JPH10242543A - Resin bonding type magnetostrictive material - Google Patents

Resin bonding type magnetostrictive material

Info

Publication number
JPH10242543A
JPH10242543A JP9044398A JP4439897A JPH10242543A JP H10242543 A JPH10242543 A JP H10242543A JP 9044398 A JP9044398 A JP 9044398A JP 4439897 A JP4439897 A JP 4439897A JP H10242543 A JPH10242543 A JP H10242543A
Authority
JP
Japan
Prior art keywords
powder
magnetostrictive
magnetostrictive material
magnetic field
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9044398A
Other languages
Japanese (ja)
Inventor
Fumio Takagi
富美男 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9044398A priority Critical patent/JPH10242543A/en
Publication of JPH10242543A publication Critical patent/JPH10242543A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide resin bonding type magnetostrictive material wherein eddy current loss and hysteresis loss in high frequency are little, and conversion efficiency, mechanical strength and durability are high, and realize a magnetostrictive type actuator and a vibrator of simple structure wherein a permanent magnet and a coil for a bias magnetic field are unnecessary. SOLUTION: Magnetostrictive material, in particular, magnetostrictive alloy powder composed of composition of Tb1-x Dyx Fe2 (0.5<x<0.75) and rare earth magnet material are mixed, and resin bonding type magnetostrictive material 5 is obtained. Outside the material 5, a driving coil 2 is arranged. The easy magnetization direction of the magnetostrictive material powder and the magnet material powder is oriented in one direction by magnetic field orientation. Further, magnetic powder wherein mixed ratio of the magnet material powder is 10-40vol.% and coercive force is at least 80kA/m is mixed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁歪式アクチュエ
ータや磁歪式超音波振動子に用いられる、樹脂結合型磁
歪材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-coupled magnetostrictive material used for a magnetostrictive actuator or a magnetostrictive ultrasonic vibrator.

【0002】[0002]

【従来の技術】磁歪材料に外部から磁界を与えると、結
晶の磁化方向が回転し、ひずみの方向や大きさが変わり
外形変化を生ずる現象を磁歪(ジュール効果)と呼ぶ。
磁歪材料はこの原理を応用して超精密アクチュエータや
超音波振動子、音響素子、トルクセンサー、振動センサ
ーなどに用いられている。代表的な磁歪材料としては、
Ni、Fe−Al合金、フェライト、RFe2(Rは希
土類元素)などがあるが、中でもTb−Dy−Fe系磁
歪合金は非常に大きな飽和磁歪を示し、超磁歪材料と呼
ばれ最もよく用いられている。
2. Description of the Related Art When a magnetic field is applied to a magnetostrictive material from the outside, the magnetization direction of the crystal is rotated, the direction and magnitude of the strain are changed, and a phenomenon in which the outer shape changes is called magnetostriction (Joule effect).
Magnetostrictive materials are applied to ultra-precision actuators, ultrasonic transducers, acoustic elements, torque sensors, vibration sensors, etc. by applying this principle. As typical magnetostrictive materials,
There are Ni, Fe-Al alloy, ferrite, RFe2 (R is a rare earth element) and the like. Among them, Tb-Dy-Fe-based magnetostrictive alloy shows a very large saturation magnetostriction, and is called a giant magnetostrictive material and used most often. I have.

【0003】しかしながら、高周波数では渦電流損が大
きくその用途には限界があった。この問題を解決するた
めに、樹脂結合型の磁歪材料が考案され、A.E.クラ
ーク、江田 弘著 超磁歪材料(日刊工業新聞社)に示
されている。これはTb、Dy、Feおよび少量の添加
元素で構成された超磁歪材料の合金粉末を非金属のバイ
ンダーを用いて成形したものである。バインダーは粒子
間の絶縁層の役割をもち高周波数での渦電流損を減少さ
せる効果がある。さらに、この複合化により引っ張り強
度が向上し、ヒステリシス損も小さくなることが知られ
ている。
However, at high frequencies, eddy current loss is large and there is a limit to its use. To solve this problem, a resin-bound type magnetostrictive material has been devised. E. FIG. It is shown in Clark, Hiroshi Eda in Giant Magnetostrictive Materials (Nikkan Kogyo Shimbun). This is obtained by molding an alloy powder of a giant magnetostrictive material composed of Tb, Dy, Fe and a small amount of an additive element using a nonmetal binder. The binder has a role of an insulating layer between particles and has an effect of reducing eddy current loss at a high frequency. Further, it is known that the composite improves the tensile strength and reduces the hysteresis loss.

