mを越える値になる。このように歪の大きい微粉末の保
磁力を低減するには、粉末の焼鈍が不可欠であるが、焼
鈍後の保持力を400A/m以下に低減するには、素材成分の
飽和磁歪定数が±15×10-6以内であることが必要なこと
を本発明者らは新たに知見した。この場合、飽和磁歪定
数は、本発明対象の肉厚2μm以下の扁平粉末では、測
定が困難であり、mmオーダー以上の厚さを有する板材な
どで測定される値で代表する。
For the flat fine powder of the present application, a pulverizing step is inevitable. There is also a method to produce flat powder directly from molten metal,
In terms of the surface tension of the molten metal, there is a limit to the thickness of the flat powder that is directly produced from the molten metal, up to about 10 μm even if it is thin,
It is necessary to reduce the wall pressure by some processing and to make the particle size fine while flattening. Therefore, the average particle size is 0.1-30
The powder having a thickness of 2 μm or less and an average thickness of 2 μm or less undergoes extremely large deformation, has a large strain, and is in a state in which the original soft magnetism is significantly impaired. That is, the coercive force of the powder in a random aggregate state ignoring the demagnetizing field is at least 500A
The value exceeds / m. In order to reduce the coercive force of fine powder having a large strain in this way, annealing of the powder is indispensable, but in order to reduce the coercive force after annealing to 400 A / m or less, the saturation magnetostriction constant of the material component is ± The present inventors have newly found that it is necessary to be within 15 × 10 −6 . In this case, the saturation magnetostriction constant is difficult to measure with the flat powder of the present invention having a thickness of 2 μm or less, and is represented by a value measured with a plate material having a thickness on the order of mm or more.

より具体的には、FeNi3の規則格子生成領域およびこ
の付近の組成の高透磁率合金、いわゆるPAパーマロイ、
ならびに該規則格子の生成を抑制し、徐冷によっても高
透磁率が実現できるようFe−Ni径にMo、Cr、Cu、Nb、Mn
等を添加した多元系パーマロイ、いわゆるPCパーマロイ
とその範疇に含む。これらPA系ないしPC系のパーマロイ
は、溶製バルク材では、飽和磁歪定数が零ないし零に近
いこと、および磁気異方性定数K1が零に近いことによっ
て、高透磁率化することが知られているが、本願対象の
粉砕による扁平状微粉末においては、その組成の有する
飽和磁歪定数が±15×10-6以内であれば、粉砕による著
しい残留歪は、引き続きなされる焼鈍によって開放さ
れ、目標の保磁力Hcが400A/m以下となることが見出され
た。
More specifically, a high-permeability alloy having a composition of a FeNi 3 ordered lattice generation region and a composition in the vicinity thereof, a so-called PA permalloy,
In addition, the generation of the ordered lattice is suppressed, and Mo, Cr, Cu, Nb, Mn are added to the Fe-Ni diameter so that high magnetic permeability can be realized even by slow cooling.
Multi-system permalloy to which is added, so-called PC permalloy and its category. These PA system to permalloy PC system, the melting bulk material, the saturation magnetostriction constant close to zero or zero, and by magnetic anisotropy constant K 1 is close to zero, to be high permeability of intellectual However, in the crushed flat fine powder of the subject of the present application, if the composition has a saturated magnetostriction constant within ± 15 × 10 -6 , significant residual strain due to crushing is released by subsequent annealing. It was found that the target coercive force Hc was 400 A / m or less.

次に、本願が推奨するPCパーマロイ成分の限定理由を
述べる。
Next, the reasons for limiting the PC permalloy component recommended by the present application will be described.

Fe−Ni合金は、Ni80%付近で高透磁率を示すことが知
られており、特に4%Moを含有するMoパーマロイは広く
利用されている。本発明の合金粉末は、前記パーマロイ
合金に磁性改善元素としてCu、Mn、Moを加え、透磁率を
著しく高めたものである。Ni量は70%未満では高透磁率
を示さず、また83%を越えると飽和磁化が低下してしま
うため70〜83%とする。Cu、Mn、Moは、難磁性を向上さ
せる目的で添加する。Cuが3%未満では、難磁性の向
上、特に保磁力Hcを低下させる効果が小さい。また、Cu
が6%を越えると飽和磁束密度が低下し、かつ透磁率も
低下する。MoもCuと同様の効果を示し、Mo2%未満で
は、軟磁性の向上、特に保磁力Hcを低下させる効果が小
さく、またMoが6%を越えると飽和磁束密度が低下し、
かつ透磁率も低下する。
Fe-Ni alloys are known to exhibit high magnetic permeability near 80% Ni, and in particular, Mo permalloy containing 4% Mo is widely used. The alloy powder of the present invention is obtained by adding Cu, Mn, and Mo as magnetic improvement elements to the above-described permalloy to significantly increase the magnetic permeability. If the Ni content is less than 70%, no high magnetic permeability is exhibited, and if it exceeds 83%, the saturation magnetization is reduced. Cu, Mn, and Mo are added for the purpose of improving hard magnetic properties. When Cu is less than 3%, the effect of improving the poor magnetic properties, particularly, the effect of lowering the coercive force Hc is small. Also, Cu
Exceeds 6%, the saturation magnetic flux density decreases and the magnetic permeability also decreases. Mo also shows the same effect as Cu. When Mo is less than 2%, the effect of improving soft magnetism, particularly the effect of lowering the coercive force Hc is small, and when Mo exceeds 6%, the saturation magnetic flux density decreases,
And the magnetic permeability also decreases.

Mnが1%未満では、最大透磁率μmが低く、また2%
を越えると保磁力Hcが大きくなり、1〜2%の間で最大
透磁率の増加に効果がある。Cは合金中に固溶すると合
金の軟磁性を低下させるが、0.05%までの含有は、粉末
の軟磁性の特性上許容される。残余は、鉄および付随不
純物であるが、溶解時に脱酸剤として使用されるSiは1
%まで含有されても特性上問題はない。
When Mn is less than 1%, the maximum magnetic permeability μm is low and 2%
When the value exceeds 1, the coercive force Hc increases, and between 1% and 2% is effective in increasing the maximum magnetic permeability. When C forms a solid solution in the alloy, it lowers the soft magnetism of the alloy. However, the content of up to 0.05% is allowable in the soft magnetic properties of the powder. The balance is iron and incidental impurities, but Si used as a deoxidizer during dissolution is 1%.
%, There is no problem in characteristics.

