JP5088813B2 - COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME - Google Patents

COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME Download PDF

Info

Publication number
JP5088813B2
JP5088813B2 JP2007012092A JP2007012092A JP5088813B2 JP 5088813 B2 JP5088813 B2 JP 5088813B2 JP 2007012092 A JP2007012092 A JP 2007012092A JP 2007012092 A JP2007012092 A JP 2007012092A JP 5088813 B2 JP5088813 B2 JP 5088813B2
Authority
JP
Japan
Prior art keywords
resin
composite magnetic
dispersion medium
magnetic body
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012092A
Other languages
Japanese (ja)
Other versions
JP2008181905A (en
Inventor
忠弘 大見
章伸 寺本
雅之 石塚
宣浩 日高
恭 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007012092A priority Critical patent/JP5088813B2/en
Application filed by Tohoku University NUC, Sumitomo Osaka Cement Co Ltd filed Critical Tohoku University NUC
Priority to PCT/JP2008/050821 priority patent/WO2008090891A1/en
Priority to KR1020097017408A priority patent/KR20090103951A/en
Priority to CNA200880002769XA priority patent/CN101589443A/en
Priority to EP08703665A priority patent/EP2117018A4/en
Priority to US12/449,019 priority patent/US20100000769A1/en
Priority to TW097102458A priority patent/TW200903535A/en
Publication of JP2008181905A publication Critical patent/JP2008181905A/en
Application granted granted Critical
Publication of JP5088813B2 publication Critical patent/JP5088813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は高周波回路基板及び高周波電子部品に関し、特に、かかる高周波回路基板及び高周波電子部品の材料として好適な複合磁性体及びその製造方法に関するものである。   The present invention relates to a high-frequency circuit board and a high-frequency electronic component, and more particularly to a composite magnetic body suitable as a material for the high-frequency circuit board and the high-frequency electronic component and a method for manufacturing the same.

情報通信機器の高速化、高密度化に伴い、電子機器に搭載される電子部品や回路基板の小型化及び低消費電力化が強く求められている。一般に、材料内を伝播する電磁波の波長λgは、真空中を伝播する電磁波の波長λ0と材料の比誘電率εr及び比透磁率μrを用いて、
λg=λ0/(εr・μr)1/2
で表すことができるため、比誘電率εr及び比透磁率μrが大きいほど波長短縮率が大きくなり電子部品や回路基板の小型化が可能となることが知られている。
With the increase in speed and density of information communication devices, there is a strong demand for downsizing and low power consumption of electronic components and circuit boards mounted on electronic devices. In general, the wavelength λg of the electromagnetic wave propagating in the material is obtained by using the wavelength λ0 of the electromagnetic wave propagating in the vacuum, the relative permittivity εr and the relative permeability μr of the material,
λg = λ0 / (εr · μr) 1/2
Therefore, it is known that the larger the relative dielectric constant εr and the relative magnetic permeability μr, the larger the wavelength shortening rate and the smaller electronic components and circuit boards.

また、材料の特性インピーダンスZgは真空の特性インピーダンスZ0を用いて、
Zg=Z0・(μr/εr)1/2
で表すことができ、例えば、比透磁率μrを大きくして特性インピーダンスZg及び終端抵抗の抵抗値を増加し、配線を流れる電流を低減することによって電子部品や回路基板の消費電力を低下させる試みが報告されている。
Moreover, the characteristic impedance Zg of the material uses the vacuum characteristic impedance Z0,
Zg = Z0 · (μr / εr) 1/2
For example, an attempt to reduce the power consumption of an electronic component or a circuit board by increasing the relative permeability μr to increase the characteristic impedance Zg and the resistance value of the termination resistor and reducing the current flowing through the wiring. Has been reported.

ところが、情報通信機器等が使用する高周波帯では磁性材料の表面に渦電流が生じ、この渦電流は印加した磁界の変化を打ち消す向きに磁界を生成するため、材料の見かけ上の透磁率の低下を招いていた。また、渦電流の増大はジュール熱によるエネルギー損失を生ずるため、回路基板や電子部品等の材料として使用することは困難であった。渦電流を低減するためには、
d = 1/(π・f・μ0・μr・σ)1/2
で表される表皮深さdよりも磁性粉末の直径を小さくすることが効果的である。ここで、fは信号周波数、σは磁性粉末の導電率、μ0は真空の透磁率である。近年、ナノテクノロジーの進歩に伴い磁性粒子の微細化が進み、高周波での材料の比透磁率μrの低下を抑制した事例が幾つか報告されている。
However, eddy currents are generated on the surface of magnetic materials in the high-frequency band used by information and communication equipment, and this eddy current generates a magnetic field in a direction that cancels the change in the applied magnetic field, resulting in a decrease in the apparent permeability of the material. Was invited. Moreover, since an increase in eddy current causes energy loss due to Joule heat, it has been difficult to use it as a material for circuit boards and electronic components. To reduce eddy currents,
d = 1 / (π · f · μ0 · μr · σ) 1/2
It is effective to make the diameter of the magnetic powder smaller than the skin depth d expressed by Here, f is the signal frequency, σ is the conductivity of the magnetic powder, and μ 0 is the permeability of the vacuum. In recent years, with the advancement of nanotechnology, the miniaturization of magnetic particles has progressed, and some cases have been reported in which the decrease in the relative permeability μr of materials at high frequencies is suppressed.

特許文献1では、扁平状磁性体粉末を樹脂中に分散することで、比透磁率および損失を上昇させ電磁波吸収シートとして用いることが開示されている。   Patent Document 1 discloses that a flat magnetic powder is dispersed in a resin to increase the relative magnetic permeability and loss and use it as an electromagnetic wave absorbing sheet.

また、特許文献2では、スクリュー攪拌及び超音波攪拌による分散混合方法を用いて複数の粒径の磁性体粒子を樹脂中に分散することで、300MHz程度以下において損失の少ない複合磁性体を提供している。 Further, Patent Document 2 provides a composite magnetic body having a small loss at about 300 MHz or less by dispersing magnetic particles having a plurality of particle diameters in a resin using a dispersion mixing method using screw stirring and ultrasonic stirring. ing.

特開平11−354973号公報Japanese Patent Laid-Open No. 11-354773 特開2006−269134号公報JP 2006-269134 A

しかしながら、特許文献1では、磁性粒子の分散方法についての具体的な記述がなく、また、電磁波を遮蔽吸収することが目的なので使用周波数において磁気損失の大きい材料を提供するものであって、本発明に示すように回路基板や電子部品等に使用することを目的として磁気損失の小さな材料を提供するものではない。   However, in Patent Document 1, there is no specific description about the method of dispersing the magnetic particles, and since the purpose is to shield and absorb electromagnetic waves, a material having a large magnetic loss at the operating frequency is provided. However, it does not provide a material with a small magnetic loss for the purpose of use for a circuit board, an electronic component or the like.

また、特許文献2に示されるように、球状の磁性体粉末を用いる場合、磁性体粒子個々における反磁界係数が大きくなるため比透磁率μrの低下を招く。この場合、比透磁率μrを大きくするためにはより混合濃度を大きくしなければならず、混合濃度を大きくすると均一な分散性が得にくいなど、製造上の困難が生じる傾向がある。   Further, as shown in Patent Document 2, when a spherical magnetic powder is used, the demagnetizing coefficient of each magnetic particle increases, leading to a decrease in the relative permeability μr. In this case, in order to increase the relative permeability μr, it is necessary to increase the mixing concentration, and when the mixing concentration is increased, there is a tendency for manufacturing difficulties such as difficulty in obtaining uniform dispersibility.

また、微小磁性微粒子は、電気二重層の相互作用とvan der Waalsの引力エネルギーの他に磁気的相互作用も加わるために凝集を引き起こし、凝集体を形成しやすい。複合磁性体中における凝集体は、一つの大きな磁性粒子として振舞うため、高周波では渦電流を生じやすく磁気特性低下の原因となる。特許文献2に示される混合方法ではこれらの凝集体を解砕するには不充分であり、数百MHz〜1GHzにおける損失低減にはいたらないことが分かった。   Moreover, since the magnetic interaction is added to the magnetic double particles in addition to the interaction of the electric double layer and the attractive energy of van der Waals, the fine magnetic fine particles easily cause aggregation and form an aggregate. Aggregates in the composite magnetic body behave as one large magnetic particle, and thus easily generate eddy currents at high frequencies, causing a decrease in magnetic properties. It has been found that the mixing method disclosed in Patent Document 2 is insufficient for crushing these aggregates and does not lead to loss reduction at several hundred MHz to 1 GHz.

本発明は上記課題に鑑みてなされたものであり、磁性粉末を絶縁性材料中に分散して構成される複合磁性体において、前記磁性粉末の形状は扁平状であって、1GHzの周波数おいて比透磁率μrが1よりも大きく、かつ損失正接tanδが0.1以下であることを特徴とする複合磁性体とその製造方法及びそれを用いた電子機器を提供することを目的とするものである。 The present invention has been made in view of the above problems, in the composite magnetic body composed by dispersing a magnetic powder in an insulating material, the shape of the magnetic powder is a Bian flat shape, the frequency of 1GHz It is an object of the present invention to provide a composite magnetic body having a relative permeability μr of greater than 1 and a loss tangent tan δ of 0.1 or less, a manufacturing method thereof, and an electronic device using the same. Is.

本発明者らは、鋭意検討を重ねた結果、磁性粉末の分散を好適に実施することにより500MHz〜1GHzの周波数帯でも損失の低減が可能であるということを見出した。   As a result of intensive studies, the present inventors have found that loss can be reduced even in a frequency band of 500 MHz to 1 GHz by suitably performing dispersion of magnetic powder.

本発明の第の態様によれば、絶縁性材料と磁性粉末とを溶剤中に分散させて混合しスラリーを製造する工程と、前記スラリーを塗布、乾燥、焼成する工程とを含む複合磁性体の製造方法であって、前記スラリー製造する工程は、溶剤に界面活性剤を添加した分散溶媒を製造する工程と、前記分散溶媒に前記磁性粉末を混合する工程とを含み、前記磁性粉末を混合する工程は、前記磁性粉末よりも硬度が大きく粒径が0.1mm〜3.0mmの分散媒体を前記分散溶媒に更に添加する工程と、球状の前記磁性粉末および前記分散媒体を混合した前記分散溶媒に対して公転速度500rpm以上かつ自転速度200rpm以上で自転公転式混合を行うことで前記磁性粉末の凝集体を解砕するとともに、球状の前記磁性粉末を前記分散媒体のせん断応力により機械的に扁平状に変形させる工程とを含むことを特徴とする複合磁性体の製造方法が得られる。 According to a first aspect of the present invention, the composite magnetic comprising a step of preparing a slurry by mixing an insulating material with magnetic powder is dispersed in a solvent, applying the slurry, drying, and firing a method of manufacturing a body, a process of manufacturing the slurry includes a step of producing a dispersion solvent containing a surfactant in a solvent, and a step of mixing the magnetic powder in the dispersion solvent, the magnetic powder Mixing the dispersion medium having a hardness larger than that of the magnetic powder and a particle diameter of 0.1 mm to 3.0 mm to the dispersion solvent, and mixing the spherical magnetic powder and the dispersion medium. by performing the rotation revolution type mixing at the revolving speed 500rpm or more and rotational speed 200rpm or more to the dispersion solvent, thereby crushing the aggregates of the magnetic powder, spherical of the magnetic powder the dispersion medium Method for producing a composite magnetic body characterized by comprising the step of deforming mechanically flat by N shear stress is obtained.

本発明の第の態様によれば、前記スラリーの製造工程は、さらに絶縁性材料をスラリーに添加し混合する工程と、前記溶剤、前記界面活性剤、前記磁性粉末、前記分散媒体、および前記絶縁性材料の混合体から前記分散媒体を分離する工程とを含むことを特徴とする第1の態様に記載の複合磁性体の製造方法が得られる。 According to the second aspect of the present invention, the manufacturing process of the slurry further includes a step of adding and mixing an insulating material to the slurry, the solvent, the surfactant, the magnetic powder, the dispersion medium, and the Separating the dispersion medium from a mixture of insulating materials. The method for producing a composite magnetic body according to the first aspect is obtained.

本発明の第の態様によれば、前記分散媒体を分離する工程は、前記混合体を静置または遠心分離して前記混合体を前記分散媒体が含まれている部分と含まれていない部分とに分離する工程を含むことを特徴とする第の態様に記載の複合磁性体の製造方法が得られる。 According to the third aspect of the present invention, in the step of separating the dispersion medium, the mixture is allowed to stand or is centrifuged to separate the mixture from the part containing the dispersion medium. The method for producing a composite magnetic body according to the second aspect is characterized in that the method includes the step of separating into two .

本発明の第の態様によれば、前記磁性粉末はニッケル(Ni)、パーマロイ(Fe−Ni合金)、および銅(Cu)、コバルト(Co)、亜鉛(Zn)、モリブデン(Mo)のいずれか一種類以上を含むパーマロイから選ばれたものであることを特徴とする第の態様のいずれかに記載の複合磁性体の製造方法が得られる。 According to the fourth aspect of the present invention, the magnetic powder is any one of nickel (Ni), permalloy (Fe—Ni alloy), copper (Cu), cobalt (Co), zinc (Zn), and molybdenum (Mo). The method for producing a composite magnetic body according to any one of the first to third aspects, wherein the composite magnetic body is selected from permalloy containing at least one kind.

本発明の第の態様によれば、前記絶縁性材料は、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、およびポリスチレン樹脂のうち少なくとも一つを含む合成樹脂もしくは液相樹脂、または、Al2O3、SiO2、TiO2、2MgO・SiO2、MgTiO3、CaTiO3、SrTiO3、およびBaTiO3のセラミックスからなる群より選ばれる少なくとも一つのセラミックスの原料であることを特徴とする第1〜4の態様に記載の複合磁性体の製造方法が得られる。 According to the fifth aspect of the present invention, the insulating material includes polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine Synthetic resin or liquid phase resin including at least one of resin, polyolefin resin, polycycloolefin resin, cyanate resin, polyphenylene ether resin, and polystyrene resin, or Al2O3, SiO2, TiO2, 2MgO · SiO2, MgTiO3, CaTiO3, The method for producing a composite magnetic body according to the first to fourth aspects is obtained, which is a raw material for at least one ceramic selected from the group consisting of SrTiO3 and BaTiO3 ceramics.

本発明の第の態様によれば、前記磁性粉末の混合工程において添加される分散媒体は、金属、金属酸化物、酸化物焼結体、窒化物焼結体、珪化物焼結、およびガラスからなる群より選ばれる少なくとも一つの粒体であることを特徴とする第の態様のいずれかに記載の複合磁性体の製造方法が得られる。 According to a sixth aspect of the present invention, the dispersion medium to be added in the mixing step of powder the magnetic properties powder, metal, metal oxide, the oxide sintered body, nitride sintered body, silicide sintered, And the method of producing a composite magnetic body according to any one of the first to fifth aspects, wherein the composite magnetic body is at least one particle selected from the group consisting of glass and glass.

本発明の第の態様によれば、前記分散媒体は、アルミニウム、スチール、鉛、鉄酸化物、アミルナ、ジルコニア、二酸化ケイ素、チタニア、窒化ケイ素、炭化ケイ素、ソーダガラス、鉛ガラス、および高比重ガラスの少なくとも一つを含むことを特徴とする第の態様に記載の複合磁性体の製造方法が得られる。 According to a seventh aspect of the present invention, the dispersion medium comprises aluminum, steel, lead, iron oxide, amilna, zirconia, silicon dioxide, titania, silicon nitride, silicon carbide, soda glass, lead glass, and high specific gravity. The method for producing a composite magnetic body according to the sixth aspect, comprising at least one glass, is obtained.

本発明の第の態様によれば、前記分散媒体は、比重が6以上であることを特徴とする第又はの態様に記載の複合磁性体の製造方法が得られる。 According to an eighth aspect of the present invention, there is provided the method for producing a composite magnetic body according to the sixth or seventh aspect, wherein the dispersion medium has a specific gravity of 6 or more.

本発明の第の態様によれば、前記分散媒体は、ジルコニア、スチール、ステンレスのいずれかを含むことを特徴とする第の態様に記載の複合磁性体の製造方法が得られる。 According to a ninth aspect of the present invention, there is obtained the method for producing a composite magnetic body according to the eighth aspect, wherein the dispersion medium contains any one of zirconia, steel, and stainless steel.

本発明の第10の態様によれば、第1〜の態様のいずれか一つに記載の製造方法によって作られたことを特徴とする複合磁性体が得られる。 According to the tenth aspect of the present invention, there is obtained a composite magnetic body produced by the manufacturing method according to any one of the first to ninth aspects.

本発明の第11の態様によれば、第10の態様に載の複合磁性体を少なくとも含むことを特徴とする回路基板が得られる。 According to an eleventh aspect of the present invention, the circuit board characterized in that it comprises at least a double engagement magnetic mounting serial to a tenth aspect can be obtained.

本発明の第12の態様によれば、第10の態様に記載の複合磁性体を少なくとも含むことを特徴とする電子部品が得られる。 According to a twelfth aspect of the present invention, an electronic component comprising at least the composite magnetic body according to the tenth aspect is obtained.

本発明の第13の態様によれば、第11の態様に記載の回路基板を少なくとも有することを特徴とする電子機器が得られる。 According to a thirteenth aspect of the present invention, there is obtained an electronic apparatus characterized by having at least the circuit board according to the eleventh aspect .

本発明の第14の態様によれば、第12の態様に記載の電子部品を少なくとも有することを特徴とする電子機器が得られる。
According to a fourteenth aspect of the present invention, there is obtained an electronic apparatus characterized by having at least the electronic component according to the twelfth aspect.

本発明によれば、球状磁性粉末または扁平状磁性粉末を絶縁性材料中に好適に混合分散することにより、1GHzの周波数おいて比透磁率μrが1よりも大きく、かつ損失正接tanδが0.1以下であることを特徴とする複合磁性体を提供することができる。本発明に係る複合磁性体を回路基板及び/または電子部品の材料として適用することにより、誘電体のみを利用した回路基板や電子部品では実現困難であった数百MHz〜1MHz帯域における情報通信機器の小型化、低消費電力化を実現することが可能となる。   According to the present invention, spherical magnetic powder or flat magnetic powder is suitably mixed and dispersed in an insulating material, so that the relative permeability μr is greater than 1 and the loss tangent tan δ is 0.1 at a frequency of 1 GHz. It is possible to provide a composite magnetic body characterized by being 1 or less. By applying the composite magnetic body according to the present invention as a material for a circuit board and / or an electronic component, an information communication device in a band of several hundred MHz to 1 MHz, which has been difficult to realize with a circuit board or electronic component using only a dielectric. It becomes possible to realize downsizing and low power consumption.

まず、本発明の実施の形態に係る複合磁性体を構成する磁性粉末について説明する。   First, the magnetic powder constituting the composite magnetic body according to the embodiment of the present invention will be described.

前記磁性粉末の材質としては、ニッケル(Ni)、パーマロイ(Fe−Ni合金)または銅(Cu)、コバルト(Co)、亜鉛(Zn)、モリブデン(Mo)のいずれか一種類以上を含むパーマロイであることが好ましいが、その他の合金、例えば、Fe−Si−Al合金、Fe−Si合金、Fe−Co合金、Fe−Cr合金、Fe−Cr−Si合金等であっても良い。   The magnetic powder is made of permalloy containing at least one of nickel (Ni), permalloy (Fe—Ni alloy) or copper (Cu), cobalt (Co), zinc (Zn), and molybdenum (Mo). Although it is preferable, other alloys, for example, Fe-Si-Al alloy, Fe-Si alloy, Fe-Co alloy, Fe-Cr alloy, Fe-Cr-Si alloy, etc. may be used.

上記した材質の磁性粉末としては、球状或いは扁平形状のものを使用できるが、以下では、扁平状磁性粉末を使用する場合について説明する。扁平状磁性粉末は、分散溶媒中に磁性粉末を混合する工程において、球状磁性粉末を分散媒体のせん断応力により機械的に扁平状に変形させたものであって、0.1〜1μmの厚みを有するものであることが好ましい。扁平状磁性粉末の厚さを0.1μm未満とすることは製造上困難であり、取り扱いも難しくなる。また、扁平状磁性粉末の厚さが1μmを超えると、渦電流を生じ高周波での磁気特性の低下を招くので好ましくない。また、前記扁平状磁性粉末のアスペクト比(長さ/厚み)が2より小さいと粉末の反磁界係数が大きくなり、複合磁性体の比透磁率μrが低下するので好ましくない。   As the magnetic powder of the above-described material, a spherical or flat shape can be used, but the case where the flat magnetic powder is used will be described below. The flat magnetic powder is obtained by mechanically deforming a spherical magnetic powder into a flat shape by the shear stress of the dispersion medium in the step of mixing the magnetic powder in the dispersion solvent, and has a thickness of 0.1 to 1 μm. It is preferable to have it. Setting the thickness of the flat magnetic powder to less than 0.1 μm is difficult in manufacturing and handling. Further, if the thickness of the flat magnetic powder exceeds 1 μm, it is not preferable because an eddy current is generated and magnetic characteristics at high frequencies are lowered. Further, if the aspect ratio (length / thickness) of the flat magnetic powder is smaller than 2, the demagnetizing factor of the powder is increased, and the relative magnetic permeability μr of the composite magnetic material is decreased, which is not preferable.

次に、複合磁性体を構成する絶縁性材料について説明する。   Next, the insulating material constituting the composite magnetic body will be described.

前記複合磁性体を回路基板の材料として用いる場合、特性インピーダンスを上昇させる観点からは誘電率が低いことが好ましく、前記絶縁性材料として、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリスチレン樹脂などの低誘電率の合成樹脂が好適に選択される。   When the composite magnetic material is used as a material for a circuit board, it is preferable that the dielectric constant is low from the viewpoint of increasing the characteristic impedance. As the insulating material, polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene Low dielectric constant synthetic resins such as resins, polyarylene ether resins, polysiloxane resins, epoxy resins, polyester resins, fluororesins, polyolefin resins, polycycloolefin resins, cyanate resins, polyphenylene ether resins, polystyrene resins are suitably selected. The

コンデンサやアンテナ素子など高誘電率性が要求される場合には、Al、SiO、TiO、2MgO・SiO、MgTiO、CaTiO、SrTiO、BaTiOなどのセラミックもしくはこれら無機物と有機物の混合物などを適宜使用できる。 When a high dielectric constant such as a capacitor or antenna element is required, ceramics such as Al 2 O 3 , SiO 2 , TiO 2 , 2MgO · SiO 2 , MgTiO 3 , CaTiO 3 , SrTiO 3 , BaTiO 3 , or these inorganic substances A mixture of organic substances and the like can be used as appropriate.

以下、本実施の形態に係る複合磁性体の具体的な作製方法について説明する。   Hereinafter, a specific method for producing the composite magnetic body according to the present embodiment will be described.

まず、比較評価のため、従来方法として本発明者らにより開示されている特許文献2に挙げられている方法を検証した。平均粒径0.15μmの78−パーマロイ磁性粉末(Ni:78%−Fe:22%合金)1gと、キシレンおよびシクロペンタノン4:1混合液10gに界面活性剤として窒素含有のグラフトポリマーを溶解した分散液とを、自転公転攪拌および超音波照射攪拌により混合し、スラリー液を作製した。該スラリー液と、ポリシクロオレフィン樹脂を固形分比率40%に希釈して得た樹脂ワニス0.5gとを、自転公転攪拌および超音波照射攪拌により混合することにより得られたペーストを、濃縮、塗布、乾燥、熱処理およびプレス成形を実施することにより複合磁性体を形成する。該複合磁性体の複素透磁率をパラレルライン法により測定したところ、1GHzの周波数において、比透磁率μr=4、磁気損失tanδ=0.3であり、磁気特性は2〜300MHz程度の周波数までは良好な値を示すものの、300MHz以上の周波数では磁気損失が大きくなっていることが分かった(図5参照)。また、該複合磁性体シート中での磁性粉末の分散性を走査型電子顕微鏡で確認したところ、球状の粒子が凝集して1μm強の凝集体を形成していることがわかった(図6参照)。   First, for comparison evaluation, the method described in Patent Document 2 disclosed by the present inventors as a conventional method was verified. Nitrogen-containing graft polymer as a surfactant is dissolved in 1 g of 78-permalloy magnetic powder (Ni: 78% -Fe: 22% alloy) having an average particle size of 0.15 μm and 10 g of a mixture of xylene and cyclopentanone 4: 1. The dispersion was mixed by rotation and revolution stirring and ultrasonic irradiation stirring to prepare a slurry liquid. Concentrating the paste obtained by mixing the slurry liquid and 0.5 g of a resin varnish obtained by diluting the polycycloolefin resin to a solid content ratio of 40% by rotation revolution stirring and ultrasonic irradiation stirring, The composite magnetic body is formed by performing coating, drying, heat treatment and press molding. When the complex magnetic permeability of the composite magnetic material was measured by the parallel line method, the relative magnetic permeability μr = 4 and the magnetic loss tan δ = 0.3 at a frequency of 1 GHz, and the magnetic characteristics were up to a frequency of about 2 to 300 MHz. Although it showed a good value, it was found that the magnetic loss increased at a frequency of 300 MHz or higher (see FIG. 5). Further, when the dispersibility of the magnetic powder in the composite magnetic sheet was confirmed with a scanning electron microscope, it was found that spherical particles aggregated to form aggregates of slightly over 1 μm (see FIG. 6). ).

そこで、本発明者らは、上記に鑑み鋭意検討を重ねた結果、以下のような製造方法を用いて混合することによって、1GHz以下の周波数おいて比透磁率μrが1よりも大きく、かつ損失正接tanδが0.1以下である複合磁性体を得ることが出来ることを見出した。   Therefore, as a result of intensive studies in view of the above, the present inventors have conducted mixing using the following manufacturing method, and thereby the relative permeability μr is larger than 1 at a frequency of 1 GHz or less and the loss is reduced. It has been found that a composite magnetic body having a tangent tan δ of 0.1 or less can be obtained.

本発明に係る製造工程の最大の特徴は、上記と同分量の原材料を使用して混合攪拌を行う際、混合容器に分散媒体を投入して高速(公転速度500rpm以上、自転速度200rpm以上)で自転公転攪拌を行うため、分散媒体により生じる強いせん断応力により磁性粒子が扁平化されると同時に凝集粒子が解砕され、分散性が向上することである。   The greatest feature of the production process according to the present invention is that when mixing and stirring using the same amount of raw materials as described above, a dispersion medium is introduced into a mixing vessel at a high speed (revolution speed of 500 rpm or more, rotation speed of 200 rpm or more). Since the rotation and revolution stirring is performed, the magnetic particles are flattened by the strong shear stress generated by the dispersion medium, and at the same time, the aggregated particles are crushed and the dispersibility is improved.

具体的に説明すると、本発明に係る製造方法は、磁性粉末を溶剤中に分散させて混合しスラリーを製造する工程中に、溶剤に界面活性剤を添加した分散溶媒を製造する工程と、分散溶媒中に磁性粉末を混合する混合工程とを含み、当該磁性粉末を分散溶媒中に混合する際、分散媒体が添加され、分散媒体が添加された状態で、自転公転式混合が行なわれ、磁性粉末を扁平化することを特徴としている。その後、これに絶縁性材料が添加、混合される。   More specifically, the production method according to the present invention comprises a step of producing a dispersion solvent in which a surfactant is added to a solvent during a step of producing a slurry by dispersing and mixing magnetic powder in a solvent, A mixing step of mixing the magnetic powder in the solvent, and when the magnetic powder is mixed in the dispersion solvent, the dispersion medium is added, and with the dispersion medium added, rotation and revolution mixing is performed, and the magnetic powder is mixed. It is characterized by flattening the powder. Then, an insulating material is added and mixed with this.

このように、溶剤、界面活性剤、磁性粉末、分散媒体、及び、絶縁性材料の混合体からなるスラリーが生成され、自転公転式混合が終了すると、当該混合体から分散媒体を分離する工程が行なわれる。なお、分散媒体を分離する工程は絶縁性材料の添加・混合前に行われても良い。分散媒体を分離する工程は、分散媒体が他の溶剤等から分離するまで混合体を静置する工程であっても良いし、混合体に遠心分離を施すことによって、混合体から分散媒体を分離する工程であっても良い。   As described above, when a slurry composed of a mixture of the solvent, the surfactant, the magnetic powder, the dispersion medium, and the insulating material is generated and the rotation and revolution mixing is completed, the step of separating the dispersion medium from the mixture is performed. Done. Note that the step of separating the dispersion medium may be performed before the addition and mixing of the insulating material. The step of separating the dispersion medium may be a step of allowing the mixture to stand until the dispersion medium is separated from another solvent or the like, or separating the dispersion medium from the mixture by centrifuging the mixture. It may be a process to perform.

溶剤、界面活性剤、磁性粉末、分散媒体、及び、絶縁性材料を混合する上記した混合工程に用いることが出来る装置としては、ニーダ、ロールミル、ピンミル、サンドミル、ボールミル、遊星ボールミル等があるが、本発明に係る分散媒体を使用するためにはサンドミル、ボールミル、遊星ボールミル等が適している。   Examples of the apparatus that can be used in the above mixing process of mixing the solvent, surfactant, magnetic powder, dispersion medium, and insulating material include a kneader, a roll mill, a pin mill, a sand mill, a ball mill, and a planetary ball mill. In order to use the dispersion medium according to the present invention, a sand mill, a ball mill, a planetary ball mill or the like is suitable.

また、分散媒体としては、アルミニウム、スチール、鉛等の金属類あるいは金属酸化物類、アミルナ、ジルコニア、二酸化ケイ素、チタニア等の酸化物焼結体、窒化ケイ素等の窒化物焼結体、炭化ケイ素等の珪化物焼結、ソーダガラス、鉛ガラス、高比重ガラス等のガラス類等が挙げられるが、本発明に係る分散媒体としては、比重6以上のジルコニア、スチール、ステンレス等が混合効率の点から好ましい。この分散媒体は、磁性粉末よりも硬度が大きいことが特徴である。   Dispersion media include metals such as aluminum, steel and lead or metal oxides, oxide sintered bodies such as amilna, zirconia, silicon dioxide and titania, nitride sintered bodies such as silicon nitride, and silicon carbide. Examples of the dispersion medium according to the present invention include zirconia having a specific gravity of 6 or more, steel, stainless steel, etc., in terms of mixing efficiency, such as silicide sintering such as soda glass, lead glass, and high specific gravity glass. To preferred. This dispersion medium is characterized by having a hardness higher than that of the magnetic powder.

また、上記混合は分散媒体の衝突の衝撃によって行われるため、衝突回数が増すと分散性も向上する。従って、分散媒体の平均粒径が小さいほど単位体積あたりに充填される個数が増えて衝突回数が多くなり分散性も良くなるが、一方、あまり粒径が小さいとスラリーから分離することが困難となる。従って少なくとも0.1mm以上の平均粒径を有することが必要である。また、分散媒体の粒径が大きくなり過ぎると上記の衝突回数が減って分散性能が低下するため、平均粒径の上限値は3.0mmである。   Further, since the mixing is performed by the impact of the collision of the dispersion medium, the dispersibility improves as the number of collisions increases. Therefore, the smaller the average particle size of the dispersion medium, the greater the number of particles filled per unit volume, the greater the number of collisions and the better the dispersibility. On the other hand, if the particle size is too small, it is difficult to separate from the slurry. Become. Therefore, it is necessary to have an average particle size of at least 0.1 mm. In addition, if the particle size of the dispersion medium becomes too large, the number of collisions described above decreases and the dispersion performance deteriorates, so the upper limit of the average particle size is 3.0 mm.

また、混合攪拌時間は、短すぎると球状磁性粒子が充分に扁平化されず、また長すぎると扁平化した磁性粒子がさらに磨砕されて適切なアスペクト比(長さ/厚み)を保てなくなるため、高周波における磁気特性が劣化する。従って混合攪拌時間は30分程度が好ましいが、これは原材料の初期投入量、攪拌の自転公転速度により適宜調節する必要がある。   If the mixing and stirring time is too short, the spherical magnetic particles are not sufficiently flattened, and if too long, the flattened magnetic particles are further ground and cannot maintain an appropriate aspect ratio (length / thickness). For this reason, the magnetic characteristics at high frequencies deteriorate. Accordingly, the mixing and stirring time is preferably about 30 minutes, but this needs to be adjusted appropriately depending on the initial amount of raw materials and the rotation and revolution speed of stirring.

次に、得られたスラリーの塗布方法について述べる。塗布方法はこれを公知の成形方法、例えばプレス法、ドクターブレード法、射出成形法により任意のシート形状に成形し、ドライフィルムを作製することができる。これらの方法の中で、複合磁性体の積層体を形成のためにはドクターブレード法によってシート状に成形することが望ましい。スラリーは上記の塗布方法に適した粘度調整のために、溶剤を揮発させて濃縮後に塗布を行う。必要があれば、スラリー塗布の後、乾燥前に磁場の配向により扁平状磁性粉末をシートと平行方向に配向する配向処理が行われる。   Next, a method for applying the obtained slurry will be described. As a coating method, a dry film can be produced by forming this into an arbitrary sheet shape by a known forming method such as a press method, a doctor blade method, or an injection molding method. Among these methods, it is desirable to form a laminated body of composite magnetic bodies into a sheet by a doctor blade method. The slurry is applied after volatilization of the solvent and concentration to adjust the viscosity suitable for the above application method. If necessary, after the slurry application, an orientation treatment for orienting the flat magnetic powder in a direction parallel to the sheet is performed by orientation of the magnetic field before drying.

最後に、このようにして得られたドライフィルムを、還元性雰囲気或いは真空中で熱処理及びプレス成型することにより、複合磁性体を得る。   Finally, the dry film thus obtained is heat-treated and press-molded in a reducing atmosphere or vacuum to obtain a composite magnetic body.

以上のような本発明の製造方法においては、複合磁性体中における局所的な磁性粒子の凝集を緩和することができるため、高周波における比透磁率μrの向上と磁気損失tanδの低減を同時に達成することが可能となる。   In the manufacturing method of the present invention as described above, local aggregation of magnetic particles in the composite magnetic material can be alleviated, so that improvement in relative permeability μr at high frequency and reduction in magnetic loss tan δ are simultaneously achieved. It becomes possible.

次に、本発明に係る実施例について説明する。   Next, examples according to the present invention will be described.

以下、実施例1ないし4により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples 1 to 4, but the present invention is not limited to these Examples.

平均粒径0.15μmの78−パーマロイ磁性粉末(Ni:78%−Fe:22%合金)1gを、キシレンおよびシクロペンタノン4:1混合液10gに界面活性剤として窒素含有のグラフトポリマーを溶解した分散液に混合し、さらに分散媒体として平均粒径が200μmのジルコニアビーズを添加し、この状態で遊星攪拌を30分間実施して磁性粉末を扁平状にした。このようにして得られたスラリーにポリシクロオレフィン樹脂を固形分比率40%に希釈して得た樹脂ワニス0.5gを添加しさらに遊星攪拌で5分間混合した。遊星攪拌時の公転速度はいずれも2000rpm、自転速度は800rpmとした。
1 g of 78-permalloy magnetic powder (Ni: 78% -Fe: 22% alloy) having an average particle size of 0.15 μm is dissolved in 10 g of xylene and cyclopentanone 4: 1 mixed solution with nitrogen-containing graft polymer as a surfactant. In addition, zirconia beads having an average particle diameter of 200 μm were added as a dispersion medium, and planetary stirring was performed for 30 minutes in this state to flatten the magnetic powder. 0.5 g of a resin varnish obtained by diluting the polycycloolefin resin to a solid content ratio of 40% was added to the slurry thus obtained, and further mixed for 5 minutes by planetary stirring . Both the revolution speed of the Yu star during stirring 2000rpm, rotation speed was 800rpm.

次に、得られた混合液を静置して分散媒体を沈降させ(磁性粉末の比重は7〜8、ジルコニアの比重は6〜7であるが、ジルコニアビーズの粒径が200μmに対して磁性粉末の粒径は0.15μmであるので、ジルコニアビーズの方が重いためジルコニアビーズが沈降する)、上澄みをロータリーエバポレーターに導入し、50℃、2.7kPaの減圧下で(減圧のため溶剤の沸点が下がる)溶剤を蒸発させ、ドクターブレードにて塗布できる粘度とした。上記によって得られた混合液をドクターブレード法によってフィルム状に成型した後、1.6×10A/mの磁場をかけて磁性粒子を配向させながら、常温で乾燥させた。このようにして得られたドライフィルムを、減圧プレス装置によってプレス焼成を行った。プレス条件は常圧のまま130℃まで20分で昇温させ、その後2MPaの圧力をかけて5分間保持し、その後160℃まで昇温させて40分間保持し、樹脂を硬化させて面積30mm角、厚さ約60μmの複合磁性体を得た。この複合磁性体の複素透磁率をパラレルライン法により測定したところ 1GHzにおいて比透磁率μr=6、磁気損失tanδ=0.08であった(図1参照)。この複合磁性体の構造を示す顕微鏡写真を図2示す。磁性粒子は扁平化され、印加磁場の方向に配向していることが分かる。 Next, the obtained mixed liquid is allowed to stand to settle the dispersion medium (the specific gravity of the magnetic powder is 7 to 8 and the specific gravity of zirconia is 6 to 7, but the particle diameter of the zirconia beads is magnetic with respect to 200 μm. Since the particle size of the powder is 0.15 μm, the zirconia beads are heavier, so the zirconia beads settle), and the supernatant is introduced into a rotary evaporator under a reduced pressure of 50 ° C. and 2.7 kPa (the boiling point of the solvent due to the reduced pressure). The solvent was evaporated and the viscosity allowed to be applied with a doctor blade. The mixture obtained as described above was formed into a film by the doctor blade method, and then dried at room temperature while orienting the magnetic particles by applying a magnetic field of 1.6 × 10 5 A / m. The dry film thus obtained was press fired with a reduced-pressure press. The press conditions were raised to 130 ° C. over 20 minutes at normal pressure, then held at pressure of 2 MPa and held for 5 minutes, then heated to 160 ° C. and held for 40 minutes to cure the resin, and the area was 30 mm square. A composite magnetic body having a thickness of about 60 μm was obtained. When the complex permeability of this composite magnetic material was measured by the parallel line method, the relative permeability μr = 6 and the magnetic loss tan δ = 0.08 at 1 GHz (see FIG. 1). A photomicrograph showing the structure of this composite magnetic material is shown in FIG. It can be seen that the magnetic particles are flattened and oriented in the direction of the applied magnetic field.

平均粒径0.15μmの45−パーマロイ磁性粉末(Ni:45%−Fe:55%合金)1gを用いて上記実施例1と同様の条件で複合磁性体を作製し、面積30mm角、厚さ60μmの複合磁性体を得た。この複合磁性体の複素透磁率をパラレルライン法により測定したところ、1GHzにおいて比透磁率μr=5、磁気損失tanδ=0.05であった(図3参照)。この複合磁性体の構造を示す顕微鏡写真を図4示す。   Using 1 g of 45-permalloy magnetic powder (Ni: 45% -Fe: 55% alloy) having an average particle size of 0.15 μm, a composite magnetic body was produced under the same conditions as in Example 1 above, and the area was 30 mm square and the thickness was A composite magnetic body of 60 μm was obtained. When the complex magnetic permeability of this composite magnetic material was measured by the parallel line method, the relative magnetic permeability μr = 5 and the magnetic loss tan δ = 0.05 at 1 GHz (see FIG. 3). A photomicrograph showing the structure of this composite magnetic material is shown in FIG.

本複合磁性体を回路基板に応用した実施例を示す。まず、実施例1に示す過程において得られる厚さ約60μmの複合磁性ドライフィルムを6枚積層してプレス焼成することにより、厚さ約350μmの複合磁性材料を作製した。さらに該複合磁性材料を低誘電率樹脂のフィルムで挟んでから加熱して樹脂を硬化させたのち、樹脂表面に銅めっきを施し長さ30mm、幅0.9mmの配線パターン(マイクロストリップ線路)を形成した。図7に本回路基板の外観図を示す。また、図8に本回路基板の通過特性および反射特性を示してあるが、実測定結果および電磁界シミュレータHFSSによる計算値はよく一致しており、高周波において所望の比透磁率および損失が得られていることが分かる。   An embodiment in which the composite magnetic material is applied to a circuit board will be described. First, six composite magnetic dry films having a thickness of about 60 μm obtained in the process shown in Example 1 were laminated and press-fired to produce a composite magnetic material having a thickness of about 350 μm. Further, the composite magnetic material is sandwiched between low dielectric constant resin films and heated to cure the resin, and then copper plating is applied to the resin surface to form a wiring pattern (microstrip line) having a length of 30 mm and a width of 0.9 mm. Formed. FIG. 7 shows an external view of the circuit board. FIG. 8 shows the transmission characteristics and reflection characteristics of the circuit board, but the actual measurement results and the values calculated by the electromagnetic field simulator HFSS are in good agreement, and desired relative permeability and loss can be obtained at high frequencies. I understand that

本複合磁性体を電子部品に応用した一例として、複合磁性体を用いたモバイル機器用アンテナの事例を示す。図9に示すように、アンテナ素子は長さ42mm、幅5mm、厚さ0.35mmの本複合磁性材料2枚で長さ44mm、幅1.5mmの導体線を挟みこんだ構造とし、該アンテナ素子を長さ80mm、幅35mm、厚さ1mmの導体板に接続し、接続点において50Ω給電した。図10に該アンテナの入力反射特性を示すが、実測定結果と電磁界シミュレータHFSSによる計算値はよく一致しており、高周波において所望の比透磁率および損失が得られていることが分かる。   As an example of applying this composite magnetic body to an electronic component, an example of an antenna for a mobile device using the composite magnetic body is shown. As shown in FIG. 9, the antenna element has a structure in which a conductor wire having a length of 44 mm and a width of 1.5 mm is sandwiched between two composite magnetic materials having a length of 42 mm, a width of 5 mm, and a thickness of 0.35 mm. The element was connected to a conductor plate having a length of 80 mm, a width of 35 mm, and a thickness of 1 mm, and 50Ω was fed at the connection point. FIG. 10 shows the input reflection characteristics of the antenna. The actual measurement result and the calculated value by the electromagnetic field simulator HFSS are in good agreement, and it can be seen that desired relative permeability and loss are obtained at high frequency.

本発明は、半導体装置、回路素子、平板表示装置、その他高周波用電子部品に適用し、またこれらを搭載する高周波用回路基板に適用して、小型化、低消費電力化を可能にする。従って、本発明を適用した電子部品及び/又は回路基板を搭載した高周波電子機器すべてにおける小型化、低消費電力化を可能にするものである。   The present invention is applied to a semiconductor device, a circuit element, a flat panel display, and other high frequency electronic components, and is also applied to a high frequency circuit board on which these are mounted, thereby enabling miniaturization and low power consumption. Accordingly, it is possible to reduce the size and power consumption of all the high-frequency electronic devices on which the electronic components and / or circuit boards to which the present invention is applied are mounted.

本発明の実施例1で得られた複合磁性体の磁気特性の値を周波数に対して示す図である。It is a figure which shows the value of the magnetic characteristic of the composite magnetic body obtained in Example 1 of this invention with respect to a frequency. 本発明の実施例1で得られた複合磁性体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the composite magnetic body obtained in Example 1 of the present invention. 本発明の実施例2で得られた複合磁性体の磁気特性の値を周波数に対して示す図である。It is a figure which shows the value of the magnetic characteristic of the composite magnetic body obtained in Example 2 of this invention with respect to a frequency. 本発明の実施例2で得られた複合磁性体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the composite magnetic body obtained in Example 2 of the present invention. 従来方法により得られた複合磁性体の磁気特性の値を周波数に対して示す図である。It is a figure which shows the value of the magnetic characteristic of the composite magnetic body obtained by the conventional method with respect to a frequency. 従来方法により得られた複合磁性体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the composite magnetic body obtained by the conventional method. 本発明の実施例3に係る高周波回路基板の構成を示す概略図である。It is the schematic which shows the structure of the high frequency circuit board which concerns on Example 3 of this invention. 図7に示した高周波回路基板の通過特性および反射特性の値を周波数に対して示す図である。It is a figure which shows the value of the passage characteristic and reflection characteristic of the high frequency circuit board shown in FIG. 7 with respect to a frequency. 本発明の実施例4に係るアンテナの構成を示す概略図である。It is the schematic which shows the structure of the antenna which concerns on Example 4 of this invention. 図9に示されたアンテナの入力反射特性を周波数に対して示す図である。It is a figure which shows the input reflection characteristic of the antenna shown by FIG. 9 with respect to a frequency.

符号の説明Explanation of symbols

10 複合磁性体基板
12 導体線路
14 給電ポート
16 複合磁性体アンテナ
10 Composite Magnetic Substrate 12 Conductor Line 14 Feed Port 16 Composite Magnetic Antenna

Claims (14)

絶縁性材料と磁性粉末とを溶剤中に分散させて混合しスラリーを製造する工程と、前記スラリーを塗布、乾燥、焼成する工程とを含む複合磁性体の製造方法であって、
前記スラリー製造する工程は、溶剤に界面活性剤を添加した分散溶媒を製造する工程と、前記分散溶媒に前記磁性粉末を混合する工程とを含み、
前記磁性粉末を混合する工程は、前記磁性粉末よりも硬度が大きく粒径が0.1mm〜3.0mmの分散媒体を前記分散溶媒に更に添加する工程と、球状の前記磁性粉末および前記分散媒体を混合した前記分散溶媒に対して公転速度500rpm以上かつ自転速度200rpm以上で自転公転式混合を行うことで前記磁性粉末の凝集体を解砕するとともに、球状の前記磁性粉末を前記分散媒体のせん断応力により機械的に扁平状に変形させる工程とを含むことを特徴とする複合磁性体の製造方法。
An insulating material and magnetic powder and process for producing the slurry was mixed and dispersed in a solvent, applying the slurry, drying, method of manufacturing the composite magnetic body and a step of firing,
The step of producing the slurry includes a step of producing a dispersion solvent obtained by adding a surfactant to a solvent, and a step of mixing the magnetic powder in the dispersion solvent.
The step of mixing the magnetic powder includes a step of further adding a dispersion medium having a hardness larger than the magnetic powder and a particle size of 0.1 mm to 3.0 mm to the dispersion solvent, and the spherical magnetic powder and the dispersion medium. by performing the rotation revolution type mixing at the revolving speed 500rpm or more and rotational speed 200rpm or more to the dispersion solvent obtained by mixing, with crushing the aggregates of the magnetic powder, spherical of the magnetic powder the dispersion medium And a step of mechanically deforming into a flat shape by a shear stress .
前記スラリーの製造工程は、さらに絶縁性材料をスラリーに添加し混合する工程と、前記絶縁性材料の添加前または後に前記スラリーから前記分散媒体を分離する工程とを含むことを特徴とする請求項に記載の複合磁性体の製造方法。 The manufacturing process of the slurry further includes a step of adding and mixing an insulating material to the slurry, and a step of separating the dispersion medium from the slurry before or after the addition of the insulating material. 2. A method for producing a composite magnetic material according to 1 . 前記分散媒体を分離する工程は、前記混合体を静置または遠心分離して前記混合体を前記分散媒体が含まれている部分と含まれていない部分とに分離する工程を含むことを特徴とする請求項に記載の複合磁性体の製造方法。 The step of separating the dispersion medium includes a step of standing or centrifuging the mixture to separate the mixture into a portion containing the dispersion medium and a portion not containing the dispersion medium. The manufacturing method of the composite magnetic body of Claim 2 . 前記磁性粉末はニッケル(Ni)、パーマロイ(Fe−Ni合金)、および銅(Cu)、コバルト(Co)、亜鉛(Zn)、モリブデン(Mo)のいずれか一種類以上を含むパーマロイから選ばれたものであることを特徴とする請求項のいずれかに記載の複合磁性体の製造方法。 The magnetic powder was selected from nickel (Ni), permalloy (Fe—Ni alloy), and permalloy containing at least one of copper (Cu), cobalt (Co), zinc (Zn), and molybdenum (Mo). The method for producing a composite magnetic body according to any one of claims 1 to 3 , wherein the method is a thing. 前記絶縁性材料は、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、およびポリスチレン樹脂のうち少なくとも一つを含む合成樹脂もしくは液相樹脂、または、Al2O3、SiO2、TiO2、2MgO・SiO2、MgTiO3、CaTiO3、SrTiO3、およびBaTiO3のセラミックスからなる群より選ばれる少なくとも一つのセラミックスの原料であることを特徴とする請求項のいずれかに記載の複合磁性体の製造方法。 The insulating material is polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycycloolefin resin, cyanate Synthetic resin or liquid phase resin including at least one of resin, polyphenylene ether resin, and polystyrene resin, or selected from the group consisting of ceramics of Al2O3, SiO2, TiO2, 2MgO.SiO2, MgTiO3, CaTiO3, SrTiO3, and BaTiO3. method for producing a composite magnetic body according to any one of claims 1 to 4, characterized in that it is a raw material of at least one ceramics are. 前記磁性粉末の混合工程において添加される分散媒体は、金属、金属酸化物、酸化物焼結体、窒化物焼結体、珪化物焼結、およびガラスからなる群より選ばれる少なくとも一つの粒体であることを特徴とする請求項のいずれかに記載の複合磁性体の製造方法。 Dispersion medium to be added in the mixing step of powder the magnetic properties powder, metal, metal oxide, the oxide sintered body, nitride sintered body, silicide sintered, and at least one selected from the group consisting of glass The method for producing a composite magnetic body according to any one of claims 1 to 5 , wherein the composite magnetic body is a granule. 前記分散媒体は、アルミニウム、スチール、鉛、鉄酸化物、アミルナ、ジルコニア、二酸化ケイ素、チタニア、窒化ケイ素、炭化ケイ素、ソーダガラス、鉛ガラス、および高比重ガラスの少なくとも一つを含むことを特徴とする請求項に記載の複合磁性体の製造方法。 The dispersion medium includes at least one of aluminum, steel, lead, iron oxide, amyrna, zirconia, silicon dioxide, titania, silicon nitride, silicon carbide, soda glass, lead glass, and high specific gravity glass. The manufacturing method of the composite magnetic body of Claim 6 . 前記分散媒体は、比重が6以上であることを特徴とする請求項又はに記載の複合磁性体の製造方法。 The method for producing a composite magnetic body according to claim 6 or 7 , wherein the dispersion medium has a specific gravity of 6 or more. 前記分散媒体は、ジルコニア、スチール、ステンレスのいずれかを含むことを特徴とする請求項に記載の複合磁性体の製造方法。 The method for producing a composite magnetic body according to claim 8 , wherein the dispersion medium includes any one of zirconia, steel, and stainless steel. 請求項1〜9のいずれか一つに記載の製造方法によって作られたことを特徴とする複合磁性体。  A composite magnetic body produced by the production method according to claim 1. 請求項10に記載の複合磁性体を少なくとも含むことを特徴とする回路基板。 A circuit board comprising at least the composite magnetic material according to claim 10 . 請求項10に記載の複合磁性体を少なくとも含むことを特徴とする電子部品。 An electronic component comprising at least the composite magnetic body according to claim 10 . 請求項11に記載の回路基板を少なくとも有することを特徴とする電子機器。 An electronic apparatus comprising at least the circuit board according to claim 11 . 請求項12に記載の電子部品を少なくとも有することを特徴とする電子機器。 An electronic apparatus comprising at least the electronic component according to claim 12 .
JP2007012092A 2007-01-23 2007-01-23 COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME Expired - Fee Related JP5088813B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007012092A JP5088813B2 (en) 2007-01-23 2007-01-23 COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME
KR1020097017408A KR20090103951A (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
CNA200880002769XA CN101589443A (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
EP08703665A EP2117018A4 (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
PCT/JP2008/050821 WO2008090891A1 (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
US12/449,019 US20100000769A1 (en) 2007-01-23 2008-01-22 Composite magnetic body, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same
TW097102458A TW200903535A (en) 2007-01-23 2008-01-23 Composite magnetic material, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012092A JP5088813B2 (en) 2007-01-23 2007-01-23 COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2008181905A JP2008181905A (en) 2008-08-07
JP5088813B2 true JP5088813B2 (en) 2012-12-05

Family

ID=39725601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012092A Expired - Fee Related JP5088813B2 (en) 2007-01-23 2007-01-23 COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP5088813B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046125A1 (en) * 2009-10-16 2011-04-21 ミツミ電機株式会社 Magnetic material for high frequency applications and high frequency device
JP2011086788A (en) * 2009-10-16 2011-04-28 Mitsumi Electric Co Ltd Magnetic material for high frequency and high frequency device
KR20140071770A (en) * 2012-12-04 2014-06-12 삼성전기주식회사 Common mode noise chip filter and method for preparing thereof
US9418780B2 (en) 2012-12-06 2016-08-16 Samsung Electronics Co., Ltd. Magnetic composite material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814546A (en) * 1987-11-25 1989-03-21 Minnesota Mining And Manufacturing Company Electromagnetic radiation suppression cover
JP3184201B2 (en) * 1989-04-26 2001-07-09 日立金属株式会社 Flat Fe-Ni-based alloy fine powder and method for producing the same
JP3040669B2 (en) * 1994-09-02 2000-05-15 ティーディーケイ株式会社 Circuit board
JP3438396B2 (en) * 1995-03-08 2003-08-18 三菱マテリアル株式会社 Powder for magnetic shielding
JP2001274007A (en) * 2000-03-27 2001-10-05 Mitsubishi Materials Corp Radio absoptive compound with high permeability
JP4001067B2 (en) * 2002-09-25 2007-10-31 住友電気工業株式会社 PCB for printed wiring
JP2004247663A (en) * 2003-02-17 2004-09-02 Nec Tokin Corp Composite magnetic material sheet
JP2004273751A (en) * 2003-03-07 2004-09-30 Tdk Corp Magnetic member, electromagnetic wave absorbing sheet, manufacturing method of magnetic member, and electronic instrument
JP4705377B2 (en) * 2004-03-03 2011-06-22 ソニー株式会社 Wiring board
JP5017637B2 (en) * 2005-03-22 2012-09-05 国立大学法人東北大学 Insulator containing magnetic material, circuit board using the same, and electronic device
JP2006307209A (en) * 2005-03-31 2006-11-09 Nitta Ind Corp Sheet product, laminated product, product equipped with sheet and method for manufacturing sheet
JP2006310369A (en) * 2005-04-26 2006-11-09 Ken Takahashi Magnetic material and magnetic device

Also Published As

Publication number Publication date
JP2008181905A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US20100000769A1 (en) Composite magnetic body, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same
JP5574395B2 (en) Composite material and manufacturing method thereof
Zhao et al. Recent advances on the electromagnetic wave absorption properties of Ni based materials
JP5177542B2 (en) Composite magnetic body, circuit board using the same, and electronic component using the same
JP2008263098A (en) Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
TWI580800B (en) Copper powder
JP4705377B2 (en) Wiring board
JP5017637B2 (en) Insulator containing magnetic material, circuit board using the same, and electronic device
Kumar et al. Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution
KR20190119189A (en) Ultrathin flake-type silver powder and manufacturing method therefor
JP5088813B2 (en) COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME
JP2008311255A (en) Compound magnetic substance and its manufacturing method
Ratheesh et al. Polymer–Ceramic Composites for Microwave Applications
JP4867130B2 (en) Insulated ultrafine powder, method for producing the same, and high dielectric constant resin composite material using the same
CN100477178C (en) Printed circuit board
JP2004067889A (en) Highly dielectric substance composition
JP3705052B2 (en) Method for producing ultrafine conductor paste
US20120169447A1 (en) Nanocomposite powder for inner electrode of multilayer ceramic electronic device and fabricating method thereof
CN113242774B (en) Silver paste
JP2006351390A (en) Composite material
JP6799931B2 (en) Nickel fine particle-containing composition and its manufacturing method, internal electrodes and laminated ceramic capacitors
JP2008022416A (en) Antenna using high dielectrics
JP5953003B2 (en) Conductive paste for ceramic multilayer circuit boards
JP2012124165A (en) Method for manufacturing insulating material containing magnetic material
JP2004124066A (en) High dielectric composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees