JP2008263098A - Compound magnetic body, circuit substrate using the same, and electronic equipment using the same - Google Patents

Compound magnetic body, circuit substrate using the same, and electronic equipment using the same Download PDF

Info

Publication number
JP2008263098A
JP2008263098A JP2007105496A JP2007105496A JP2008263098A JP 2008263098 A JP2008263098 A JP 2008263098A JP 2007105496 A JP2007105496 A JP 2007105496A JP 2007105496 A JP2007105496 A JP 2007105496A JP 2008263098 A JP2008263098 A JP 2008263098A
Authority
JP
Japan
Prior art keywords
composite magnetic
magnetic body
resin
magnetic powder
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007105496A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Akinobu Teramoto
章伸 寺本
Masayuki Ishizuka
雅之 石塚
Nobuhiro Hidaka
宣浩 日高
Yasushi Shirakata
恭 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Yokowo Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Yokowo Co Ltd
Yokowo Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Osaka Cement Co Ltd, Yokowo Co Ltd, Yokowo Mfg Co Ltd filed Critical Tohoku University NUC
Priority to JP2007105496A priority Critical patent/JP2008263098A/en
Priority to EP08703665A priority patent/EP2117018A4/en
Priority to CNA200880002769XA priority patent/CN101589443A/en
Priority to PCT/JP2008/050821 priority patent/WO2008090891A1/en
Priority to US12/449,019 priority patent/US20100000769A1/en
Priority to KR1020097017408A priority patent/KR20090103951A/en
Priority to TW097102458A priority patent/TW200903535A/en
Publication of JP2008263098A publication Critical patent/JP2008263098A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite magnetic body for suppressing the deterioration of relative permeability in a high frequency, and for increasing a wavelength shortening rate when applying it to an electronic component and an antenna or the like. <P>SOLUTION: The magnetic powder of compound magnetic body whose plastic deformation is easily carried out by a mechanical stress is acquired by doping metallic elements. In mixing the magnetic powder with distributed media, flatting is carried out by the shearing stress of the mechanical stress of distributed media, and plastic deformation is carried out in a crystal direction by the mechanical stress, and flat magnetic powder with a small thickness and a large aspect rate is acquired. The anti-magnetic field of the flat magnetic powder thus acquired is small so that it is possible to suppress the deterioration of relative permeability. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は高周波回路基板及び高周波電子部品に関し、特に、かかる高周波回路基板及び高周波電子部品の材料として好適な複合磁性体及びその製造方法に関するものである。   The present invention relates to a high-frequency circuit board and a high-frequency electronic component, and more particularly to a composite magnetic body suitable as a material for the high-frequency circuit board and the high-frequency electronic component and a method for manufacturing the same.

情報通信機器の高速化、高密度化に伴い、電子機器に搭載される電子部品や回路基板の小型化及び低消費電力化が強く求められている。一般に、材料内を伝播する電磁波の波長λgは、真空中を伝播する電磁波の波長λ0と材料の複素誘電率の実部εr’(以下比誘電率εrと示す)及び複素透磁率の実部μr’(以下比透磁率μrと示す)を用いて、
λg=λ0/(εr・μr)1/2
で表すことができるため、比誘電率εr及び比透磁率μrが大きいほど波長短縮率が大きくなり電子部品や回路基板の小型化が可能となることが知られている。
With the increase in speed and density of information communication devices, there is a strong demand for downsizing and low power consumption of electronic components and circuit boards mounted on electronic devices. In general, the wavelength λg of the electromagnetic wave propagating in the material is determined by the wavelength λ0 of the electromagnetic wave propagating in the vacuum, the real part εr ′ of the complex permittivity (hereinafter referred to as relative permittivity εr), and the real part μr of the complex permeability. '(Hereinafter referred to as relative permeability μr)
λg = λ0 / (εr · μr) 1/2
Therefore, it is known that the larger the relative dielectric constant εr and the relative magnetic permeability μr, the larger the wavelength shortening rate and the smaller electronic components and circuit boards.

ところが、情報通信機器等が使用する高周波帯では磁性材料の表面に渦電流が生じ、この渦電流は印加した磁界の変化を打ち消す向きに磁界を生成するため、材料の見かけ上の透磁率の低下を招いていた。また、渦電流の増大はジュール熱によるエネルギー損失を生ずるため、回路基板や電子部品等の材料として使用することは困難であった。渦電流を低減するためには、
d = 1/(π・f・μ0・μr・σ)1/2
で表される表皮深さdよりも磁性粉末の直径を小さくすることが効果的である。ここで、fは信号周波数、σは磁性粉末の導電率、μ0は真空の透磁率である。近年、ナノテクノロジーの進歩に伴い磁性粒子の微細化が進み、高周波での材料の比透磁率μrの低下を抑制した事例が幾つか報告されている。
However, eddy currents are generated on the surface of magnetic materials in the high-frequency band used by information and communication equipment, and this eddy current generates a magnetic field in a direction that cancels the change in the applied magnetic field, resulting in a decrease in the apparent permeability of the material. Was invited. Moreover, since an increase in eddy current causes energy loss due to Joule heat, it has been difficult to use it as a material for circuit boards and electronic components. To reduce eddy currents,
d = 1 / (π · f · μ0 · μr · σ) 1/2
It is effective to make the diameter of the magnetic powder smaller than the skin depth d expressed by Here, f is the signal frequency, σ is the conductivity of the magnetic powder, and μ 0 is the permeability of the vacuum. In recent years, with the advancement of nanotechnology, the miniaturization of magnetic particles has progressed, and some cases have been reported in which the decrease in the relative permeability μr of materials at high frequencies is suppressed.

例えば、特許文献1において、本発明者らは分散媒体を用いた自転公転式混合を用いて球状磁性粉末または扁平状磁性粉末を樹脂中に好適に混合分散することにより、500MHz〜1GHzにおいて比透磁率μrが1よりも大きく、かつ損失正接tanδが0.1以下の複合磁性体を提供している。   For example, in Patent Document 1, the present inventors appropriately mix and disperse spherical magnetic powder or flat magnetic powder in a resin using rotation and revolution mixing using a dispersion medium, so that the relative permeability at 500 MHz to 1 GHz is achieved. A composite magnetic material having a magnetic susceptibility μr greater than 1 and a loss tangent tan δ of 0.1 or less is provided.

特願2007−12092号Japanese Patent Application No. 2007-12092

特許文献1において、本発明者らは磁性粉末の分散を好適に実施することにより500MHz〜1GHzの周波数帯でも損失の低減が可能であることを見出した。しかしながら、複合磁性体を形成する78−パーマロイ(78Ni−22Fe合金)は塑性変形能が小さいため反磁界の影響が十分に除去できないこと、及び結晶配向性が小さいため高周波磁界と磁化容易軸を一致させることが困難であることがさらなる高透磁率化を阻害する要因となっていた。   In Patent Document 1, the present inventors have found that loss can be reduced even in a frequency band of 500 MHz to 1 GHz by suitably performing dispersion of magnetic powder. However, 78-permalloy (78Ni-22Fe alloy) forming a composite magnetic body has a small plastic deformation ability, so the influence of the demagnetizing field cannot be removed sufficiently, and the crystal orientation is small, so the high-frequency magnetic field and the easy axis of magnetization coincide. It was difficult to make it difficult to increase the magnetic permeability.

本発明は上記課題に鑑みてなされたものであり、合金粒子に金属元素を添加し、機械的応力を加えた際に特定の結晶方向(ここでは、磁化容易軸方向)に対して容易に塑性変形する磁性粉末と絶縁性材料から構成される複合磁性体において、前記扁平状磁性粉末の長軸方向と磁化容易軸の方向が一致しており、1.2GHz以下の周波数において比透磁率μrが10よりも大きく、かつ損失正接tanδが0.3以下であることを特徴とする複合磁性体とそれを用いた電子機器を提供することを目的とするものである。   The present invention has been made in view of the above problems, and is easily plasticized with respect to a specific crystal direction (here, the easy axis of magnetization) when a metal element is added to alloy particles and mechanical stress is applied. In a composite magnetic body composed of a deformable magnetic powder and an insulating material, the major axis direction of the flat magnetic powder coincides with the direction of the easy axis of magnetization, and the relative magnetic permeability μr is at a frequency of 1.2 GHz or less. It is an object of the present invention to provide a composite magnetic body characterized by being larger than 10 and having a loss tangent tan δ of 0.3 or less, and an electronic device using the same.

本発明者らは、鋭意検討を重ねた結果、扁平状磁性粉末の分散及び配向を好適に実施することにより1.2GHz以下の周波数帯において透磁率の更なる向上が可能であることを見出した。   As a result of intensive studies, the present inventors have found that the magnetic permeability can be further improved in a frequency band of 1.2 GHz or less by suitably performing the dispersion and orientation of the flat magnetic powder. .

すなわち、本発明の第1の態様によれば、磁性粉末を絶縁性材料中に分散して構成される複合磁性体において、1.2GHz以下の周波数における比透磁率μrが10よりも大きく、かつ損失正接tanδが0.3以下であることを特徴とする複合磁性体が得られる。   That is, according to the first aspect of the present invention, in the composite magnetic body constituted by dispersing magnetic powder in an insulating material, the relative permeability μr at a frequency of 1.2 GHz or less is greater than 10, and A composite magnetic body having a loss tangent tan δ of 0.3 or less is obtained.

本発明の第2の態様によれば、前記複合磁性体は、1GHz以下の周波数における比誘電率εrが10以上であることを特徴とする第1の態様に記載の複合磁性体が得られる。   According to the second aspect of the present invention, there is obtained the composite magnetic body according to the first aspect, wherein the composite magnetic body has a relative dielectric constant εr of 10 or more at a frequency of 1 GHz or less.

本発明の第3の態様によれば、前記複合磁性体は、1GHz以下の周波数における比誘電率εrが10以下であることを特徴とする第1の態様に記載の複合磁性体が得られる。   According to a third aspect of the present invention, there is obtained the composite magnetic body according to the first aspect, wherein the composite magnetic body has a relative dielectric constant εr of 10 or less at a frequency of 1 GHz or less.

本発明の第4の態様によれば、 前記磁性粉末の材質はアルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)のうちいずれか一種類以上の金属元素を添加したパーマロイ(Fe−Ni合金)であることを特徴とする第1〜3の態様に記載の複合磁性体が得られる。   According to the fourth aspect of the present invention, the magnetic powder is made of aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb). ), Molybdenum (Mo), indium (In), and tin (Sn) are permalloy (Fe—Ni alloy) to which one or more metal elements are added. The described composite magnetic material is obtained.

本発明の第5の態様によれば、前記磁性粉末に添加する金属元素の濃度は0.1重量%〜90重量%であることを特徴とする第4の態様に記載の複合磁性体が得られる。   According to a fifth aspect of the present invention, there is obtained the composite magnetic body according to the fourth aspect, wherein the concentration of the metal element added to the magnetic powder is 0.1 wt% to 90 wt%. It is done.

本発明の第6の態様によれば、前記磁性粉末は機械的応力を加えると磁化容易軸方向に対して容易に塑性変形することを特徴とする第4又は5の態様に記載の複合磁性体が得られる。   According to a sixth aspect of the present invention, in the composite magnetic body according to the fourth or fifth aspect, the magnetic powder is easily plastically deformed in the direction of the easy magnetization axis when mechanical stress is applied. Is obtained.

本発明の第7の態様によれば、前記磁性粉末の形状は扁平状であり、その厚さが0.01〜1μm、長さが0.02〜10μm、かつアスペクト比(長さ/厚み)が2以上であることを特徴とする第1〜6の態様のいずれかに記載の複合磁性体が得られる。   According to a seventh aspect of the present invention, the magnetic powder has a flat shape, a thickness of 0.01 to 1 μm, a length of 0.02 to 10 μm, and an aspect ratio (length / thickness). The composite magnetic body according to any one of the first to sixth aspects is obtained, wherein is 2 or more.

本発明の第8の態様によれば、前記扁平状磁性粉末は分散溶媒中に磁性粉末を混合する工程において、球状磁性粉末を機械的に扁平状に変形させたものであることを特徴とする第7の態様の複合磁性体が得られる。   According to an eighth aspect of the present invention, the flat magnetic powder is obtained by mechanically deforming a spherical magnetic powder into a flat shape in the step of mixing the magnetic powder in a dispersion solvent. The composite magnetic body according to the seventh aspect is obtained.

本発明の第9の態様によれば、前記絶縁性材料は、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、およびポリスチレン樹脂のうち少なくとも一つを含む合成樹脂もしくは液相樹脂、または、Al、SiO、TiO、2MgO・SiO、MgTiO、CaTiO、SrTiO、およびBaTiOのセラミックスからなる群より選ばれる少なくとも一つのセラミックスの原料であることを特徴とする第1〜8の態様のいずれかに記載の複合磁性体が得られる。 According to a ninth aspect of the present invention, the insulating material includes polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine Synthetic resin or liquid phase resin including at least one of resin, polyolefin resin, polycycloolefin resin, cyanate resin, polyphenylene ether resin, and polystyrene resin, or Al 2 O 3 , SiO 2 , TiO 2 , 2MgO · SiO 2. The composite magnetic body according to any one of the first to eighth aspects, which is a raw material for at least one ceramic selected from the group consisting of ceramics of MgTiO 3 , CaTiO 3 , SrTiO 3 , and BaTiO 3. Got That.