前記飽和磁歪定数λsが±15×10-6以内となるFe−Ni
系合金の粉砕性を高めるためには、B、P、As、Sb、B
i、S、Se、Teよりなる元素群のうち、一種以上を0.1%
以上、2%以下添加した粉末が有効で、また、水アトマ
イズ法による不規則形状粉末がより好ましいことが判明
した。B、P、As、Sb、Bi、S、Se、Teは、主組成のNi
富化Fe−Ni系における溶解度がほとんどないため、添加
分は粉末製造中に、M3B、M3P、M3Sb、M5Sb2、MBi、M
3S2、MS、M3Se2、MTe、MTe2およびこれらの複合相など
脆弱な金属間化合物相として、結晶粒界に優先的に晶出
する。各々の化合物相は、溶融温度の高低はあるが、極
めて脆いために結晶粒界を脆くし、意図的にこれら元素
群を追加しない通常のFe−Ni系合金に比し容易に粉砕さ
れやすくする。すなわち、粒界脆化相の存在によって粉
砕初期における粒界単位の分割が促進されるため、特に
粒径微細化が早期に進行し、粉砕効率が向上する。ま
た、上記元素群の添加分のほとんどは、粒界の化合物相
に費やされ、マトリックス中にほとんど固溶しないの
で、基本的にそのマトリックス組成の飽和磁歪定数が±
15×10-6以内であれば、目標である保磁力Hc≦400A/mを
容易に達することができる。
Fe-Ni wherein the saturation magnetostriction constant λs is within ± 15 × 10 -6
B, P, As, Sb, B
0.1% or more of at least one element group consisting of i, S, Se, Te
As described above, it has been found that powder added at 2% or less is effective, and irregularly shaped powder obtained by a water atomizing method is more preferable. B, P, As, Sb, Bi, S, Se and Te are Ni of the main composition.
Since there is almost no solubility in the enriched Fe-Ni system, the added components are M 3 B, M 3 P, M 3 Sb, M 5 Sb 2 , MBi, M
As a brittle intermetallic compound phase such as 3S 2 , MS, M 3 Se 2 , MTe, MTe 2 and a composite phase thereof, it is preferentially crystallized at a crystal grain boundary. Although each compound phase has a high or low melting temperature, it is extremely brittle and makes the crystal grain boundaries brittle, making it easier to be pulverized compared to a normal Fe-Ni-based alloy that does not intentionally add these element groups. . In other words, since the presence of the grain boundary embrittlement phase promotes the division of the grain boundary units in the initial stage of the pulverization, the reduction in the particle size proceeds particularly early, and the pulverization efficiency is improved. In addition, most of the addition of the above element group is spent in the compound phase at the grain boundary and hardly forms a solid solution in the matrix. Therefore, the saturation magnetostriction constant of the matrix composition is basically ±±.
Within 15 × 10 −6 , the target coercive force Hc ≦ 400 A / m can be easily achieved.

上記粒界化合物相生成に費やされるB、P、As、Sb、
Bi、S、Se、Teの元素群は、単独でも複合的にも添加し
得るが、その総量は0.1%以上、2%以下が適量であ
る。0.1%未満では意図的に添加しない場合に比べ粉砕
効率の目に見える効果は認められない。また、P、As、
Sb、Bi、S、Se、Teなどでは、特にベース組成の溶解温
度で蒸気圧が高いため、実質的に総合で2%を越える添
加は困難であり、蒸気圧の低いBも2%を越えると保磁
力Hcが大きくなり好ましくない。したがって、総量で2
%以下の添加に留める。
B, P, As, Sb, consumed in the formation of the grain boundary compound phase
The element group of Bi, S, Se, and Te may be added alone or in combination, but the total amount is preferably 0.1% or more and 2% or less. If it is less than 0.1%, a visible effect of the pulverization efficiency is not recognized as compared with the case where it is not intentionally added. Also, P, As,
In the case of Sb, Bi, S, Se, Te, etc., since the vapor pressure is high especially at the dissolution temperature of the base composition, it is difficult to add more than 2% in total, and B having a low vapor pressure also exceeds 2%. And the coercive force Hc increases, which is not preferable. Therefore, the total amount is 2
% Addition.

このようにして添加される蒸気元素群が生成する粒界
の化合物相は、粉砕中の粒界単位の分割とともに粒界か
ら脱落し、マトリックス組成の粉末中に混合され、混合
物相自体としてさらに粉砕され、低融点のものは摩擦熱
で溶融、飛散したり、極く微細な残渣となり、引き続き
なされる焼鈍中に溶融、飛散して、さらに低減し、磁気
特性を劣化させるほどに残らない。
The compound phase at the grain boundary generated by the vapor element group added in this way drops off from the grain boundary with the division of the grain boundary unit during the grinding, is mixed into the powder of the matrix composition, and is further ground as the mixture phase itself. Those having a low melting point are melted and scattered by frictional heat, or become extremely fine residues, and are melted and scattered during the subsequent annealing, and are further reduced, and do not remain to the extent that magnetic properties are deteriorated.

上記粉砕促進添加元素を添加した粉砕原料の粉砕に際
し、抑制された酸素ポテンシャルを有する雰囲気で、加
熱処理を施すと、前述のB、P、As、Sb、Bi、S、Se、
Teよりなる群の添加による粉砕効率の向上がさらに促進
される。上記元素群の添加により生成される脆弱な粒界
化合物相の存在は、粒界エネルギーを低下させることに
より、上気元素群を添加しない通常のFe−Ni系合金では
認め難い選択的な粒界酸化を受け易い状態にあると考え
られる。粒界の酸化状態を定量化し得る段階に至ってい
ないが、抑制された酸素ポテンシャルを有する雰囲気、
たとえば、粉砕前加熱の雰囲気として、湿水素中600℃
で前加熱した場合に、加熱処理をしない場合、および乾
水素中で加熱した場合に比べて粉砕効率が向上する。雰
囲気としては、湿水素に限らず、酸素ポテンシャルを含
む弱酸化性雰囲気であれば、窒素のほか、Ar等不活性ガ
ス、NH3分解ガスなどでも使用可能であり、特に限定さ
れない。
When pulverizing the pulverized raw material to which the pulverization promoting additive element is added, and performing a heat treatment in an atmosphere having a suppressed oxygen potential, the above-described B, P, As, Sb, Bi, S, Se,
The addition of the group consisting of Te further promotes the improvement of the grinding efficiency. The presence of the fragile grain boundary compound phase generated by the addition of the above-described element group reduces the grain boundary energy, thereby making it difficult to recognize a selective grain boundary which is difficult to recognize in a normal Fe-Ni-based alloy to which the upper element group is not added. It is considered that the state is susceptible to oxidation. Atmosphere with reduced oxygen potential, but not at the stage where the oxidation state of grain boundaries can be quantified,
For example, as an atmosphere for heating before grinding, 600 ° C in wet hydrogen
The pulverization efficiency is improved as compared with the case where the preheating is performed, the case where the heat treatment is not performed, and the case where heating is performed in dry hydrogen. The atmosphere is not limited to wet hydrogen, and may be nitrogen, an inert gas such as Ar, an NH 3 decomposition gas, or the like, and is not particularly limited as long as it is a weakly oxidizing atmosphere containing an oxygen potential.

温度は粉砕に供する粉末が凝集し始める範囲であって
もかまわないが、1000℃以上では相対密度が70%を越え
焼結体を生成することになり、かえって粉砕効率が減少
するので好ましくない。
The temperature may be in a range where the powder to be pulverized starts to agglomerate. However, at a temperature of 1000 ° C. or more, the relative density exceeds 70% to produce a sintered body, which is not preferable because the pulverization efficiency is reduced.

機械的粉砕は、スタンプミル、振動ミル、アトライタ
ーなどが適用できるが、本発明のB、P、As、Sb、Bi、
S、Se、Teよりなる元素群のうち、一種以上を0.1〜2
%添加したFe−Ni系合金粉末の場合には、前記粉砕機の
うち最も投入エネルギーの高いアトライターによって、
10時間以内にほぼ100%の収率で目標の粒度、厚さの扁
平状粉末を得ることが可能である。上記元素を添加しな
い通常のFe−Ni系合金粉末では粉砕後の平均厚さを望ま
しい2μm以下とするのに10時間を越えて長時間の粉砕
が必要となる。
For mechanical pulverization, a stamp mill, a vibration mill, an attritor, and the like can be applied, but B, P, As, Sb, Bi,
One or more of the element group consisting of S, Se, and Te is 0.1 to 2
% Of the Fe-Ni-based alloy powder added, by the attritor with the highest input energy among the pulverizers,
Within 10 hours, it is possible to obtain a flat powder of the target particle size and thickness with almost 100% yield. In the case of ordinary Fe-Ni-based alloy powder to which the above-mentioned elements are not added, pulverization for more than 10 hours is required for reducing the average thickness after pulverization to 2 μm or less.

