JP4097160B2 - Method for manufacturing electromagnetic interference suppressor - Google Patents

Method for manufacturing electromagnetic interference suppressor Download PDF

Info

Publication number
JP4097160B2
JP4097160B2 JP2007044131A JP2007044131A JP4097160B2 JP 4097160 B2 JP4097160 B2 JP 4097160B2 JP 2007044131 A JP2007044131 A JP 2007044131A JP 2007044131 A JP2007044131 A JP 2007044131A JP 4097160 B2 JP4097160 B2 JP 4097160B2
Authority
JP
Japan
Prior art keywords
magnetic
electromagnetic interference
powder
magnetostriction constant
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007044131A
Other languages
Japanese (ja)
Other versions
JP2007173859A (en
Inventor
栄▲吉▼ ▲吉▼田
光晴 佐藤
英州 菅原
島田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007044131A priority Critical patent/JP4097160B2/en
Publication of JP2007173859A publication Critical patent/JP2007173859A/en
Application granted granted Critical
Publication of JP4097160B2 publication Critical patent/JP4097160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、高周波領域において優れた複素透磁率特性を有する複合磁性材料と、その一応用事例である電磁波吸収体に関し、詳しくは、高周波電子回路/装置において問題となる電磁干渉の抑制に有効な複素透磁率特性の優れた複合磁性体からなる電磁干渉抑制体及びその製造方法に関する。   The present invention relates to a composite magnetic material having excellent complex permeability characteristics in a high frequency region and an electromagnetic wave absorber as one application example thereof, and more specifically, effective in suppressing electromagnetic interference that is a problem in high frequency electronic circuits / devices. The present invention relates to an electromagnetic interference suppressor made of a composite magnetic material having excellent complex permeability characteristics and a method for manufacturing the same.

近年、デジタル電子機器をはじめ高周波を利用する電子機器類の普及が進み、中でも準マイクロ波帯域を使用する移動通信機器類の普及がめざましい。それに伴い、インダクタンス部品や電波吸収体に用いられる軟磁性体材料にも高周波化への対応が求められている。   In recent years, digital electronic devices and other electronic devices that use high frequencies have spread, and in particular, mobile communication devices that use a quasi-microwave band are remarkable. Accordingly, soft magnetic materials used for inductance components and radio wave absorbers are also required to cope with higher frequencies.

加えて、その用途が携帯電話機等の小型、軽量な通信機器の場合には、軟磁性体への要求特性に、軽量、肉薄、堅牢等が追加される。   In addition, when the application is a small and light communication device such as a mobile phone, lightness, thinness, and robustness are added to the required characteristics of the soft magnetic material.

軟磁性材料の高周波化を阻む主な要因の一つは、渦電流損失であり、その低減手段として、表皮深さを考慮した薄膜化及び高電気抵抗化が挙げられ、前者の例としては、磁性体層と誘電体層を交互に積層製膜したものが挙げられ、また後者の代表としては、高電気抵抗のNi−Zn系フェライトを挙げることができる。   One of the main factors hindering the increase in the frequency of soft magnetic materials is eddy current loss. As a means for reducing the loss, thinning and high electrical resistance in consideration of the skin depth can be mentioned. One obtained by alternately laminating a magnetic layer and a dielectric layer can be cited, and a representative example of the latter is Ni-Zn ferrite having high electrical resistance.

携帯電話に代表される移動体通信機器には、とりわけ小型化・軽量化の要求が顕著であり、電子部品の高密度実装化が最大の技術課題となっている。従って、過密に実装された電子部品類やプリント配線あるいはモジュール間配線等が互いに極めて接近することになり、更には、信号処理速度の高速化も図られているため、静電結合及び/又は電磁結合による線間結合の増大化や放射ノイズによる干渉などが生じ、機器の正常な動作を妨げる事態が少なからず生じている。 The demand for miniaturization and weight reduction is particularly remarkable for mobile communication devices typified by mobile phones , and high-density mounting of electronic components is the biggest technical issue. Accordingly, electronic components mounted overly densely, printed wiring, inter-module wiring, and the like are extremely close to each other, and further, the signal processing speed is increased, so that electrostatic coupling and / or electromagnetic Increasing the line-to-line coupling due to coupling, interference due to radiation noise, and the like have occurred, and there are not a few situations that hinder the normal operation of equipment.

このようないわゆる電磁障害に対して従来は、主に導体シールドを施すことによる対策がなされてきた。   Conventionally, countermeasures have been mainly taken against such so-called electromagnetic interference by providing a conductor shield.

特開平7−212079号公報Japanese Patent Laid-Open No. 7-212079

しかしながら、導体シールドは、空間とのインピーダンス不整合に起因する電磁波の反射を利用する電磁障害対策であるために、遮蔽効果は得られても不要輻射源からの反射による電磁結合が助長され、その結果二次的な電磁障害を引き起こす場合が少なからず生じている。その対策として、磁性体の磁気損失、即ち虚数部透磁率μ″を利用した不要輻射の抑制が有効である。   However, since the conductor shield is a countermeasure against electromagnetic interference using reflection of electromagnetic waves caused by impedance mismatch with space, even if a shielding effect is obtained, electromagnetic coupling by reflection from unwanted radiation sources is promoted. As a result, there are many cases that cause secondary electromagnetic interference. As a countermeasure, it is effective to suppress unnecessary radiation using the magnetic loss of the magnetic material, that is, the imaginary part permeability μ ″.

即ち、前記シールド体と不要輻射源の間に磁気損失の大きい磁性体を配設することで不要輻射を抑制することが出来る。   That is, unnecessary radiation can be suppressed by disposing a magnetic body having a large magnetic loss between the shield body and the unnecessary radiation source.

ここで、磁性体の厚さdは、μ″>μ′なる関係を満足する周波数帯域にてμ″に反比例するので、前述した電子機器の小型化・軽量化要求に迎合する薄い電磁干渉抑制体、即ち、シールド体と吸収体からなる複合体を得るためには、虚数部透磁率μ″の大きな磁性体が必要となる。また、前述した不要輻射は、多くの場合その成分が広い周波数範囲にわたっており、電磁障害に係る周波数成分の特定も困難な場合が少なくない。従って、前記電磁干渉抑制体についてもより広い周波数の不要輻射に対応できるものが望まれている。   Here, since the thickness d of the magnetic material is inversely proportional to μ ″ in a frequency band satisfying the relationship of μ ″> μ ′, thin electromagnetic interference suppression that meets the above-described requirements for downsizing and weight reduction of electronic devices. In order to obtain a body, that is, a composite composed of a shield body and an absorber, a magnetic body having a large imaginary part permeability μ ″ is required. In addition, the above-described unwanted radiation often has a wide frequency component. Therefore, it is often difficult to specify the frequency component related to electromagnetic interference, and therefore, it is desired that the electromagnetic interference suppressor can cope with unnecessary radiation having a wider frequency.