本発明の第10の態様によれば、前記扁平状磁性粉末は前記絶縁性材料中において一定方向に配向していることを特徴とする第1〜8の態様のいずれかに記載の複合磁性体が得られる。   According to a tenth aspect of the present invention, in the composite magnetic body according to any one of the first to eighth aspects, the flat magnetic powder is oriented in a certain direction in the insulating material. Is obtained.

本発明の第11の態様によれば、前記扁平状磁性粉末を構成する結晶の特定の結晶面が前記扁平状磁性粉末の一定方向に配向していることを特徴とする第1〜9の態様のいずれかに記載の複合磁性体が得られる。   According to an eleventh aspect of the present invention, in the first to ninth aspects, a specific crystal plane of the crystal constituting the flat magnetic powder is oriented in a certain direction of the flat magnetic powder. A composite magnetic material according to any one of the above is obtained.

本発明の第12の態様によれば、扁平状磁性粉末の長軸方向と磁化容易軸が一致することを特徴とする複合磁性体が得られる。   According to the twelfth aspect of the present invention, there is obtained a composite magnetic body characterized in that the major axis direction of the flat magnetic powder coincides with the easy magnetization axis.

本発明の第13の態様によれば、第1〜12の態様のいずれか一つに記載の複合磁性体を少なくとも含むことを特徴とする回路基板が得られる。   According to a thirteenth aspect of the present invention, there is obtained a circuit board including at least the composite magnetic material according to any one of the first to twelfth aspects.

本発明の第14の態様によれば、第1〜12の態様のいずれか一つに記載の複合磁性体を少なくとも含むことを特徴とする電子部品が得られる。   According to the fourteenth aspect of the present invention, there is obtained an electronic component comprising at least the composite magnetic body according to any one of the first to twelfth aspects.

本発明の第15の態様によれば、第1〜12の態様のいずれか一つに記載の複合磁性体を少なくとも含むことを特徴とする電子部品が得られる。   According to a fifteenth aspect of the present invention, an electronic component comprising at least the composite magnetic body according to any one of the first to twelfth aspects is obtained.

本発明によれば、合金粒子に金属元素を添加し、機械的応力を加えた際に特定の結晶方向(例えば、磁化容易軸方向)に対して容易に塑性変形する磁性粉末と絶縁性材料から構成される複合磁性体において、前記扁平状磁性粉末の長さ方向と磁化容易軸の方向が一致しており、1.2GHz以下の周波数において比透磁率μrが10よりも大きく、かつ損失正接tanδが0.3以下であることを特徴とする複合磁性体とそれを用いた電子機器を提供することができる。本発明に係る高い透磁率を有する複合磁性体を回路基板及び/または電子部品の材料として適用することにより、数百MHz〜1GHz帯域における情報通信機器の更なる小型化、低消費電力化を実現することが可能となる。   According to the present invention, when a metal element is added to an alloy particle and a mechanical stress is applied, the magnetic powder and the insulating material that are easily plastically deformed with respect to a specific crystal direction (for example, an easy magnetization axis direction). In the constructed composite magnetic body, the length direction of the flat magnetic powder coincides with the direction of the easy axis of magnetization, the relative permeability μr is greater than 10 at a frequency of 1.2 GHz or less, and the loss tangent tan δ. Can be provided, and a composite magnetic body and an electronic device using the same can be provided. By applying the composite magnetic material having a high magnetic permeability according to the present invention as a material for circuit boards and / or electronic components, further downsizing and low power consumption of information communication devices in the band of several hundred MHz to 1 GHz are realized. It becomes possible to do.

まず、本発明の実施の形態に係る複合磁性体を構成する磁性粉末について説明する。   First, the magnetic powder constituting the composite magnetic body according to the embodiment of the present invention will be described.

前記磁性粉末の材質としては、パーマロイ(Fe−Ni合金)、スーパーマロイ(Fe−Ni−Mo合金)、センダスト(Fe−Si−Al合金)、Fe−Si合金、Fe−Co合金、Fe−Cr合金、Fe−Cr−Si合金等に、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)等の金属元素を添加することが好ましい。   As the material of the magnetic powder, permalloy (Fe-Ni alloy), supermalloy (Fe-Ni-Mo alloy), sendust (Fe-Si-Al alloy), Fe-Si alloy, Fe-Co alloy, Fe-Cr Alloy, Fe-Cr-Si alloy, etc., aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo) It is preferable to add a metal element such as indium (In) or tin (Sn).

前記金属元素の添加量は0.1重量%以上かつ90重量%以下の範囲にあることが好ましい。その理由は、金属元素の添加量が0.1重量%未満では前記軟磁性粉末が十分な塑性変形能を得られず、一方、前記金属元素自体の磁気モーメントが小さいため添加量が90重量%を超えると前記磁性粉末の飽和磁化が小さくなるためである。   The addition amount of the metal element is preferably in the range of 0.1 wt% or more and 90 wt% or less. The reason is that if the addition amount of the metal element is less than 0.1 wt%, the soft magnetic powder cannot obtain a sufficient plastic deformability, while the addition amount is 90 wt% because the magnetic moment of the metal element itself is small. This is because the saturation magnetization of the magnetic powder is reduced when the value exceeds.

前記磁性粉末の好適な形状について説明する。磁性粉末における反磁界の大きさは、粉末の形状に依存する。例えば、球状の場合は反磁界が等方的に存在するため、高周波領域で優れた磁気特性を得ることが困難である。一方、粉末を扁平形状にすると扁平面に平行な方向の反磁界が格段に小さくなり、得られる透磁率が大きくなる。   A preferred shape of the magnetic powder will be described. The magnitude of the demagnetizing field in the magnetic powder depends on the shape of the powder. For example, in the case of a spherical shape, since a demagnetizing field is isotropic, it is difficult to obtain excellent magnetic characteristics in a high frequency region. On the other hand, when the powder has a flat shape, the demagnetizing field in the direction parallel to the flat surface is remarkably reduced, and the obtained magnetic permeability is increased.

本発明における前記扁平状磁性粉末は、分散溶媒中に磁性粉末を混合する工程において、球状磁性粉末を分散媒体のせん断応力によって扁平化する際、添加された金属元素の作用により機械的応力を加えると特定の結晶方向(ここでは、磁化容易軸方向)に対して容易に塑性変形するものであって、0.01〜1μmの厚みを有するものであることが好ましい。扁平状磁性粉末の厚さを0.01μm未満とすることは製造上困難であり、取り扱いも難しくなる。また、扁平状磁性粉末の厚さが1μmを超えると、渦電流を生じ高周波での磁気特性の低下を招くので好ましくない。また、前記扁平状磁性粉末のアスペクト比(長さ/厚み)が2より小さいと粉末の反磁界が大きくなり、複合磁性体の比透磁率μrが低下するので好ましくない。   In the step of mixing the magnetic powder in the dispersion solvent, the flat magnetic powder in the present invention applies mechanical stress by the action of the added metal element when the spherical magnetic powder is flattened by the shear stress of the dispersion medium. And a specific crystal direction (here, easy magnetization axis direction) that is easily plastically deformed and preferably has a thickness of 0.01 to 1 μm. When the thickness of the flat magnetic powder is less than 0.01 μm, it is difficult to manufacture and handling becomes difficult. Further, if the thickness of the flat magnetic powder exceeds 1 μm, it is not preferable because an eddy current is generated and magnetic characteristics at high frequencies are lowered. Further, if the aspect ratio (length / thickness) of the flat magnetic powder is smaller than 2, the demagnetizing field of the powder is increased and the relative magnetic permeability μr of the composite magnetic material is decreased, which is not preferable.

次に、複合磁性体を構成する絶縁材料について説明する。   Next, the insulating material constituting the composite magnetic body will be described.

前記複合磁性体を回路基板の材料として用いる場合、特性インピーダンスを上昇させる観点からは誘電率が低いことが好ましく、前記絶縁性材料として、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリスチレン樹脂などの低誘電率の合成樹脂が好適に選択される。   When the composite magnetic material is used as a material for a circuit board, it is preferable that the dielectric constant is low from the viewpoint of increasing the characteristic impedance. As the insulating material, polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene Low dielectric constant synthetic resins such as resins, polyarylene ether resins, polysiloxane resins, epoxy resins, polyester resins, fluororesins, polyolefin resins, polycycloolefin resins, cyanate resins, polyphenylene ether resins, polystyrene resins are suitably selected. The

一方、コンデンサやアンテナ素子など高誘電率性が要求される場合には、Al、SiO、TiO、2MgO・SiO、MgTiO、CaTiO、SrTiO、BaTiOなどのセラミックもしくはこれら無機物と有機物の混合物などを適宜使用できる。 On the other hand, when a high dielectric constant such as a capacitor or an antenna element is required, ceramics such as Al 2 O 3 , SiO 2 , TiO 2 , 2MgO · SiO 2 , MgTiO 3 , CaTiO 3 , SrTiO 3 , BaTiO 3 , or the like A mixture of these inorganic and organic materials can be used as appropriate.

本発明に係る複合磁性体の製造工程は、磁性粉末を溶剤中に分散させて混合しスラリーを製造する工程中に、溶剤に界面活性剤を添加した分散溶媒を製造する工程と、分散溶媒中に磁性粉末を混合する混合工程とを含み、当該磁性粉末を分散溶媒中に混合する際、分散媒体及び絶縁性材料が添加され、分散媒体及び絶縁性材料が添加された状態で、自転公転式混合を行う。   The manufacturing process of the composite magnetic body according to the present invention includes a process of manufacturing a dispersion solvent in which a surfactant is added to a solvent during a process of manufacturing a slurry by dispersing and mixing magnetic powder in a solvent, A mixing step of mixing the magnetic powder with the magnetic powder, and when the magnetic powder is mixed in the dispersion solvent, the dispersion medium and the insulating material are added. Mix.

上記した混合工程中において、金属元素を添加した磁性粉末を分散媒体の機械的な応力によって、ある特定の結晶面方向に塑性変形した前記扁平状磁性粉末を作製している。   During the above-described mixing step, the flat magnetic powder is produced by plastically deforming the magnetic powder to which the metal element is added in a specific crystal plane direction by the mechanical stress of the dispersion medium.

溶剤、界面活性剤、磁性粉末、分散媒体、及び、絶縁性材料を混合する上記した混合工程に用いることが出来る装置としては、ニーダ、ロールミル、ピンミル、サンドミル、ボールミル、遊星ボールミル等があるが、本発明に係る分散媒体を使用するためにはサンドミル、ボールミル、遊星ボールミル等が適している。   Examples of the apparatus that can be used in the above mixing process of mixing the solvent, surfactant, magnetic powder, dispersion medium, and insulating material include a kneader, a roll mill, a pin mill, a sand mill, a ball mill, and a planetary ball mill. In order to use the dispersion medium according to the present invention, a sand mill, a ball mill, a planetary ball mill or the like is suitable.

また、分散媒体としては、アルミニウム、スチール、鉛等の金属類あるいは金属酸化物類、アルミナ、ジルコニア、二酸化ケイ素、チタニア等の酸化物焼結体、窒化ケイ素等の窒化物焼結体、炭化ケイ素等の珪化物焼結、ソーダガラス、鉛ガラス、高比重ガラス等のガラス類等が挙げられる。   Dispersion media include metals or metal oxides such as aluminum, steel and lead, oxide sintered bodies such as alumina, zirconia, silicon dioxide and titania, nitride sintered bodies such as silicon nitride, silicon carbide And glass such as sintered silicide, soda glass, lead glass, and high specific gravity glass.

次に、得られたスラリーの塗布方法について述べる。塗布方法はこれを公知の成形方法、例えばプレス法、ドクターブレード法、射出成形法により任意のシート形状に成形し、ドライフィルムを作製することができる。これらの方法の中で、複合磁性体の積層体を形成のためにはドクターブレード法によってシート状に成形することが望ましい。スラリーは上記の塗布方法に適した粘度調整のために、溶剤を揮発させて濃縮後に塗布を行う。   Next, a method for applying the obtained slurry will be described. As a coating method, a dry film can be produced by forming this into an arbitrary sheet shape by a known forming method such as a press method, a doctor blade method, or an injection molding method. Among these methods, it is desirable to form a laminated body of composite magnetic bodies into a sheet by a doctor blade method. The slurry is applied after volatilization of the solvent and concentration to adjust the viscosity suitable for the above application method.

上記方法によりシート状に塗布されたスラリーは、直流外部磁場を印加しながら乾燥させることが好ましい。乾燥中に直流外部磁場を印加することにより、前記扁平状粒子はシート面と平行方向に配向される。このとき、前記扁平状粒子内の磁化容易軸は扁平状粉末の長軸方向を向いているため、形状異方性と結晶異方性が同時に配向されることになる。   The slurry applied in the form of a sheet by the above method is preferably dried while applying a DC external magnetic field. By applying a DC external magnetic field during drying, the flat particles are oriented in a direction parallel to the sheet surface. At this time, since the easy magnetization axis in the flat particles is oriented in the major axis direction of the flat powder, the shape anisotropy and the crystal anisotropy are simultaneously oriented.

最後に、このようにして得られたドライフィルムを、還元性雰囲気或いは真空中で熱処理及びプレス成形することにより、複合磁性体を得る。   Finally, the dry film thus obtained is heat-treated and press-molded in a reducing atmosphere or vacuum to obtain a composite magnetic body.

本発明に係る最大の特徴は、複合磁性体を構成する前記扁平状磁性粉末は特定の結晶方向(ここでは、磁化容易軸方向)に対して塑性変形し易く、機械的応力を加えると容易に塑性変形し、高いアスペクト比を有し、複合磁性体を作製する際に外部磁化をかけることにより、特定方向に平行に配列(配向)するので、複合磁性体の面方向の反磁場係数を低くするとともに、前記扁平状磁性粉末の長さ方向と磁化結晶容易軸が一致することによって、複合磁性体の透磁率を高めることが可能であることである。   The greatest feature of the present invention is that the flat magnetic powder constituting the composite magnetic body is easily plastically deformed with respect to a specific crystal direction (here, the easy magnetization axis direction), and is easily applied with mechanical stress. It is plastically deformed, has a high aspect ratio, and is arranged (orientated) parallel to a specific direction by applying external magnetization when producing a composite magnetic body, so the demagnetizing coefficient in the plane direction of the composite magnetic body is low. In addition, the magnetic permeability of the composite magnetic material can be increased by matching the length direction of the flat magnetic powder with the easy axis of magnetization crystal.

次に、本発明に係る実施例について説明する。   Next, examples according to the present invention will be described.

以下、実施例1及び2により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely by Example 1 and 2, this invention is not limited by these Examples.

金属元素を添加した平均粒径0.25μmのパーマロイ磁性粉末2gを、キシレンおよびシクロペンタノン4:1混合液10gに界面活性剤として窒素含有のグラフトポリマーを溶解した分散液に混合し、さらに分散媒体として平均粒径が200μmのジルコニアビーズを添加し、この状態で遊星攪拌を50分間実施して磁性粉末を扁平状にした。このようにして得られたスラリーにポリシクロオレフィン樹脂を固形分比率40%に希釈して得た樹脂ワニス0.5gを添加しさらに遊星攪拌で5分間混合した。遊星攪拌時の公転速度はいずれも2000rpm、自転速度は800rpmとした。   2 g of permalloy magnetic powder with an average particle size of 0.25 μm added with a metal element is mixed with 10 g of xylene and cyclopentanone 4: 1 mixed solution in a dispersion containing a nitrogen-containing graft polymer as a surfactant and further dispersed. Zirconia beads having an average particle diameter of 200 μm were added as a medium, and planetary stirring was carried out for 50 minutes in this state to flatten the magnetic powder. 0.5 g of a resin varnish obtained by diluting the polycycloolefin resin to a solid content ratio of 40% was added to the slurry thus obtained, and further mixed for 5 minutes by planetary stirring. The revolution speed during planetary stirring was 2000 rpm, and the rotation speed was 800 rpm.

次に、得られた混合液を静置して分散媒体を沈降させ(磁性粉末の比重は7〜8、ジルコニアの比重は6〜7であるが、ジルコニアビーズの粒径が200μmに対して磁性粉末の粒径は0.25μmであるので、ジルコニアビーズの方が重いためジルコニアビーズが沈降する)、上澄み液をロータリーエバポレーターに導入し、50℃、2.7kPaの減圧下で(減圧のため溶剤の沸点が下がる)溶剤を蒸発させ、ドクターブレード法によってフィルム状に成形した後、1.6×10A/mの磁場をかけて磁性粒子を配向させながら、常温で乾燥させた。このようにして得られたドライフィルムを6枚積層して、減圧プレス装置によってプレス焼成を行った。プレス条件は常圧のまま130℃まで20分で昇温させ、その後2MPaの圧力をかけて5分間保持し、その後160℃まで昇温させて40分間保持し、樹脂を硬化させて厚さ350μmの複合磁性材料を作製した。 Next, the obtained mixed liquid is allowed to stand to settle the dispersion medium (the specific gravity of the magnetic powder is 7 to 8 and the specific gravity of zirconia is 6 to 7, but the particle diameter of the zirconia beads is magnetic with respect to 200 μm. Since the particle size of the powder is 0.25 μm, the zirconia beads are heavier, so the zirconia beads are settled). After the solvent was evaporated and formed into a film by the doctor blade method, it was dried at room temperature while orienting the magnetic particles by applying a magnetic field of 1.6 × 10 5 A / m. Six dry films obtained in this way were laminated and press fired with a reduced pressure press. The press conditions were raised to 130 ° C. for 20 minutes under normal pressure, then held at pressure of 2 MPa and held for 5 minutes, then heated to 160 ° C. and held for 40 minutes to cure the resin to a thickness of 350 μm. A composite magnetic material was prepared.

得られた複合磁性材料中の磁性粉末は、最終的に、結晶の磁化容易軸方向に扁平化し磁化容易軸に平行な結晶面が厚さ方向に積み重なった形態を有している。   The obtained magnetic powder in the composite magnetic material is finally flattened in the direction of the easy magnetization axis of the crystal and has a form in which crystal planes parallel to the easy magnetization axis are stacked in the thickness direction.

この複合磁性材料の複素透磁率をパラレルライン法により測定したところ、1.2GHzにおいて比透磁率μr=11、磁気損失tanδ=0.25であり(図1参照)、誘電率を平行平板法により測定したところ比誘電率=12、誘電損失tanδ=0.05であった。   When the complex magnetic permeability of this composite magnetic material was measured by the parallel line method, the relative magnetic permeability μr = 11 and the magnetic loss tan δ = 0.25 at 1.2 GHz (see FIG. 1), and the dielectric constant was measured by the parallel plate method. When measured, the relative dielectric constant was 12, and the dielectric loss tan δ was 0.05.

この複合磁性体の構造写真を図2示す。磁性粒子は扁平化され、一定方向に配向していることが分かる。このときの扁平粒子の大きさは平均すると厚さ約0.03μm、長さ約1μmであり、アスペクト比は約33となった。さらに図3に示すX線回折結果により、特定の結晶面が配向していることが分かる。比較として、直流磁場を印加せずに従来方法により作製した複合磁性体の透磁率特性、断面写真、X線回折結果をそれぞれ図4、図5、図6に示すが、この場合は扁平粒子が一定の方向に配列せず、また結晶面にも配向性は見られない。その結果、比透磁率は7程度しか得られないことが分かる。   A structural photograph of this composite magnetic material is shown in FIG. It can be seen that the magnetic particles are flattened and oriented in a certain direction. The average size of the flat particles at this time was about 0.03 μm in thickness and about 1 μm in length, and the aspect ratio was about 33. Furthermore, it can be seen from the X-ray diffraction results shown in FIG. 3 that a specific crystal plane is oriented. For comparison, the magnetic permeability characteristics, cross-sectional photographs, and X-ray diffraction results of a composite magnetic material produced by a conventional method without applying a DC magnetic field are shown in FIGS. 4, 5, and 6, respectively. They are not arranged in a certain direction, and no orientation is observed on the crystal plane. As a result, it can be seen that a relative permeability of only about 7 can be obtained.

本複合磁性体を電子部品に応用した一例として、複合磁性体を用いたモノポールアンテナの事例を示す。図7に示すように、アンテナ素子は長さ50mm、幅5mm、厚さ0.5mmの複合磁性体10を2枚用いて、長さ55mm、幅1.5mmのストリップ導体12を挟みこんだ構造とした。該アンテナ素子を300mm角の導体地板14の中央に接続し、接続点を給電点16として、50Ω給電した。   As an example of applying this composite magnetic body to an electronic component, an example of a monopole antenna using the composite magnetic body is shown. As shown in FIG. 7, the antenna element has a structure in which two composite magnetic bodies 10 having a length of 50 mm, a width of 5 mm, and a thickness of 0.5 mm are used and a strip conductor 12 having a length of 55 mm and a width of 1.5 mm is sandwiched between the antenna elements. It was. The antenna element was connected to the center of a 300 mm square conductor ground plate 14, and the connection point was the feeding point 16, and 50Ω was fed.

図8にアンテナの入力反射特性を示すが、実測定結果と電磁界シミュレータHFSSに本複合磁性体の材料定数を入力して求めた計算値はよく一致している。また、複合磁性体を装荷したアンテナ(図8中WithMDと表記)と装荷していないアンテナ(図8中WithoutMDと表記)の共振周波数を比較すると、複合磁性体10を装荷することにより共振周波数が1.26GHzから0.88GHzにシフトしている。すなわち複合磁性体の比透磁率及び比誘電率の効果により大幅な波長短縮効果が得られており、本アンテナの場合は30%ほど小型化可能となることを示している。   FIG. 8 shows the input reflection characteristics of the antenna. The actual measurement results and the calculated values obtained by inputting the material constants of the composite magnetic body into the electromagnetic field simulator HFSS are in good agreement. Further, when the resonance frequency of the antenna loaded with the composite magnetic body (denoted as WithMD in FIG. 8) and the antenna not loaded (denoted as WithoutMD in FIG. 8) are compared, the resonance frequency is increased by loading the composite magnetic body 10. The shift is from 1.26 GHz to 0.88 GHz. In other words, a significant wavelength shortening effect is obtained due to the effects of the relative magnetic permeability and relative permittivity of the composite magnetic material, and this antenna can be reduced by about 30%.

本発明は、半導体装置、回路素子、平板表示装置、その他高周波用電子部品に適用し、またこれらを搭載する高周波用回路基板に適用して、小型化、低消費電力化を可能にする。従って、本発明を適用した電子部品及び/又は回路基板を搭載した高周波電子機器すべてにおける小型化、低消費電力化を可能にするものである。更に、本発明に係る複合磁性体は、アンテナに適用して、当該アンテナの小形化を図ることができる。   The present invention is applied to a semiconductor device, a circuit element, a flat panel display, and other high frequency electronic components, and is also applied to a high frequency circuit board on which these are mounted, thereby enabling miniaturization and low power consumption. Accordingly, it is possible to reduce the size and power consumption of all the high-frequency electronic devices on which the electronic components and / or circuit boards to which the present invention is applied are mounted. Furthermore, the composite magnetic body according to the present invention can be applied to an antenna to reduce the size of the antenna.

本発明の実施例1で得られた複合磁性体の磁気特性の値を周波数に対して示す図である。It is a figure which shows the value of the magnetic characteristic of the composite magnetic body obtained in Example 1 of this invention with respect to a frequency. 本発明の実施例1で得られた複合磁性体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the composite magnetic body obtained in Example 1 of the present invention. 本発明の実施例1で得られた複合磁性体のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the composite magnetic body obtained in Example 1 of this invention. 従来方法により得られた複合磁性体の磁気特性の値を周波数に対して示す図である。It is a figure which shows the value of the magnetic characteristic of the composite magnetic body obtained by the conventional method with respect to a frequency. 従来方法により得られた複合磁性体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the composite magnetic body obtained by the conventional method. 従来方法により得られた複合磁性体のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the composite magnetic body obtained by the conventional method. 本発明の一実施例におけるアンテナの構成を示す概略図である。It is the schematic which shows the structure of the antenna in one Example of this invention. アンテナの入力反射特性を周波数に対して示す図である。It is a figure which shows the input reflection characteristic of an antenna with respect to a frequency.

符号の説明Explanation of symbols

10 複合磁性体
12 ストリップ導体
14 導体地板
16 給電点
DESCRIPTION OF SYMBOLS 10 Composite magnetic body 12 Strip conductor 14 Conductor ground plate 16 Feeding point

Claims (16)

磁性粉末を絶縁性材料中に分散して構成される複合磁性体において、1.2GHz以下の周波数における複素透磁率の実部μr’が10よりも大きく、かつ損失正接tanδが0.3以下であることを特徴とする複合磁性体。   In a composite magnetic body constituted by dispersing magnetic powder in an insulating material, the real part μr ′ of the complex permeability at a frequency of 1.2 GHz or less is larger than 10 and the loss tangent tan δ is 0.3 or less. A composite magnetic material characterized by being. 前記複合磁性体は、1GHz以下の周波数における複素誘電率の実部εr’が10以上であることを特徴とする請求項1に記載の複合磁性体。   2. The composite magnetic body according to claim 1, wherein a real part εr ′ of a complex dielectric constant at a frequency of 1 GHz or less is 10 or more. 前記複合磁性体は、1GHz以下の周波数における複素誘電率の実部εr’が10以下であることを特徴とする請求項1に記載の複合磁性体。   2. The composite magnetic body according to claim 1, wherein a real part εr ′ of a complex dielectric constant at a frequency of 1 GHz or less is 10 or less. 前記磁性粉末の材質はアルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)のうちいずれか一種類以上の金属元素を添加したパーマロイ(Fe−Ni合金)であることを特徴とする請求項1〜3のいずれかに記載の複合磁性体。   The magnetic powder is made of aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo), indium (In). The composite magnetic body according to claim 1, wherein the composite magnetic body is a permalloy (Fe—Ni alloy) to which at least one metal element of tin (Sn) is added. 前記磁性粉末に添加される金属元素の濃度は0.1重量%〜90重量%であることを特徴とする請求項4に記載の複合磁性体。   The composite magnetic body according to claim 4, wherein the concentration of the metal element added to the magnetic powder is 0.1 wt% to 90 wt%. 前記磁性粉末は機械的応力を加えると磁化容易軸方向に対して容易に塑性変形することを特徴とする請求項4又は5に記載の複合磁性体。   6. The composite magnetic body according to claim 4, wherein the magnetic powder is easily plastically deformed with respect to the easy axis direction when mechanical stress is applied. 前記磁性粉末の形状は扁平状であり、その厚さが0.01〜1μm、長さが0.02〜10μm、かつアスペクト比(長さ/厚み)が2以上であることを特徴とする請求項1〜6のいずれかに記載の複合磁性体。   The magnetic powder has a flat shape, a thickness of 0.01 to 1 μm, a length of 0.02 to 10 μm, and an aspect ratio (length / thickness) of 2 or more. Item 7. The composite magnetic material according to any one of Items 1 to 6. 前記扁平状磁性粉末は分散溶媒中に磁性粉末を混合する工程において、球状磁性粉末を機械的に扁平状に変形させたものであることを特徴とする請求項7に記載の複合磁性体。   8. The composite magnetic body according to claim 7, wherein the flat magnetic powder is obtained by mechanically deforming a spherical magnetic powder into a flat shape in the step of mixing the magnetic powder in a dispersion solvent. 前記絶縁性材料は、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、およびポリスチレン樹脂のうち少なくとも一つを含む合成樹脂もしくは液相樹脂、または、Al、SiO、TiO、2MgO・SiO、MgTiO、CaTiO、SrTiO、、BaTiO、3Al・2SiO、ZrO、SiC、AlNのセラミックスからなる群より選ばれる少なくとも一つのセラミックスの原料であることを特徴とする請求項1〜8のいずれかに記載の複合磁性体。 The insulating material is polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycycloolefin resin, cyanate Synthetic resin or liquid phase resin including at least one of resin, polyphenylene ether resin, and polystyrene resin, or Al 2 O 3 , SiO 2 , TiO 2 , 2MgO · SiO 2 , MgTiO 3 , CaTiO 3 , SrTiO 3 , 9. The raw material of at least one ceramic selected from the group consisting of ceramics of BaTiO 3 , 3Al 2 O 3 .2SiO 2 , ZrO 2 , SiC, and AlN. The composite magnetic body described. 前記扁平状磁性粉末は前記絶縁性材料中において一定方向に配向していることを特徴とする請求項1〜9のいずれかに記載の複合磁性体。   The composite magnetic body according to claim 1, wherein the flat magnetic powder is oriented in a certain direction in the insulating material. 前記扁平状磁性粉末を構成する結晶の特定の結晶面が前記扁平状磁性粉末の一定方向に配向していることを特徴とする請求項1〜10のいずれかに記載の複合磁性体。   The composite magnetic body according to any one of claims 1 to 10, wherein a specific crystal plane of a crystal constituting the flat magnetic powder is oriented in a certain direction of the flat magnetic powder. 前記扁平状磁性粉末の長軸方向と磁化容易軸とが一致することを特徴とする請求項1〜11のいずれかに記載の複合磁性体。   The composite magnetic body according to claim 1, wherein a major axis direction of the flat magnetic powder coincides with an easy magnetization axis. 扁平状磁性粉末の長軸方向と磁化容易軸が一致することを特徴とする複合磁性体。   A composite magnetic material characterized in that the long axis direction of the flat magnetic powder coincides with the easy magnetization axis. 請求項1〜13のいずれか一つに記載の複合磁性体を少なくとも含むことを特徴とする回路基板。   A circuit board comprising at least the composite magnetic body according to claim 1. 請求項1〜13のいずれか一つに記載の複合磁性体を少なくとも含むことを特徴とする電子部品。   An electronic component comprising at least the composite magnetic body according to claim 1. 請求項1〜13のいずれか一つに記載の複合磁性体を少なくとも含むことを特徴とする電子機器。   An electronic apparatus comprising at least the composite magnetic body according to claim 1.
JP2007105496A 2007-01-23 2007-04-13 Compound magnetic body, circuit substrate using the same, and electronic equipment using the same Pending JP2008263098A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007105496A JP2008263098A (en) 2007-04-13 2007-04-13 Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
EP08703665A EP2117018A4 (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
CNA200880002769XA CN101589443A (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
PCT/JP2008/050821 WO2008090891A1 (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
US12/449,019 US20100000769A1 (en) 2007-01-23 2008-01-22 Composite magnetic body, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same
KR1020097017408A KR20090103951A (en) 2007-01-23 2008-01-22 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
TW097102458A TW200903535A (en) 2007-01-23 2008-01-23 Composite magnetic material, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105496A JP2008263098A (en) 2007-04-13 2007-04-13 Compound magnetic body, circuit substrate using the same, and electronic equipment using the same

Publications (1)

Publication Number Publication Date
JP2008263098A true JP2008263098A (en) 2008-10-30

Family

ID=39985341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105496A Pending JP2008263098A (en) 2007-01-23 2007-04-13 Compound magnetic body, circuit substrate using the same, and electronic equipment using the same

Country Status (1)

Country Link
JP (1) JP2008263098A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074024A1 (en) * 2010-11-30 2012-06-07 住友大阪セメント株式会社 Composite magnet and production method therefor, antenna, and communication device
JP2012134463A (en) * 2010-11-30 2012-07-12 Sumitomo Osaka Cement Co Ltd Composite magnetic body, production method therefor, antenna and communication device
WO2013077285A1 (en) * 2011-11-21 2013-05-30 住友大阪セメント株式会社 Composite magnet, antenna provided therewith, and non-contact ic card
WO2013094677A1 (en) * 2011-12-21 2013-06-27 住友大阪セメント株式会社 Antenna, unbalanced power supply antenna, and communication device
JP2013254757A (en) * 2011-07-29 2013-12-19 Sumitomo Osaka Cement Co Ltd Composite magnetic material, and antenna having the same, and communication device
JP2014146698A (en) * 2013-01-29 2014-08-14 Sumitomo Osaka Cement Co Ltd Composite magnetic body, and antenna and rfid tag including the same
US9418780B2 (en) 2012-12-06 2016-08-16 Samsung Electronics Co., Ltd. Magnetic composite material
JP2019075403A (en) * 2017-10-12 2019-05-16 国立大学法人信州大学 Uniaxially magnetically anisotropic bulk magnetic material and manufacturing method thereof
CN113165068A (en) * 2019-03-22 2021-07-23 山阳特殊制钢株式会社 Alloy powder for magnetic member
CN114597638A (en) * 2022-03-09 2022-06-07 清华大学 Flexible magnetoelectric composite low-frequency mechanical antenna and preparation method thereof
CN114907106A (en) * 2022-03-30 2022-08-16 电子科技大学 Preparation method of high-mechanical-strength wide-temperature wide-band MnZn power ferrite

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223401A (en) * 1989-04-26 1991-10-02 Hitachi Metals Ltd Flaky fe-ni series alloy fine powder and manufacture thereof
JPH03278407A (en) * 1989-06-09 1991-12-10 Matsushita Electric Ind Co Ltd Composite magnetic material
JPH05326240A (en) * 1992-05-20 1993-12-10 Tokin Corp Dust core and manufacture thereof
JPH08250313A (en) * 1995-03-08 1996-09-27 Mitsubishi Materials Corp Powder for magnetic shield
JP2001274007A (en) * 2000-03-27 2001-10-05 Mitsubishi Materials Corp Radio absoptive compound with high permeability
JP2004165620A (en) * 2002-09-25 2004-06-10 Sumitomo Electric Ind Ltd Substrate for printed wiring
JP2004247663A (en) * 2003-02-17 2004-09-02 Nec Tokin Corp Composite magnetic material sheet
JP2005197594A (en) * 2004-01-09 2005-07-21 Sumitomo Electric Ind Ltd Method of manufacturing soft magnetic material, soft magnetic member, and cylindrical iron core
JP2005286306A (en) * 2004-03-03 2005-10-13 Sony Corp Wiring board
JP2006269134A (en) * 2005-03-22 2006-10-05 Tohoku Univ Insulator containing magnetic substance, and circuit board and electronic device using same
JP2006310369A (en) * 2005-04-26 2006-11-09 Ken Takahashi Magnetic material and magnetic device
JP2006307209A (en) * 2005-03-31 2006-11-09 Nitta Ind Corp Sheet product, laminated product, product equipped with sheet and method for manufacturing sheet

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223401A (en) * 1989-04-26 1991-10-02 Hitachi Metals Ltd Flaky fe-ni series alloy fine powder and manufacture thereof
JPH03278407A (en) * 1989-06-09 1991-12-10 Matsushita Electric Ind Co Ltd Composite magnetic material
JPH05326240A (en) * 1992-05-20 1993-12-10 Tokin Corp Dust core and manufacture thereof
JPH08250313A (en) * 1995-03-08 1996-09-27 Mitsubishi Materials Corp Powder for magnetic shield
JP2001274007A (en) * 2000-03-27 2001-10-05 Mitsubishi Materials Corp Radio absoptive compound with high permeability
JP2004165620A (en) * 2002-09-25 2004-06-10 Sumitomo Electric Ind Ltd Substrate for printed wiring
JP2004247663A (en) * 2003-02-17 2004-09-02 Nec Tokin Corp Composite magnetic material sheet
JP2005197594A (en) * 2004-01-09 2005-07-21 Sumitomo Electric Ind Ltd Method of manufacturing soft magnetic material, soft magnetic member, and cylindrical iron core
JP2005286306A (en) * 2004-03-03 2005-10-13 Sony Corp Wiring board
JP2006269134A (en) * 2005-03-22 2006-10-05 Tohoku Univ Insulator containing magnetic substance, and circuit board and electronic device using same
JP2006307209A (en) * 2005-03-31 2006-11-09 Nitta Ind Corp Sheet product, laminated product, product equipped with sheet and method for manufacturing sheet
JP2006310369A (en) * 2005-04-26 2006-11-09 Ken Takahashi Magnetic material and magnetic device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074024A1 (en) * 2010-11-30 2012-06-07 住友大阪セメント株式会社 Composite magnet and production method therefor, antenna, and communication device
JP2012134463A (en) * 2010-11-30 2012-07-12 Sumitomo Osaka Cement Co Ltd Composite magnetic body, production method therefor, antenna and communication device
JP2013254757A (en) * 2011-07-29 2013-12-19 Sumitomo Osaka Cement Co Ltd Composite magnetic material, and antenna having the same, and communication device
WO2013077285A1 (en) * 2011-11-21 2013-05-30 住友大阪セメント株式会社 Composite magnet, antenna provided therewith, and non-contact ic card
WO2013094677A1 (en) * 2011-12-21 2013-06-27 住友大阪セメント株式会社 Antenna, unbalanced power supply antenna, and communication device
US9418780B2 (en) 2012-12-06 2016-08-16 Samsung Electronics Co., Ltd. Magnetic composite material
JP2014146698A (en) * 2013-01-29 2014-08-14 Sumitomo Osaka Cement Co Ltd Composite magnetic body, and antenna and rfid tag including the same
JP2019075403A (en) * 2017-10-12 2019-05-16 国立大学法人信州大学 Uniaxially magnetically anisotropic bulk magnetic material and manufacturing method thereof
CN113165068A (en) * 2019-03-22 2021-07-23 山阳特殊制钢株式会社 Alloy powder for magnetic member
CN114597638A (en) * 2022-03-09 2022-06-07 清华大学 Flexible magnetoelectric composite low-frequency mechanical antenna and preparation method thereof
CN114907106A (en) * 2022-03-30 2022-08-16 电子科技大学 Preparation method of high-mechanical-strength wide-temperature wide-band MnZn power ferrite
CN114907106B (en) * 2022-03-30 2023-06-02 电子科技大学 Preparation method of high-mechanical-strength wide-temperature broadband MnZn power ferrite

Similar Documents

Publication Publication Date Title
JP2008263098A (en) Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
US20100000769A1 (en) Composite magnetic body, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same
JP5574395B2 (en) Composite material and manufacturing method thereof
JP5177542B2 (en) Composite magnetic body, circuit board using the same, and electronic component using the same
Thakur et al. Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range
KR101165839B1 (en) Printed Circuit Board
US20070102663A1 (en) Magnetic composites and methods of making and using
JP5017637B2 (en) Insulator containing magnetic material, circuit board using the same, and electronic device
Vural et al. Nanostructured flexible magneto-dielectrics for radio frequency applications
KR101232222B1 (en) A composite film for absorption emi and the method for preparation of the same
JP2008311255A (en) Compound magnetic substance and its manufacturing method
Raj et al. Cobalt–polymer nanocomposite dielectrics for miniaturized antennas
Raj et al. Tunable and miniaturized RF components with nanocomposite and nanolayered dielectrics
JP5088813B2 (en) COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, CIRCUIT BOARD USING THE SAME, AND ELECTRONIC DEVICE USING THE SAME
KR100933371B1 (en) Electromagnetic wave absorber including soft magnetic layer imparted with function of dielectric layer and method of forming soft magnetic layer
CN100477178C (en) Printed circuit board
JP6242568B2 (en) High-frequency green compact and electronic parts using the same
Gan et al. Ga ions-tailored magnetic-dielectric properties of Mg–Cd composites for high-frequency, miniature and wideband antennas
Adhiyoga et al. Magneto-dielectric properties of PDMS–magnetite composite as a candidate for compact microstrip antennas in the C-band 5G frequency
Hasan et al. Nickel zinc ferrite thick film with linseed oil as organic vehicle for microwave device applications
JP2013247351A (en) Tabular magnetic powder with insulation property, composite magnetic material including it, antenna and communication device comprising it, and method for manufacturing tabular magnetic powder with insulation property
JP4097160B2 (en) Method for manufacturing electromagnetic interference suppressor
KR102155542B1 (en) Noise suppression sheet for near field
US9666342B2 (en) Magneto-dielectric polymer nanocomposites
Caffarena et al. Co2Z Hexaferrite obtained by the citrate precursor method in an inert atmosphere

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100319

A131 Notification of reasons for refusal

Effective date: 20120104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120229

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120815

Free format text: JAPANESE INTERMEDIATE CODE: A02