以上はアトライターによる場合であって、スタンプミ
ル、振動ミル等、より投入エネルギーの低い粉砕機では
全体として時間因子が長時間側にシフトするが、傾向と
しては同様である。
The above is the case using an attritor. In a pulverizer with a lower input energy such as a stamp mill or a vibration mill, the time factor is shifted to a longer time side as a whole, but the tendency is the same.

また、粉砕原料はアトマイズ時の凝固速度が速いほ
ど、粉末の結晶粒度が小さくなること、および粒界化合
物相が均一微細に晶出することから、より容易に粉砕が
進行する。
Further, the higher the solidification rate during atomization of the pulverized raw material, the smaller the crystal grain size of the powder and the more uniformly and finely the grain boundary compound phase is crystallized, so that the pulverization proceeds more easily.

したがって、アトマイズ法としては、冷却速度の高い
水アトマイズ法が最適である。さらに、水アトマイズに
よれば、噴霧媒体の水の剪断力によって、溶湯は界面の
乱れた不規則形状のまま固化するから、たとえばガスア
トマイズなどの球状粉末に比べ形状的により粉砕され易
い。
Therefore, as the atomizing method, a water atomizing method having a high cooling rate is optimal. Furthermore, according to the water atomization, the molten metal is solidified with the irregular shape of the interface due to the shearing force of the water of the spray medium, so that the molten metal is more easily pulverized in shape than a spherical powder such as gas atomized.

前記機械粉砕を適当な粉砕助剤を添加した中で行なう
ことによって扁平化をさらに促進できる。粉砕助剤の有
効性は、たとえば特願昭61−262134号においてアモルフ
ァス合金フレークの場合に例示されたごとく、粉砕の進
行とともに活性化された粉末粒子表面に吸着して粒子の
凝集を抑制し、扁平化を促進させる効果が、本発明のFe
−Ni系合金でも認められた。効果的な固体助剤としては
ステアリン酸、オレイン酸、ラウリン酸、パルミチン酸
等の高級脂肪酸、ステアリン酸亜鉛、ステアリン酸カル
シウム、カウリン酸亜鉛、ラウリン酸アルミニウム等の
金属石けん、ステアリルアルコール等、高級脂肪族アル
コール類、エタノールアミン、ステアリルアミンなどの
高級脂肪酸アミン、およびポリエチレンワックスなど
で、これらは単独ばかりでなく2種以上加えてもよい。
添加量は、通常0.1〜500重量%である。また、液体の助
剤には、アルコール、グリコール、エステル等の有機溶
剤なども使用できる。
Flattening can be further promoted by performing the mechanical pulverization in the presence of a suitable pulverizing aid. The effectiveness of the grinding aid is, for example, as exemplified in the case of amorphous alloy flakes in Japanese Patent Application No. 61-262134, as the grinding progresses, the powder is adsorbed on the activated powder particle surface to suppress the aggregation of the particles, The effect of promoting flattening is the effect of Fe of the present invention.
-Also observed in Ni-based alloys. Effective solid auxiliaries include higher fatty acids such as stearic acid, oleic acid, lauric acid, and palmitic acid; metal soaps such as zinc stearate, calcium stearate, zinc laurate and aluminum laurate; and higher aliphatic acids such as stearyl alcohol. Alcohols, higher fatty acid amines such as ethanolamine and stearylamine, and polyethylene waxes may be used alone or in combination of two or more.
The addition amount is usually 0.1 to 500% by weight. In addition, an organic solvent such as alcohol, glycol, and ester can be used as the liquid auxiliary.

粉砕された粉末は、必要に応じて分級し、大きな粒子
を取り除く。大きな粒子があると、カード等の基板上へ
の塗布がしにくいうえ、均一な塗布ができないため、特
性が不均一になる。平均粒径として30μm以下であれば
特性上の問題はない。
The pulverized powder is classified as necessary to remove large particles. If there are large particles, it is difficult to apply the composition onto a substrate such as a card and the like, and uniform application cannot be performed, resulting in non-uniform characteristics. If the average particle size is 30 μm or less, there is no problem in characteristics.

また、平均厚さが2μmより大きいと、扁平方向の反
磁場係数が大きくなるため、塗布後の軟磁性が低下す
る。
On the other hand, if the average thickness is larger than 2 μm, the demagnetizing field coefficient in the flat direction becomes large, so that the soft magnetism after coating decreases.

次に、本願対象の扁平状微粉末が粉砕ままでは、500A
/mを越える保磁力を有していることから、焼鈍工程は不
可欠の処理となる。
Next, when the flat fine powder of the present application is pulverized,
Since it has a coercive force exceeding / m, the annealing step is an indispensable treatment.

このように歪の大きい微粉末のFe−Ni系合金を通常の
バルク材と同じ条件で焼鈍すると、粉末粒子の凝集、す
なわち焼結現象が生じて、機械的に粉砕して得た扁平形
状が損なわれてしまうという問題が生ずる。したがって
焼鈍は、粉末粒子の凝集を起こさせずに歪を解放し、軟
磁性を引き出せるような処理法でなければならない。
When the fine-powder Fe-Ni-based alloy having large strain is annealed under the same conditions as ordinary bulk material, agglomeration of powder particles, that is, a sintering phenomenon occurs, and the flat shape obtained by mechanical pulverization becomes There is a problem that it is damaged. Therefore, the annealing must be a treatment method capable of releasing strain without causing aggregation of the powder particles and extracting soft magnetism.

従来公知の方法で凝集を防ぐには、焼鈍温度を通常の
バルク材の場合の1100℃付近より大幅に下げざるを得
ず、焼鈍後の粉末の保磁力を400A/m以下とすることは不
可能であった。粉砕歪を解放して軟磁性を得るために焼
鈍を施すことは、前述の特願昭58−59268号に触れられ
ているが、上記の凝集の問題を克服して軟磁性を高める
上で具体的な知見を与えるものではない。
In order to prevent agglomeration by a conventionally known method, the annealing temperature must be significantly lowered from about 1100 ° C. in the case of a normal bulk material, and it is impossible to reduce the coercive force of the annealed powder to 400 A / m or less. It was possible. Annealing to release softness by releasing crushing strain is mentioned in the aforementioned Japanese Patent Application No. 58-59268.However, in order to overcome the problem of aggregation and enhance soft magnetism, It does not give a basic knowledge.

本発明者らは、凝集防止と軟磁性向上を図るために、
特定成分範囲とすることにより、軟磁性を高めることに
より焼鈍温度の上昇を防止し得ること、粉砕後の扁平状
Fe−Ni系合金微粉末を流動ないし移動させながら、非酸
化性雰囲気中で高温焼鈍し、焼鈍中の扁平状合金微粉末
の凝集を抑制しつつ、粉砕後の高い保持力を大幅に低減
できることを知見した。
The present inventors, in order to prevent aggregation and improve soft magnetism,
By setting the specific component range, it is possible to prevent an increase in annealing temperature by increasing soft magnetism,
High-temperature annealing in a non-oxidizing atmosphere while flowing or moving the Fe-Ni-based alloy fine powder to significantly reduce the high holding power after grinding while suppressing aggregation of the flat alloy fine powder during annealing. Was found.