【0004】また複数の粉末を混合し、固相反応により
合金化して超磁歪粉末を作製し、樹脂と混合して一体化
する方法、またはホットプレスによって一体化する方法
が、特開平4−36401号公報に示されている。
Japanese Patent Application Laid-Open No. 4-36401 discloses a method in which a plurality of powders are mixed and alloyed by a solid-phase reaction to produce a giant magnetostrictive powder, which is then mixed with a resin and integrated, or integrated by hot pressing. No. in the official gazette.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、磁歪材
料を用いる場合には磁界応答性を高めるためにバイアス
磁界を必要とする。その方法としては、駆動コイルとは
別にバイアス用のコイルを設ける方法、駆動コイルに流
す交流電流に直流成分を重畳する方法、永久磁石を用い
る方法がある。このうちエネルギー効率の良さから永久
磁石を用いる方法が一般的である。しかし、磁束漏れが
大きく磁歪材料内部の磁界分布が不均一になるという問
題があった。その対策として磁気回路を工夫する方法が
とられていた。その結果、アクチュエータが大型化した
り構造が複雑になるという問題があった。
However, when a magnetostrictive material is used, a bias magnetic field is required to improve the magnetic field response. As a method therefor, there are a method of providing a bias coil separately from the drive coil, a method of superimposing a DC component on an AC current flowing through the drive coil, and a method of using a permanent magnet. Among them, a method using a permanent magnet is generally used because of its high energy efficiency. However, there is a problem that the magnetic flux leakage is large and the magnetic field distribution inside the magnetostrictive material becomes non-uniform. As a countermeasure, a method of devising a magnetic circuit has been adopted. As a result, there has been a problem that the actuator becomes large and the structure becomes complicated.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
バイアス磁界の不均一を解決し、高周波数でも効率が高
く、小型で構造が簡単なアクチュエータや振動子を実現
するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned nonuniformity of the bias magnetic field, and realizes an actuator and a vibrator which are high in efficiency even at a high frequency, small in size and simple in structure.

【0007】具体的に本発明の樹脂結合型磁歪材料は、
磁歪材料の粉末と磁石材料の粉末との混合粉、およびそ
れを結合する樹脂から構成されていることを特徴とする
ものである。
Specifically, the resin-bonded type magnetostrictive material of the present invention comprises:
It is characterized by being composed of a mixed powder of a powder of a magnetostrictive material and a powder of a magnetic material, and a resin binding the powder.

【0008】さらに、磁歪材料粉末と磁石材料の粉末と
の混合粉から構成されていて、磁歪材料粉末および磁石
材料粉末の磁化容易方向が、1方向に配向していること
を特徴とするもの、およびRFe2化合物(Rは希土類
元素のうち少なくとも1種)からなる磁歪合金粉末を用
いること、および、磁石材料がR2TM14B、RCo5
2TM17、Sm2Fe17x(RはYを含む希土類元素
のうち少なくとも1種、TMはFe,Coなどの遷移金
属のうち少なくとも1種)のうちのいずれかからなるこ
とを特徴とするものである。
[0008] Further, the magnetic powder is composed of a mixed powder of a magnetostrictive material powder and a magnetic material powder, wherein the directions of easy magnetization of the magnetostrictive material powder and the magnetic material powder are oriented in one direction. And a magnetostrictive alloy powder composed of an RFe 2 compound (R is at least one of rare earth elements), and the magnetic material is R 2 TM 14 B, RCo 5 ,
R 2 TM 17 or Sm 2 Fe 17 N x (R is at least one of rare earth elements including Y, and TM is at least one of transition metals such as Fe and Co). It is assumed that.

