JP2001210510A - Soft magnetic powder and composite magnetic unit using the same - Google Patents

Soft magnetic powder and composite magnetic unit using the same

Info

Publication number
JP2001210510A
JP2001210510A JP2000024772A JP2000024772A JP2001210510A JP 2001210510 A JP2001210510 A JP 2001210510A JP 2000024772 A JP2000024772 A JP 2000024772A JP 2000024772 A JP2000024772 A JP 2000024772A JP 2001210510 A JP2001210510 A JP 2001210510A
Authority
JP
Japan
Prior art keywords
magnetic
powder
soft magnetic
magnetic powder
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000024772A
Other languages
Japanese (ja)
Other versions
JP2001210510A5 (en
Inventor
Eikichi Yoshida
栄吉 吉田
Shinsuke Ando
慎輔 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2000024772A priority Critical patent/JP2001210510A/en
Priority to KR1020017011867A priority patent/KR20020034989A/en
Priority to CN01800122A priority patent/CN1363100A/en
Priority to EP01901524A priority patent/EP1166289A1/en
Priority to PCT/JP2001/000438 priority patent/WO2001056043A1/en
Publication of JP2001210510A publication Critical patent/JP2001210510A/en
Priority to NO20014745A priority patent/NO20014745L/en
Publication of JP2001210510A5 publication Critical patent/JP2001210510A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic interference suppressor, made of a soft magnetic powder that has a single composition and particle size distribution and a composite magnetic unit using it, capable of suppressing unwanted high-fre quency radiation extending over a broad band. SOLUTION: The specific surface area of the soft magnetic powder which is a fixed value or larger by generating two anisotropy magnetic fields of different magnitude, two kinds of magnetic resonances appear in the composite magnetic unit comprising this soft magnetic powder and a binder. Then electromagnetic interference suppression effect over a broad band in a high-frequency region is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波領域におけ
る磁気損失特性に優れた磁性体に関し、更に詳しくは、
高周波電子部品あるいは電子機器において問題となる不
要輻射の抑制に有効な複素透磁率特性に優れた軟磁性体
と、それを用いた複合磁性体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material having excellent magnetic loss characteristics in a high frequency range,
The present invention relates to a soft magnetic material excellent in complex magnetic permeability characteristics effective for suppressing unnecessary radiation which is a problem in high frequency electronic components or electronic devices, and a composite magnetic material using the same.

【0002】[0002]

【従来の技術】近年、高速動作する高集積化された半導
体素子の普及が著しい。その例として、ランダムアクセ
スメモリ(RAM)、リードオンリーメモリ(RO
M)、マイクロプロセッサ(MPU)、中央演算素子
(CPU)などがある。
2. Description of the Related Art In recent years, highly integrated semiconductor elements which operate at high speed have become remarkably widespread. As examples, random access memory (RAM), read only memory (RO)
M), a microprocessor (MPU), a central processing unit (CPU), and the like.

【0003】これらの能動素子においては、演算速度や
信号処理速度が日進月歩の勢いで高速化されており、高
速電子回路を伝播する電気信号は、電圧、電流の大きな
変動を伴うために、誘導性のノイズが発生し易く、不要
高周波輻射源となっている。
In these active elements, the operation speed and the signal processing speed are increasing at a rapid pace, and electric signals propagating through high-speed electronic circuits are accompanied by large fluctuations in voltage and current. Noise is easily generated, and is an unnecessary high-frequency radiation source.

【0004】一方、電子部品や電子機器の軽量化、薄型
化、小型化の流れも止まることを知らない急速な勢いで
進行している。それに伴い、半導体素子の集積度や、プ
リント配線基板への電子部品実装密度も極めて高くなっ
ている。
[0004] On the other hand, the trend of lightening, thinning, and miniaturization of electronic parts and electronic devices has been progressing at a rapid pace, which is unaware that the flow will not stop. Accordingly, the degree of integration of semiconductor elements and the density of mounting electronic components on printed wiring boards have become extremely high.

【0005】従って、過密に集積あるいは実装された電
子素子や信号線が、互いに極めて接近することになり、
前記の信号処理速度の高速化と併せて高周波ノイズが、
より誘発され易くなってきている。また、このような高
周波ノイズの発生、漏洩が、各素子間における相互干渉
による誤動作を引き起こす可能性が高くなっている。
[0005] Therefore, electronic elements and signal lines that are densely integrated or mounted are extremely close to each other,
High frequency noise in conjunction with the increase in the signal processing speed,
It is becoming more provoked. In addition, there is a high possibility that the occurrence and leakage of such high-frequency noise cause a malfunction due to mutual interference between elements.

【0006】そして、近年のこのような電子集積素子あ
るいは配線基板においては、能動素子への電源供給ライ
ンからの不要輻射の問題が指摘され、電源ラインにデカ
ップリングコンデンサなどの集中定数部品を挿入するな
どの対策が施されている。
In such electronic integrated devices or wiring boards in recent years, the problem of unnecessary radiation from power supply lines to active elements has been pointed out, and lumped components such as decoupling capacitors are inserted into power supply lines. And other measures have been taken.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、高速化
された電子集積素子あるいは配線基板においては、発生
するノイズが高調波成分を含むために、信号の経路が分
布定数的に振る舞うようになり、従来の集中定数回路を
前提にしたノイズ対策が効を奏さない状況が生じてい
た。
However, in a high-speed electronic integrated device or a wiring board, since a generated noise includes a harmonic component, a signal path behaves like a distributed constant. There has been a situation in which the noise countermeasures based on the lumped-constant circuit are not effective.

【0008】本発明は、このような高速動作する半導体
素子や電子回路などの不要輻射対策に有効な磁性材料を
提供することを目的とするものである。より詳しくは、
本発明は、広い周波数範囲に及ぶ高周波不要輻射に対し
て簡便かつ効果的に対処できる磁気損失材料の提供を目
的とする。
An object of the present invention is to provide a magnetic material which is effective for measures against unnecessary radiation in such semiconductor elements and electronic circuits operating at high speed. More specifically,
An object of the present invention is to provide a magnetic loss material that can easily and effectively deal with high-frequency unnecessary radiation over a wide frequency range.

【0009】[0009]

【課題を解決するための手段】本発明者らは、以前に高
周波での磁気損失の大きな複合磁性体を発明し、これを
不要輻射源の近傍に配置することで、上記の半導体素子
や電子回路などから発生する不要輻射を効果的に抑制す
る方法を見出している。
The present inventors have previously invented a composite magnetic material having a large magnetic loss at a high frequency, and arranged it near an unnecessary radiation source, thereby obtaining the above-described semiconductor element or electronic device. A method has been found for effectively suppressing unnecessary radiation generated from a circuit or the like.