後者の焼鈍用設備としては、均熱帯内で粉末粒子が互
いに凝集しないように動いていればよく、機械的もしく
は非酸化性ガスにより、扁平状合金微粉末を撹拌、分散
させつつ、所定温度に加熱し焼鈍を施す方式一切を含
む。たとえば、円筒もしくは溝型容器中にその幅方向に
設けられた回転撹拌翼により、上部に空間を残して充填
された粉末を撹拌状態下で、連続加熱するものが考えら
れ、第1図はこの一例である。また、第2図に示すよう
に、内部にかき上げ翼を備えた傾斜回転円筒内に粉末と
非酸化性ガスを向流または並流に供給する方法でもよ
い。粉末はかき上げられては、カーテン状に落下しなが
ら加熱された非酸化性ガスとの接触を繰返し焼鈍され
る。第3図は振動流動層によるもので非酸化性ガスの吹
き込みとともに、粉末を投入して、いわゆる流動層とな
した上で、さらに流動底面を機械的に斜め振動させて、
流動化を促進し、かつ振動方向に粉末を移送するもので
ある。底板は多孔板、スクリーンなどが用いられる。な
お、各図の例では、特にヒーターの位置をを示していな
いが、内部あるいは外部加熱により均熱帯を設定する。
As the latter equipment for annealing, it is only necessary that the powder particles move so that they do not agglomerate in the soaking zone, and the mechanical or non-oxidizing gas stirs and disperses the flat alloy fine powder to a predetermined temperature. Includes all methods of heating and annealing. For example, it is conceivable to continuously heat the powder filled with leaving a space in the upper part under a stirring state by a rotary stirring blade provided in a width direction in a cylindrical or groove-shaped container. This is an example. Alternatively, as shown in FIG. 2, a method may be employed in which the powder and the non-oxidizing gas are supplied in a countercurrent or cocurrent flow into an inclined rotating cylinder having a stirring blade inside. After the powder is scraped up, the powder is repeatedly annealed while falling in a curtain shape while repeatedly contacting with the heated non-oxidizing gas. FIG. 3 shows a method using a vibrating fluidized bed, in which a non-oxidizing gas is blown and a powder is introduced to form a so-called fluidized bed, and then the fluidized bottom is mechanically vibrated obliquely.
It promotes fluidization and transfers powder in the direction of vibration. As the bottom plate, a perforated plate, a screen or the like is used. Although the position of the heater is not particularly shown in the example of each drawing, a uniform tropical zone is set by internal or external heating.

〔実施例〕〔Example〕

実施例1 第1表に示す各種Fe−Ni系合金溶湯を水アトマイズし
て、平均粒径30〜37μmの粉末を得た。
Example 1 Various Fe-Ni-based alloy melts shown in Table 1 were subjected to water atomization to obtain powders having an average particle diameter of 30 to 37 µm.

各組成の溶製バルク材で測定された飽和磁歪定数λs
を併せて表に示してある。これら6種の水アトマイズ粉
をアトライターによって粉砕した。粉砕条件は、SUJ2鋼
球と水アトマイズ粉末の重量比を3対1とし、粉砕助剤
としてイソプロピルアルコールを水アトマイズ粉末と同
重量添加して、毎分300回転で、10時間粉砕した。得ら
れた粉末は平均粒径13〜16μmで平均厚さ0.7〜0.9μm
の扁平状で、見掛け密度はその相当成分の真密度の3〜
6%であった。
Saturation magnetostriction constant λs measured for ingots of various compositions
Are also shown in the table. These six types of water atomized powder were ground by an attritor. The grinding conditions were such that the weight ratio of the SUJ2 steel ball to the water atomized powder was 3: 1, isopropyl alcohol as a grinding aid was added in the same weight as the water atomized powder, and the mixture was ground at 300 rpm for 10 hours. The resulting powder has an average particle size of 13-16 μm and an average thickness of 0.7-0.9 μm
And the apparent density is 3 to 3 times the true density of the corresponding component.
6%.

粉砕ままの粉末の保磁力Hcを測定した後、水素気流中
で焼鈍した後のHcの変化と、粉末の形状を観察した。焼
鈍装置は第2図の如き並流式の回転筒タイプの炉を用い
た。結果を第4図に示す。図中、○は粉砕ままの形状を
維持していたもの、●は凝集が起こっているものを示
す。
After measuring the coercive force Hc of the powder as pulverized, the change in Hc after annealing in a hydrogen stream and the shape of the powder were observed. The annealing apparatus used was a co-rotating rotary cylinder type furnace as shown in FIG. The results are shown in FIG. In the figure, ○ indicates that the crushed shape was maintained, and ● indicates that agglomeration had occurred.

すなわち、飽和磁歪定数が零より偏倚する度合いが大
きいほど、粉砕ままのHcが大きく、かつ焼鈍後のHcも大
きいという傾向が認められる。凝集が始まらない範囲で
600℃の焼鈍を行なった場合、Hcが望ましい240A/m以下
となるのは、No.3,6,5の粉末に限られ、この場合のそれ
ぞれの飽和磁歪定数λsは、5×10-6、3×10-6、1×
10-6である。
That is, as the degree to which the saturation magnetostriction constant deviates from zero increases, the tendency that the as-crushed Hc increases and the Hc after annealing tends to increase. As long as the coagulation does not start
When annealing at 600 ° C., Hc is preferably 240 A / m or less only for the powders of Nos. 3, 6 , and 5, and in this case, each saturation magnetostriction constant λs is 5 × 10 −6. , 3 × 10 -6 , 1 ×
It is 10 -6 .

実施例2 実施例1と全く同様にNo.1〜6の組成の粉末をアトラ
イターにより粉砕した後、第3図に示す、振動流動層タ
イプの炉で焼鈍を来なった。実施例1の場合は、粉体の
回転移動であったが、この場合は、均一流動化状態を生
成したため、700℃でも凝集することなく、Hcがより低
減できた。すなわち、No.2,4,3,6,5の粉末で240A/m以下
のHcを得た。しかし、No.1ではHC≦400A/mも達成できな
かった。
Example 2 Powders of compositions Nos. 1 to 6 were pulverized with an attritor in exactly the same manner as in Example 1, and then annealed in a vibrating fluidized bed type furnace shown in FIG. In the case of Example 1, the powder was rotationally moved. In this case, since a uniform fluidized state was generated, Hc could be further reduced without agglomeration even at 700 ° C. That is, Hc of 240 A / m or less was obtained with the powders of Nos. 2, 4, 3, 6, and 5. However, in No. 1, HC ≦ 400 A / m could not be achieved.

この場合、それぞれの飽和磁歪定数λsは、15×1
0-6、−12×10-6、5×10-6、3×10-6、1×10-6であ
る。したがって、±15×10-6のλsであれば目標のHcが
得られる。
In this case, each saturation magnetostriction constant λs is 15 × 1
0 −6 , −12 × 10 −6 , 5 × 10 −6 , 3 × 10 −6 , 1 × 10 −6 . Therefore, if λs is ± 15 × 10 −6 , the target Hc can be obtained.

実施例3 第2表の実施例の欄に示す各種Fe−Ni系合金の溶湯を
水アトマイズし、平均粒径31〜39μmの粉末を得た。
Example 3 Melts of various Fe-Ni alloys shown in the column of Examples in Table 2 were subjected to water atomization to obtain powders having an average particle diameter of 31 to 39 µm.

これら粉末を、アトライターにより粉砕し、然る後、
H2気流中で焼鈍し、保磁力Hcの低減を図った。アトライ
ター粉砕は、SUJ2鋼球と水アトマイズ粉末の重量比を3
対1とし、粉砕助剤としてエタノールを水アトマイズ粉
末と同重量添加し、毎分300回転で粉砕した。途中5時
間毎にサンプリングしつつ、平均厚さが1μm以下とな
った時点で粉砕を中止し、350meshで篩下し、−350mesh
の収率と、その平均粒径を測定した。また露点−60℃の
水素雰囲気で600℃×1hrの焼鈍を施して、保磁力Hcを測
定した。なお、焼鈍前後の扁平状微粉末の形状を比較
し、焼鈍による形状変化がないことを確認した。
These powders are ground by an attritor and then
Aimed annealing, the reduction of the coercive force Hc with H 2 gas stream. Attritor pulverization uses a weight ratio of SUJ2 steel ball to water atomized powder of 3
Ethanol as a grinding aid was added in the same weight as the water atomized powder, and the mixture was ground at 300 rpm. While sampling every 5 hours on the way, when the average thickness became 1 μm or less, pulverization was stopped, sieved with 350 mesh, and -350 mesh.
And the average particle size thereof were measured. Further, annealing was performed at 600 ° C. for 1 hour in a hydrogen atmosphere with a dew point of −60 ° C., and the coercive force Hc was measured. In addition, the shape of the flat fine powder before and after annealing was compared, and it was confirmed that there was no shape change due to annealing.

焼鈍装置は、第2図の如き内部にかき上げ翼を備えた
傾斜回転内筒タイプで、水素ガスと粉末を並流する方式
の炉を用いた。
As the annealing apparatus, an inclined rotary inner cylinder type having a stirring blade inside as shown in FIG. 2 and a furnace in which hydrogen gas and powder were co-flowed were used.

第2表の実施例3の欄には、供試材の不可避的不純物
を除く主成分と、その溶製バルク材で測定された飽和磁
歪定数λs、平均厚さ1μmに到達した粉砕所要時間、
−350meshの収率、−350meshでの平均粒径、焼鈍後の扁
平状微粉末の保磁力Hcを示す。
In the column of Example 3 in Table 2, the main components of the test material excluding unavoidable impurities, the saturation magnetostriction constant λs measured in the ingot bulk material, the required pulverization time to reach an average thickness of 1 μm,
It shows the yield of -350 mesh, the average particle size at -350 mesh, and the coercive force Hc of the flat fine powder after annealing.

飽和磁歪定数λsの面から見ると±15×10-6以内であ
れば、平均粒径に種々差があっても、焼鈍後のHcは目標
の240A/m以下が得られることがわかる。しかし、λsが
26×10-6では、Hc≦400A/mを達することができない。
From the viewpoint of the saturation magnetostriction constant λs, it can be seen that if it is within ± 15 × 10 −6 , the target Hc after annealing can be obtained at 240 A / m or less even if there are various differences in the average grain size. However, λs
At 26 × 10 -6 , Hc ≦ 400 A / m cannot be reached.

粉砕効率の面からは、本発明の脆い粒界化合物相を生
成するNo.14,18,19,20,21,22,25,26,27,28,30の組成で
は、本粉砕条件では10hrで十分であること、−350mesh
の収率が75%を越えること、平均粒径が20μm以下とな
ることがわかる。特に、λsの同じ合金で本発明組成と
通常のFe−Ni合金組成との被粉砕性における差が顕著と
なっている。
From the viewpoint of grinding efficiency, the composition of No. 14, 18, 19, 20, 21, 22, 25, 26, 27, 28, 30, which produces the brittle grain boundary compound phase of the present invention, under the grinding conditions of 10 hours Is enough, -350mesh
It can be seen that the yield exceeds 75% and the average particle size is 20 μm or less. In particular, the difference in grindability between the composition of the present invention and the ordinary Fe—Ni alloy composition is remarkable for alloys having the same λs.

これに対し、粉砕促進元素が少量しか添加されていな
いNo.16,17では、粉砕時間が15時間を要する。また、こ
れらの元素を含まないNo.11,13,15,23,29は粉砕時間−3
50meshの収率の点でやや不満がある。
On the other hand, in Nos. 16 and 17 where only a small amount of the pulverization promoting element was added, the pulverization time required 15 hours. In addition, Nos. 11, 13, 15, 23, and 29, which do not contain these elements, have a grinding time of -3.
Somewhat dissatisfied with the yield of 50mesh.

実施例4 実施例3と同様に、本発明のNo.18とNo.25の組成の水
アトマイズ粉末を粉砕した。粉末は、アトライター粉砕
の前に露点30℃の湿水素中で700℃×1hr加熱処理した。
本処理によって粉末は、手でほぐせる程度の団粒となっ
た。見掛けの粒径は、約300μmである。
Example 4 In the same manner as in Example 3, water atomized powders having compositions No. 18 and No. 25 of the present invention were pulverized. The powder was heat-treated at 700 ° C. for 1 hour in wet hydrogen at a dew point of 30 ° C. before the attritor pulverization.
By this treatment, the powder was formed into an aggregate that could be loosened by hand. The apparent particle size is about 300 μm.

上気団粒状粉末を実施例3と同一条件で、アトライタ
ーにより粉砕したところ、第2表の実施例4の欄の結果
を得た。すなわち、該加熱処理を施さない実施例1と比
較して、同一の10hr粉砕後の−350mesh収率が各々9
%、3%上昇し、到達平均粒径が双方とも3μm低減し
た。なお、焼鈍後のHcは該加熱処理をしない場合と同一
レベルの値、すなわち各々200、140A/mであった。
When the upper air mass granular powder was pulverized with an attritor under the same conditions as in Example 3, the results in the column of Example 4 in Table 2 were obtained. That is, the -350 mesh yield after the same 10-hour pulverization was 9
% And 3%, and both of the average particle diameters decreased by 3 μm. In addition, Hc after annealing was the same level value as when the heat treatment was not performed, that is, 200 and 140 A / m, respectively.

実施例5 Mo,Cu,Mnを添加した多元素パーマロイ(PCパーマロ
イ)のうち、特に磁気シールドの分野での応用が期待さ
れる高透磁率を有する組成の合金の溶湯を水アトマイズ
し、平均粒径29〜35μmの粉末を得た。これらの粉末を
実施例3と同様にアトライターにより粉砕し、然る後、
H2気流中で焼鈍し、保磁力Hcの低減を図った。アトライ
ター粉砕は、SUJ2鋼球と水アトマイズ粉末の重量比を3
対1とし、粉砕助剤としてイソプロピルアルコールを水
アトマイズ粉末と同重量添加し、毎分300回転で粉砕し
た。粉砕時間は、実施例3と同様に途中5時間毎にサン
プリングしつつ、平均厚さが1μm以下となった時点で
粉砕を中止し、収率、平均粒系を測定した。また、実施
例3と同様の条件で焼鈍を行ない保磁力Hcを測定した。
第2表の実施例5の欄には、供試材の不可避的不純物を
除く主成分と測定結果を示す。
Example 5 Of a multi-element permalloy (PC permalloy) to which Mo, Cu, and Mn are added, a molten alloy of a composition having a high magnetic permeability, which is expected to be applied particularly in the field of magnetic shielding, is subjected to water atomization to obtain an average particle size. A powder having a diameter of 29 to 35 μm was obtained. These powders were pulverized by an attritor in the same manner as in Example 3, and thereafter,
Aimed annealing, the reduction of the coercive force Hc with H 2 gas stream. Attritor pulverization uses a weight ratio of SUJ2 steel ball to water atomized powder of 3
As one, isopropyl alcohol as a grinding aid was added in the same weight as the water atomized powder, and the mixture was ground at 300 rpm. The pulverization time was the same as in Example 3, sampled every 5 hours, and when the average thickness became 1 μm or less, the pulverization was stopped, and the yield and average grain size were measured. Further, annealing was performed under the same conditions as in Example 3, and the coercive force Hc was measured.
The column of Example 5 in Table 2 shows the main components of the test material excluding unavoidable impurities and the measurement results.