【0009】また、磁石粉末の混合比が、体積比で10
〜40%であることを特徴とするもの、および磁石材料
の保磁力が少なくとも80kA/m以上であることを特
徴とするものである。
Further, the mixing ratio of the magnet powder is 10% by volume.
-40%, and the coercive force of the magnetic material is at least 80 kA / m or more.

【0010】[0010]

【発明の実施の形態】以下、本発明を図にもとずいて詳
しく説明する。図5は従来用いられていた磁歪式アクチ
ュエータの代表的形状を示す概略図である。中央に円柱
状の磁歪材料1があり、そのまわりに駆動コイル2があ
る。磁歪材料1の上下に永久磁石3があり、磁歪材料に
バイアス磁界を与えている。図6は駆動コイル2の外側
にバイアス磁界用コイル4を配置した例である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 5 is a schematic view showing a typical shape of a conventionally used magnetostrictive actuator. At the center is a columnar magnetostrictive material 1, around which is a drive coil 2. Permanent magnets 3 are provided above and below the magnetostrictive material 1, and apply a bias magnetic field to the magnetostrictive material. FIG. 6 shows an example in which the bias magnetic field coil 4 is arranged outside the drive coil 2.

【0011】一方、図1は本発明の樹脂結合型磁歪材料
を用いた磁歪式アクチュエータの概略図である。中央に
円柱状の磁石材料粉末を混合した樹脂結合型磁歪材料5
があり、その外側に駆動コイル2が置かれている。応用
磁気学会誌vol.20,p221−224(199
6)に示されているように、磁気特性の異なる複数の粉
末を混合した場合、粉末間には静磁気的な相互作用がは
たらく。したがって、混合した磁石材料粉末を磁化した
状態で用いることにより、磁歪材料粉末に対してバイア
ス磁界を与えることができる。そのため、従来のような
バイアス磁界用の永久磁石およびコイルが不要となり、
構造が非常に簡単で小型化される。磁石材料粉末は樹脂
結合型磁歪材料の中に均一に分散しているために、バイ
アス磁界は非常に均一になっており、制御が簡単で磁界
応答性が高い。
FIG. 1 is a schematic view of a magnetostrictive actuator using the resin-bonded type magnetostrictive material of the present invention. Resin-bonded magnetostrictive material 5 in which a cylindrical magnet material powder is mixed in the center 5
And the drive coil 2 is placed outside thereof. Journal of the Japan Society of Applied Magnetics, vol. 20, pp. 221-224 (199
As shown in 6), when a plurality of powders having different magnetic properties are mixed, a magnetostatic interaction acts between the powders. Therefore, by using the mixed magnet material powder in a magnetized state, a bias magnetic field can be applied to the magnetostrictive material powder. This eliminates the need for conventional permanent magnets and coils for the bias magnetic field,
The structure is very simple and miniaturized. Since the magnet material powder is uniformly dispersed in the resin-bonded magnetostrictive material, the bias magnetic field is very uniform, the control is easy, and the magnetic field response is high.

【0012】磁歪の大きさは結晶の方向によって異な
り、磁化容易方向に最も大きい値が得られるため、樹脂
結合型磁歪材料を磁界中で配向させて成形すると、磁歪
性能が高くなる。バイアス磁界は磁歪材料の磁化容易方
向に与える必要があるため、磁石材料粉末と磁歪材料粉
末の混合粉を磁界中で圧縮成形して、磁歪材料粉末を1
方向に配向させることが望ましい。磁石材料粉末は、な
るべく低い体積比率で十分なバイアス磁界を与えるため
に異方性であることが望ましいが、等方性であってもよ
い。
The magnitude of magnetostriction varies depending on the direction of the crystal, and the largest value is obtained in the direction of easy magnetization. Therefore, when the resin-bonded magnetostrictive material is oriented in a magnetic field and molded, the magnetostrictive performance is improved. Since the bias magnetic field needs to be given in the direction of easy magnetization of the magnetostrictive material, a mixed powder of the magnet material powder and the magnetostrictive material powder is compression-molded in a magnetic field to reduce the magnetostrictive material powder to one.
It is desirable to orient in the direction. The magnet material powder is desirably anisotropic in order to provide a sufficient bias magnetic field at a volume ratio as low as possible, but may be isotropic.

【0013】磁歪材料の選定にあたっては、磁歪効果の
大きいRFe2化合物(Rは希土類元素のうち少なくと
も1種)の使用が望ましい。TbFe2は最も飽和磁歪
が大きい物質であるが、Tbの1部をDyで置換するこ
とにより結晶磁気異方性を下げるため、Tb1-xDyx
2(0.5<x<0.75)なる組成が好ましい。また、Dy
置換はキュリー温度Tcを下げるという問題があるた
め、Feの一部をMnで置換しスピン配列を容易軸方向
に安定化する方法がよく用いられる。
In selecting a magnetostrictive material, it is desirable to use an RFe 2 compound having a large magnetostrictive effect (R is at least one of rare earth elements). TbFe 2 is a substance having the largest saturation magnetostriction. However, by substituting a part of Tb with Dy to lower the crystal magnetic anisotropy, Tb 1-x Dy x F
A composition of e 2 (0.5 <x <0.75) is preferable. Dy
Since the substitution has a problem of lowering the Curie temperature Tc, a method of substituting a part of Fe with Mn to stabilize the spin arrangement in the easy axis direction is often used.

【0014】磁石材料としては、フェライト磁石、希土
類磁石があるが、十分なバイアス磁界を確保するために
残留磁化が高いこと、駆動磁界に比べて保磁力が十分高
いことなどの条件から、 R2TM14B、RCo5、R2
17、Sm2Fe17x(RはYを含む希土類元素のうち
少なくとも1種、TMはFe,Coなどの遷移金属のう
ち少なくとも1種)のような希土類磁石の使用が望まし
い。
As the magnet material, there are a ferrite magnet and a rare-earth magnet. However, R 2 has a high residual magnetization in order to secure a sufficient bias magnetic field, and has a sufficiently high coercive force as compared with a driving magnetic field. TM 14 B, RCo 5 , R 2 T
It is desirable to use a rare earth magnet such as M 17 and Sm 2 Fe 17 N x (R is at least one of rare earth elements including Y, and TM is at least one of transition metals such as Fe and Co).

【0015】Tb1-xDyxFe2 (0.5<x<0.75)合
金を用いた樹脂結合型磁歪材料の場合、バイアス磁界は
数百Oeの磁界が必要であるから、希土類磁石粉末の混
合比は体積比で10%〜40%ぐらいが望ましい。体積
比10%未満では十分なバイアス磁界を確保できない。
また40%を越えると磁歪材料粉末の量が減って磁歪に
よる変位量が小さくなってしまう。磁石粉末の種類と異
方性か等方性かによって残留磁化の大きさは異なる。ま
た、粉末間の相互作用の大きさを示す平均場係数は、粉
末粒径や配向度、分散のしかたによって変動するため、
目的の性能に応じて混合比を調整する必要がある。
In the case of a resin-bonded type magnetostrictive material using an alloy of Tb 1 -x Dy x Fe 2 (0.5 <x <0.75), a bias magnetic field requires a magnetic field of several hundred Oe. Is preferably about 10% to 40% by volume. If the volume ratio is less than 10%, a sufficient bias magnetic field cannot be secured.
On the other hand, if it exceeds 40%, the amount of the magnetostrictive material powder decreases, and the amount of displacement due to magnetostriction decreases. The magnitude of the residual magnetization differs depending on the type of the magnet powder and whether it is anisotropic or isotropic. Also, the mean field coefficient, which indicates the magnitude of the interaction between the powders, varies with the powder particle size, degree of orientation, and dispersion,
It is necessary to adjust the mixing ratio according to the desired performance.

【0016】磁石粉末の保磁力は、駆動コイルによって
発生する交流磁界によって磁化反転がおこらないように
磁界振幅より大きいことが望ましい。例えば、 Tb1-x
DyxFe2 (0.5<x<0.75)合金ような磁歪材料を用
いる場合には、少なくとも80kA/m以上あることが
望ましい。
The coercive force of the magnet powder is desirably larger than the magnetic field amplitude so that the magnetization reversal does not occur due to the AC magnetic field generated by the drive coil. For example, Tb 1-x
In the case of using a magnetostrictive material such as a Dy x Fe 2 (0.5 <x <0.75) alloy, it is desirable that it be at least 80 kA / m or more.

【0017】次に、本発明の樹脂結合型磁歪材料を作製
し評価を行った例を示す。磁歪材料粉末は、鋳造材また
は1方向凝固材を粉砕して得られる。ここでは鋳造材を
粉砕後、950℃で10時間熱処理したTb0.7Dy0.3
Fe2磁歪合金粉末を用いた。磁石粉末は鋳造、熱処理
した後に粉砕したものを用いる。また、Nd−Fe−B
系粉末は粉砕による保磁力の劣化が激しいため、液体超
急冷法または水素吸脱処理(HDDR)法によってつく
られたものが好ましい。ここではSm(Co0.559Fe
0.320Cu0.065Zr0.0168.35の組成からなるSm2
17系の異方性磁石粉末を用いた。これらを所望の割合
で混合し、エポキシ樹脂を2wt%加えてよく混ぜ合わ
せた後、金型に入れ20kOeの磁場中で磁場配向し、
5〜7t/cm2の圧力で圧縮成形し、150℃で樹脂
を固化させた。得られた10mm角×長さ40mmの試
料を、機械加工によりφ8mm×長さ40mmの円柱に
仕上げた。最後に4Tのパスル磁界により着磁した。
Next, an example in which the resin-bonded magnetostrictive material of the present invention was produced and evaluated will be described. The magnetostrictive material powder is obtained by pulverizing a cast material or a one-way solidified material. Here, Tb 0.7 Dy 0.3 was heat-treated at 950 ° C. for 10 hours after pulverizing the cast material.
Fe 2 magnetostrictive alloy powder was used. Magnet powder used after casting and heat treatment is crushed. In addition, Nd-Fe-B
Since the coercive force is greatly deteriorated by pulverization, the system powder is preferably prepared by a liquid quenching method or a hydrogen absorption / desorption (HDDR) method. Here, Sm (Co 0.559 Fe
0.320 Cu 0.065 Zr 0.016 ) Sm 2 C with composition of 8.35
o A 17 type anisotropic magnet powder was used. These are mixed at a desired ratio, and 2 wt% of epoxy resin is added and mixed well. Then, the mixture is put in a mold and magnetically oriented in a magnetic field of 20 kOe.
The resin was compression-molded at a pressure of 5 to 7 t / cm 2 and the resin was solidified at 150 ° C. The obtained sample of 10 mm square × 40 mm length was finished into a cylinder of φ8 mm × 40 mm length by machining. Finally, it was magnetized by a 4T pulse magnetic field.

【0018】磁石粉末を20%含む樹脂結合型磁歪材料
のB−Hカーブを図2に示す。軟磁性体である磁歪材料
と磁石材料のB−Hカーブを重ね合わせた状態になって
いることがわかる。このカーブから磁石粉末の保磁力は
400kA/m程度であると予想される。±80kA/
mの範囲内で磁界駆動する場合、磁石粉末は減磁せず一
定のバイアス磁界が維持される。逆に磁石粉末の保磁力
が80kA/m以下の場合には、磁化反転が起こってバ
イアス磁界が変化してしまう。
FIG. 2 shows a BH curve of a resin-bound magnetostrictive material containing 20% of magnet powder. It can be seen that the BH curves of the magnetostrictive material, which is a soft magnetic material, and the magnet material are superimposed. From this curve, the coercive force of the magnet powder is expected to be about 400 kA / m. ± 80 kA /
When the magnetic field is driven within the range of m, the magnet powder is not demagnetized and a constant bias magnetic field is maintained. Conversely, if the coercive force of the magnet powder is 80 kA / m or less, magnetization reversal occurs and the bias magnetic field changes.

【0019】図3は外部磁場と磁歪の関係を示したもの
である。ここで、外部磁場の正方向が着磁方向と一致す
るようにした。磁石粉末を含まないもの(0%)は、従
来の樹脂結合型磁歪材料であって、典型的な左右対称の
V字型カーブを示している。外部磁界ゼロの点では磁歪
定数がゼロであり、外部からのバイアス磁界なしでは使
えない。一方、磁石粉末を含むものは磁石による内部磁
界の影響でカーブ全体がマイナス方向にシフトしてい
る。磁石粉末の量が増え、磁歪材料粉末が減るにつれて
シフト量が増加し、その傾きに相当する磁歪定数は小さ
くなっている。磁石粉末が20%の場合、シフト量は5
0kA/mを越えている。このように磁石粉末を混合す
ることで、外部からバイアス磁界を与えた場合と同様の
効果が得られている。
FIG. 3 shows the relationship between an external magnetic field and magnetostriction. Here, the positive direction of the external magnetic field was made to coincide with the magnetization direction. The material containing no magnet powder (0%) is a conventional resin-bonded magnetostrictive material and shows a typical symmetrical V-shaped curve. At the point where the external magnetic field is zero, the magnetostriction constant is zero and cannot be used without an external bias magnetic field. On the other hand, in the case of the one containing the magnet powder, the whole curve is shifted in the negative direction due to the effect of the internal magnetic field by the magnet. As the amount of magnet powder increases and the amount of magnetostrictive material powder decreases, the shift amount increases, and the magnetostriction constant corresponding to the slope decreases. If the magnet powder is 20%, the shift amount is 5
It exceeds 0 kA / m. By mixing the magnet powder in this manner, the same effect as when a bias magnetic field is externally applied is obtained.

【0020】図4は磁石粉末の混合比に対する磁歪定数
の大きさを示す。ここでは図3における外部磁場ゼロで
の傾きを磁歪定数とする。また、磁場配向させないで等
方性の試料を作製し、同様に磁歪を測定したので、その
結果をあわせて示した。等方性、異方性にかかわらず、
磁石粉末の混合比が10〜20%の時に最も磁歪定数が
高くなっている。また、混合比が同じであれば磁場配向
させた方が磁歪が大きいことがわかる。磁石粉末の量が
40%以上では磁歪定数が低く十分な変位が得られな
い。
FIG. 4 shows the magnitude of the magnetostriction constant with respect to the mixing ratio of the magnet powder. Here, the slope at zero external magnetic field in FIG. 3 is defined as the magnetostriction constant. An isotropic sample was prepared without magnetic field orientation, and magnetostriction was measured in the same manner. The results are shown together. Regardless of isotropic or anisotropic,
The magnetostriction constant is highest when the mixing ratio of the magnet powder is 10 to 20%. Further, it can be seen that if the mixing ratio is the same, the magnetostriction is larger when the magnetic field is oriented. If the amount of the magnet powder is 40% or more, the magnetostriction constant is low and sufficient displacement cannot be obtained.

【0021】[0021]

【発明の効果】本発明の樹脂結合型磁歪材料を用いた場
合、渦電流損およびヒステリシス損が小さいため高周波
数での変換効率が高くなる。磁歪材料内部のバイアス磁
界が均一になるため磁界応答性が向上する。また、引っ
張り応力が高いため破壊に強く耐久性が高い。さらに、
バイアス磁界用の永久磁石や磁気ヨークが必要ないた
め、アクチュエータが小型化され構造が簡単になる。
When the resin-bound magnetostrictive material of the present invention is used, the eddy current loss and the hysteresis loss are small, so that the conversion efficiency at a high frequency is increased. Since the bias magnetic field inside the magnetostrictive material becomes uniform, the magnetic field response is improved. In addition, since it has a high tensile stress, it is resistant to breakage and has high durability. further,
Since a permanent magnet or a magnetic yoke for the bias magnetic field is not required, the size of the actuator is reduced and the structure is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の樹脂結合型磁歪材料を用いたアクチ
ュエータの概略図。
FIG. 1 is a schematic diagram of an actuator using a resin-bonded magnetostrictive material of the present invention.

【図2】 本発明の樹脂結合型磁歪材料の磁気特性図。FIG. 2 is a magnetic characteristic diagram of the resin-bonded type magnetostrictive material of the present invention.

【図3】 本発明の樹脂結合型磁歪材料の磁歪特性図。FIG. 3 is a magnetostriction characteristic diagram of the resin-bonded magnetostrictive material of the present invention.

【図4】 本発明の樹脂結合型磁歪材料の磁歪定数図。FIG. 4 is a diagram showing the magnetostriction constant of the resin-bound magnetostrictive material of the present invention.

【図5】 従来の磁歪式アクチュエータの概略図。FIG. 5 is a schematic view of a conventional magnetostrictive actuator.

【図6】 従来の磁歪式アクチュエータの概略図。FIG. 6 is a schematic diagram of a conventional magnetostrictive actuator.

【符号の説明】[Explanation of symbols]

1 磁歪材料 2 駆動コイル 3 永久磁石 4 バイアス磁界用コイル 5 磁石粉末を混合した樹脂結合型磁歪材料 REFERENCE SIGNS LIST 1 magnetostrictive material 2 drive coil 3 permanent magnet 4 bias magnetic field coil 5 resin-coupled magnetostrictive material mixed with magnet powder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁歪材料の粉末と磁石材料の粉末との混
合粉、およびそれを結合する樹脂から構成されているこ
とを特徴とする樹脂結合型磁歪材料。
1. A resin-bonded type magnetostrictive material comprising a mixed powder of a powder of a magnetostrictive material and a powder of a magnetic material, and a resin binding the powder.
【請求項2】 磁歪材料粉末と磁石材料の粉末との混合
粉、およびそれを結合する樹脂から構成されていて、磁
歪材料粉末および磁石材料粉末の磁化容易方向が、1方
向に配向していることを特徴とする請求項1記載の樹脂
結合型磁歪材料。
2. A mixed powder of a magnetostrictive material powder and a magnetic material powder, and a resin binding the mixed powder, wherein the magnetostrictive material powder and the magnet material powder are oriented in one direction. The resin-bonded magnetostrictive material according to claim 1, wherein:
【請求項3】 磁歪材料が主にRFe2化合物(Rは希
土類元素のうち少なくとも1種)からなることを特徴と
する請求項1記載の樹脂結合型磁歪材料。
3. The resin-bonded magnetostrictive material according to claim 1, wherein the magnetostrictive material is mainly composed of an RFe 2 compound (R is at least one of rare earth elements).
【請求項4】 磁石材料が、R2TM14B、RCo5、R
2TM17、Sm2Fe17x(RはYを含む希土類元素の
うち少なくとも1種、TMはFe,Coなどの遷移金属
のうち少なくとも1種)のうちのいずれかからなること
を特徴とする請求項1記載の樹脂結合型磁歪材料。
4. A magnet material comprising R 2 TM 14 B, RCo 5 , R
2 TM 17 or Sm 2 Fe 17 N x (R is at least one of rare earth elements including Y, and TM is at least one of transition metals such as Fe and Co). The resin-bonded magnetostrictive material according to claim 1.
【請求項5】 磁石粉末の混合比が、体積比で10〜4
0%であることを特徴とする請求項1記載の樹脂結合型
磁歪材料。
5. The mixing ratio of the magnet powder is 10 to 4 in volume ratio.
The resin-bonded magnetostrictive material according to claim 1, wherein the content is 0%.
【請求項6】 磁石材料の保磁力が少なくとも80kA
/m以上であることを特徴とする請求項1記載の樹脂結
合型磁歪材料。
6. The coercive force of the magnetic material is at least 80 kA.
/ M or more.
JP9044398A 1997-02-27 1997-02-27 Resin bonding type magnetostrictive material Withdrawn JPH10242543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9044398A JPH10242543A (en) 1997-02-27 1997-02-27 Resin bonding type magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9044398A JPH10242543A (en) 1997-02-27 1997-02-27 Resin bonding type magnetostrictive material

Publications (1)

Publication Number Publication Date
JPH10242543A true JPH10242543A (en) 1998-09-11

Family

ID=12690417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9044398A Withdrawn JPH10242543A (en) 1997-02-27 1997-02-27 Resin bonding type magnetostrictive material

Country Status (1)

Country Link
JP (1) JPH10242543A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119261A3 (en) * 2005-05-02 2007-05-31 Knobloch Charles Saron Magnetically biased magnetopropant
CN100372958C (en) * 2005-11-16 2008-03-05 北京科技大学 Super magnetostrictive material with super wide work temperature range
CN100387745C (en) * 2003-10-29 2008-05-14 索尼株式会社 Magnetostriction device
US7644762B2 (en) 2004-08-17 2010-01-12 Knobloch Charles S Solid state pump
JP2014217172A (en) * 2013-04-25 2014-11-17 富士通株式会社 Power generator
CN104550944A (en) * 2013-10-11 2015-04-29 有研稀土新材料股份有限公司 Preparation method of composite rare earth magnetostriction material
CN110572075A (en) * 2019-08-05 2019-12-13 包头稀土研究院 Actuator with solenoid providing axial permanent magnetic field

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387745C (en) * 2003-10-29 2008-05-14 索尼株式会社 Magnetostriction device
US7644762B2 (en) 2004-08-17 2010-01-12 Knobloch Charles S Solid state pump
WO2006119261A3 (en) * 2005-05-02 2007-05-31 Knobloch Charles Saron Magnetically biased magnetopropant
US7893801B2 (en) 2005-05-02 2011-02-22 Charles Saron Knobloch Magnetically biased magnetopropant and pump
US8514663B2 (en) 2005-05-02 2013-08-20 Charles Saron Knobloch Acoustic and magnetostrictive actuation
CN100372958C (en) * 2005-11-16 2008-03-05 北京科技大学 Super magnetostrictive material with super wide work temperature range
JP2014217172A (en) * 2013-04-25 2014-11-17 富士通株式会社 Power generator
CN104550944A (en) * 2013-10-11 2015-04-29 有研稀土新材料股份有限公司 Preparation method of composite rare earth magnetostriction material
CN110572075A (en) * 2019-08-05 2019-12-13 包头稀土研究院 Actuator with solenoid providing axial permanent magnetic field

Similar Documents

Publication Publication Date Title
Coey Perspective and prospects for rare earth permanent magnets
Herbst et al. Neodymium-iron-boron permanent magnets
Kirchmayr Permanent magnets and hard magnetic materials
Goll et al. High-performance permanent magnets
KR100524340B1 (en) Solid Material for Magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
JP4422953B2 (en) Method for manufacturing permanent magnet
US5357232A (en) Magnetostrictive element
JPH10284314A (en) Magnetic core material
JPH10242543A (en) Resin bonding type magnetostrictive material
JPH08124730A (en) Rare-earth resin magnet having low coercive force
JP4970693B2 (en) Solid material for magnet
JP3641021B2 (en) High coercive force iron-based permanent magnet and bonded magnet
Yoneyama et al. High performance RFeCoZrB bonded magnets having low Nd content
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
CA2102501A1 (en) Magnetostrictive powder composite and methods for the manufacture thereof
JPS62257703A (en) Resin-bonded magnetic material
JP4934787B2 (en) Magnetic alloys and bonded magnets
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
Sato et al. Amorphous And Nanocrystalline Materials For Applications AS Hard And Soft Magnets
JP4790933B2 (en) Solid material for magnet and method for producing the same
JPH0927419A (en) Electric/mechanical movement conversion magnetic circuit
JPH07176417A (en) Iron based bonded magnet and its manufacture
Asti et al. Permanent magnets

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061218