かかる要求に対応すべく透磁率の高周波特性に優れ、任意の広い周波数範囲にて磁気損失体として機能する磁性体、即ち、低周波数領域にて、μ′の値が大きく、更に、μ″>μ′なる周波数領域において、μ″が任意の広い周波数範囲に亘って大きな値を示すような磁性体の検討を行った。   In order to meet such demands, the magnetic material is excellent in permeability high frequency characteristics and functions as a magnetic loss body in an arbitrary wide frequency range, that is, the value of μ ′ is large in the low frequency range, and μ ″> In the frequency region of μ ′, a magnetic material was studied in which μ ″ exhibits a large value over an arbitrary wide frequency range.

その結果として、本発明者らは、以前に、形状異方性を有する軟磁性体粉末において磁気共鳴により発現すると思われる数十MHzから数GHzに亘る磁気損失を利用する電磁干渉抑制体(前掲の特許文献1参照)を提供した。   As a result, the present inventors have previously proposed an electromagnetic interference suppressor that utilizes magnetic loss ranging from several tens of MHz to several GHz, which is thought to be manifested by magnetic resonance in soft magnetic powder having shape anisotropy (see above). Patent Document 1).

また、更に本発明者らは、周波数の異なる複数の磁気共鳴を発現させることにより、各々の磁気共鳴に対応して異なる周波数領域に出現する個々の磁気損失が重畳され、その結果として得られる広帯域なμ″分散特性を利用した電磁干渉抑制体(特願平7−183911号)を提供した。   Furthermore, the present inventors have developed a plurality of magnetic resonances having different frequencies so that individual magnetic losses appearing in different frequency regions corresponding to each magnetic resonance are superimposed, and the resulting broadband In addition, an electromagnetic interference suppressor (Japanese Patent Application No. 7-183911) utilizing a unique μ ″ dispersion characteristic is provided.

これらの発明において用いられる扁平状の軟磁性体金属粉末は、同じ組成の球状金属粉末に比べてより高い異方性磁界Hを有しており、これは扁平化による形状異方性の寄与、即ち反磁界係数Nによるものである。ここで反磁界係数Nは、粉末の形状とアスペクト比により与えられるが、アスペクト比が10を越えるとほぼ飽和し、より大きなアスペクト比を与えても、以降その変化量は僅かである。従って、磁気共鳴周波数を可変できる範囲が比較的限定されるという問題があった。 Flat soft magnetic metal powder used in these inventions has a higher anisotropy field H k in comparison with a spherical metal powder of the same composition, which is the contribution of the shape anisotropy by flattened , that is, due to demagnetization factor N d. Here, the demagnetizing factor Nd is given by the shape of the powder and the aspect ratio. However, when the aspect ratio exceeds 10, it almost saturates, and even if a larger aspect ratio is given, the amount of change is small thereafter. Therefore, there is a problem that the range in which the magnetic resonance frequency can be varied is relatively limited.

本発明者らは、上記の問題について様々な経験や前述した観点から熟慮の結果、球状粉末等形状異方性の小さい粉末を扁平化加工する際に生じる応力歪みに着目し、従来において、殆ど0に近い値が好ましいとされていた磁歪定数λをλ≠0とし、且つ、その符号を、即ち、歪みによる異方性発現の向きをも積極的に利用すると共に、更に焼鈍処理により残留歪みを制御することにより、前記形状異方性と併せてより広範囲な磁気共鳴周波数を与えることを期待した。   As a result of careful consideration from the various experiences and the above-mentioned viewpoints, the present inventors pay attention to stress strain generated when flattening a powder having a small shape anisotropy such as a spherical powder. The magnetostriction constant λ, which was considered to be a value close to 0, was set to λ ≠ 0, and the sign, that is, the direction of anisotropy due to strain was also actively used, and the residual strain was further reduced by annealing. It was expected that a wider range of magnetic resonance frequencies could be given in combination with the shape anisotropy.

一方、所望する透磁率の周波数特性を得るためには、磁気共鳴が生じるよりも低い周波数において渦電流による透磁率の劣化が生じないような対策も併せて講じることが必要である。   On the other hand, in order to obtain a desired frequency characteristic of the magnetic permeability, it is necessary to take measures to prevent the magnetic permeability from being deteriorated due to the eddy current at a frequency lower than that at which magnetic resonance occurs.

前述したように、有効な渦電流対策の一つとして磁性体層と誘電体層を交互に積層するように製膜した積層構造化が提案され、一部実用化されている。この積層構造を有する複合磁性体の特徴は、磁性体層の厚さが電気抵抗、透磁率及び周波数にて定まる表皮深さと同等もしくはそれ以下の厚さとなっている点である。しかしながら、この積層構造磁性体には誘電体層を介して変位電流が流れるために透磁率特性が劣化するという問題がある。ここで変位電流は、積層構造磁性体のサイズ(即ち、積層方向と直交する向きの大きさ)に依存するので、積層構造磁性体を細分化しカラム構造とすることで、その影響を排除することが可能となる。このような積層構造磁性体をスパッタリング等のいわゆる薄膜製膜プロセスにて実現するのは容易ではないが、前記磁性体層に軟磁性体粉末を当てはめることで実用化が容易となる。   As described above, as one effective eddy current countermeasure, a laminated structure in which a magnetic layer and a dielectric layer are alternately laminated has been proposed and partially put into practical use. A feature of the composite magnetic body having this laminated structure is that the thickness of the magnetic layer is equal to or less than the skin depth determined by the electric resistance, the magnetic permeability and the frequency. However, this laminated structure magnetic material has a problem that the permeability characteristic deteriorates because a displacement current flows through the dielectric layer. Here, the displacement current depends on the size of the laminated magnetic body (that is, the direction perpendicular to the laminating direction), so the influence can be eliminated by subdividing the laminated magnetic body into a column structure. Is possible. Although it is not easy to realize such a laminated structure magnetic body by a so-called thin film forming process such as sputtering, practical application is facilitated by applying a soft magnetic powder to the magnetic layer.

即ち、1)磁性体層に相当する軟磁性体粉末は、その厚みが前記表皮深さよりも薄いものとする、2)軟磁性体粉末は、反磁界係数Nをほぼ1にするために十分なアスペクト比を有するものとする、3)誘電体層に相当するものとして、軟磁性体粉末表面を酸化させることにより得られる誘電体層を設けることで、渦電流損失の極めて小さい複合磁性体を得ることができると期待した。 That is, 1) the soft magnetic powder corresponding to the magnetic layer is thinner than the skin depth, and 2) the soft magnetic powder is sufficient to make the demagnetizing factor Nd approximately 1. 3) By providing a dielectric layer obtained by oxidizing the surface of the soft magnetic powder as an equivalent to the dielectric layer, a composite magnetic body with extremely small eddy current loss can be obtained. Expected to be able to get.

このような複合磁性体の実現は、優れた高周波透磁率特性を与えるのみならず、電気的な非良導性を与え得るので電波吸収体としての対空間インピーダンス整合にも極めて有効であろうことも予想される。   Realization of such a composite magnetic material will not only give excellent high-frequency permeability characteristics, but also provide electrical non-conductivity, so it will be extremely effective for matching impedance against space as a radio wave absorber. Is also expected.

即ち、磁歪定数λ(λ≠0)を広範囲な磁気共鳴周波数の実現に積極的に利用すると共に、軟磁性体粉末の厚さを特定し、その軟磁性体粉末の表面に誘電体層を設けることにより、渦電流損失が少なく、且つ空間とのインピーダンス不整合の生じにくい複合磁性体を発明するに至った。   That is, the magnetostriction constant λ (λ ≠ 0) is actively used to realize a wide range of magnetic resonance frequencies, the thickness of the soft magnetic powder is specified, and a dielectric layer is provided on the surface of the soft magnetic powder. As a result, the inventors have invented a composite magnetic material that has low eddy current loss and is less likely to cause impedance mismatch with space.

即ち、本発明によれば、磁歪定数λが正の組成を有し扁平状に加工された軟磁性体粉末と、有機結合剤からなることを特徴とする複合磁性体が得られる。   That is, according to the present invention, there can be obtained a composite magnetic body comprising a soft magnetic powder having a positive magnetostriction constant λ and processed into a flat shape, and an organic binder.

また、本発明によれば、磁歪定数λが負の組成を有し扁平状に加工された軟磁性体粉末と、有機結合剤からなることを特徴とする複合磁性体が得られる。   In addition, according to the present invention, there can be obtained a composite magnetic body comprising a soft magnetic powder having a negative composition of magnetostriction constant λ and processed into a flat shape, and an organic binder.

また、本発明によれば、前記複合磁性体において、前記軟磁性体粉末は、前記扁平状に加工された後、加工により生じる残留歪み緩和化のための焼鈍処理が施されたものであることを特徴とする複合磁性体が得られる。   Further, according to the present invention, in the composite magnetic body, the soft magnetic powder is processed into the flat shape and then subjected to an annealing process for reducing residual strain generated by the processing. A composite magnetic body characterized by the following is obtained.

また、本発明によれば、前記いずれかの複合磁性体において、前記扁平状に加工された軟磁性体粉末の平均厚さは、該複合磁性体の使用周波数における表皮深さδよりも小さいことを特徴とする複合磁性体が得られる。   According to the present invention, in any one of the composite magnetic bodies, the average thickness of the soft magnetic powder processed into the flat shape is smaller than the skin depth δ at the use frequency of the composite magnetic body. A composite magnetic body characterized by the following is obtained.

また、本発明によれば、前記いずれかの複合磁性体において、前記扁平状に加工された軟磁性体粉末は、該複合磁性体中において、配向配列されていることを特徴とする複合磁性体が得られる。   According to the present invention, in any one of the above composite magnetic bodies, the soft magnetic powder processed into a flat shape is oriented and arranged in the composite magnetic body. Is obtained.

また、本発明によれば、前記いずれかの複合磁性体において、前記軟磁性体粉末は、少なくともその表面に酸化物層を有することを特徴とする複合磁性体が得られる。   According to the present invention, in any one of the above composite magnetic bodies, the soft magnetic powder has a composite magnetic body having an oxide layer at least on the surface thereof.

また、本発明によれば、前記複合磁性体において、前記少なくともその表面に酸化物層を有する軟磁性体粉末は、気相中徐酸法又は液相中徐酸法により酸素含有混合ガスにてその表面を酸化処理することにより形成されたものであることを特徴とする磁性複合体が得られる。   Further, according to the present invention, in the composite magnetic body, the soft magnetic powder having an oxide layer on at least the surface thereof may be obtained using an oxygen-containing mixed gas by a slow acid method in a gas phase or a slow acid method in a liquid phase. A magnetic composite characterized in that the surface is formed by oxidizing the surface is obtained.

また、本発明によれば、前記いずれかの複合磁性体において、前記軟磁性体粉末と、前記有機結合剤とからなり、且つ、電気的に非良導性であることを特徴とする複合磁性体が得られる。   According to the present invention, any one of the composite magnetic bodies comprises the soft magnetic powder and the organic binder, and is electrically non-conductive. The body is obtained.

また、本発明によれば、異なる大きさの及び/又は異なる符号の磁歪定数λを有する少なくとも二つの扁平状軟磁性体粉末と有機結合剤からなる複合磁性体が得られる。   Moreover, according to the present invention, a composite magnetic body comprising at least two flat soft magnetic powders having different sizes and / or different signs of magnetostriction constant λ and an organic binder can be obtained.

また、本発明によれば、焼鈍処理条件の異なる少なくとも2つの扁平状軟磁性体粉末と有機結合剤からなる複合磁性体が得られる。   In addition, according to the present invention, a composite magnetic body comprising at least two flat soft magnetic powders having different annealing conditions and an organic binder can be obtained.

また、本発明によれば、軟磁性体粉末と有機結合剤からなる複合磁性体の製造方法に関し、前記軟磁性体粉末を扁平状に加工し、該加工により前記軟磁性体粉末に生じる残留歪み緩和化のための焼鈍処理を施し、該焼鈍処理が施された前記軟磁性体粉末の少なくとも表面に、気相中徐酸法又は液相中徐酸法により酸素含有ガスにて酸化物層を形成することを特徴とする複合磁性体の製造方法が得られる。   The present invention also relates to a method for producing a composite magnetic body comprising a soft magnetic powder and an organic binder, wherein the soft magnetic powder is processed into a flat shape, and residual strain generated in the soft magnetic powder by the processing. An annealing treatment for relaxation is performed, and an oxide layer is formed with an oxygen-containing gas by a slow acid method in a gas phase or a slow acid method in a liquid phase on at least the surface of the annealed soft magnetic powder. A method of producing a composite magnetic material characterized by forming the magnetic material can be obtained.

また、本発明によれば、軟磁性体粉末と有機結合剤からなる複合磁性体の製造方法に関し、前記軟磁性体粉末を扁平状に加工し、前記軟磁性体粉末の少なくとも表面に、気相中徐酸法又は液相中徐酸法により酸素含有ガスにて酸化物層を形成し、該酸化物層が形成された前記軟磁性体粉末に、前記扁平状に加工したことにより生じる残留歪み緩和化のための焼鈍処理を施すことを特徴とする複合磁性体の製造方法が得られる。   The present invention also relates to a method for producing a composite magnetic body comprising a soft magnetic powder and an organic binder, wherein the soft magnetic powder is processed into a flat shape, and a gas phase is formed on at least the surface of the soft magnetic powder. Residual strain generated by forming an oxide layer with an oxygen-containing gas by a medium-gradient acid method or a liquid-phase slow acid method and processing the soft magnetic powder with the oxide layer into the flat shape. A method for producing a composite magnetic body characterized by performing an annealing treatment for relaxation can be obtained.

また、本発明によれば、軟磁性体粉末と有機結合剤からなる複合磁性体の製造方法に関し、前記軟磁性体粉末を扁平状に加工し、該加工された前記軟磁性体粉末に、前記加工により前記軟磁性体粉末に生じる残留歪み緩和化のための焼鈍処理と、前記軟磁性体粉末の少なくとも表面に、気相中徐酸法により酸素含有ガスにて酸化物層を形成する処理とを同時に行うことを特徴とする複合磁性体の製造方法が得られる。   The present invention also relates to a method for producing a composite magnetic body comprising a soft magnetic powder and an organic binder, wherein the soft magnetic powder is processed into a flat shape, and the processed soft magnetic powder is subjected to the process described above. An annealing process for alleviating residual strain generated in the soft magnetic powder by processing, and a process of forming an oxide layer with an oxygen-containing gas by a slow acid method in a gas phase on at least the surface of the soft magnetic powder. Are obtained simultaneously, and a method for producing a composite magnetic body is obtained.

また、本発明によれば、前記いずれかの複合磁性体の製造方法に関し、前記軟磁性体粉末を扁平状に加工する際に、前記軟磁性体粉末に加わる歪み量、あるいは前記焼鈍処理の条件を変えることにより該複合磁性体の複素透磁率の周波数特性を制御することを特徴とする複合磁性体の製造方法が得られる。   In addition, according to the present invention, any one of the above-described methods for producing a composite magnetic body, when the soft magnetic powder is processed into a flat shape, the strain applied to the soft magnetic powder, or the conditions for the annealing treatment By changing the frequency, the frequency characteristics of the complex magnetic permeability of the composite magnetic body can be controlled to obtain a method of manufacturing the composite magnetic body.

更に、本発明によれば、前記いずれかの複合磁性体をその構成要素として有する電磁干渉抑制体であって、前記複合磁性体の互いに異なる大きさの残留歪みに相応して相異なる周波数領域に出現する複数の磁気共鳴の内、最も低い周波数領域に現れる磁気共鳴が、所望する電磁干渉抑制周波数帯域の下限よりも低い周波数領域にあることを特徴とする電磁干渉抑制体が得られる。   Furthermore, according to the present invention, there is provided an electromagnetic interference suppressor including any one of the composite magnetic bodies as a component thereof, wherein the composite magnetic bodies have different frequency regions corresponding to residual strains of different sizes. An electromagnetic interference suppressor characterized in that magnetic resonance appearing in the lowest frequency region among the plurality of appearing magnetic resonances is in a frequency region lower than the lower limit of the desired electromagnetic interference suppression frequency band is obtained.

本発明によれば、軟磁性体粉末と有機結合剤からなる複合磁性体において、渦電流による透磁率特性の劣化を抑止出来る構成により高い実部透磁率を実現しつつ、磁歪定数λがゼロでない値の軟磁性体粉末を用い、更に焼鈍処理を組み合わせることで、残留歪み量を変化させ高周波透磁率特性を広い範囲で制御することが出来る。   According to the present invention, in a composite magnetic body composed of soft magnetic powder and an organic binder, the magnetostriction constant λ is not zero while realizing a high real part permeability with a configuration capable of suppressing deterioration of the permeability characteristics due to eddy current. By using a soft magnetic powder of a value and further combining an annealing treatment, it is possible to change the residual strain amount and control the high-frequency permeability characteristics in a wide range.

また、本発明の一実施形態である異なる残留歪み量を有する複数の軟磁性体粉末からなる複合磁性体を用いた電磁干渉抑制体においては、異なる複数の磁気共鳴の出現により広帯域なμ″分散特性が得られるので、優れた電磁干渉抑制効果が現れている。即ち、本発明によれば、移動体通信機器をはじめとする高周波電子機器類内部での電磁波の干渉抑制に有効な薄厚の電磁干渉抑制体を得ることが出来る。   In addition, in the electromagnetic interference suppressor using the composite magnetic material composed of a plurality of soft magnetic powders having different residual strain amounts, which is an embodiment of the present invention, a wide μ ″ dispersion due to the appearance of a plurality of different magnetic resonances. Therefore, according to the present invention, a thin electromagnetic wave effective for suppressing interference of electromagnetic waves inside high-frequency electronic devices such as mobile communication devices can be obtained. An interference suppressor can be obtained.

尚、本発明の複合磁性体及び電磁干渉抑制体は、その構成要素から判るように容易に可撓性を付与することが可能であり、複雑な形状への対応や、厳しい耐振動、衝撃要求への対応が可能である。   The composite magnetic body and electromagnetic interference suppressor of the present invention can be easily provided with flexibility as can be seen from its constituent elements, and can cope with complicated shapes, severe vibration resistance, and impact requirements. Is possible.

本発明においては、高周波透磁率の大きな鉄アルミ珪素合金(センダスト)、鉄ニッケル合金(パーマロイ)、或いはアモルファス合金等の金属軟磁性材料を原料素材として用いることが出来る。   In the present invention, a metal soft magnetic material such as iron aluminum silicon alloy (Sendust), iron nickel alloy (Permalloy), or amorphous alloy having a high high frequency magnetic permeability can be used as a raw material.

本発明では、これらの粗原料を粉砕、延伸・引裂加工等により扁平化し、その厚みを表皮深さと同等以下にすると共に、反磁界係数Nをほぼ1にするために扁平化された軟磁性体粉末のアスペクト比を概ね10以上とする必要がある。ここで表皮深さδは次式により与えられる。 In the present invention, these raw materials are flattened by pulverization, stretching, tearing, etc., and the thickness thereof is made equal to or less than the skin depth, and the soft magnetic material is flattened so that the demagnetizing factor Nd is approximately 1. The aspect ratio of the body powder needs to be approximately 10 or more. Here, the skin depth δ is given by the following equation.

δ=(ρ/πμf)1/2
前式において、ρは比抵抗、μは透磁率、fは周波数である。したがって表皮深さδは、目的の周波数によってその値が異なってくるが、所望の表皮深さとアスペクト比を得るには、出発粗原料粉末の平均粒径を特定するのが最も簡便な手段の一つである。この粉砕、延伸・引裂加工に用いることの出来る代表的な粉砕手段として、ボ−ルミル、アトライタ、ピンミル等を挙げることが出来、前述した条件を満足する軟磁性体粉末の厚さとアスペクト比が得られれば粉砕手段に制限はないが、本発明の効果に密接にかかわる延伸・引裂加工により生じる残留歪みの大きさを考慮して加工手段及び加工条件を設定する必要がある。
δ = (ρ / πμf) 1/2
In the above equation, ρ is specific resistance, μ is magnetic permeability, and f is frequency. Therefore, the value of the skin depth δ varies depending on the target frequency. To obtain the desired skin depth and aspect ratio, it is one of the simplest means to specify the average particle diameter of the starting raw material powder. One. Typical pulverizing means that can be used for this pulverization, stretching, and tearing process include a ball mill, an attritor, and a pin mill. The thickness and aspect ratio of the soft magnetic powder satisfying the above-described conditions can be obtained. If it is possible, there is no limitation on the pulverizing means, but it is necessary to set the processing means and the processing conditions in consideration of the magnitude of the residual strain generated by the stretching / tearing process closely related to the effect of the present invention.

本発明において、磁歪定数λが正の原料磁性体を用いた場合には、延伸・引裂加工により形状磁気異方性が生じると共に、残留歪みによる歪磁気異方性(磁気弾性効果)が生じ、両者の向きが同じとなるため、異方性磁界は両者の和となる。従って、磁歪定数λがゼロである原料を用いた場合に比べて、異方性磁界はより大きな値となり、磁気共鳴周波数もより高いものとなる。   In the present invention, when a raw material magnetic material having a positive magnetostriction constant λ is used, shape magnetic anisotropy occurs due to stretching and tearing, and magnetostriction anisotropy (magnetoelastic effect) due to residual strain occurs, Since both directions are the same, the anisotropic magnetic field is the sum of both. Therefore, the anisotropic magnetic field has a larger value and the magnetic resonance frequency is higher than when a raw material having a magnetostriction constant λ of zero is used.

ところで、この扁平化加工により生じる残留歪みは、適当な焼鈍処理を施すことにより緩和されるので、扁平化処理後に焼鈍処理を行った原料粉末を用いた複合磁性体では、焼鈍処理条件に応じた周波数frに磁気共鳴が現れる。この磁気共鳴周波数frは、焼鈍処理をしていない磁性粉を用いた複合磁性体よりも低く、磁歪定数λがゼロの磁性粉を用いた複合磁性体よりも高くなり、焼鈍処理条件を制御することで、磁気共鳴周波数をその範囲内において任意に設定することが可能である。一方、磁歪定数λが負の原料磁性体を用いた場合には、残留歪みにより生じる歪み磁気異方性(磁気弾性効果)の向きが形状磁気異方性の向きと直交することになり、異方性磁界が小さくなり磁気共鳴周波数がゼロ磁歪原料の場合に比べて低くなる。   By the way, the residual strain generated by the flattening process is alleviated by applying an appropriate annealing process. Therefore, in the composite magnetic body using the raw material powder that has been subjected to the annealing process after the flattening process, it depends on the annealing process conditions. Magnetic resonance appears at the frequency fr. This magnetic resonance frequency fr is lower than that of a composite magnetic body using magnetic powder that has not been annealed, and higher than that of a composite magnetic body using magnetic powder having a magnetostriction constant λ of zero, thereby controlling the annealing conditions. Thus, the magnetic resonance frequency can be arbitrarily set within the range. On the other hand, when a raw material magnetic material having a negative magnetostriction constant λ is used, the direction of strain magnetic anisotropy (magnetoelastic effect) caused by residual strain is orthogonal to the direction of shape magnetic anisotropy. The isotropic magnetic field becomes smaller and the magnetic resonance frequency becomes lower than that in the case of a zero magnetostrictive material.

このように、形状異方性と磁歪定数λの符号、及び焼鈍処理条件を組み合わせることにより、磁気共鳴周波数frを大幅に変化させることが可能となる。   Thus, by combining the shape anisotropy, the sign of the magnetostriction constant λ, and the annealing treatment conditions, the magnetic resonance frequency fr can be significantly changed.

また、本発明においては、個々の磁性粉末同士の電気的に隔離、即ち複合磁性体の非良導性を磁性粉の高充填状態においても確保出来るよう、軟磁性体粉末は、その表面に誘電体層が形成されている必要がある。この誘電体層は、金属磁性粉末の表面を酸化させることにより得られる構成元素と酸素とからなる金属酸化物層であり、例えば、鉄アルミ珪素合金(センダスト)の場合には、主にAlO及びSiOであると推察される。金属粉末の表面を酸化させる手段の一例として、特に粉末の大きさが比較的小さく、活性度の高いものについては、炭化水素系有機溶媒中あるいは不活性ガス雰囲気中にて酸素分圧の制御された窒素−酸素混合ガスを導入する液相中徐酸法あるいは気相中徐酸法により酸化処理することが制御の容易性、安定性、及び安全性の点で好ましい。 Further, in the present invention, the soft magnetic powder has a dielectric on the surface so that the individual magnetic powders can be electrically isolated from each other, that is, the non-conductivity of the composite magnetic material can be ensured even in a highly filled state of the magnetic powder. A body layer must be formed. This dielectric layer is a metal oxide layer composed of constituent elements obtained by oxidizing the surface of the metal magnetic powder and oxygen. For example, in the case of an iron aluminum silicon alloy (Sendust), mainly AlO x And SiO x . As an example of means for oxidizing the surface of the metal powder, the oxygen partial pressure is controlled in a hydrocarbon-based organic solvent or in an inert gas atmosphere especially for a powder having a relatively small size and high activity. In view of ease of control, stability, and safety, it is preferable to carry out an oxidation treatment by a slow acid method in a liquid phase or a gas phase slow acid method in which a nitrogen-oxygen mixed gas is introduced.

尚、この表面酸化のための徐酸処理と、先に説明した残留歪み低減のための焼鈍処理については、どちらを先に行ってもよく、また、同一工程にて行うことも可能である。   Note that either the gradual acid treatment for surface oxidation or the annealing treatment for reducing the residual strain described above may be performed first or in the same process.

本発明の一構成要素として用いる有機結合剤としては、ポリエステル系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、セルロース系樹脂、ABS樹脂、ニトリル−ブタジエン系ゴム、スチレン−ブタジエン系ゴム、エポキシ樹脂、フェノール樹脂、アミド系樹脂、イミド系樹脂、或いはそれらの共重合体を挙げることが出来る。   Examples of the organic binder used as one component of the present invention include polyester resins, polyethylene resins, polyvinyl chloride resins, polyvinyl butyral resins, polyurethane resins, cellulose resins, ABS resins, nitrile-butadiene rubbers, styrene- Examples thereof include butadiene rubber, epoxy resin, phenol resin, amide resin, imide resin, and copolymers thereof.

以上に述べた、本発明の構成要素を混練・分散し複合磁性体を得る手段には特に制限はなく、用いる結合剤の性質や工程の容易さを基準に好ましい方法を選択すればよい。   The means described above for kneading and dispersing the constituent elements of the present invention to obtain a composite magnetic material is not particularly limited, and a preferred method may be selected based on the properties of the binder used and the ease of the process.

この混練・分散された磁性体混合物中の磁性粒子を配向・配列させる手段としては、剪断応力による方法と磁場配向による方法があり、いずれの方法を用いても良い。   Means for orienting and arranging the magnetic particles in the magnetic material mixture thus kneaded and dispersed includes a method using shear stress and a method using magnetic field orientation, and either method may be used.

次に本発明の効果を検証するために実験を行ったので、以下に実施例として詳細に説明する。   Next, an experiment was conducted to verify the effect of the present invention, which will be described in detail below as an example.

はじめに、水アトマイズ法により作製された磁歪定数λの異なる複数の鉄−ニッケル合金粉末及び鉄アルミ珪素合金粉末を用意し、アトライタ及びピンミルを用い様々な条件下にて粉砕、延伸・引裂加工を行い、更に、炭化水素系有機溶媒中で酸素分圧35%の窒素−酸素混合ガスを導入しながら8時間撹拌し液相中徐酸処理した後、分級処理を施し異方性磁界(H)の異なる複数の粉末試料を得た。ここで得られた粉末を表面分析した結果、金属酸化物の生成が明確に確認され、試料粉末の表面における酸化被膜の存在が認められた。 First, prepare multiple iron-nickel alloy powders and iron-aluminum-silicon alloy powders with different magnetostriction constants λ produced by water atomization method, and crush, stretch, and tear under various conditions using an attritor and pin mill. Further, the mixture is stirred for 8 hours while introducing a nitrogen-oxygen mixed gas having an oxygen partial pressure of 35% in a hydrocarbon-based organic solvent, subjected to a gradual acid treatment in the liquid phase, and then subjected to a classification treatment to provide an anisotropic magnetic field (H k ). A plurality of powder samples having different values were obtained. As a result of surface analysis of the obtained powder, the formation of metal oxide was clearly confirmed, and the presence of an oxide film on the surface of the sample powder was recognized.

尚、粉砕、延伸・引裂加工処理された鉄−ニッケル合金粉末、及び鉄アルミ珪素合金粉末を減圧乾燥し、これを酸素分圧20%の窒素−酸素混合ガス雰囲気中で気相徐酸した試料についてもその表面に金属酸化物が検出され、本発明の複合磁性体に用いることの出来る少なくともその表面が酸化された軟磁性体粉末が液相中徐酸法あるいは気相中徐酸法にて作成できることが確認された。   Incidentally, a sample obtained by drying a pulverized, stretched / tear-processed iron-nickel alloy powder and iron aluminum silicon alloy powder under reduced pressure, and gas-phase gradual acid in a nitrogen-oxygen mixed gas atmosphere having an oxygen partial pressure of 20%. In addition, a metal oxide is detected on the surface, and at least the surface of the soft magnetic powder that can be used in the composite magnetic material of the present invention is oxidized by a slow acid method in a liquid phase or a slow acid method in a gas phase It was confirmed that it could be created.

本発明の効果を検証するにあたり、これらの粉末試料を用いて以下に述べる複合磁性体を作製し、μ−f特性及び電磁干渉抑制効果を調べた。   In verifying the effect of the present invention, a composite magnetic body described below was prepared using these powder samples, and the μ-f characteristic and the electromagnetic interference suppression effect were examined.

μ−f特性の測定には、トロイダル形状に加工された複合磁性体試料を用いた。これを1ターンコイルを形成するテストフィクスチャに挿入し、インピーダンスを計測することにより、μ′及びμ″を求めた。   For measuring the μ-f characteristic, a composite magnetic material sample processed into a toroidal shape was used. This was inserted into a test fixture forming a one-turn coil, and the impedance was measured to obtain μ ′ and μ ″.

一方、電磁干渉抑制効果の検証は、図1に示される評価系により行い、電磁干渉抑制体試料10として、銅板8が裏打ちされた厚さ2mmで一辺の長さが20cmの複合磁性体2を用いた。ここで、波源用素子及び受信用素子にはループ径1.5mmの微小ループアンテナ4,5を用い、受信用素子に接続される信号源にはスイープジェネレータ(電磁界波源用発振器)6を使用し、結合レベルの測定にはネットワークアナライザ(電磁界強度測定器)7を使用した。   On the other hand, the electromagnetic interference suppression effect is verified by the evaluation system shown in FIG. 1. As the electromagnetic interference suppression body sample 10, a composite magnetic body 2 having a thickness of 2 mm and a side length of 20 cm with a copper plate 8 lined is used. Using. Here, a micro loop antenna 4 and 5 having a loop diameter of 1.5 mm is used for the wave source element and the receiving element, and a sweep generator (electromagnetic wave source oscillator) 6 is used for the signal source connected to the receiving element. A network analyzer (electromagnetic field strength measuring device) 7 was used for measuring the coupling level.

[検証用試料1]
以下の配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い下記表1に示される検証用試料1を得た。
[Verification sample 1]
A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a verification sample 1 shown in Table 1 below. Obtained.

Figure 0004097160
Figure 0004097160

尚、得られた試料1を走査型電子顕微鏡を用いて解析したところ、粒子配列方向は試料膜面内方向であった。   When the obtained sample 1 was analyzed using a scanning electron microscope, the particle arrangement direction was the in-plane direction of the sample film.

ここで磁歪の大きさは、H=200エルステッドでの歪み量dl/l×10−6の値であり、これは後述する検証用試料2乃至検証用試料4、及び比較用試料5及び比較用試料6についても同じである。 Here, the magnitude of the magnetostriction is a value of a strain amount dl / l × 10 −6 at H = 200 oersted, which is a verification sample 2 to a verification sample 4 described later, a comparative sample 5 and a comparative sample. The same applies to Sample 6.

[検証用試料2]
以下の配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い下記表2に示される検証用試料2を得た。
[Verification sample 2]
A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a verification sample 2 shown in Table 2 below. Obtained.

Figure 0004097160
Figure 0004097160

尚、得られた試料2を走査型電子顕微鏡を用いて解析したところ、粒子配列方向は試料膜面内方向であった。   When the obtained sample 2 was analyzed using a scanning electron microscope, the particle arrangement direction was the in-plane direction of the sample film.

[検証用試料3]
以下の配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い下記表3に示される検証用試料3を得た。
[Verification sample 3]
A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a verification sample 3 shown in Table 3 below. Obtained.

Figure 0004097160
Figure 0004097160

尚、得られた試料3を走査型電子顕微鏡を用いて解析したところ、粒子配列方向は試料膜面内方向であった。   When the obtained sample 3 was analyzed using a scanning electron microscope, the particle arrangement direction was the in-plane direction of the sample film.

[検証用試料4]
以下の配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い下記表4に示される検証用試料4を得た。
[Verification sample 4]
A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours, and a verification sample 4 shown in Table 4 below was obtained. Obtained.

Figure 0004097160
Figure 0004097160

尚、得られた試料4を走査型電子顕微鏡を用いて解析したところ、粒子配列方向は試料膜面内方向であった。   When the obtained sample 4 was analyzed using a scanning electron microscope, the particle arrangement direction was the in-plane direction of the sample film.

[比較用試料5]
以下の配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い下記表5に示される検証用試料5を得た。
[Comparative Sample 5]
A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a verification sample 5 shown in Table 5 below. Obtained.

Figure 0004097160
Figure 0004097160

尚、得られた試料5を走査型電子顕微鏡を用いて解析したところ、ほぼ等方的な配列であった。   In addition, when the obtained sample 5 was analyzed using the scanning electron microscope, it was a substantially isotropic arrangement | sequence.

[比較用試料6]
以下の配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い下記表6に示される検証用試料6を得た。
[Comparative Sample 6]
A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a verification sample 6 shown in Table 6 below. Obtained.

Figure 0004097160
Figure 0004097160

尚、得られた試料6を走査型電子顕微鏡を用いて解析したところ、粒子配列方向は試料膜面内方向であった。   In addition, when the obtained sample 6 was analyzed using the scanning electron microscope, the particle arrangement direction was the sample film in-plane direction.

得られた各試料の実部透磁率μ′及び磁気共鳴周波数frを下記表7に示す。   Table 7 below shows the real permeability μ ′ and the magnetic resonance frequency fr of each of the obtained samples.

Figure 0004097160
Figure 0004097160

また、図2は、本発明の検証例である試料1乃至試料2及び比較例である試料6のμ−f特性であり、磁気共鳴周波数frは、正の磁歪定数λを有する磁性粉末を用いた試料1が最も高く、実部透磁率μ′の値は磁歪定数λがほぼゼロである試料6が最も大きな値を示している。試料2は、試料1で用いた磁性粉末に焼鈍処理を施したものを原料粉末に用いたものであるが、図2から明らかなように磁気共鳴周波数frの値、及び実部透磁率μ′の値ともに試料1と試料6の中間に位置している。   FIG. 2 shows μ-f characteristics of Sample 1 to Sample 2 as a verification example of the present invention and Sample 6 as a comparative example, and magnetic resonance frequency fr is a magnetic powder having a positive magnetostriction constant λ. The value of the real part permeability μ ′ is the highest, and the value of the real part permeability μ ′ is the highest in the sample 6 in which the magnetostriction constant λ is almost zero. Sample 2 was obtained by subjecting the magnetic powder used in Sample 1 to the raw material powder that was annealed. As apparent from FIG. 2, the value of the magnetic resonance frequency fr and the real part permeability μ ′ Both values are located between the sample 1 and the sample 6.

一方、前記表7から判るように、負の磁歪定数λを有する試料3では、磁気共鳴周波数frが磁歪定数λがほぼゼロである試料6よりも更に低い周波数となっていると共に、実部透磁率μ′の値も試料6より大きな値を示している。尚、いずれの場合でも略球状の原料磁性粉末を用いた比較用試料である試料5に比べて実部透磁率μ′の差は歴然である。   On the other hand, as can be seen from Table 7, in the sample 3 having the negative magnetostriction constant λ, the magnetic resonance frequency fr is lower than that of the sample 6 in which the magnetostriction constant λ is substantially zero, and the real part transmission The value of magnetic permeability μ ′ is also larger than that of sample 6. In any case, the difference in the real part permeability μ ′ is obvious as compared with the sample 5 which is a comparative sample using the substantially spherical raw magnetic powder.

これらの結果から、磁歪定数λをゼロでない値とし、更に焼鈍により残留歪み量をも変化させたことにより、透磁率の周波数特性を広い範囲にて制御することが出来、加えて磁性粉末の厚さを特定し、その表面に誘電体層を設けたことで、高周波域において高い透磁率が得られることが明白である。   From these results, by setting the magnetostriction constant λ to a non-zero value and further changing the residual strain amount by annealing, the frequency characteristics of the magnetic permeability can be controlled in a wide range, and in addition, the thickness of the magnetic powder It is clear that high permeability can be obtained in a high frequency range by specifying the thickness and providing a dielectric layer on the surface.

次に、検証用試料4及び比較用試料5について、それぞれの粉末充填率、表面抵抗、μ″分布、及び電磁干渉抑制効果を比較した結果を下記表8に示す。   Table 8 below shows the results of comparing the powder filling rate, the surface resistance, the μ ″ distribution, and the electromagnetic interference suppression effect for the verification sample 4 and the comparative sample 5.

Figure 0004097160
Figure 0004097160

ここで、表面抵抗はASTM−D−257法による測定値であり、μ″分布は互いを相対的に比較したものであり、電磁干渉抑制効果の値は、銅板を基準(0dB)としたときの信号減衰量である。   Here, the surface resistance is a value measured by the ASTM-D-257 method, the μ ″ distribution is a relative comparison with each other, and the value of the electromagnetic interference suppression effect is based on a copper plate as a reference (0 dB) Is the amount of signal attenuation.

前記表8より以下に述べる効果が明白である。   From Table 8, the effects described below are clear.

即ち、本発明の検証用試料及び比較用試料共、表面抵抗の値が10〜10Ωとなっており、少なくとも表面が酸化された磁性粉末を用いることによって、複合磁性体を非良導性とすることが出来、導体やバルクの金属磁性体等にみられるようなインピーダンス不整合による電磁波の表面反射を抑制出来る。 That is, in both the verification sample and the comparative sample of the present invention, the surface resistance value is 10 7 to 10 8 Ω, and at least the surface is oxidized, so that the composite magnetic material can be made non-conducting. The surface reflection of electromagnetic waves due to impedance mismatching as seen in conductors and bulk metallic magnetic materials can be suppressed.

更に、本発明の検証用試料では、粉末の充填率が比較用試料に比べて低いにもかかわらず良好な電磁干渉抑制効果を示しており、本発明によるμ″分布の拡張効果が電磁干渉抑制に有効であることが理解出来る。   Furthermore, the verification sample of the present invention shows a good electromagnetic interference suppression effect even though the powder filling rate is lower than that of the comparative sample, and the expansion effect of the μ ″ distribution according to the present invention suppresses the electromagnetic interference. It can be understood that it is effective.

本発明の実施例において、電磁干渉抑制体の特性評価に用いた評価系を示す概略図である。In the Example of this invention, it is the schematic which shows the evaluation system used for the characteristic evaluation of the electromagnetic interference suppression body. 本発明の実施例において、検証用試料1乃至検証用試料2及び比較用試料6の条件にて作製した各試料のμ−f特性を示す図である。In the Example of this invention, it is a figure which shows the μ-f characteristic of each sample produced on the conditions of the sample 1 for verification, the sample 2 for verification, and the sample 6 for a comparison.

符号の説明Explanation of symbols

2 複合磁性体
4,5 微小ループアンテナ
6 電磁界波源用発信器
7 電磁界強度測定器
8 銅板
10 電磁干渉抑制体
2 Composite magnetic material 4, 5 Micro loop antenna 6 Electromagnetic wave source transmitter 7 Electromagnetic field strength measuring device 8 Copper plate 10 Electromagnetic interference suppressor

Claims (3)

軟磁性体粉末と有機結合剤とからなる複合磁性体を備え、該複合磁性体の虚数部透磁率μ″を利用して不要輻射を抑制する電磁干渉抑制体の製造方法において、
前記軟磁性体粉末の原料磁性体として磁歪定数がゼロであるものを用いた場合と比較して前記虚数部透磁率μ″の磁気共鳴周波数をより高くするためには、磁歪定数が正である原料磁性体を用い、
前記軟磁性体粉末の原料磁性体として磁歪定数がゼロであるものを用いた場合と比較して前記虚数部透磁率μ″の磁気共鳴周波数をより低くするためには、磁歪定数が負である原料磁性体を用いることで、
前記虚数部透磁率μ″の磁気共鳴周波数を制御することを特徴とする電磁干渉抑制体の製造方法。
In a method of manufacturing an electromagnetic interference suppressor comprising a composite magnetic body comprising a soft magnetic powder and an organic binder, and suppressing unwanted radiation using the imaginary part permeability μ ″ of the composite magnetic body,
The magnetostriction constant is positive in order to increase the magnetic resonance frequency of the imaginary part permeability μ ″ as compared with the case where the soft magnetic material raw material magnetic material having zero magnetostriction constant is used. Using raw magnetic material,
The magnetostriction constant is negative in order to lower the magnetic resonance frequency of the imaginary part permeability μ ″ as compared with the case where the raw magnetic material of the soft magnetic powder has a magnetostriction constant of zero. By using raw material magnetic material,
A method of manufacturing an electromagnetic interference suppressor, wherein the magnetic resonance frequency of the imaginary part permeability μ ″ is controlled.
請求項1記載の電磁干渉抑制体の製造方法において、In the manufacturing method of the electromagnetic interference suppressor according to claim 1,
磁歪定数がゼロである原料磁性体を用いた場合よりも前記虚数部透磁率μ″の磁気共鳴周波数を高く、且つ、磁歪定数が正である原料磁性体を用いた場合よりも前記虚数部透磁率μ″の磁気共鳴周波数を低くするために、磁歪定数が正である原料磁性体を扁平状の粉末に加工した後、当該粉末に対して前記加工による残留歪みを緩和するための焼鈍処理を施すThe magnetic resonance frequency of the imaginary part permeability μ ″ is higher than that in the case of using a raw magnetic material having a magnetostriction constant of zero, and the imaginary part permeability is higher than in the case of using a raw magnetic material having a positive magnetostriction constant. In order to lower the magnetic resonance frequency of the magnetic susceptibility μ ″, the raw material magnetic material having a positive magnetostriction constant is processed into a flat powder, and then the powder is subjected to an annealing treatment to alleviate residual strain due to the processing. Apply
ことを特徴とする電磁干渉抑制体の製造方法。A method of manufacturing an electromagnetic interference suppressor characterized by that.
請求項1又は請求項2記載の電磁干渉抑制体の製造方法において、In the manufacturing method of the electromagnetic interference suppression body of Claim 1 or Claim 2,
周波数の異なる複数の磁気共鳴を発現させることにより得られる虚数部透磁率μ″の分散特性を、前記磁気共鳴周波数の制御を利用して、更に広範囲なものとするThe dispersion characteristics of the imaginary part permeability μ ″ obtained by developing a plurality of magnetic resonances having different frequencies are made wider by using the control of the magnetic resonance frequency.
ことを特徴とする電磁干渉抑制体の製造方法。A method of manufacturing an electromagnetic interference suppressor characterized by that.
JP2007044131A 2007-02-23 2007-02-23 Method for manufacturing electromagnetic interference suppressor Expired - Lifetime JP4097160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044131A JP4097160B2 (en) 2007-02-23 2007-02-23 Method for manufacturing electromagnetic interference suppressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044131A JP4097160B2 (en) 2007-02-23 2007-02-23 Method for manufacturing electromagnetic interference suppressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7244096A Division JPH0993034A (en) 1995-09-22 1995-09-22 Compound magnetic substance, manufacture of the same and electromagnetic interference suppresser

Publications (2)

Publication Number Publication Date
JP2007173859A JP2007173859A (en) 2007-07-05
JP4097160B2 true JP4097160B2 (en) 2008-06-11

Family

ID=38299903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044131A Expired - Lifetime JP4097160B2 (en) 2007-02-23 2007-02-23 Method for manufacturing electromagnetic interference suppressor

Country Status (1)

Country Link
JP (1) JP4097160B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254757A (en) * 2011-07-29 2013-12-19 Sumitomo Osaka Cement Co Ltd Composite magnetic material, and antenna having the same, and communication device
JP5700869B2 (en) * 2013-09-13 2015-04-15 株式会社リケン Near-field electromagnetic wave absorbing sheet
JP6280157B2 (en) * 2016-05-17 2018-02-14 株式会社リケン Near-field noise suppression sheet

Also Published As

Publication number Publication date
JP2007173859A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US5827445A (en) Composite magnetic article for electromagnetic interference suppressor
Matsumoto et al. Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles
JP3812977B2 (en) Electromagnetic interference suppressor
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
Dosoudil et al. Electromagnetic wave absorption performances of metal alloy/spinel ferrite/polymer composites
CN101902899A (en) Electromagnetic wave suppression sheet, device, and electronic apparatus
JPH11154611A (en) Chip beads element and its manufacture
JP4097160B2 (en) Method for manufacturing electromagnetic interference suppressor
JP2011249628A (en) Method for producing electromagnetic interference suppression body
US20120256118A1 (en) Magnetic material for high-frequency use, high-frequency device and magnetic particles
JP3722391B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP2001210510A (en) Soft magnetic powder and composite magnetic unit using the same
JP6242568B2 (en) High-frequency green compact and electronic parts using the same
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
JP2013247351A (en) Tabular magnetic powder with insulation property, composite magnetic material including it, antenna and communication device comprising it, and method for manufacturing tabular magnetic powder with insulation property
WO2011046125A1 (en) Magnetic material for high frequency applications and high frequency device
KR102155542B1 (en) Noise suppression sheet for near field
KR101948025B1 (en) Noise suppression sheet for near-field
JP6978346B2 (en) Noise suppression sheet
JP3979541B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP5568944B2 (en) High frequency magnetic material and high frequency device
JPH1097912A (en) Composite magnetic element, manufacture thereof and electromagnetic interference suppressor
JP2011086788A (en) Magnetic material for high frequency and high frequency device
Xuan et al. High-energy ball milling preparation of La0. 7Sr0. 3MnO3 and (Co, Ni) Fe2O4 nanoparticles for microwave absorption applications
JPH10107541A (en) Composite magnetic body, its manufacture and electromagnetic interference suppressing body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

EXPY Cancellation because of completion of term