【0010】このような磁気損失を利用した不要輻射減
衰の作用機構については、最近の研究から、不要輻射源
となっている電子回路に対して等価的な抵抗成分が付与
されることによることが分かっている。ここで、等価的
な抵抗成分の大きさとその効果が現れる周波数領域は、
それぞれ磁性体の磁気損失項μ″とその周波数分散の範
囲に依存している。
The mechanism of the unnecessary radiation attenuation using the magnetic loss is based on recent research that an equivalent resistance component is added to an electronic circuit serving as an unnecessary radiation source. I know it. Here, the magnitude of the equivalent resistance component and the frequency region where its effect appears are as follows:
Each depends on the magnetic loss term μ ″ of the magnetic material and the range of its frequency dispersion.

【0011】従って、より大きな不要輻射の減衰を得る
には、大きなμ″と不要輻射に見合ったμ″の分散が必
要となってくる。実際に、種々の電子回路にて発生して
いる不要輻射の周波数分布は、殆どの場合、広い範囲に
及んでいるため、通常の磁気損失材料のもつμ″の周波
数分散では、充分にカバーしきれない。本発明は、かか
る現状に鑑みてなされたものである。
Therefore, in order to obtain a larger attenuation of the unnecessary radiation, it is necessary to disperse a large μ ″ and μ ″ corresponding to the unnecessary radiation. In fact, the frequency distribution of the unwanted radiation generated in various electronic circuits is in most cases wide, so that the frequency dispersion of μ ″ of a normal magnetic loss material can be sufficiently covered. The present invention has been made in view of such circumstances.

【0012】広い周波数範囲に尾不要輻射に対応するた
めに、必要な大きさの異方性磁界(Hk)を広い周波数
範囲で与える軟磁性粉末を得るには、複数の互いに異な
る大きさの異方性磁界(Hk)を有する複数の磁性粉末
を混合する方法があるが、本発明者らは、より簡便に即
ち単一種の組成を有する粉末にて2つの互いに異なる大
きさの異方性磁界(Hk)を有する磁性粉末を得る方法
を見出し本発明に到った。
In order to obtain a soft magnetic powder which gives a necessary magnitude of anisotropic magnetic field (Hk) in a wide frequency range in order to cope with unnecessary tail radiation in a wide frequency range, a plurality of soft magnetic powders having different sizes are required. Although there is a method of mixing a plurality of magnetic powders having an anisotropic magnetic field (Hk), the present inventors have made it simpler to use two different anisotropic magnetic fields of a powder having a single composition. A method for obtaining a magnetic powder having (Hk) has been found, and the present invention has been achieved.

【0013】本発明によれば、組成が単一で、最大値を
持ちかつ極大値及び極小値を持たない粒度分布曲線を有
し、互いに異なる大きさの2つの異方性磁界を有するこ
とを特徴とする軟磁性粉末が得られる。
According to the present invention, the composition has a single particle size distribution curve having a maximum value and no maximum value and no minimum value, and has two anisotropic magnetic fields having different magnitudes from each other. A characteristic soft magnetic powder is obtained.

【0014】また、本発明によれば、前記の軟磁性粉末
において、比表面積が0.3m/g以上であることを
特徴とする軟磁性粉末が得られる。
Further, according to the present invention, there is obtained a soft magnetic powder having a specific surface area of at least 0.3 m 2 / g.

【0015】また、本発明によれば、前記の軟磁性粉末
において、少なくとも表面近傍における組成の磁歪定数
が0でないことを特徴とする軟磁性粉末が得られる。
According to the present invention, there is provided a soft magnetic powder characterized in that the composition has a magnetostriction constant other than 0 at least near the surface of the soft magnetic powder.

【0016】また、本発明によれば、前記の軟磁性粉末
において、扁平形状を有することを特徴とする軟磁性粉
末が得られる。
According to the present invention, there is provided a soft magnetic powder characterized in that the soft magnetic powder has a flat shape.

【0017】また、本発明によれば、前記の軟磁性粉末
と結合剤からなり、互いに異なる周波数領域で、2つの
磁気共鳴を示すことを特徴とする複合磁性体が得られ
る。
Further, according to the present invention, there is obtained a composite magnetic material comprising the above-described soft magnetic powder and a binder and exhibiting two magnetic resonances in mutually different frequency ranges.

【0018】また、本発明によれば、前記の複合磁性体
において、軟磁性粉末が配向、配列されていることを特
徴とする複合磁性体が得られる。
Further, according to the present invention, there can be obtained a composite magnetic body characterized in that the soft magnetic powder is oriented and arranged in the composite magnetic body.

【0019】[0019]

【作用】本発明は、単一種の組成からなる原料磁性体
を、その比表面積の大きさが一定以上となるように加工
することにより得られる、粉末特性の分化(非単一化)
の発見に基づいている。この現象についての詳細は、S.
Yoshida et al.:J.Appl.Phys.,Vol.85,No.8,4636-4638
(1999)に記載されている。以下に、単一種からなる原料
磁性体が特定の非表面積の大きさ以上となった際に、2
つの互いに異なる大きさの異方性磁界(Hk)を示す理
由を説明する。
According to the present invention, there is provided a powder magnetic material obtained by processing a raw material magnetic material having a single kind of composition so that the specific surface area thereof is equal to or greater than a certain value.
Based on the discovery of For more information about this phenomenon, see S.
Yoshida et al .: J. Appl. Phys., Vol. 85, No. 8, 4636-4638
(1999). In the following, when the raw material magnetic material of a single species has a specific non-surface area or more,
The reason why two different magnitudes of anisotropic magnetic field (Hk) are shown will be described.

【0020】軟磁性粉末における磁気的なファクターの
うち、反磁界の大きさと、粒子内に流れる渦電流の大き
さは、粉末の形状に依存する。例えば、アトマイズ法な
どにより作製された等方性の磁性粉末では、粉末形状に
由来する反磁界が等方的に存在するとともに、渦電流に
よる損失が比較的低い周波数の領域から現れるために、
高周波領域で優れた磁気特性を得ることが困難である。
Among the magnetic factors of the soft magnetic powder, the magnitude of the demagnetizing field and the magnitude of the eddy current flowing in the particles depend on the shape of the powder. For example, in an isotropic magnetic powder produced by an atomizing method or the like, since a demagnetizing field derived from the powder shape exists isotropically, and a loss due to eddy current appears from a relatively low frequency region,
It is difficult to obtain excellent magnetic characteristics in a high frequency range.

【0021】ところが、等方性の形状の粉末を機械的に
摩砕すると、その進行に伴い粉末の形状が扁平化される
とともに、透磁率特性が大きく改善されてくる。これ
は、粉末が扁平化されることによって、扁平面方向の反
磁界が格段に小さくなることと、扁平面に垂直な方向の
長さ、即ち粉末の厚さが薄くなり、表皮効果によって渦
電流損失も大幅に低減されることによる相乗効果により
もたらされる。
However, when the powder having an isotropic shape is mechanically ground, the shape of the powder is flattened as the powder progresses, and the magnetic permeability characteristics are greatly improved. This is because the flattening of the powder significantly reduces the demagnetizing field in the flat plane direction, and the length in the direction perpendicular to the flat plane, that is, the thickness of the powder, is reduced. Losses are also brought about by the synergistic effect of being greatly reduced.

【0022】機械的な摩砕を更に継続すると、扁平面に
亀裂が生じ、より細かい扁平粉末に変化して行く。機械
的摩砕による粉末の扁平化は、このような過程で進行す
るが、粉末の比表面積は、摩砕時間に比例する。即ち、
摩砕時間を変えることで比表面積の異なる扁平状の磁性
粉末を得ることができる。また、出発原料粉末の粒子径
あるいは比表面積を変えることで、比表面積の異なる扁
平状の粉末を得ることもできる。
When the mechanical grinding is further continued, cracks are generated in the flat surface, and the flat powder changes to a finer flat powder. The flattening of the powder by mechanical grinding proceeds in such a process, but the specific surface area of the powder is proportional to the grinding time. That is,
By changing the grinding time, flat magnetic powders having different specific surface areas can be obtained. Further, by changing the particle diameter or the specific surface area of the starting raw material powder, flat powders having different specific surface areas can be obtained.

【0023】本発明者らは、Fe−Si−AlやNi−
Feなどの代表的な軟磁性金属粉末に関し、比表面積の
異なる種々の扁平粉末を試作し、それらの磁気的な性質
を調べたところ、比表面積がある程度の大きさになる
と、新たに高周波側に磁気共鳴が出現することを見出し
た。即ち、組成、形状及び残留応力に依存した周波数に
出現する従来の磁気共鳴に加えて、より大きな磁気異方
性に基づく磁気共鳴が現れるのである。この現象は、磁
性体の組成に由来する磁歪定数の大きさによってその発
現のし易さが若干異なってくるが、代表的な軟磁性金属
であるFe−Si−AlやNi−Feの組成の扁平粉末
では、おおよその比表面積が0.3m/g程度以上に
て認めることができる。
The present inventors have proposed Fe-Si-Al and Ni-
With respect to typical soft magnetic metal powders such as Fe, various flat powders with different specific surface areas were prototyped, and their magnetic properties were examined. It has been found that magnetic resonance appears. That is, in addition to the conventional magnetic resonance that appears at a frequency depending on the composition, shape, and residual stress, a magnetic resonance based on a larger magnetic anisotropy appears. This phenomenon is slightly different in ease of expression depending on the magnitude of the magnetostriction constant derived from the composition of the magnetic material, but the composition of typical soft magnetic metals such as Fe-Si-Al and Ni-Fe In the case of the flat powder, it can be recognized when the approximate specific surface area is about 0.3 m 2 / g or more.

【0024】この現象は、例えば、何らかの理由で扁平
状の磁性粉末の粒子形状、粒子径、あるいはアスペクト
比などの形状ファクターが二項分布となったために得ら
れる結果、例えば、異方性磁界(Hk)の異なる2種類
の粉末を混合したような場合とは本質的に異なる現象で
あり、粉末の表面近傍部分の占める体積が粉末体積に対
して無視できない大きさになってくることで、表面磁気
異方性が発現したことによる現象と考えられる。従っ
て、異なる異方性を有する2種類の粉末を混合して用い
る事例とは全く別なものであることは言うまでもない。
This phenomenon is obtained, for example, because the shape factor such as the particle shape, particle diameter, or aspect ratio of the flat magnetic powder has a binomial distribution for some reason. This is a phenomenon essentially different from the case where two kinds of powders having different Hk) are mixed, and the volume occupied by the portion near the surface of the powder becomes nonnegligible with respect to the powder volume. This is considered to be a phenomenon caused by the development of magnetic anisotropy. Therefore, it is needless to say that this is completely different from the case where two kinds of powders having different anisotropies are mixed and used.

【0025】この表面磁気異方性に起因すると考えられ
る2つ磁気共鳴発現については、粉末単位重量あたりの
表面積、即ち比表面積の大きさが支配的な要因である
が、表面磁気異方性をもたらす他の要因、例えば磁気弾
性効果の大きさ、即ち磁歪定数大きさや、粉末に残留す
る歪の大きさによっても2つの共鳴が発現する表面積が
異なってくるので、その値を特定して示すのは困難であ
る。
Regarding the appearance of two magnetic resonances considered to be caused by the surface magnetic anisotropy, the surface area per unit weight of the powder, that is, the specific surface area is a dominant factor. The surface area where the two resonances appear differs depending on the other factors that occur, for example, the magnitude of the magnetoelastic effect, that is, the magnitude of the magnetostriction constant, and the magnitude of the strain remaining in the powder. It is difficult.

【0026】しかしながら、粉末が大きな磁気弾性効果
による異方性を有するほど、2つの磁気共鳴が現れる表
面積は小さくなる傾向認められている。従って、機械的
に摩砕され扁平化された粉末では、摩砕による残留応力
がかなり大きいと考えられるので、比較的小さな表面積
で2つの共鳴が認められる場合が多い。
However, it has been recognized that the larger the powder has anisotropy due to the magnetoelastic effect, the smaller the surface area where two magnetic resonances appear. Therefore, in mechanically milled and flattened powders, the residual stress due to milling is considered to be quite large, so that two resonances are often observed with a relatively small surface area.

【0027】即ち、本発明は、単一の組成及び粒度分布
を有する軟磁性体粉末において、比表面積を特定するこ
とによって、互いに異なる大きさの2つの異方性磁界
(Hk)を発現させ、広帯域なμ″分散特性を得るもの
である。
That is, according to the present invention, in a soft magnetic powder having a single composition and particle size distribution, two specific anisotropic magnetic fields (Hk) having mutually different magnitudes are expressed by specifying a specific surface area, This is to obtain a broadband μ ″ dispersion characteristic.

【0028】ここで、本発明に用いられる原材料につい
て説明する。本発明に用いられる軟磁性粉末としては、
高周波透磁率の大きな、Fe−Al−Si合金(センダ
スト)、Fe−Ni合金(パーマロイ)あるいはアモル
ファス合金などの金属軟磁性材料を、粉砕加工、延伸及
び引裂加工、あるいはアトマイズ造粒などにより粉末化
したものが代表として挙げられる。
Here, the raw materials used in the present invention will be described. As the soft magnetic powder used in the present invention,
Pulverizing, softening, stretching, and tearing metal soft magnetic materials such as Fe-Al-Si alloys (Sendust), Fe-Ni alloys (Permalloy), and amorphous alloys with high high-frequency permeability What was done is mentioned as a representative.

【0029】また、スピネル型フェライト、プレーナ型
フェライト、ヘマタイト、マグネタイト、マグヘタイト
などの酸化物軟磁性体の粉末を用いることもできる。
Further, powders of oxide soft magnetic materials such as spinel type ferrite, planar type ferrite, hematite, magnetite, and maghetite can also be used.

【0030】一方、本発明の複合磁性体を得るための副
材料として用いる結合剤としては、電子回路近傍での利
用を考慮し、優れた可撓性及び難燃性を得ることができ
る塩素化ポリエチレンが好適であるが、これ以外に用い
ることができる有機結合剤としては、ポリエステル系樹
脂、ポリエチレン樹脂、ポリ塩化ビニル系樹脂、ポリビ
ニルブチラール樹脂、ポリウレタン樹脂、セルロース系
樹脂、ABS樹脂、エチレン−酢酸ビニル共重合体、ア
クリロニトリル−ブタジエン系ゴム、スチレン−ブタジ
エン系ゴム、シリコンゴムなどの熱可塑性樹脂や熱可塑
性エラストマー、エポキシ樹脂、フェノール樹脂、アミ
ド系樹脂、及びイミド系樹脂などの熱硬化性樹脂などが
挙げられる。
On the other hand, the binder used as an auxiliary material for obtaining the composite magnetic material of the present invention is chlorinated, which can provide excellent flexibility and flame retardancy in consideration of use near an electronic circuit. Polyethylene is preferred, but other organic binders that can be used include polyester resins, polyethylene resins, polyvinyl chloride resins, polyvinyl butyral resins, polyurethane resins, cellulose resins, ABS resins, ethylene-acetic acid. Thermoplastic resins such as vinyl copolymer, acrylonitrile-butadiene rubber, styrene-butadiene rubber, silicone rubber, and thermoplastic elastomers, thermosetting resins such as epoxy resin, phenol resin, amide resin, and imide resin, etc. Is mentioned.

【0031】また、基本的に適度の接着性と可撓性を具
備した熱可塑性樹脂や熱硬化性樹脂であれば、上記以外
でも本発明の結合剤として使用できることは勿論であ
る。以上に挙げた本発明の構成要素を混練、分散し、複
合磁性体を得る手段としては特に制限はなく、用いる結
合剤の性質や工程の容易さを基準に好ましい方法を選択
すればよい。
In addition, it is a matter of course that any other thermoplastic resin or thermosetting resin having moderate adhesiveness and flexibility can be used as the binder of the present invention. The means for kneading and dispersing the above-described constituents of the present invention to obtain a composite magnetic material is not particularly limited, and a preferred method may be selected based on the properties of the binder used and the ease of the process.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施の形態につ
き、具体的な実施例を挙げ、説明する。ここでは、扁平
形状の軟磁性体粉末として、Siが9.8重量%、Al
が5.9重量%、残部がFeという組成のFe−Al−
Si合金粉末、Niが80重量%、Feが20重量%と
いう組成のFe−Ni合金粉末を用いた。これらの合金
を扁平形状の粉末とするには、アトライタ及びピンミル
を用いて延伸及び粉砕加工するという方法を用いた。不
定形の形状の軟磁性体粉末として、マグネタイト粉末を
用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to specific examples. Here, as the flat soft magnetic powder, 9.8% by weight of Si, Al
Is 5.9% by weight, and the balance is Fe.
Si alloy powder, Fe-Ni alloy powder having a composition of 80% by weight of Ni and 20% by weight of Fe was used. In order to make these alloys into flat powders, a method of drawing and pulverizing using an attritor and a pin mill was used. Magnetite powder was used as the soft magnetic powder having an irregular shape.

【0033】また、前記の軟磁性粉末を複合磁性体とす
るには、軟磁性体粉末を90重量部、結合剤として塩素
化ポリエチレン樹脂を10重量部、溶剤としてトルエン
を50重量部を、それぞれ秤量、混合したペーストを、
ドクターブレード法により製膜し、熱プレスを施した後
に85℃にて24時間キュアリングするという方法を用
いた。
To make the above soft magnetic powder into a composite magnetic material, 90 parts by weight of the soft magnetic material powder, 10 parts by weight of chlorinated polyethylene resin as a binder, and 50 parts by weight of toluene as a solvent are used. Weigh and mix the paste,
A method of forming a film by a doctor blade method, applying a hot press, and then curing at 85 ° C. for 24 hours was used.

【0034】[0034]

【実施例】(実施例1)前記組成で比表面積の異なるF
e−Al−Si合金粉末を3種類準備した。BET法で
測定したそれらの比表面積は、それぞれ0.67m
g、1.33m/g、0.17m/gである。図1
は、比表面積が0.67m/gのFe−Al−Si合
金粉末の粒度分布を示した図である。この粒度分布曲線
は、最大値を持ち、極大値及び極小値を持たない曲線で
あり、この合金粉末が単一な粒度分布を有することを示
している。また、他の合金粉末の粒度分布もこれと同様
である。なお、これらの合金粉末を表面分析した結果、
合金粉末の表面は出発組成に比較して、鉄が過剰な組成
となっていることが推定された。
Example 1 Example 1
Three types of e-Al-Si alloy powder were prepared. Their specific surface areas measured by the BET method are 0.67 m 2 /
g, is a 1.33m 2 /g,0.17m 2 / g. FIG.
FIG. 2 is a view showing the particle size distribution of an Fe—Al—Si alloy powder having a specific surface area of 0.67 m 2 / g. This particle size distribution curve has a maximum value and no maximum value or minimum value, and indicates that the alloy powder has a single particle size distribution. The same applies to the particle size distribution of other alloy powders. As a result of surface analysis of these alloy powders,
It was presumed that the surface of the alloy powder had an excess composition of iron compared to the starting composition.

【0035】これらの合金粉末を前記の方法により複合
磁性体シートとして、特性評価用の試料とした。ここ
で、便宜上、比表面積が0.67m/gの合金粉末を
使用した複合磁性体からなるものを試料1とし、以下同
様に1.33m/gのものを試料2、0.17m/g
のものを試料3とする。
These alloy powders were used as composite magnetic sheets by the above-mentioned method to prepare samples for evaluating the characteristics. For convenience, those having a specific surface area of a composite magnetic body using the alloy powder of 0.67 m 2 / g was used as a sample 1, and so 1.33 m 2 / g sample things 2,0.17M 2 / G
This is designated as Sample 3.

【0036】これらの試料について、振動型磁力計並び
に走査型電子顕微鏡を用いて解析したところ、磁化容易
軸及び粒子配向方向は、試料面内方向であった。また、
これらの複合磁性体試料の性能を検証するために、これ
らの試料の透磁率−周波数(μ−f)特性及び電磁干渉
抑制効果を調べた。ここで、μ−f特性の測定では、ト
ロイダル形状に加工した複合磁性体試料を、1ターンコ
イルを形成するテストフィクスチャに挿入し、インピー
ダンスを計測することにより、複素透磁率のμ′及び
μ″を求めた。
When these samples were analyzed using a vibrating magnetometer and a scanning electron microscope, the easy axis of magnetization and the direction of particle orientation were in the in-plane directions of the samples. Also,
In order to verify the performance of these composite magnetic material samples, the permeability-frequency (μ-f) characteristics and the electromagnetic interference suppressing effect of these samples were examined. Here, in the measurement of the μ-f characteristic, a composite magnetic material sample processed into a toroidal shape was inserted into a test fixture forming a one-turn coil, and the impedance was measured to obtain μ ′ and μ of the complex magnetic permeability. ″.

【0037】また、図2は、複合磁性体の電磁干渉抑制
効果を検証するための評価装置の概略を示したものであ
る。ここでは、厚さ2mmで一辺が200mmの正方形
の複合磁性体シート21に銅板22を裏打ちし、評価用
試料23とした。電磁干渉抑制効果の評価には、電磁界
波源用発振器24を用いた波源用素子及び受信用素子と
して、ループ径1.5mmの電磁界送信用及び電磁界受
信用の微小ループアンテナ25、26を用い、結合レベ
ルの測定にはネットワークアナライザ(電磁界強度測定
器)27を用いた。
FIG. 2 shows an outline of an evaluation apparatus for verifying the effect of suppressing the electromagnetic interference of the composite magnetic body. Here, a copper sheet 22 was lined with a square composite magnetic material sheet 21 having a thickness of 2 mm and a side of 200 mm, which was used as an evaluation sample 23. To evaluate the effect of suppressing electromagnetic interference, micro-loop antennas 25 and 26 for transmitting and receiving electromagnetic fields having a loop diameter of 1.5 mm were used as wave source elements and receiving elements using the electromagnetic wave source oscillator 24. A network analyzer (electromagnetic field intensity measuring device) 27 was used for measuring the coupling level.

【0038】図3、図4、図5は、それぞれ試料1、試
料2、試料3のμ−f特性を示したものである。図3、
図4においては、いずれも2つの磁気共鳴の発現によっ
て高周波領域におけるμ″の値が大きく、かつ広帯域に
亘っていることが判る。これに対し、図5においては、
μ″が広帯域に拡がることはなく、一般的に複合磁性体
に見られるμ−f特性を示している。
FIGS. 3, 4 and 5 show the μ-f characteristics of Sample 1, Sample 2 and Sample 3, respectively. FIG.
4, it can be seen that the value of μ ″ in the high-frequency region is large due to the appearance of two magnetic resonances, and that the value extends over a wide band. In contrast, in FIG.
μ ″ does not spread over a wide band, and shows μ-f characteristics generally found in a composite magnetic material.

【0039】これらの結果から、比表面積が比較的小さ
な合金粉末を用いた複合磁性体においては、1つの磁気
共鳴のみ観察されるが、比表面積がより大きい合金粉末
を用いた複合磁性体においては、粒度分布が単一である
にも拘らず、2つの磁気共鳴が明瞭に観察され、その結
果として磁気損失項μ″も広帯域に亘る2つの分散を示
す。そして、2つの磁気共鳴の発現は、合金粉末の比表
面積が大きい方がより顕著になる。即ち、比表面積が
0.3m/g以上の合金粉末を用いた試料1、試料2
は、高周波領域において、広帯域の磁気損失特性を有し
ていることが判る。
From these results, only one magnetic resonance is observed in the composite magnetic material using the alloy powder having a relatively small specific surface area, but in the composite magnetic material using the alloy powder having a large specific surface area, In spite of a single particle size distribution, two magnetic resonances are clearly observed, and as a result, the magnetic loss term μ ″ also shows two dispersions over a wide band. The larger the specific surface area of the alloy powder becomes, the more remarkable, that is, Sample 1 and Sample 2 using alloy powder having a specific surface area of 0.3 m 2 / g or more.
It can be seen that has a wide band magnetic loss characteristic in a high frequency region.

【0040】次に、各試料のμ″分布及び電磁干渉抑制
効果について説明する。ここで、電磁干渉抑制効果の値
は、銅板を基準(0dB)としたときの信号減衰量であ
る。表1は、これらの結果を示したものである。
Next, the μ ″ distribution and the effect of suppressing electromagnetic interference of each sample will be described. Here, the value of the effect of suppressing electromagnetic interference is the signal attenuation when the copper plate is used as a reference (0 dB). Shows these results.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より、以下に述べる効果が明白であ
る。即ち、試料1及び試料2では、800MHz帯及び
1.9GHz帯のいずれの周波数帯においても良好な電
干渉抑制効果を示しているのに対して、試料3では、
1.9GHz帯での電磁干渉抑制効果はかなり劣る。従
って、本発明によるμ″分布の拡張効果が広い周波数に
亘る不要輻射の抑制に極めて有効であることが理解でき
る。
From Table 1, the following effects are apparent. That is, Sample 1 and Sample 2 show a good electromagnetic interference suppression effect in both the 800 MHz band and 1.9 GHz band, whereas Sample 3 shows
The effect of suppressing electromagnetic interference in the 1.9 GHz band is considerably inferior. Therefore, it can be understood that the effect of expanding the μ ″ distribution according to the present invention is extremely effective in suppressing unnecessary radiation over a wide frequency range.

【0043】(実施例2)次に、軟磁性体粉末として、
Fe−Ni合金粉末を用いた例について説明する。ここ
でも、比表面積がそれぞれ0.13m/g、0.47m
/g、0.61m/gの扁平形状の合金粉末を使用
して、実施例1と同様に複合磁性体を作製した。また、
いずれの粉末も粒度分布は単一な分散を示すことを確認
している。
Example 2 Next, as a soft magnetic material powder,
An example using Fe—Ni alloy powder will be described. Again, the specific surface areas are 0.13 m 2 / g and 0.47 m, respectively.
A composite magnetic body was produced in the same manner as in Example 1 by using a flat alloy powder of 2 / g and 0.61 m 2 / g. Also,
It has been confirmed that the particle size distribution of each powder shows a single dispersion.

【0044】ここでも、便宜上、比表面積が0.13m
/g、0.47m/g、0.61m/gの合金粉末
を使用した複合磁性体からなる特性評価用の試料をそれ
ぞれ試料4、試料5、試料6とする。図6、図7、図8
は、それぞれ試料4、試料5、試料6の透磁率特性の評
価結果を示す図である。
Here, for convenience, the specific surface area is 0.13 m.
2 /g,0.47m 2 /g,0.61m 2 / g of the alloy powder composed of a composite magnetic body using the characterization samples each sample 4 for sample 5, and sample 6. 6, 7, and 8
9 is a diagram showing evaluation results of the magnetic permeability characteristics of Sample 4, Sample 5, and Sample 6, respectively.

【0045】これらの結果より、比表面積が比較的小さ
な合金粉末を使用した試料4においては、1つの磁気共
鳴のみ観察されるが、比表面積がより大きい合金粉末を
用いた試料5及び試料6においては、単一な粒度分布に
も拘らず、2つの磁気共鳴が観察され、しかも比表面積
が大きい方がその現象が明瞭であることが判る。その結
果として、磁気損失項μ″も2つの分散を有すること
で、広い帯域に亘っている。
From these results, only one magnetic resonance was observed in sample 4 using the alloy powder having a relatively small specific surface area, but in sample 5 and sample 6 using the alloy powder having a large specific surface area. Shows that two magnetic resonances are observed in spite of a single particle size distribution, and that the phenomenon is clearer when the specific surface area is larger. As a result, the magnetic loss term μ ″ also has two dispersions, and thus covers a wide band.

【0046】(実施例3)実施例1及び実施例2は、扁
平形状の磁性粉末を用いた場合についての説明である
が、前記の通り、2つの磁気共鳴が発現する現象は、表
面磁気異方性によるものであると考えられるため、粉末
形状が扁平形状でなくとも同様の現象を発現する。その
例を次に示す。磁性粉末として、不定形の形状を有し、
粒度分布が単一分散を示すマグネタイト(Fe
粉末を準備した。この場合も比表面積が0.20m
g、1.3m/gの磁性粉末を用い、実施例1と同様
に作製した複合磁性体からなる試料を、それぞれ試料
7、試料8とする。
(Embodiment 3) Embodiments 1 and 2 are directed to the case where a flat magnetic powder is used. As described above, the phenomenon that two magnetic resonances occur is caused by the surface magnetic difference. Since it is considered to be due to anisotropy, the same phenomenon is exhibited even if the powder shape is not a flat shape. An example is shown below. As a magnetic powder, it has an irregular shape,
Magnetite (Fe 3 O 4 ) whose particle size distribution shows monodispersion
Powder was prepared. Also in this case, the specific surface area is 0.20 m 2 /
g and 1.3 m 2 / g of magnetic powder, and the samples made of the composite magnetic material prepared in the same manner as in Example 1 are referred to as Sample 7 and Sample 8, respectively.

【0047】図9、図10は、それぞれ試料7、試料8
の透磁率特性の評価結果を示したものである。これらの
結果より、比表面積が比較的小さな磁性粉末を用いた試
料においては、磁気共鳴が1つのみ観察されるが、比表
面積が大きい磁性粉末を用いた試料においては、単一な
粒度分布にも拘らず、2つの磁気共鳴が発現している。
FIGS. 9 and 10 show samples 7 and 8, respectively.
5 shows the results of evaluation of the magnetic permeability characteristics of the sample. From these results, only one magnetic resonance is observed in the sample using the magnetic powder having a relatively small specific surface area, but in the sample using the magnetic powder having a large specific surface area, a single particle size distribution is obtained. Nevertheless, two magnetic resonances have developed.

【0048】[0048]

【発明の効果】以上に具体的な例を示して説明したが、
磁性粉末の比表面積がある程度の大きさになると、単一
な組成と単一な粒度分布であっても、新たに高周波側に
磁気共鳴が出現する。即ち、組成、形状及び残留応力に
依存した周波数に出現する従来の磁気共鳴に加えて、よ
り大きな磁気異方性に基づく磁気共鳴が現れる。
As described above, a specific example has been described.
When the specific surface area of the magnetic powder reaches a certain level, magnetic resonance newly appears on the high frequency side even with a single composition and a single particle size distribution. That is, in addition to the conventional magnetic resonance that appears at a frequency depending on the composition, shape, and residual stress, a magnetic resonance based on a larger magnetic anisotropy appears.

【0049】本発明の実施例においても、用いた粉末の
形状や粒度分布は、単一なものとなっている。また、本
実施例においては、扁平形状の軟磁性金属微粒子の例を
多く挙げたが、本発明の単一微粒子での2つの磁気共鳴
の出現は、磁歪定数が0でない不定形状を有する磁性粉
末例えばマグネタイトなどにおいても、粉末の表面積が
ある程度の大きさになると現れてくる現象である。
Also in the embodiment of the present invention, the shape and the particle size distribution of the powder used are single. Further, in this embodiment, many examples of the soft magnetic metal fine particles having a flat shape are given. However, the appearance of two magnetic resonances in the single fine particles of the present invention is caused by a magnetic powder having an irregular shape whose magnetostriction constant is not zero. For example, in a magnetite or the like, this phenomenon occurs when the surface area of the powder reaches a certain size.

【0050】このように、本発明の軟磁性体粉末及びそ
れを用いた複合磁性体は、単一の組成及び粒度分布を有
しながら、互いに異なる周波数領域に2つの磁気共鳴が
出現するので、広帯域なμ″分散特性が見られる。この
虚数部透磁率μ″は、電磁波の吸収に必要な磁気損失項
であり、μ″に値が大きく、かつ広帯域に亘っているこ
とにより優れたノイズ抑制効果が現れる。
As described above, the soft magnetic material powder of the present invention and the composite magnetic material using the same have a single composition and particle size distribution, but two magnetic resonances appear in different frequency regions from each other. The imaginary part magnetic permeability μ ″ is a magnetic loss term necessary for absorbing electromagnetic waves, and has a large value of μ ″ and excellent noise suppression due to its wide band. The effect appears.

【0051】これにより、移動体通信機器を始めとする
高周波電子機器類内部でのノイズ抑制に有効な薄型の複
合磁性体を提供することができる。さらに、本発明の軟
磁性体粉末及びそれを用いた複合磁性体は、その構成要
素の特長から容易に可撓性を付与することが可能であ
り、複雑な形状への対応や厳しい耐振動性、耐衝撃性の
要求への対応が可能である。
Thus, it is possible to provide a thin composite magnetic material that is effective for suppressing noise inside high-frequency electronic devices such as mobile communication devices. Further, the soft magnetic material powder of the present invention and the composite magnetic material using the same can easily impart flexibility due to the features of the constituent elements, and can cope with complicated shapes and have severe vibration resistance. It is possible to meet the demand for impact resistance.

【0052】以上、説明したように、本発明による軟磁
性体粉末及びそれを用いた複合磁性体は、不要電磁波の
輻射抑制などに効果的な材料であり、電子部品、特に高
速動作する能動素子や高密度実装されたプリント配線基
板などにおけるノイズ防止に極めて有効である。
As described above, the soft magnetic material powder and the composite magnetic material using the same according to the present invention are effective materials for suppressing the radiation of unnecessary electromagnetic waves, and are used for electronic parts, especially active elements which operate at high speed. It is very effective for preventing noise in printed wiring boards and high-density mounting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる磁性粉末の粒度分布を示す図。FIG. 1 is a diagram showing a particle size distribution of a magnetic powder used in the present invention.

【図2】本発明の複合磁性体の電磁干渉抑制効果を評価
するための装置を模式的に示す図。
FIG. 2 is a view schematically showing an apparatus for evaluating the electromagnetic interference suppressing effect of the composite magnetic body of the present invention.

【図3】本発明の実施例における試料1のμ−f特性を
示す図。
FIG. 3 is a graph showing μ-f characteristics of Sample 1 in an example of the present invention.

【図4】本発明の実施例における試料2のμ−f特性を
示す図。
FIG. 4 is a graph showing μ-f characteristics of Sample 2 in an example of the present invention.

【図5】本発明の実施例における試料3のμ−f特性を
示す図。
FIG. 5 is a diagram showing μ-f characteristics of Sample 3 in an example of the present invention.

【図6】本発明の実施例における試料4のμ−f特性を
示す図。
FIG. 6 is a graph showing μ-f characteristics of Sample 4 in an example of the present invention.

【図7】本発明の実施例における試料5のμ−f特性を
示す図。
FIG. 7 is a graph showing μ-f characteristics of Sample 5 in an example of the present invention.

【図8】本発明の実施例における試料6のμ−f特性を
示す図。
FIG. 8 is a diagram showing μ-f characteristics of Sample 6 in an example of the present invention.

【図9】本発明の実施例における試料7のμ−f特性を
示す図。
FIG. 9 is a graph showing μ-f characteristics of Sample 7 in the example of the present invention.

【図10】本発明の実施例における試料8のμ−f特性
を示す図。
FIG. 10 is a graph showing μ-f characteristics of Sample 8 in an example of the present invention.

【符号の説明】 21 複合磁性体 22 銅板 23 評価用試料 24 電磁界波源用発振器 31 磁気共鳴1 32 磁気共鳴2 33 磁気共鳴1に対応するピーク 34 磁気共鳴2に対応するピークDESCRIPTION OF SYMBOLS 21 Composite magnetic body 22 Copper plate 23 Evaluation sample 24 Oscillator for electromagnetic field wave source 31 Magnetic resonance 1 32 Magnetic resonance 2 33 Peak corresponding to magnetic resonance 1 34 Peak corresponding to magnetic resonance 2

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA03 AB02 AD04 AE02 4K018 AA26 BA16 BB01 BB04 BD05 5E041 AA04 AA07 AB14 CA06 HB17 NN06 NN15 5E321 AA32 BB32 BB44 BB53 BB55 GG05 GG07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G002 AA03 AB02 AD04 AE02 4K018 AA26 BA16 BB01 BB04 BD05 5E041 AA04 AA07 AB14 CA06 HB17 NN06 NN15 5E321 AA32 BB32 BB44 BB53 BB55 GG05 GG07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 組成が単一で、最大値を持ちかつ極大値
及び極小値を持たない粒度分布曲線を有し、互いに異な
る大きさの2つの異方性磁界を有することを特徴とする
軟磁性粉末。
A soft material having a single composition, a particle size distribution curve having a maximum value and no maximum value and no minimum value, and having two anisotropic magnetic fields having mutually different magnitudes. Magnetic powder.
【請求項2】 比表面積が0.3m/g以上であるこ
とを特徴とする請求項1に記載の軟磁性粉末。
2. The soft magnetic powder according to claim 1, wherein the specific surface area is 0.3 m 2 / g or more.
【請求項3】 少なくとも表面近傍における組成の磁歪
定数が0でないことを特徴とする請求項1または請求項
2に記載の軟磁性粉末。
3. The soft magnetic powder according to claim 1, wherein a magnetostriction constant of the composition at least near the surface is not zero.
【請求項4】 扁平形状を有することを特徴とする請求
項1ないし請求項3のいずれかに記載の軟磁性粉末。
4. The soft magnetic powder according to claim 1, which has a flat shape.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の軟磁性粉末と結合剤からなり、互いに異なる周波数
領域で、2つの磁気共鳴を示すことを特徴とする複合磁
性体。
5. A composite magnetic body comprising the soft magnetic powder according to claim 1 and a binder, and exhibiting two magnetic resonances in mutually different frequency regions.
【請求項6】 軟磁性粉末が配向、配列されていること
を特徴とする請求項5に記載の複合磁性体。
6. The composite magnetic body according to claim 5, wherein the soft magnetic powders are oriented and arranged.
JP2000024772A 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same Pending JP2001210510A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000024772A JP2001210510A (en) 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same
KR1020017011867A KR20020034989A (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using the same
CN01800122A CN1363100A (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using same
EP01901524A EP1166289A1 (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using the same
PCT/JP2001/000438 WO2001056043A1 (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using the same
NO20014745A NO20014745L (en) 2000-01-28 2001-09-28 Soft magnetic powder and composite magnetic material using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024772A JP2001210510A (en) 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same

Publications (2)

Publication Number Publication Date
JP2001210510A true JP2001210510A (en) 2001-08-03
JP2001210510A5 JP2001210510A5 (en) 2004-08-26

Family

ID=18550712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024772A Pending JP2001210510A (en) 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same

Country Status (6)

Country Link
EP (1) EP1166289A1 (en)
JP (1) JP2001210510A (en)
KR (1) KR20020034989A (en)
CN (1) CN1363100A (en)
NO (1) NO20014745L (en)
WO (1) WO2001056043A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178909A (en) * 2001-12-10 2003-06-27 Mitsubishi Materials Corp Mixed powder for wave absorber showing excellent wave absorbing characteristic to high frequency in wide frequency band and wave absorber
JP2006013976A (en) * 2004-06-28 2006-01-12 Tdk Corp Soft magnetic substance and antenna unit using same
JP2006339528A (en) * 2005-06-03 2006-12-14 Polymatech Co Ltd Radio wave absorber and its manufacturing method
JP2008546169A (en) * 2005-05-14 2008-12-18 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for attenuating reflections of electromagnetic waves, method for manufacturing the device, and use of the device
JP2009508006A (en) * 2005-09-16 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Reduction method
JP2011082278A (en) * 2009-10-06 2011-04-21 Nec Tokin Corp Composite magnetic material
JP2017208416A (en) * 2016-05-17 2017-11-24 株式会社リケン Near field noise suppression sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041121A1 (en) * 2002-08-30 2004-03-04 Shigeyoshi Yoshida Magnetic loss material and method of producing the same
KR100571119B1 (en) * 2005-01-11 2006-04-13 공주대학교 산학협력단 Soft magnetic nano-particles coated with ferrites and making process thereof, soft magnetic core using the same
CN101142044B (en) * 2005-01-25 2010-12-01 大冶美有限公司 Iron powder coated with mg-containing oxide film
JPWO2014098065A1 (en) * 2012-12-19 2017-01-12 戸田工業株式会社 Electromagnetic interference suppressor
CN105985583A (en) * 2016-06-02 2016-10-05 横店集团东磁股份有限公司 Preparation method of rubber-plastic soft-magnetism antifreeze plate for wireless charging
CN112980199B (en) * 2021-04-19 2022-06-03 闽都创新实验室 Organosilicon composite magnetic material for shielding low-frequency alternating magnetic field and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993034A (en) * 1995-09-22 1997-04-04 Tokin Corp Compound magnetic substance, manufacture of the same and electromagnetic interference suppresser
JP3404618B2 (en) * 1996-09-02 2003-05-12 エヌイーシートーキン株式会社 Electromagnetic interference suppressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178909A (en) * 2001-12-10 2003-06-27 Mitsubishi Materials Corp Mixed powder for wave absorber showing excellent wave absorbing characteristic to high frequency in wide frequency band and wave absorber
JP2006013976A (en) * 2004-06-28 2006-01-12 Tdk Corp Soft magnetic substance and antenna unit using same
JP4530140B2 (en) * 2004-06-28 2010-08-25 Tdk株式会社 Soft magnetic material and antenna device using the same
JP2008546169A (en) * 2005-05-14 2008-12-18 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for attenuating reflections of electromagnetic waves, method for manufacturing the device, and use of the device
JP4904343B2 (en) * 2005-05-14 2012-03-28 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for attenuating reflections of electromagnetic waves, method for manufacturing the device, and use of the device
JP2006339528A (en) * 2005-06-03 2006-12-14 Polymatech Co Ltd Radio wave absorber and its manufacturing method
JP2009508006A (en) * 2005-09-16 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Reduction method
JP2011082278A (en) * 2009-10-06 2011-04-21 Nec Tokin Corp Composite magnetic material
JP2017208416A (en) * 2016-05-17 2017-11-24 株式会社リケン Near field noise suppression sheet

Also Published As

Publication number Publication date
EP1166289A1 (en) 2002-01-02
NO20014745D0 (en) 2001-09-28
NO20014745L (en) 2001-09-28
KR20020034989A (en) 2002-05-09
CN1363100A (en) 2002-08-07
WO2001056043A1 (en) 2001-08-02

Similar Documents

Publication Publication Date Title
KR100267358B1 (en) Composite magnetic material and product for eliminating electromagnetic interference
JP3812977B2 (en) Electromagnetic interference suppressor
US20040041121A1 (en) Magnetic loss material and method of producing the same
US20040108486A1 (en) Composite magnetic material and electromagnetic interference suppressor member using the same
JP2010135701A (en) Electromagnetic wave suppression sheet, device and electronic apparatus
JPH07212079A (en) Electromagnetic wave interference suppressor
JPH0993034A (en) Compound magnetic substance, manufacture of the same and electromagnetic interference suppresser
JP2001210510A (en) Soft magnetic powder and composite magnetic unit using the same
KR100453982B1 (en) EMI protection components and active devices with them
JP3404618B2 (en) Electromagnetic interference suppressor
JPH1079302A (en) Composite magnetic body and electromagnetic interference supressor provided therhwith
JPH10106839A (en) Multilayer high-frequency inductor
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
KR100755775B1 (en) Electromagnetic noise supression film and process of production thereof
JP4097160B2 (en) Method for manufacturing electromagnetic interference suppressor
JP4036300B2 (en) Magnetic loss body and manufacturing method thereof
WO2011046125A1 (en) Magnetic material for high frequency applications and high frequency device
JPH10229292A (en) Electromagnetic wave interference suppressor
JP2011082278A (en) Composite magnetic material
JP3979541B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JPH0818271A (en) Electronic device and noise suppressing method
JPH10308592A (en) Composite magnetic body and electromagnetic interference suppressing body
JP3505691B2 (en) Electronic equipment
Chata'ni et al. Evaluation of Noise Suppression Sheet Embedded in Printed Circuit Boards
JP2008098392A (en) Electromagnetic interference suppressor using soft magnetic powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041104