本合金組成においても、実施例3と同様、脆い粒界化
合物相を生成するNo.32,33,35では、短時間で扁平化が
進み、−350meshの収率は、約90%以上を越え、平均粒
径が20μm以下となることがわかる。
Also in this alloy composition, in the same manner as in Example 3, in Nos. 32, 33, and 35 in which brittle grain boundary compound phases are formed, flattening progresses in a short time, and the yield of -350 mesh exceeds about 90% or more. It can be seen that the average particle size is 20 μm or less.

実施例6 第3表に示す各種軟磁性合金の溶湯を水アトマイズ
し、平均粒径25〜36μmの粉末を得た。
Example 6 Melts of various soft magnetic alloys shown in Table 3 were atomized with water to obtain powders having an average particle size of 25 to 36 µm.

これら粉末をアトライターにより粉砕し、然る後、H2
気流中で焼鈍し、保磁力Hcの低減を図った。アトライタ
ー粉末は、SUJ2鋼球と水アトマイズ粉末の重量比を10対
1とし粉砕助剤としてイソプロピルアルコールを鋼球と
同体積添加し、毎分300回転で粉砕した。粉砕時間は5
時間で行なった。粉砕後、500meshで篩下し、その平均
粒径を測定した。粒度分布の測定は、レーザー回折法で
測定した。
These powders are pulverized by an attritor, and then H 2
Annealing was performed in an air current to reduce the coercive force Hc. The attritor powder was prepared by adding SUJ2 steel balls and water atomized powder at a weight ratio of 10: 1, adding isopropyl alcohol as a grinding aid in the same volume as the steel balls, and grinding at 300 rpm. Grinding time is 5
Performed in time. After pulverization, the mixture was sieved with a 500 mesh, and the average particle size was measured. The particle size distribution was measured by a laser diffraction method.

また露点−60℃の水素雰囲気中静止状態のままで500
℃×1Hrの焼鈍を施して、保磁力Hcを測定した。なお、
焼鈍前後の扁平状微粉末の形状を比較し、焼鈍による形
状変化がないことを確認した。
500 in a hydrogen atmosphere with a dew point of -60 ° C
The sample was annealed at ℃ × 1Hr, and the coercive force Hc was measured. In addition,
By comparing the shapes of the flat fine powder before and after annealing, it was confirmed that there was no change in shape due to annealing.

次に焼鈍後の粉末をアクリル酸系とウレタン系樹脂を
混合したバインダーを2:3の割合で混合し、ポリエステ
ル基板上に12〜14μmの厚さに塗布した。塗布した基板
の、基板面方向での保磁力Hcと最大透磁率μmを測定し
た。
Next, the annealed powder was mixed with a binder obtained by mixing an acrylic acid-based resin and a urethane-based resin at a ratio of 2: 3, and applied on a polyester substrate to a thickness of 12 to 14 μm. The coercive force Hc and the maximum magnetic permeability μm of the coated substrate in the direction of the substrate surface were measured.

第3表には、供試材の不可避的不純物を除く主成分
と、その溶製バルク材で測定された飽和磁歪定数λs、
保磁力Hc、最大透磁率μm、8A/cmの磁場を印加した時
の磁束密度B8、−500meshでの平均粒系、焼鈍後の扁平
状微粉末の保磁力Hc、ポリエステル基板上に塗布後の基
板面内方向での保磁力Hc、最大透磁率μmを示す。
Table 3 shows the main components of the test material excluding unavoidable impurities, the saturation magnetostriction constants λs measured for the ingot bulk materials,
Coercive force Hc, maximum magnetic permeability μm, magnetic flux density B 8 when a magnetic field of 8 A / cm is applied, average grain system at −500 mesh, coercive force Hc of flat fine powder after annealing, after coating on polyester substrate Shows the coercive force Hc and the maximum magnetic permeability μm in the in-plane direction of the substrate.

バルク材の磁気特性と扁平状微粉末および基板に塗布
した後の磁気特性を比較すると、扁平状微粉末および基
板に塗布した後の軟磁性特性は、かなり低下しているこ
とがわかる。これは、扁平状微粉末としたことで、形状
磁気異方性の効果が出たこと、粉砕工程での歪が500℃
という低温焼鈍では完全に除去することが困難であるこ
とに起因する。
Comparing the magnetic properties of the bulk material with the flat fine powder and the magnetic properties after being applied to the substrate, it can be seen that the soft magnetic properties after being applied to the flat fine powder and the substrate are considerably reduced. This is because the effect of shape magnetic anisotropy was obtained by using flat fine powder, and the distortion in the grinding process was 500 ° C.
It is difficult to remove completely by low-temperature annealing.

しかし、バルク材での磁気特性が扁平状微粉末および
基板に塗布した後の磁気特性に反映していることは第3
表より明らかである。すなわち、バルク材において、優
れた軟磁性を示す本発明合金の組成は、他の組成に比べ
優れた軟磁性を扁平状微粉末および基板に塗布した後に
おいても示す。
However, the fact that the magnetic properties of the bulk material are reflected in the flat fine powder and the magnetic properties after being applied to the substrate is the third.
It is clear from the table. In other words, the composition of the alloy of the present invention showing excellent soft magnetism in the bulk material shows even after applying the soft magnetism superior to other compositions to the flat fine powder and the substrate.

第3表から、低温(500℃)での静止状態での焼鈍で
も、組成によってはHc≦240A/mの保持力を満足可能であ
ること、Hc≦400A/mは、いずれも満足することがわか
る。また、No.45,46よりNi量70〜83%の範囲外では最大
透磁率μmが、バルク材、塗布後ともやや低くなるこ
と、No.48よりCuの量が3%より少ないと、バルク材、
粉末、塗布後とも保磁力Hcが高くなり、最大透磁率にお
いてもやや劣化すること、No.47よりCu量が6%より多
いと最大透磁率μmが、バルク材、塗布後とも著しく低
下することがそれぞれわかる。また、No.49より、Mn量
が1%より少ないと最大透磁率μmがいずれも低く、か
つ保磁力も高く、またNo.50よりMn量が2%より多いと
保磁力Hcが大きく、最大透磁率μmも低く、またNo.51
より、Cu無添加では、μmがいずれの状態でも低くな
り、これらはこの低温焼鈍では本発明の保磁力Hcの好ま
しい目標Hc≦240A/mを満足できないことがわかる。しか
し、Hc≦400A/mは満足している。
From Table 3, it can be seen that depending on the composition, the holding force of Hc ≦ 240 A / m can be satisfied, and that the Hc ≦ 400 A / m can be satisfied, even in annealing at rest at a low temperature (500 ° C.). Understand. In addition, the maximum magnetic permeability μm is slightly lower than that of No. 45 and 46 when the Ni content is out of the range of 70 to 83%, even after coating with the bulk material. Timber,
The coercive force Hc increases after powder and coating, and the maximum permeability slightly deteriorates. When the amount of Cu is more than 6% than No. 47, the maximum magnetic permeability μm decreases significantly both in bulk material and after coating. I understand each. Also, from No. 49, when the Mn content is less than 1%, the maximum permeability μm is low and the coercive force is high, and when the Mn content is more than 2% than No. 50, the coercive force Hc is large. Low magnetic permeability μm.
From this, it can be seen that μm becomes lower in any state without Cu addition, and these cannot satisfy the preferable target Hc ≦ 240 A / m of the coercive force Hc of the present invention by this low-temperature annealing. However, Hc ≦ 400A / m is satisfied.

以上より、本発明が推奨する成分範囲の扁平状微粉末
No.41〜44は、基板に塗布した後も、保磁力Hc、最大透
磁率μmなどの軟磁性特性において優れており、良好な
磁気シールド特性を示すことがわかる。
From the above, the flat fine powder of the component range recommended by the present invention
Nos. 41 to 44 are excellent in soft magnetic properties such as coercive force Hc and maximum magnetic permeability [mu] m even after being coated on a substrate, and show that they exhibit good magnetic shielding properties.

実施例7 実施例6のNo.41と同じ水アトマイズ粉末をアトライ
ターにより粉砕した。
Example 7 The same water atomized powder as No. 41 of Example 6 was ground by an attritor.

アトライター粉末は、SUJ2鋼球と水アトマイズ粉末の
重量比を10対1とし粉砕助剤としてイソプロピルアルコ
ールを鋼球と同体積添加し、毎分300回転で粉砕した。
粉砕時間は、粉末の肉厚、平均粒径を変化させる目的
で、1,3,5,20時間の条件で行なった。粉砕後、350mesh
あるいは500meshで篩下し、粒度分布、粉末肉厚を測定
した。
The attritor powder was prepared by adding SUJ2 steel balls and water atomized powder at a weight ratio of 10: 1, adding isopropyl alcohol as a grinding aid in the same volume as the steel balls, and grinding at 300 rpm.
The pulverization time was set at 1, 3, 5, and 20 hours for the purpose of changing the thickness and average particle size of the powder. After grinding, 350mesh
Alternatively, the mixture was sieved with a 500 mesh, and the particle size distribution and the powder thickness were measured.

得られた粉末は実施例6と同様の条件で、H2中で焼鈍
した後、保磁力Hcを測定し、基板上に塗布した後、基板
面方向での保磁力Hcと最大透磁率μmを測定した。
The resulting powder under the same conditions as in Example 6, after annealing in H 2, was measured the coercive force Hc, after coating on a substrate, the coercive force Hc and maximum permeability μm at the substrate surface direction It was measured.

第4表に、アトライター粉砕の時間、−350mesh、−5
00meshでの平均粒度、平均肉厚、焼鈍後の扁平状微粉末
の保磁力Hc、ポリエステル基板上に塗布後の基板面内方
向での保磁力Hc、最大透磁率μmを示す。
Table 4 shows the attritor grinding time, -350mesh, -5
The average particle size, the average thickness, the coercive force Hc of the flat fine powder after annealing, the coercive force Hc in the in-plane direction of the substrate after coating on the polyester substrate, and the maximum magnetic permeability μm at 00 mesh.

第4表No.52より、肉厚が1μmより厚いと、扁平方
向の反磁場係数が大きいため、塗布後の保磁力Hcが高
く、最大透磁率μmも低く、また、粉末の好ましい保磁
力Hc≦240A/mも満足できなくなる傾向があることがわか
る。
According to Table 4, No. 52, when the wall thickness is more than 1 μm, the coercive force Hc after application is high and the maximum magnetic permeability μm is low because the demagnetizing coefficient in the flat direction is large. It can be seen that ≦ 240 A / m tends to be unsatisfactory.

平均粒径が30μmより大きいNo.54では、平均的な磁
気特性は良好であったが、基板上に均一に塗布すること
が困難であり、塗布膜も不均一になった。
In No. 54 having an average particle size of more than 30 μm, the average magnetic properties were good, but it was difficult to apply the coating uniformly on the substrate, and the coating film became uneven.

〔発明の効果〕〔The invention's effect〕

以上、実施例にも示したごとく、飽和磁歪定数λsが
±15×10-6以内のFe−Ni系合金であれば、平均粒径0.1
〜30μm、平均厚さ2μm以下と著しい扁平状微粉末で
あっても、焼鈍を施すことによって保磁力Hcを400A/m以
下とすることが可能である。また、この焼鈍の際に粉末
の凝集を防ぐべく粉末を撹拌、分散すること(流動、移
動)によって、焼鈍温度を高くすることができ、一層の
効果を上げることができる。また、成分を特定すること
により、凝集を生じない低温焼鈍でも、粉末および塗布
膜での要求磁気特性を満足することができる。
As described above, as shown in Examples, if the saturation magnetostriction constant λs is an Fe-Ni-based alloy within ± 15 × 10 −6 , the average particle diameter is 0.1
Even if it is a remarkably flat fine powder having a thickness of about 30 μm and an average thickness of 2 μm or less, the coercive force Hc can be reduced to 400 A / m or less by annealing. Further, by stirring and dispersing (flowing and moving) the powder in order to prevent agglomeration of the powder during the annealing, the annealing temperature can be increased, and the effect can be further improved. Further, by specifying the components, the required magnetic properties of the powder and the coating film can be satisfied even by low-temperature annealing that does not cause aggregation.

このように本発明によれば、軟磁性の優れた扁平状微
粉末を得ることが可能で、その工業的価値が大である。
As described above, according to the present invention, a flat fine powder having excellent soft magnetism can be obtained, and its industrial value is great.

また、実施例にも示したごとく、本発明の飽和磁歪定
数λsが±15×10-6以内である組成に、B、P、As、S
b、Bi、S、Se、Teよりなる元素群のうち、一種以上を
0.1%以上、2%以下添加したFe−Ni系合金粉末を粉砕
に供することにより、平均粒系0.1〜30μm、平均厚さ
2μm以下で、かつ保磁力Hcが400A/m以下の扁平状軟磁
性微粉末を効率的に製造することができ、その工業的価
値が大である。
Further, as shown in the examples, B, P, As, and S were added to the compositions of the present invention in which the saturation magnetostriction constant λs was within ± 15 × 10 −6.
b, Bi, S, Se, Te
Flat Fe-Ni alloy powder with an average grain size of 0.1 to 30 µm, an average thickness of 2 µm or less, and a coercive force Hc of 400 A / m or less is obtained by subjecting the Fe-Ni-based alloy powder added to 0.1% to 2% to pulverization. Fine powder can be produced efficiently, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図は、本発明を実施するための焼鈍装置例
を示す図、第4図は本発明に関わる粉砕粉の保磁力と焼
鈍温度の関係を示した図である。 2:粉末供給口、3:ガス入口、5:粉末出口、7:ガス出口
1 to 3 show examples of an annealing apparatus for carrying out the present invention, and FIG. 4 shows the relationship between the coercive force of the pulverized powder and the annealing temperature according to the present invention. 2: powder supply port, 3: gas inlet, 5: powder outlet, 7: gas outlet

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 B22F 9/04 H01F 1/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B22F 1/00 B22F 9/04 H01F 1/20

