JP2001210510A5 - - Google Patents

Download PDF

Info

Publication number
JP2001210510A5
JP2001210510A5 JP2000024772A JP2000024772A JP2001210510A5 JP 2001210510 A5 JP2001210510 A5 JP 2001210510A5 JP 2000024772 A JP2000024772 A JP 2000024772A JP 2000024772 A JP2000024772 A JP 2000024772A JP 2001210510 A5 JP2001210510 A5 JP 2001210510A5
Authority
JP
Japan
Prior art keywords
magnetic powder
soft magnetic
magnetic
powder
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000024772A
Other languages
Japanese (ja)
Other versions
JP2001210510A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2000024772A priority Critical patent/JP2001210510A/en
Priority claimed from JP2000024772A external-priority patent/JP2001210510A/en
Priority to CN01800122A priority patent/CN1363100A/en
Priority to EP01901524A priority patent/EP1166289A1/en
Priority to PCT/JP2001/000438 priority patent/WO2001056043A1/en
Priority to KR1020017011867A priority patent/KR20020034989A/en
Publication of JP2001210510A publication Critical patent/JP2001210510A/en
Priority to NO20014745A priority patent/NO20014745D0/en
Publication of JP2001210510A5 publication Critical patent/JP2001210510A5/ja
Pending legal-status Critical Current

Links

Description

【0012】
広い周波数範囲不要輻射に対応するために、必要な大きさの異方性磁界(Hk)を広い周波数範囲で与える軟磁性粉末を得るには、複数の互いに異なる大きさの異方性磁界(Hk)を有する複数の磁性粉末を混合する方法があるが、本発明者らは、より簡便に即ち単一種の組成を有する粉末にて2つの互いに異なる大きさの異方性磁界(Hk)を有する磁性粉末を得る方法を見出し本発明をなすに到った。
[0012]
In order to obtain a soft magnetic powder that provides an anisotropic magnetic field (Hk) of the required magnitude over a wide frequency range in order to cope with unwanted radiation over a wide frequency range, it is necessary to obtain a plurality of anisotropic magnetic fields of different sizes. Although there is a method of mixing a plurality of magnetic powders having Hk), the present inventors more simply generate two differently sized anisotropic magnetic fields (Hk) in a powder having a single composition. A method for obtaining a magnetic powder having a magnetic powder has been found, and the present invention has been made.

【0013】
本発明によれば、組成が単一で、最大値を持ちかつ極大値及び極小値を持たない粒度分布曲線を有し、互いに異なる大きさの2つの異方性磁界を有し、比表面積が0.3m /g以上であることを特徴とする軟磁性粉末が得られる。
0013
According to the present invention, the composition is single, has a particle size distribution curve having a maximum value and no maximum value and no minimum value, has two anisotropic magnetic fields of different sizes, and has a specific surface area. A soft magnetic powder characterized by having a thickness of 0.3 m 2 / g or more can be obtained.

【0025】
この表面磁気異方性に起因すると考えられる2つ磁気共鳴発現については、粉末単位重量あたりの表面積、即ち比表面積の大きさが支配的な要因であるが、表面磁気異方性をもたらす他の要因、例えば磁気弾性効果の大きさ、即ち磁歪定数大きさや、粉末に残留する歪の大きさによっても2つの共鳴が発現する表面積が異なってくるので、その値を特定して示すのは困難である。
0025.
The surface area per unit weight of the powder, that is, the size of the specific surface area, is the dominant factor for the two magnetic resonances that are considered to be caused by this surface magnetic anisotropy, but other factors that cause surface magnetic anisotropy. It is difficult to specify and show the value because the surface area where the two resonances occur differs depending on the factor, for example, the magnitude of the magnetic elastic effect, that is, the magnitude of the magnetostrictive constant and the magnitude of the strain remaining in the powder. Is.

【0026】
しかしながら、粉末が大きな磁気弾性効果による異方性を有するほど、2つの磁気共鳴が現れる表面積は小さくなる傾向認められている。従って、機械的に摩砕され扁平化された粉末では、摩砕による残留応力がかなり大きいと考えられるので、比較的小さな表面積で2つの共鳴が認められる場合が多い。
0026
However, it has been found that the surface area where the two magnetic resonances appear tends to be smaller as the powder has anisotropy due to the greater magnetic elasticity effect. Therefore, in the mechanically ground and flattened powder, it is considered that the residual stress due to the grinding is considerably large, so that two resonances are often observed in a relatively small surface area.

【0046】
(実施例3)
実施例1及び実施例2は、扁平形状の磁性粉末を用いた場合についての説明であるが、前記の通り、2つの磁気共鳴が発現する現象は、表面磁気異方性によるものであると考えられるため、粉末形状が扁平形状でなくとも同様の現象を発現する。その例を次に示す。磁性粉末として、磁歪定数が0でない不定形の形状を有し、粒度分布が単一分散を示すマグネタイト(Fe)粉末を準備した。この場合も比表面積が0.20m/g、1.3m/gの磁性粉末を用い、実施例1と同様に作製した複合磁性体からなる試料を、それぞれ試料7、試料8とする。
[0046]
(Example 3)
Examples 1 and 2 are described in the case of using a flat magnetic powder, but as described above, it is considered that the phenomenon of two magnetic resonances is due to surface magnetic anisotropy. Therefore, the same phenomenon occurs even if the powder shape is not flat. An example is shown below. As the magnetic powder, a magnetite (Fe 3 O 4 ) powder having an amorphous shape with a non- zero magnetostrictive constant and a particle size distribution showing a single dispersion was prepared. In this case as well, the magnetic powders having a specific surface area of 0.20 m 2 / g and 1.3 m 2 / g are used, and the samples made of the composite magnetic material prepared in the same manner as in Example 1 are referred to as Sample 7 and Sample 8, respectively.

Claims (5)

組成が単一で、最大値を持ちかつ極大値及び極小値を持たない粒度分布曲線を有し、互いに異なる大きさの2つの異方性磁界を有し、比表面積が0.3m /g以上であることを特徴とする軟磁性粉末。Composition has a particle size distribution curve having a single maximum, maximum value and no maximum value and minimum value, has two anisotropic magnetic fields of different sizes , and has a specific surface area of 0.3 m 2 / g soft magnetic powder wherein a call is not less than. 少なくとも表面近傍における組成の磁歪定数が0でないことを特徴とする請求項1記載の軟磁性粉末。The soft magnetic powder according to claim 1 , wherein the magnetostriction constant of the composition at least near the surface is not zero. 扁平形状を有することを特徴とする請求項1に記載の軟磁性粉末。The soft magnetic powder according to claim 1, having a flat shape. 請求項1乃至3の内のいずれか一つに記載の軟磁性粉末と結合剤からなり、互いに異なる周波数領域で、2つの磁気共鳴を示すことを特徴とする複合磁性体。A composite magnetic body comprising the soft magnetic powder according to any one of claims 1 to 3 and a binder and exhibiting two magnetic resonances in mutually different frequency regions. 前記軟磁性粉末が配向、配列されていることを特徴とする請求項に記載の複合磁性体。The composite magnetic body according to claim 3 , wherein the soft magnetic powder is oriented and arranged.
JP2000024772A 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same Pending JP2001210510A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000024772A JP2001210510A (en) 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same
CN01800122A CN1363100A (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using same
EP01901524A EP1166289A1 (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using the same
PCT/JP2001/000438 WO2001056043A1 (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using the same
KR1020017011867A KR20020034989A (en) 2000-01-28 2001-01-24 Soft magnetic powder and composite magnetic material using the same
NO20014745A NO20014745D0 (en) 2000-01-28 2001-09-28 Soft magnetic powder and composite magnetic material using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024772A JP2001210510A (en) 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same

Publications (2)

Publication Number Publication Date
JP2001210510A JP2001210510A (en) 2001-08-03
JP2001210510A5 true JP2001210510A5 (en) 2004-08-26

Family

ID=18550712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024772A Pending JP2001210510A (en) 2000-01-28 2000-01-28 Soft magnetic powder and composite magnetic unit using the same

Country Status (6)

Country Link
EP (1) EP1166289A1 (en)
JP (1) JP2001210510A (en)
KR (1) KR20020034989A (en)
CN (1) CN1363100A (en)
NO (1) NO20014745D0 (en)
WO (1) WO2001056043A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864773B2 (en) * 2001-12-10 2007-01-10 三菱マテリアル株式会社 Mixed powder for radio wave absorber and radio wave absorber exhibiting excellent radio wave absorption characteristics for high frequencies in a wide frequency band
US20040041121A1 (en) * 2002-08-30 2004-03-04 Shigeyoshi Yoshida Magnetic loss material and method of producing the same
JP4530140B2 (en) * 2004-06-28 2010-08-25 Tdk株式会社 Soft magnetic material and antenna device using the same
KR100571119B1 (en) * 2005-01-11 2006-04-13 공주대학교 산학협력단 Soft magnetic nano-particles coated with ferrites and making process thereof, soft magnetic core using the same
CN101142044B (en) * 2005-01-25 2010-12-01 大冶美有限公司 Iron powder coated with mg-containing oxide film
DE102005022473B4 (en) * 2005-05-14 2007-05-24 Forschungszentrum Karlsruhe Gmbh Device for damping reflections of electromagnetic waves, process for their preparation and their use
JP2006339528A (en) * 2005-06-03 2006-12-14 Polymatech Co Ltd Radio wave absorber and its manufacturing method
CN101268205A (en) * 2005-09-16 2008-09-17 H.C.施塔克有限公司 Reduction method
JP5453036B2 (en) * 2009-10-06 2014-03-26 Necトーキン株式会社 Composite magnetic material
JPWO2014098065A1 (en) * 2012-12-19 2017-01-12 戸田工業株式会社 Electromagnetic interference suppressor
JP6280157B2 (en) * 2016-05-17 2018-02-14 株式会社リケン Near-field noise suppression sheet
CN105985583A (en) * 2016-06-02 2016-10-05 横店集团东磁股份有限公司 Preparation method of rubber-plastic soft-magnetism antifreeze plate for wireless charging
CN112980199B (en) * 2021-04-19 2022-06-03 闽都创新实验室 Organosilicon composite magnetic material for shielding low-frequency alternating magnetic field and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993034A (en) * 1995-09-22 1997-04-04 Tokin Corp Compound magnetic substance, manufacture of the same and electromagnetic interference suppresser
JP3404618B2 (en) * 1996-09-02 2003-05-12 エヌイーシートーキン株式会社 Electromagnetic interference suppressor

Similar Documents

Publication Publication Date Title
Muhammad et al. Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4
JP2001210510A5 (en)
Bednarek The giant magnetostriction in ferromagnetic composites within an elastomer matrix.
Lim et al. Magnetostrictive properties of polymer-bonded Terfenol-D composites
Anantharamaiah et al. Magnetic and magnetostrictive properties of aluminium substituted cobalt ferrite synthesized by citrate-gel method
US20040041121A1 (en) Magnetic loss material and method of producing the same
Feutrill et al. Magnetization behaviour in exchange-coupled-Fe
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
Liu et al. Structure and magnetic properties of bulk anisotropic SmCo5/α-Fe nanocomposite permanent magnets with different α-Fe content
Hudson et al. Magnetomechanical coupling and elastic moduli of polymer-bonded Terfenol composites
Kwon et al. Viscoelastic and mechanical behaviors of magneto-rheological carbonyl iron/natural rubber composites with magnetic iron oxide nanoparticle
Leger et al. Composite magnetic materials based on nanocrystalline powders for middle-and high-frequency applications up to 1 MHz
Ausanio et al. Magneto-piezoresistance in elastomagnetic composites
Hudson et al. Dynamic magneto-mechanical properties of epoxy-bonded Terfenol-D composites
CN1363100A (en) Soft magnetic powder and composite magnetic material using same
Lo et al. Large magnetostriction in epoxy-bonded Terfenol-D continuous-fiber composite with [112] crystallographic orientation
Khlopkov et al. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation
Porath Stress induced magnetic anisotropy in natural single crystals of hematite
Liu et al. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route
Furthmuller et al. Theory of magnetostriction in amorphous and polycrystalline ferromagnets
Yoo et al. Influence of particle size and filling factor of Galfenol flakes on sensing performance of magnetostrictive composite transducers
Zhao et al. Flexible Pr‐doped Fe–Ga composite materials: preparation, microstructure, and magnetostrictive properties
Lin et al. Magnetomechanical behavior of Tb 0.2 Dy 0.8− x Pr x (Fe 0.8 Co 0.2) 1.93/epoxy pseudo-1–3 particulate composites
JP3936706B2 (en) Nonmagnetic nickel powder and method for producing the same
JP4036300B2 (en) Magnetic loss body and manufacturing method thereof