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バルク材で測定される飽和磁歪定数λsが
±15×10-6以内である組成を有し、平均粒径0.1〜30μ
m、平均厚さ2μm以下、保磁力Hcが400A/m以下であ
り、原料粉末に機械的粉砕と焼鈍を施して得られるもの
であることを特徴とする扁平状Fe−Ni系合金微粉末。
1. A composition having a composition in which a saturation magnetostriction constant λs measured in a bulk material is within ± 15 × 10 −6 and an average particle size of 0.1 to 30 μm.
m, an average thickness of 2 μm or less, a coercive force Hc of 400 A / m or less, and a flat Fe-Ni alloy fine powder obtained by subjecting a raw material powder to mechanical pulverization and annealing.
【請求項2】Ni70〜83%、Mo2〜6%、Cu3〜6%、Mn1
〜2%、C0.05%以下、残部が鉄および付随的不純物よ
りなることを特徴とする請求項1に記載の扁平状Fe−Ni
系合金微粉末。
2. Ni 70-83%, Mo2-6%, Cu3-6%, Mn1
The flat Fe-Ni according to claim 1, wherein the content of C is 0.05% or less, and the balance is iron and incidental impurities.
System alloy fine powder.
【請求項3】B、P、As、Sb、Bi、S、Se、Teよりなる
元素群のうち、一種または二種以上を0.1%以上、2%
以下含むものであることを特徴とする請求項1または2
に記載の扁平状Fe−Ni系合金微粉末。
3. An element group consisting of B, P, As, Sb, Bi, S, Se and Te, wherein one or more elements are 0.1% or more and 2% or more.
3. The method according to claim 1, wherein:
2. The flat Fe-Ni alloy fine powder described in 1. above.
【請求項4】バルク材で測定される飽和磁歪定数λsが
±15×10-6以内である組成を有する原料を粉砕によっ
て、平均粒系0.1〜30μm、平均厚さ2μm以下とな
し、然る後非酸化性雰囲気中でほぼ上記の扁平微粉末状
を維持しつつ焼鈍を施して、粉末の保磁力Hcを400A/m以
下とすることを特徴とする扁平状Fe−Ni系合金微粉末の
製造方法。
4. A raw material having a composition having a saturation magnetostriction constant λs of ± 15 × 10 −6 or less measured by a bulk material is pulverized to an average grain size of 0.1 to 30 μm and an average thickness of 2 μm or less. After annealing in a non-oxidizing atmosphere while substantially maintaining the above flat fine powder state, the coercive force Hc of the powder to 400A / m or less of flat Fe-Ni-based alloy fine powder Production method.
【請求項5】粉砕される原料は、バルク材で測定される
飽和磁歪定数λsが±15×10-6以内で、B、P、As、S
b、Bi、S、Se、Teよりなる元素群のうち、一種または
二種以上を0.1%以上、2%以下含むものであることを
特徴とする請求項4に記載の扁平状Fe−Ni系合金微粉末
製造方法。
5. The raw material to be pulverized has a saturation magnetostriction constant λs measured for a bulk material within ± 15 × 10 -6 and B, P, As, S
The flat Fe-Ni alloy fine particle according to claim 4, characterized in that it contains one or more of 0.1% or more and 2% or less of an element group consisting of b, Bi, S, Se, and Te. Powder manufacturing method.
【請求項6】粉砕に先立ち、粉砕に供する原料粉末に抑
制された酸素ポテンシャルを有する雰囲気下で、加熱処
理を施すことを特徴とする請求項5に記載の扁平状Fe−
Ni系合金微粉末の製造方法。
6. The flat Fe-based material according to claim 5, wherein prior to the pulverization, the raw material powder to be pulverized is subjected to a heat treatment in an atmosphere having a suppressed oxygen potential.
Manufacturing method of Ni-based alloy fine powder.
【請求項7】焼鈍は、粉末を流動ないし移動させつつ行
なうものであることを特徴とする請求項4ないし6のい
ずれかに記載の扁平状Fe−Ni系合金微粉末の製造方法。
7. The method for producing a flat Fe-Ni-based alloy fine powder according to claim 4, wherein the annealing is performed while the powder is flowing or moving.
【請求項8】粉砕される原料は、合金溶湯を水アトマイ
ズによって噴霧して得られた不規則形状の合金粉末であ
ることを特徴とする請求項4ないし7のいずれかに記載
の扁平状Fe−Ni系合金微粉末の製造方法。
8. The flat Fe according to claim 4, wherein the raw material to be pulverized is an irregularly shaped alloy powder obtained by spraying a molten alloy by water atomization. -Method for producing Ni-based alloy fine powder.
【請求項9】機械的粉砕は粉砕助剤との共存下で行なう
ことを特徴とする請求項4ないし8のいずれかに記載の
扁平状Fe−Ni系合金微粉末の製造方法。
9. The method for producing a flat Fe-Ni-based alloy fine powder according to claim 4, wherein the mechanical pulverization is performed in the presence of a pulverization aid.
JP08970590A 1989-04-26 1990-04-04 Flat Fe-Ni-based alloy fine powder and method for producing the same Expired - Fee Related JP3184201B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08970590A JP3184201B2 (en) 1989-04-26 1990-04-04 Flat Fe-Ni-based alloy fine powder and method for producing the same
US07/619,448 US5135586A (en) 1989-12-12 1990-11-29 Fe-Ni alloy fine powder of flat shape
US08/019,657 US5352268A (en) 1989-12-12 1993-02-19 Fe-Ni alloy fine powder of flat shape

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP10651489 1989-04-26
JP11039989 1989-04-28
JP1-110399 1989-12-12
JP1-322365 1989-12-12
JP32236589 1989-12-12
JP1-106514 1989-12-12
JP08970590A JP3184201B2 (en) 1989-04-26 1990-04-04 Flat Fe-Ni-based alloy fine powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03223401A JPH03223401A (en) 1991-10-02
JP3184201B2 true JP3184201B2 (en) 2001-07-09

Family

ID=27467660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08970590A Expired - Fee Related JP3184201B2 (en) 1989-04-26 1990-04-04 Flat Fe-Ni-based alloy fine powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3184201B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257722A (en) * 2002-03-06 2003-09-12 Daido Steel Co Ltd Soft magnetic powder and dust core using it
JP4449077B2 (en) 2003-08-05 2010-04-14 三菱マテリアル株式会社 Fe-Ni-Mo-based flat metal soft magnetic powder and magnetic composite material including the soft magnetic powder
JP5088813B2 (en) * 2007-01-23 2012-12-05 国立大学法人東北大学 COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
JP2008311255A (en) * 2007-06-12 2008-12-25 Tohoku Univ Compound magnetic substance and its manufacturing method
US10022793B2 (en) 2011-05-12 2018-07-17 Santoku Corporation Alloy flake production apparatus and production method for raw material alloy flakes for rare earth magnet using the apparatus
JP6052960B2 (en) 2012-01-12 2016-12-27 株式会社神戸製鋼所 Method for producing soft magnetic iron-based powder
CN115074579B (en) * 2022-07-25 2023-11-14 西安钢研功能材料股份有限公司 Preparation method of cryogenic low Wen Pomo soft magnetic alloy and strip thereof

Also Published As

Publication number Publication date
JPH03223401A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP3932143B2 (en) Magnet manufacturing method
JPS6274045A (en) Production of rare earth metal permanent magnet
JP2702757B2 (en) Flat Fe-based soft magnetic alloy fine powder and method for producing the same
JP3184201B2 (en) Flat Fe-Ni-based alloy fine powder and method for producing the same
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JPH06346101A (en) Magnetically anisotropic powder and its production
US5575830A (en) Fabrication methods and equipment for granulated powders
US20020117237A1 (en) Rare earth magnet and method for manufacturing the same
TW201917225A (en) Fe-based alloy, crystalline fe-based alloy atomized powder, and magnetic core
JP2002249802A (en) Amorphous soft magnetic alloy compact, and dust core using it
JP3435223B2 (en) Method for producing sendust-based sintered alloy
US5135586A (en) Fe-Ni alloy fine powder of flat shape
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JPH0354806A (en) Manufacture of rare-earth permanent magnet
US5352268A (en) Fe-Ni alloy fine powder of flat shape
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
JPH01294801A (en) Production of flat fine fe-ni alloy powder
JP2735615B2 (en) Flat Fe-Ni-based alloy fine powder and method for producing the same
JPH11260616A (en) Manufacture of soft magnetic material foil
WO2020179535A1 (en) Magnetic powder and method for manufacturing same, magnetic core and method for manufacturing same, and coil component
JPH01294802A (en) Production of flat fine fe-ni-al alloy powder
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP3083963B2 (en) Method and apparatus for producing anisotropic granulated powder
JPH07166202A (en) Low aspect ratio flat soft magnetic metal powder and production thereof
JP2574174B2 (en) Amorphous alloy soft magnetic powder and magnetic shielding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees