JPH1097913A - Compound magnetic body, its manufacture and electromagnetic interference restraint - Google Patents

Compound magnetic body, its manufacture and electromagnetic interference restraint

Info

Publication number
JPH1097913A
JPH1097913A JP25124996A JP25124996A JPH1097913A JP H1097913 A JPH1097913 A JP H1097913A JP 25124996 A JP25124996 A JP 25124996A JP 25124996 A JP25124996 A JP 25124996A JP H1097913 A JPH1097913 A JP H1097913A
Authority
JP
Japan
Prior art keywords
magnetic material
soft magnetic
powder
composite
composite magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25124996A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
島田  寛
栄▲吉▼ ▲吉▼田
Eikichi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP25124996A priority Critical patent/JPH1097913A/en
Publication of JPH1097913A publication Critical patent/JPH1097913A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound magnetic body having high real part magnetic permeability by suppressing deterioration of magnetic permeability due to eddy current and further reducing diamagnetic field. SOLUTION: This magnetic body 10 is composed of first and second soft magnetic powders 11 and 12 and organic binder 13. The first soft magnetic powder 11 has a flat shape, the second soft magnetic powder 12 has an arbitrary shape and its size is sufficiently smaller than that of the first soft magnetic powder 11. The total volume of the first soft magnetic powder 11 per unit volume is sufficiently larger than that of the second soft magnetic powder 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波領域に於い
て優れた複素透磁率特性を有する複合磁性材料と、その
一応用例である電波吸収体に関し、詳しくは、高周波電
子回路/装置に於いて問題となる電磁干渉の抑制に有効
な、複素透磁率特性の優れた複合磁性体及びその製造方
法ならびに電磁干渉抑制体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material having excellent complex magnetic permeability characteristics in a high frequency range and a radio wave absorber as one application example thereof, and more particularly to a high frequency electronic circuit / device. The present invention relates to a composite magnetic material having excellent complex magnetic permeability, which is effective for suppressing electromagnetic interference, which is a problem, a method for manufacturing the same, and an electromagnetic interference suppressor.

【0002】[0002]

【従来の技術】近年、デジタル電子機器をはじめ高周波
を利用する電子機器類の普及が進み、中でも準マイクロ
波帯域を使用する移動通信機器類の普及がめざましい。
それに伴い、インダクタンス部品や電波吸収体に用いら
れる軟磁性体材料にも高周波化への対応が求められてい
る。
2. Description of the Related Art In recent years, electronic devices using high frequencies such as digital electronic devices have become widespread. In particular, mobile communication devices using a quasi-microwave band have been remarkably spread.
Accordingly, soft magnetic materials used for inductance components and radio wave absorbers are also required to respond to higher frequencies.

【0003】軟磁性体材料の高周波化を阻む主な要因の
一つは、渦電流損失であり、その低減手段として、表皮
深さを考慮した薄膜化及び高電気抵抗化が挙げられ、前
者の例としては、磁性体層と誘電体層を交互に積層製膜
したものが挙げられ、また後者の代表としては、高電気
抵抗のNi−Zn系フェライトを挙げることができる。
[0003] One of the main factors that hinder the increase in the frequency of soft magnetic materials is eddy current loss. As means for reducing the eddy current, thinning and high electric resistance in consideration of the skin depth are mentioned. Examples thereof include those in which magnetic layers and dielectric layers are alternately laminated, and a representative of the latter is a high electrical resistance Ni-Zn ferrite.

【0004】準マイクロ波帯域における軟磁性体の用途
は、前述のインダクタンス部品及び電波吸収体が主であ
り、インダクタンス部品には実部透磁率μ’が用いら
れ、電波吸収体には、虚数部透磁率μ”が用いられる。
しかしながら、インダクタンス部品には高いQ値が要求
される場合が多いものの、準マイクロ波帯域では必要な
インダクタンスが極めて小さな値となる為に、磁心材料
としての用途は限られている。
The applications of soft magnetic materials in the quasi-microwave band are mainly the above-mentioned inductance components and radio wave absorbers. The inductance components use the real part permeability μ ′, and the radio wave absorbers use the imaginary part. The permeability μ ″ is used.
However, although a high Q value is often required for the inductance component, the required inductance is extremely small in the quasi-microwave band, so that its use as a magnetic core material is limited.

【0005】一方、虚数部透磁率μ”を用いる電波吸収
体としての用途は、高周波機器類の普及と共に拡大しつ
つある。例えば、携帯電話に代表される移動体通信機器
には、とりわけ小型化・軽量化の要求が顕著であり、電
子部品の高密度実装化が最大の技術課題となっている。
従って、過密に実装された電子部品類やプリント配線あ
るいはモジュール間配線等が互いに極めて接近すること
になり、更には、信号処理速度の高速化も図られている
為、静電結合及び/又は電磁結合による線間結合の増大
化や放射ノイズによる干渉などが生じ、機器の正常な動
作を妨げる事態が少なからず生じている。
On the other hand, applications as radio wave absorbers using the imaginary part magnetic permeability μ ″ are expanding with the spread of high frequency devices. For example, mobile communication devices represented by mobile phones are particularly downsized. -The demand for weight reduction is remarkable, and high-density mounting of electronic components is the biggest technical problem.
Therefore, densely mounted electronic components, printed wiring, wiring between modules, and the like are extremely close to each other, and furthermore, the speed of signal processing is also increased, so that electrostatic coupling and / or electromagnetic Coupling causes an increase in line-to-line coupling and interference due to radiated noise, so that a situation that hinders normal operation of the device is not limited.

【0006】このような、いわゆる電磁障害に対して従
来は、主に導体シールドを施す事による対策がなされて
きた。
Conventionally, countermeasures against such electromagnetic interference have been made mainly by providing a conductor shield.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、導体シ
ールドは、空間とのインピーダンス不整合に起因する電
磁波の反射を利用する電磁障害対策である為に、遮蔽効
果は得られても不要輻射源からの反射による電磁結合が
助長され、その結果二次的な電磁障害を引き起こす場合
が少なからず生じている。その対策として、磁性体の磁
気損失、即ち虚数部透磁率μ”を利用した不要輻射の抑
制が有効である。即ち、前記導体シールドと不要輻射源
の間に磁気損失の大きい磁性体を配設する事で不要輻射
を抑制することが出来る。
However, since the conductor shield is an electromagnetic interference countermeasure that utilizes the reflection of electromagnetic waves due to impedance mismatch with the space, even if a shielding effect is obtained, the conductor shield is not susceptible to unwanted radiation. Electromagnetic coupling due to reflection is promoted, and as a result, secondary electromagnetic interference is often caused. As a countermeasure, it is effective to suppress the unnecessary radiation using the magnetic loss of the magnetic material, that is, the imaginary part magnetic permeability μ ″. That is, a magnetic material having a large magnetic loss is disposed between the conductor shield and the unnecessary radiation source. By doing so, unnecessary radiation can be suppressed.

【0008】ここで、抑制に必要な磁性体の厚さdは、
μ”>μ’なる関係を満足する周波数帯域にてμ”に反
比例するので、前述した電子機器の小型化・軽量化の要
求に迎合する薄い電磁干渉抑制体即ち、シールド体と吸
収体からなる複合体を得るためには、虚数部透磁率μ”
の大きな磁性体が必要となる。
Here, the thickness d of the magnetic material required for suppression is
Since it is inversely proportional to μ ”in a frequency band satisfying the relationship μ ″> μ ′, it is composed of a thin electromagnetic interference suppressor, that is, a shield body and an absorber, which meets the aforementioned demands for downsizing and weight reduction of electronic devices. To obtain the composite, the imaginary part magnetic permeability μ ”
Requires a magnetic material having a large diameter.

【0009】かかる要求に対応すべく透磁率の高周波特
性に優れ、所望の周波数範囲にて磁気損失体として機能
する磁性体、即ち、低周波数領域にて、μ’の値が大き
く、更に、μ”>μ’なる周波数領域に於いて、μ”が
大きな値を示す磁性体の検討を行った。
In order to meet such demands, the magnetic material is excellent in high-frequency characteristics of magnetic permeability and functions as a magnetic loss body in a desired frequency range, that is, the value of μ ′ is large in a low frequency range, and In the frequency region of "> μ ', a magnetic material having a large value of μ" was studied.

【0010】[0010]

【課題を解決するための手段】高周波領域において大き
な磁気損失を得るためには、磁気共鳴が生じるよりも低
い周波数において渦電流による透磁率の劣化が生じない
様な対策を講じつつ、複合磁性体の反磁界を更に減少さ
せることが必要である。
In order to obtain a large magnetic loss in a high frequency region, measures are taken to prevent the magnetic permeability from deteriorating due to an eddy current at a frequency lower than that at which magnetic resonance occurs. Needs to be further reduced.

【0011】有効な渦電流対策の一つとして、磁性体層
と誘電体層を交互に積層する様に製膜した積層構造化が
提案され、一部実用化されている。この積層構造を有す
る複合磁性体の特徴は、磁性体層の厚さが電気抵抗、透
磁率及び周波数にて定まる表皮深さと同等もしくはそれ
以下の厚さとなっている点である。
As one of the effective countermeasures against eddy current, a laminated structure in which magnetic layers and dielectric layers are alternately laminated has been proposed, and some of them have been put to practical use. The feature of the composite magnetic material having this laminated structure is that the thickness of the magnetic material layer is equal to or less than the skin depth determined by electric resistance, magnetic permeability and frequency.

【0012】しかしながら、この積層構造磁性体には誘
電体層を介して変位電流が流れるために透磁率特性が劣
化するという問題がある。ここで、変位電流は、積層構
造磁性体のサイズ(即ち、積層方向と直交する向きの大
きさ)に依存するので、積層構造磁性体を細分化しカラ
ム構造とすることで、その影響を排除することが可能と
なる。このような積層構造磁性体をスパッタリング等
の、いわゆる薄膜製膜プロセスにて実現するのは容易で
はないが、前記磁性体層に軟磁性体粉末を当てはめるこ
とで実用化が容易となる。
However, there is a problem that the magnetic permeability of the laminated magnetic material is deteriorated because a displacement current flows through the dielectric layer. Here, since the displacement current depends on the size of the laminated magnetic material (that is, the size in the direction orthogonal to the laminating direction), the influence is eliminated by subdividing the laminated magnetic material into a column structure. It becomes possible. It is not easy to realize such a laminated magnetic material by a so-called thin film forming process such as sputtering, but practical application is facilitated by applying a soft magnetic material powder to the magnetic material layer.

【0013】即ち、磁性体層に相当する軟磁性体粉末
は、その厚みが前記表皮深さよりも薄い扁平状とするこ
と、軟磁性体粉末は、粉末の反磁界係数Nd をほぼ1に
するために十分なアスペクト比を有するものとするこ
と、誘電体層に相当するものとして、軟磁性体粉末の表
面を酸化させることにより得られる誘電体層を設けるこ
と、により渦電流損失の極めて小さい複合磁性体を得る
ことができると期待した。
That is, the soft magnetic material powder corresponding to the magnetic material layer has a flat shape whose thickness is smaller than the skin depth, and the soft magnetic material powder has a demagnetizing coefficient Nd of approximately 1 for the powder. Composite magnetic material with extremely small eddy current loss by providing a dielectric layer obtained by oxidizing the surface of the soft magnetic material powder as equivalent to a dielectric layer. I hoped I could get my body.

【0014】また、前記複合磁性体の反磁界の大きさ
は、前記扁平状軟磁性体粉末の反磁界係数Ndと、前記
扁平状軟磁性体粉末の前記複合磁性体中での配列のされ
かた、および前記軟磁性体粉末の充填量等により決定さ
れ、前記扁平状軟磁性体粉末を前記複合磁性体の面内方
向に高い配向度で配列させることにより減少する。
The magnitude of the demagnetizing field of the composite magnetic material is determined by the demagnetizing field coefficient Nd of the flat soft magnetic powder and the arrangement of the flat soft magnetic powder in the composite magnetic material. It is determined by the filling amount of the soft magnetic material powder and the like, and is reduced by arranging the flat soft magnetic material powder in the in-plane direction of the composite magnetic material with a high degree of orientation.

【0015】しかしながら、前記軟磁性体粉末は、通常
その形状や大きさに分布を有する為に、前記配向度の改
善は、粉末の立体障害や有機結合剤との親和性の不十分
さ等により極めて困難であった。実際、扁平状の軟磁性
体粉末と有機結合剤からなる複合磁性体の磁化容易軸に
直交する方向の断面を電子顕微鏡で観察すると、前記扁
平状軟磁性体粉末同士の間隙には、有機結合剤の存在し
ない領域(空気層)があり、その領域は磁気的にも機械
的にも機能しない無駄な空間であることが確認できた。
However, since the soft magnetic powder usually has a distribution in shape and size, the degree of orientation is improved due to steric hindrance of the powder and insufficient affinity with an organic binder. It was extremely difficult. In fact, when a cross section of the composite magnetic material composed of the flat soft magnetic material powder and the organic binder in a direction perpendicular to the easy axis of magnetization is observed with an electron microscope, the gap between the flat soft magnetic material powders indicates There was a region (air layer) where no agent was present, and it was confirmed that the region was a useless space that did not function magnetically or mechanically.

【0016】そこで、本発明者らは、この空間に着目
し、前記扁平状軟磁性体粉末よりも十分に小さな大きさ
の軟磁性体粉末を該空間ないしその近傍の有機結合剤中
に充填させることにより、複合磁性体の反磁界が更に減
少することを期待し、更に、軟磁性体粉末の厚さを特定
し、その軟磁性体粉末の表面に誘電体層を設けること
で、渦電流損失が少なく、かつ空間とのインピーダンス
不整合の生じにくい非良導性の複合磁性体を提供できる
ことを見い出し本発明に至った。
Therefore, the present inventors pay attention to this space, and fill a soft magnetic material powder having a size sufficiently smaller than the flat soft magnetic material powder into the organic binder in or near the space. This is expected to further reduce the demagnetizing field of the composite magnetic material, and furthermore, by specifying the thickness of the soft magnetic material powder and providing a dielectric layer on the surface of the soft magnetic material powder, eddy current loss The present inventors have found that it is possible to provide an inferior conductive composite magnetic material which has less inconsistency and is less likely to cause impedance mismatch with a space.

【0017】本発明によれば、第1、第2の軟磁性体粉
末と、有機結合剤から成る複合磁性体であって、前記第
1の軟磁性体粉末は扁平形状を有し、前記第2の軟磁性
体粉末は任意の形状を有し、その大きさが前記第1の軟
磁性体粉末より十分に小さく、かつ、前記第1の軟磁性
体粉末の前記複合磁性体単位体積当たりの総体積が、前
記第2の軟磁性体粉末の単位体積当たりの総体積に比べ
て十分に大きい複合磁性体が得られる。
According to the present invention, there is provided a composite magnetic material comprising first and second soft magnetic material powders and an organic binder, wherein the first soft magnetic material powder has a flat shape. 2 soft magnetic material powder has an arbitrary shape, the size is sufficiently smaller than the first soft magnetic material powder, and the first soft magnetic material powder per unit volume of the composite magnetic material. A composite magnetic material whose total volume is sufficiently larger than the total volume per unit volume of the second soft magnetic material powder is obtained.

【0018】また、本発明によれば、前記第1の軟磁性
体粉末は、BET比表面積が0.1〜3m2 /gであ
り、前記第2の軟磁性体粉末は、BET比表面積が5m
2 /g以上である複合磁性体が得られる。
According to the present invention, the first soft magnetic powder has a BET specific surface area of 0.1 to 3 m 2 / g, and the second soft magnetic powder has a BET specific surface area. 5m
A composite magnetic material having a ratio of 2 / g or more is obtained.

【0019】更に、本発明によれば、前記第1の軟磁性
体粉末の平均厚さが、該複合磁性体の使用周波数におけ
る表皮深さδよりも小さい複合磁性体が得られる。
Further, according to the present invention, there can be obtained a composite magnetic material in which the average thickness of the first soft magnetic material powder is smaller than the skin depth δ at the operating frequency of the composite magnetic material.

【0020】更に、本発明によれば、前記第1の軟磁性
体粉末は、該複合磁性体中において、配向配列されてい
る複合磁性体が得られる。
Further, according to the present invention, the first soft magnetic material powder is a composite magnetic material which is oriented and arranged in the composite magnetic material.

【0021】更に、本発明によれば、前記第1の軟磁性
体粉末は、少なくともその表面に酸化物層を有する複合
磁性体が得られる。
Further, according to the present invention, a composite magnetic material having an oxide layer on at least the surface of the first soft magnetic material powder can be obtained.

【0022】更に、本発明によれば、前記少なくともそ
の表面に酸化物層を有する軟磁性体粉末は、気相中徐酸
法又は液相中徐酸法により、酸素含有混合ガスにてその
表面が酸化処理されたものである磁性複合体が得られ
る。
Further, according to the present invention, the soft magnetic material powder having an oxide layer on at least the surface thereof can be treated with an oxygen-containing mixed gas by a gas phase slow acid method or a liquid phase slow acid method. Is obtained by subjecting the magnetic composite to an oxidation treatment.

【0023】更に、本発明によれば、前記第1及び第2
の軟磁性体粉末と、前記有機結合剤とからなり、かつ、
電気的に非良導性である複合磁性体が得られる。
Furthermore, according to the present invention, the first and the second
Consisting of a soft magnetic material powder and the organic binder, and
A composite magnetic material having poor electrical conductivity can be obtained.

【0024】更に、本発明によれば、軟磁性体粉末と有
機結合剤からなる複合磁性体の製造方法において、前記
軟磁性体粉末を扁平状に加工して第1の軟磁性体粉末と
し、前記軟磁性体粉末を前記第1の軟磁性体粉末より十
分に小さい大きさの任意の形状に加工して第2の軟磁性
体粉末とし、前記第1の軟磁性体粉末の少なくとも表面
に、気相中徐酸法又は液相中徐酸法により酸素含有ガス
にて酸化物層を形成する複合磁性体の製造方法が得られ
る。
Further, according to the present invention, in the method for producing a composite magnetic material comprising a soft magnetic material powder and an organic binder, the soft magnetic material powder is processed into a flat shape to obtain a first soft magnetic material powder, The soft magnetic material powder is processed into an arbitrary shape having a size sufficiently smaller than the first soft magnetic material powder to form a second soft magnetic material powder, and at least a surface of the first soft magnetic material powder is A method for producing a composite magnetic body in which an oxide layer is formed with an oxygen-containing gas by a gas phase slow acid method or a liquid phase slow acid method is obtained.

【0025】更に、本発明によれば、前記複合磁性体を
その構成要素として有する電磁干渉抑制体であって、更
に導電性材料層を有する電磁干渉抑制体が得られる。
Further, according to the present invention, there is obtained an electromagnetic interference suppressor having the composite magnetic material as a constituent element, and further having an electroconductive material layer.

【0026】[0026]

【発明の実施の形態】本発明に於いては、高周波透磁率
の大きな鉄アルミ珪素合金(センダスト)、鉄ニッケル
合金(パーマロイ)、或いはアモルファス合金等の金属
軟磁性材料を原料素材として用いることが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a metal soft magnetic material such as an iron aluminum silicon alloy (Sendust), an iron nickel alloy (Permalloy), or an amorphous alloy having a high high-frequency magnetic permeability is used as a raw material. I can do it.

【0027】本発明では、第1の軟磁性体粉末の場合に
は、これらの原料素材を粉砕、延伸・引裂加工等により
扁平化し、その厚みを表皮深さと同等以下にすると共
に、粉末の反磁界係数Nd をほぼ1にするために、粉末
のアスペクト比を概ね10以上とする必要がある。ここ
で、表皮深さδは次式により与えられる。
According to the present invention, in the case of the first soft magnetic powder, these raw materials are flattened by pulverization, stretching, tearing or the like, so that the thickness is equal to or less than the skin depth, and the powder is not crushed. In order to make the magnetic field coefficient Nd approximately 1, the aspect ratio of the powder needs to be approximately 10 or more. Here, the skin depth δ is given by the following equation.

【0028】δ=(ρ/πμf)1/2 前式において、ρは比抵抗、μは透磁率、fは周波数で
ある。従って、表皮深さδは目的の周波数によってその
値が異なってくるが、所望の表皮深さとアスペクト比を
得るには、出発粗原料粉末の平均粒径を特定するのが最
も簡便な手段の一つである。この粉砕、延伸・引裂加工
に用いることの出来る代表的な粉砕手段として、ボ−ル
ミル、アトライタ、ピンミル等を挙げることが出来、前
述した条件を満足する第1の軟磁性体粉末の厚さとアス
ペクト比が得られれば粉砕手段に制限はない。
Δ = (ρ / πμf) 1/2 In the above equation, ρ is a specific resistance, μ is a magnetic permeability, and f is a frequency. Therefore, the value of the skin depth δ varies depending on the target frequency. However, in order to obtain a desired skin depth and an aspect ratio, it is one of the simplest means to specify the average particle size of the starting coarse raw material powder. One. Typical milling means that can be used for the milling, stretching and tearing operations include a ball mill, an attritor, a pin mill, and the like. There is no limitation on the grinding means as long as the ratio can be obtained.

【0029】また、本発明に於いては、個々の磁性粉末
同士の電気的な隔離、即ち複合磁性体の非良導性を磁性
粉の高充填状態においても確保出来る様、第1の軟磁性
体粉末は、その表面に誘電体層が形成されている必要が
ある。この誘電体層は、金属磁性粉末の表面を酸化させ
ることにより得られる構成元素と酸素とからなる金属酸
化物層であり、例えば、鉄アルミ珪素合金(センダス
ト)の場合には、主にAlOX 及びSiOX であると推
察される。
Also, in the present invention, the first soft magnetic powder is used so that the electrical isolation between the individual magnetic powders, that is, the nonconductivity of the composite magnetic material can be ensured even when the magnetic powder is highly filled. The body powder needs to have a dielectric layer formed on its surface. The dielectric layer is a metal oxide layer composed of oxygen and constituent elements obtained by oxidizing the surface of the metal magnetic powder. For example, in the case of an iron aluminum silicon alloy (Sendust), the dielectric layer is mainly made of AlO x And SiO X.

【0030】金属粉末の表面を酸化させる手段の一例と
して、特に粉末の大きさが比較的小さく、活性度の高い
ものについては、炭化水素系有機溶媒中あるいは不活性
ガス雰囲気中にて酸素分圧の制御された窒素−酸素混合
ガスを導入する液相中徐酸法あるいは気相中徐酸法によ
り酸化処理する事が制御の容易性、安定性、及び安全性
の点で好ましい。
As an example of the means for oxidizing the surface of the metal powder, in particular, for those having relatively small powder size and high activity, the partial pressure of oxygen in a hydrocarbon organic solvent or an inert gas atmosphere is used. It is preferred from the viewpoint of controllability, stability, and safety that the oxidation treatment is performed by a gradual acid method in a liquid phase or a gradual acid method in a gas phase in which a nitrogen-oxygen mixed gas is introduced.

【0031】本発明に於いて前記第1の軟磁性体粉末と
共に用いる第2の軟磁性体粉末については、前記第1の
軟磁性体粉末と同様の金属磁性体粉末、あるいは酸化物
磁性体粉末のいずれを用いても良いが、前記金属磁性体
粉末を用いる場合に表面酸化の為の徐酸処理を行うかど
うかは任意である。
In the present invention, the second soft magnetic powder used together with the first soft magnetic powder is a metal magnetic powder similar to the first soft magnetic powder or an oxide magnetic powder. Any of the above may be used, but whether or not to perform a slow acid treatment for surface oxidation when using the metal magnetic powder is optional.

【0032】また、第1、第2の軟磁性体粉末の粒子の
大きさは、第1の軟磁性体粉末が第2の軟磁性体粉末に
比べて十分に大きいこと、第2の軟磁性体粉末の前記複
合磁性体単位体積当たりの総体積が、第1の軟磁性体粉
末の総体積に比べて十分に小さいことが必要となる。言
い換えれば、第2の軟磁性体粉末は、前記第1の軟磁性
体粉末の間隙、すなわち複合磁性体中の空隙を充填する
ように存在できる程度の大きさと総量であれば良い。具
体的には、第1の軟磁性体粉末はBET比表面積が0.
1〜3(m2 /g)であり、第2の軟磁性体粉末のBE
T比表面積は5(m2 /g)以上であることが好まし
い。
The size of the particles of the first and second soft magnetic powders is such that the first soft magnetic powder is sufficiently larger than the second soft magnetic powder, It is necessary that the total volume of the body powder per unit volume of the composite magnetic material be sufficiently smaller than the total volume of the first soft magnetic material powder. In other words, the second soft magnetic material powder may have a size and a total amount that can be present so as to fill the gaps of the first soft magnetic material powder, that is, the voids in the composite magnetic material. Specifically, the first soft magnetic material powder has a BET specific surface area of 0.1.
1 to 3 (m 2 / g) and the BE of the second soft magnetic material powder
The T specific surface area is preferably 5 (m 2 / g) or more.

【0033】本発明の一構成要素として用いる有機結合
剤としては、ポリエステル系樹脂、ポリエチレン系樹
脂、ポリ塩化ビニル系樹脂、ポリビニルブチラール樹
脂、ポリウレタン樹脂、セルロース系樹脂、ABS樹
脂、ニトリル−ブタジエン系ゴム、スチレン−ブタジエ
ン系ゴム、エポキシ樹脂、フェノール樹脂、アミド系樹
脂、イミド系樹脂、或いはそれらの共重合体を挙げるこ
とが出来る。
The organic binder used as one component of the present invention includes polyester resin, polyethylene resin, polyvinyl chloride resin, polyvinyl butyral resin, polyurethane resin, cellulose resin, ABS resin, nitrile-butadiene rubber. Styrene-butadiene rubber, epoxy resin, phenol resin, amide resin, imide resin, and copolymers thereof.

【0034】以上に述べた本発明の構成要素を混練・分
散して複合磁性体を得る手段には特に制限はなく、用い
る結合剤の性質や工程の容易さを基準に好ましい方法を
選択すればよい。
The means for obtaining the composite magnetic material by kneading and dispersing the constituent elements of the present invention described above is not particularly limited, and a preferred method may be selected based on the properties of the binder used and the ease of the process. Good.

【0035】この混練・分散された磁性混合物中の第1
の軟磁性体粉末の粒子を配向・配列させる手段として
は、剪断応力による方法と磁場配向による方法があり、
いずれの方法を用いても良い。
The first in the kneaded and dispersed magnetic mixture
Means for orienting and arranging the particles of the soft magnetic material powder include a method using shear stress and a method using magnetic field orientation.
Either method may be used.

【0036】図1は本発明により得られた複合磁性体の
断面図であり、有機結合剤13中で配向処理された第1
の軟磁性体粉末11間の空隙を充填するように第2の軟
磁性体粉末12が存在している複合磁性体10が得られ
る。
FIG. 1 is a cross-sectional view of a composite magnetic material obtained according to the present invention.
The composite magnetic body 10 in which the second soft magnetic body powder 12 exists so as to fill the gap between the soft magnetic body powders 11 is obtained.

【0037】図2は本発明により得られた電磁干渉抑制
体の断面図であり、複合磁性体10の一面側に導電性材
料からなる導電体層14が形成されて成る電磁干渉抑制
体20が得られる。
FIG. 2 is a cross-sectional view of an electromagnetic interference suppressor obtained by the present invention. An electromagnetic interference suppressor 20 having a conductive layer 14 made of a conductive material formed on one surface side of a composite magnetic body 10 is shown in FIG. can get.

【0038】[0038]

【実施例】次に、本発明の効果を検証する為に実験を行
ったので、以下に実施例として詳細に説明する。
Next, an experiment was conducted to verify the effect of the present invention, and the embodiment will be described below in detail.

【0039】はじめに、水アトマイズ法により作製され
た鉄アルミ珪素合金粉末を用意し、アトライタを用いて
摩砕加工を行い、更に、炭化水素系有機溶媒中で酸素分
圧35%の窒素−酸素混合ガスを導入しながら8時間撹
拌し液相中徐酸処理することにより第1の軟磁性体粉末
である偏平状の磁性粉末試料を得た。ここで得られた粉
末を表面分析した結果、金属酸化物の生成が明確に確認
され、試料粉末の表面に於ける酸化被膜の存在が認めら
れた。
First, an iron-aluminum-silicon alloy powder prepared by a water atomizing method is prepared, and ground by using an attritor. Further, a nitrogen-oxygen mixture having a partial pressure of oxygen of 35% in a hydrocarbon organic solvent is used. The mixture was stirred for 8 hours while introducing a gas and subjected to a slow acid treatment in a liquid phase to obtain a flat magnetic powder sample as a first soft magnetic material powder. As a result of surface analysis of the powder obtained here, formation of a metal oxide was clearly confirmed, and the presence of an oxide film on the surface of the sample powder was recognized.

【0040】本発明の効果を検証するにあたり、以下に
述べる複合磁性体を作製し、μ−f特性及び電磁干渉抑
制効果を調べた。
In verifying the effects of the present invention, a composite magnetic material described below was prepared, and the μ-f characteristics and the effect of suppressing electromagnetic interference were examined.

【0041】μ−f特性の測定には、トロイダル形状に
加工された複合磁性体試料を用いた。これを1ターンコ
イルを形成するテストフィクスチャに挿入し、インピー
ダンスを計測することにより、μ’及びμ”を求めた。
For the measurement of the μ-f characteristic, a composite magnetic material sample processed into a toroidal shape was used. This was inserted into a test fixture forming a one-turn coil, and μ ′ and μ ″ were determined by measuring the impedance.

【0042】一方、電磁干渉抑制効果の検証は、図3に
示される評価系により行い、電磁干渉抑制体試料20と
して、銅板による導電体層14が裏打ちされた厚さ2m
mで一辺の長さが20cmの複合磁性体10を用いた。
ここで、波源用素子及び受信用素子にはループ径1.5
mmの微小ループアンテナ21,22を用い、受信用素
子に接続される信号源にはスイープジェネレータ(電磁
界波源用発振器)23を使用し、結合レベルの測定には
ネットワークアナライザ(電磁界強度測定器)24を使
用した。
On the other hand, the effect of suppressing the electromagnetic interference was verified by the evaluation system shown in FIG. 3, and as the electromagnetic interference suppressor sample 20, the conductor layer 14 having a thickness of 2 m lined with a copper plate was used.
A composite magnetic body 10 having a side length of 20 cm and a length of 20 cm was used.
Here, the loop diameter is 1.5 for the wave source element and the receiving element.
mm micro-loop antennas 21 and 22 are used, a sweep generator (electromagnetic field wave source oscillator) 23 is used as a signal source connected to the receiving element, and a network analyzer (electromagnetic field intensity measuring device) is used to measure the coupling level. ) 24 was used.

【0043】[検証用試料1]以下の配合からなる軟磁
性体ペーストを調合し、これをドクターブレード法によ
り製膜し、熱プレスを施した後に85℃にて24時間キ
ュアリングを行い検証用試料1を得た。
[Testing Sample 1] A soft magnetic paste having the following composition was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours for testing. Sample 1 was obtained.

【0044】尚、得られた検証用試料1を走査型電子顕
微鏡を用いて解析したところ、偏平状軟磁性体粒子の配
列方向は試料膜面内方向であった。
When the obtained verification sample 1 was analyzed using a scanning electron microscope, the arrangement direction of the flat soft magnetic particles was in the plane of the sample film.

【0045】 扁平状軟磁性体(Fe−Al−Si合金)微粉末A・・・95重量部 平均粒径 :φ20μm×0.3μmt 任意形状軟磁性体(Fe−Al−Si合金)微粉末B・・・5重量部 平均粒径 :φ0.25μm ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [検証用試料2]以下の配合からなる軟磁性体ペースト
を調合し、これをドクターブレード法により製膜し、熱
プレスを施した後に85℃にて24時間キュアリングを
行い検証用試料2を得た。
Flat soft magnetic material (Fe—Al—Si alloy) fine powder A: 95 parts by weight Average particle size: φ20 μm × 0.3 μm t Fine powder of arbitrary shape soft magnetic material (Fe—Al—Si alloy) B: 5 parts by weight Average particle size: φ0.25 μm Polyurethane resin: 8 parts by weight Curing agent (isocyanate compound): 2 parts by weight Solvent (mixture of cyclohexanone and toluene): 40 parts by weight [verification] Sample 2] A soft magnetic paste having the following composition was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a sample 2 for verification. .

【0046】尚、得られた検証用試料2を走査型電子顕
微鏡を用いて解析したところ、偏平状軟磁性粒子の配列
方向は試料膜面内方向であった。
When the obtained verification sample 2 was analyzed using a scanning electron microscope, the arrangement direction of the flat soft magnetic particles was in the in-plane direction of the sample film.

【0047】 扁平状軟磁性体(Fe−Al−Si合金)微粉末A・・・95重量部 平均粒径 :φ20μm×0.3μmt 任意形状軟磁性体(カルボニル鉄)微粉末C ・・・ 5重量部 平均粒径 :φ0.3μm ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [検証用試料3]以下の配合からなる軟磁性体ペースト
を調合し、これをドクターブレード法により製膜し、熱
プレスを施した後に85℃にて24時間キュアリングを
行い検証用試料3を得た。
Flat soft magnetic material (Fe-Al-Si alloy) fine powder A: 95 parts by weight Average particle diameter: φ20 μm × 0.3 μm t Soft magnetic material (carbonyl iron) fine powder C: Arbitrary shape 5 parts by weight Average particle size: φ0.3 μm Polyurethane resin 8 parts by weight Curing agent (isocyanate compound) 2 parts by weight Solvent (mixture of cyclohexanone and toluene) 40 parts by weight [Sample 3 for verification] A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain a verification sample 3.

【0048】尚、得られた検証用試料3を走査型電子顕
微鏡を用いて解析したところ、偏平状軟磁性粒子の配列
方向は試料膜面内方向であった。
When the obtained verification sample 3 was analyzed using a scanning electron microscope, the arrangement direction of the flat soft magnetic particles was in the in-plane direction of the sample film.

【0049】 扁平状軟磁性体(Fe−Ni合金)微粉末D ・・・95重量部 平均粒径 :φ30μm×0.4μmt 任意形状軟磁性体(α−Fe3 4 合金)微粉末 ・・・ 5重量部 平均粒径 :φ0.4μm ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [比較用試料4]以下の配合からなる軟磁性体ペースト
を調合し、これをドクターブレード法により製膜し、熱
プレスを施した後に85℃にて24時間キュアリングを
行い比較用試料4を得た。
Flat soft magnetic material (Fe—Ni alloy) fine powder D: 95 parts by weight Average particle size: φ30 μm × 0.4 μm t Soft powder of arbitrary shape (α-Fe 3 O 4 alloy) fine powder 5 parts by weight Average particle size: 0.4 μm Polyurethane resin 8 parts by weight Curing agent (isocyanate compound) 2 parts by weight Solvent (mixture of cyclohexanone and toluene) 40 parts by weight [Comparative sample 4] A soft magnetic paste having the following composition was prepared, formed into a film by a doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain Comparative Sample 4.

【0050】尚、得られた比較用試料4を走査型電子顕
微鏡を用いて解析したところ、ほぼ等方的な配列であっ
た。
When the obtained comparative sample 4 was analyzed using a scanning electron microscope, it was found that the arrangement was almost isotropic.

【0051】 略球状軟磁性体(Fe−Al−Si合金)微粉末E・・・95重量部 平均粒径 :φ15μm ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [比較用試料5]以下の配合からなる軟磁性体ペースト
を調合し、これをドクターブレード法により製膜し、熱
プレスを施した後に85℃にて24時間キュアリングを
行い比較用試料5を得た。
Substantially spherical soft magnetic material (Fe—Al—Si alloy) fine powder E: 95 parts by weight Average particle diameter: φ15 μm Polyurethane resin: 8 parts by weight Curing agent (isocyanate compound): 2 parts by weight Solvent (mixture of cyclohexanone and toluene) ... 40 parts by weight [Comparative sample 5] A soft magnetic paste having the following composition was prepared, formed into a film by the doctor blade method, and subjected to hot pressing. Curing was performed at 24 ° C. for 24 hours to obtain Comparative Sample 5.

【0052】尚、得られた比較用試料5を走査型電子顕
微鏡を用いて解析したところ、粒子配列方向は試料膜面
内方向であった。
When the obtained comparative sample 5 was analyzed using a scanning electron microscope, the particle arrangement direction was in the sample film plane.

【0053】 扁平状軟磁性体(Fe−Al−Si合金)微粉末A・・・95重量部 平均粒径 :φ20μm×0.3μmt ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 得られた各試料の実部透磁率μ’及び磁気共鳴周波数f
rを下記表1に示す。
Flat soft magnetic material (Fe—Al—Si alloy) fine powder A: 95 parts by weight Average particle size: φ20 μm × 0.3 μm t polyurethane resin: 8 parts by weight Hardener (isocyanate compound) 2 parts by weight Solvent (mixture of cyclohexanone and toluene) 40 parts by weight Real part permeability μ 'and magnetic resonance frequency f of each sample obtained
r is shown in Table 1 below.

【0054】[0054]

【表1】 [Table 1]

【0055】また、図4は、本発明の検証例である検証
用試料1と比較例である比較用試料4及び5のμ−f特
性であり、実部透磁率μ’の値は本発明の実施例である
検証用試料1が最も大きな値を示している。
FIG. 4 shows the μ-f characteristics of the verification sample 1 which is the verification example of the present invention and the comparison samples 4 and 5 which are the comparative examples. The sample for verification 1 which is the example of (1) shows the largest value.

【0056】図4と共に表1を参照すれば、本発明の2
つの軟磁性粉末からなる検証用試料は、略球状の原料磁
性粉末を用いた比較用試料4や、偏平状の磁性粉末のみ
からなる比較用試料5に比べて実部透磁率μ’の差は歴
然である。
Referring to Table 1 in conjunction with FIG.
The difference in the real part permeability μ ′ of the verification sample composed of two soft magnetic powders was smaller than that of the comparative sample 4 using the substantially spherical raw magnetic powder or the comparative sample 5 composed of only the flat magnetic powder. It is obvious.

【0057】これらの結果から、偏平形状でその表面に
誘電体層を有する第1の軟磁性粉末と、任意形状で前記
第1の軟磁性粉末よりもその大きさが十分に小さい第2
の軟磁性粉末からなる複合磁性体は、高周波域において
高い透磁率特性を示す事が明白である。
From these results, it can be seen that the first soft magnetic powder having a flat shape and a dielectric layer on its surface, and the second soft magnetic powder having an arbitrary shape and a size sufficiently smaller than the first soft magnetic powder.
It is evident that the composite magnetic material comprising the soft magnetic powder of the above exhibits high magnetic permeability characteristics in a high frequency range.

【0058】次に、検証用試料2と比較用試料5につい
て、それぞれの表面抵抗、μ”の値及び電磁干渉抑制効
果を比較した結果を下記表2に示す。
Next, Table 2 below shows the results of comparison of the surface resistance, the value of μ ″, and the effect of suppressing electromagnetic interference between the verification sample 2 and the comparison sample 5.

【0059】[0059]

【表2】 [Table 2]

【0060】ここで、表面抵抗はASTM−D−257
法による測定値であり、μ”の値は前記μ’同様1ター
ンコイル法による値であり、電磁干渉抑制効果の値は、
銅板を基準(0dB)としたときの信号減衰量である。
Here, the surface resistance is ASTM-D-257.
The value of μ ″ is a value obtained by the one-turn coil method as in the case of μ ′, and the value of the electromagnetic interference suppression effect is:
This is the signal attenuation when the copper plate is used as a reference (0 dB).

【0061】前記表2より以下に述べる効果が明白であ
る。
The following effects are apparent from Table 2 above.

【0062】即ち、本発明の検証用試料及び比較用試料
共、表面抵抗の値が107 〜108Ωとなっており、少
なくとも表面が酸化された磁性粉末を用いる事によっ
て、複合磁性体を非良導性とする事が出来、導体やバル
クの金属磁性体等にみられるようなインピーダンス不整
合による電磁波の表面反射を抑制出来る。
That is, both the verification sample and the comparative sample of the present invention have a surface resistance of 10 7 to 10 8 Ω, and the use of a magnetic powder having at least an oxidized surface makes it possible to produce a composite magnetic material. It can be made to be non-conductive, and can suppress surface reflection of electromagnetic waves due to impedance mismatch as seen in conductors and bulk metallic magnetic materials.

【0063】更に、本発明の検証用試料では、良好な電
磁干渉抑制効果を示しており、本発明によるμ”値の増
大化が電磁干渉抑制に有効である事が理解出来る。
Further, the sample for verification of the present invention shows a good effect of suppressing electromagnetic interference, and it can be understood that the increase of μ ″ value according to the present invention is effective for suppressing electromagnetic interference.

【0064】[0064]

【発明の効果】以上述べたように、本発明によれば、軟
磁性体粉末と有機結合剤からなる複合磁性体に於いて、
渦電流による透磁率特性の劣化を抑止出来る構成、並び
に反磁界が減少する構成を有しているので、高い透磁率
特性が実現出来、優れた電磁干渉抑制効果が現れてい
る。
As described above, according to the present invention, in a composite magnetic material comprising a soft magnetic material powder and an organic binder,
Since it has a configuration that can suppress the deterioration of the magnetic permeability characteristic due to the eddy current and a configuration that reduces the demagnetizing field, a high magnetic permeability characteristic can be realized, and an excellent effect of suppressing electromagnetic interference appears.

【0065】特に、複合磁性体中に分散している扁平形
状の第1の軟磁性体粉末の間隙に、これよりその大きさ
が十分に小さい任意形状の第2の軟磁性体粉末を存在さ
せることにより複合磁性体の反磁界が減少し、その結果
透磁率が向上する。因みに、磁化困難軸方向の反磁界H
ddと磁化容易軸方向の反磁界Hdeの比Dr (=Hde/H
dd)について言えば、被測定試料形状を立方体としたと
きのDrの値が従来例では5乃至6程度であるのに対
し、本発明では7程度と向上している。そして、300
MHZ での実部透磁率μ’については、従来例では16
程度であるのに対し、本発明では19程度と向上してい
る。ここで、磁気損失項である虚数部透磁率μ”につい
ても、実部透磁率μ’の増大化と共に向上していること
は言うまでもない。
In particular, the second soft magnetic powder of an arbitrary shape whose size is sufficiently smaller than that of the first soft magnetic powder having a flat shape is dispersed in the composite magnetic material. Thereby, the demagnetizing field of the composite magnetic body is reduced, and as a result, the magnetic permeability is improved. Incidentally, the demagnetizing field H in the hard axis direction
The ratio Dr (= Hde / H) between dd and the demagnetizing field Hde in the easy axis direction.
Regarding dd), the value of Dr when the shape of the sample to be measured is a cube is about 5 to 6 in the conventional example, but is improved to about 7 in the present invention. And 300
The real part permeability μ 'at MHZ is 16
On the other hand, it is about 19 in the present invention. Here, it goes without saying that the imaginary part magnetic permeability μ ″, which is a magnetic loss term, also increases as the real part magnetic permeability μ ′ increases.

【0066】即ち本発明によれば、移動体通信機器をは
じめとする高周波電子機器類内部での電磁波の干渉抑制
に有効な薄厚の電磁干渉抑制体を得ることが出来る。
That is, according to the present invention, it is possible to obtain a thin electromagnetic interference suppressor that is effective for suppressing electromagnetic wave interference inside high-frequency electronic devices such as mobile communication devices.

【0067】尚、本発明の複合磁性体及び電磁干渉抑制
体は、その構成要素から判るように容易に可撓性を付与
することが可能であり、複雑な形状への対応や、厳しい
耐振動、衝撃要求への対応が可能である。
The composite magnetic body and the electromagnetic interference suppressor according to the present invention can be easily imparted with flexibility as can be seen from the constituent elements, so that they can cope with complicated shapes and withstand severe vibration resistance. It is possible to respond to impact demand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による複合磁性体の断面図である。FIG. 1 is a sectional view of a composite magnetic body according to the present invention.

【図2】本発明による電磁干渉抑制体の断面図である。FIG. 2 is a sectional view of an electromagnetic interference suppressor according to the present invention.

【図3】本発明による電磁干渉抑制体の特性評価に用い
た評価系を示す概略図である。
FIG. 3 is a schematic diagram showing an evaluation system used for evaluating characteristics of the electromagnetic interference suppressor according to the present invention.

【図4】本発明の検証例である検証用試料1と比較例で
ある比較用試料4及び5のμ−f特性を示した図であ
る。
FIG. 4 is a diagram illustrating μ-f characteristics of a verification sample 1 as a verification example of the present invention and comparative samples 4 and 5 as comparative examples.

【符号の説明】[Explanation of symbols]

10 複合磁性体 11 第1の軟磁性体粉末 12 第2の軟磁性体粉末 13 有機結合剤 14 導電体層 20 電磁干渉抑制体 21,22 ループアンテナ 23 スイープジェネレータ 24 ネットワークアナライザ DESCRIPTION OF SYMBOLS 10 Composite magnetic material 11 1st soft magnetic material powder 12 2nd soft magnetic material powder 13 Organic binder 14 Conductive layer 20 Electromagnetic interference suppressor 21, 22 Loop antenna 23 Sweep generator 24 Network analyzer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1、第2の軟磁性体粉末と、有機結合
剤から成る複合磁性体であって、前記第1の軟磁性体粉
末は扁平形状を有し、前記第2の軟磁性体粉末は任意の
形状を有し、その大きさが前記第1の軟磁性体粉末より
十分に小さく、かつ、前記第1の軟磁性体粉末の前記複
合磁性体単位体積当たりの総体積が、前記第2の軟磁性
体粉末の単位体積当たりの総体積に比べて十分に大きい
ことを特徴とする複合磁性体。
1. A composite magnetic material comprising first and second soft magnetic powders and an organic binder, wherein the first soft magnetic powder has a flat shape and the second soft magnetic powder The body powder has an arbitrary shape, the size thereof is sufficiently smaller than that of the first soft magnetic body powder, and the total volume of the first soft magnetic body powder per unit volume of the composite magnetic body is: A composite magnetic material, which is sufficiently larger than a total volume per unit volume of the second soft magnetic material powder.
【請求項2】 請求項1に記載の複合磁性体において、
前記第1の軟磁性体粉末は、BET比表面積が0.1〜
3m2 /gであり、前記第2の軟磁性体粉末は、BET
比表面積が5m2 /g以上であることを特徴とする複合
磁性体。
2. The composite magnetic material according to claim 1, wherein
The first soft magnetic material powder has a BET specific surface area of 0.1 to
3 m 2 / g, and the second soft magnetic powder is BET
A composite magnetic material having a specific surface area of 5 m 2 / g or more.
【請求項3】 請求項1乃至請求項2に記載のいずれか
の複合磁性体において、前記第1の軟磁性体粉末の平均
厚さは、該複合磁性体の使用周波数における表皮深さδ
よりも小さいことを特徴とする複合磁性体。
3. The composite magnetic material according to claim 1, wherein the average thickness of the first soft magnetic material powder is a skin depth δ at an operating frequency of the composite magnetic material.
A composite magnetic material characterized by being smaller than the composite magnetic material.
【請求項4】 請求項1乃至請求項3に記載のいずれか
の複合磁性体において、前記第1の軟磁性体粉末は、該
複合磁性体中において、配向配列されていることを特徴
とする複合磁性体。
4. The composite magnetic material according to claim 1, wherein the first soft magnetic material powder is oriented and arranged in the composite magnetic material. Composite magnetic material.
【請求項5】 請求項1乃至請求項4に記載のいずれか
の複合磁性体において、前記第1の軟磁性体粉末は、少
なくともその表面に酸化物層を有することを特徴とする
複合磁性体。
5. The composite magnetic material according to claim 1, wherein the first soft magnetic material powder has an oxide layer at least on a surface thereof. .
【請求項6】 請求項5に記載の複合磁性体において、
前記少なくともその表面に酸化物層を有する軟磁性体粉
末は、気相中徐酸法又は液相中徐酸法により、酸素含有
混合ガスにてその表面が酸化処理されたものであること
を特徴とする磁性複合体。
6. The composite magnetic material according to claim 5, wherein
The soft magnetic material powder having an oxide layer on at least the surface thereof is obtained by oxidizing the surface thereof with an oxygen-containing mixed gas by a gas phase slow acid method or a liquid phase slow acid method. A magnetic composite.
【請求項7】 請求項5及び請求項6に記載のいずれか
の複合磁性体は、前記第1及び第2の軟磁性体粉末と、
前記有機結合剤とからなり、かつ、電気的に非良導性で
あることを特徴とする複合磁性体。
7. The composite magnetic material according to claim 5, wherein the first and second soft magnetic powders are:
A composite magnetic material comprising the organic binder and being electrically non-conductive.
【請求項8】 軟磁性体粉末と有機結合剤からなる複合
磁性体の製造方法において、前記軟磁性体粉末を扁平状
に加工して第1の軟磁性体粉末とし、前記軟磁性体粉末
を前記第1の軟磁性体粉末より十分に小さい大きさの任
意の形状に加工して第2の軟磁性体粉末とし、前記第1
の軟磁性体粉末の少なくとも表面に、気相中徐酸法又は
液相中徐酸法により酸素含有ガスにて酸化物層を形成す
ることを特徴とする複合磁性体の製造方法。
8. A method for producing a composite magnetic material comprising a soft magnetic material powder and an organic binder, wherein the soft magnetic material powder is processed into a flat shape to obtain a first soft magnetic material powder, and the soft magnetic material powder is The second soft magnetic material powder is processed into an arbitrary shape having a size sufficiently smaller than the first soft magnetic material powder, and the first soft magnetic material powder is processed.
Forming an oxide layer on at least the surface of the soft magnetic material powder with an oxygen-containing gas by a gas phase slow acid method or a liquid phase slow acid method.
【請求項9】 請求項1乃至請求項7に記載のいずれか
の複合磁性体を、その構成要素として有する電磁干渉抑
制体であって、更に導電性材料層を有することを特徴と
する電磁干渉抑制体。
9. An electromagnetic interference suppressor having the composite magnetic material according to claim 1 as a component thereof, further comprising a conductive material layer. Suppressor.
JP25124996A 1996-09-24 1996-09-24 Compound magnetic body, its manufacture and electromagnetic interference restraint Pending JPH1097913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25124996A JPH1097913A (en) 1996-09-24 1996-09-24 Compound magnetic body, its manufacture and electromagnetic interference restraint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25124996A JPH1097913A (en) 1996-09-24 1996-09-24 Compound magnetic body, its manufacture and electromagnetic interference restraint

Publications (1)

Publication Number Publication Date
JPH1097913A true JPH1097913A (en) 1998-04-14

Family

ID=17219964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25124996A Pending JPH1097913A (en) 1996-09-24 1996-09-24 Compound magnetic body, its manufacture and electromagnetic interference restraint

Country Status (1)

Country Link
JP (1) JPH1097913A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284109A (en) * 2000-04-03 2001-10-12 Tokin Corp Composite magnetic material and electromagnetic interference suppressor using the same
JP2002271468A (en) * 2001-03-09 2002-09-20 Nec Tokin Corp Electromagnetic wave protective device and portable communication apparatus fixed with that device
US7532099B2 (en) 2001-06-08 2009-05-12 Vacuumschmelze Gmbh & Co. Kg Inductive component and method for producing the same
JP2012222076A (en) * 2011-04-06 2012-11-12 Nec Tokin Corp Electromagnetic interference suppressor
JP2014127624A (en) * 2012-12-27 2014-07-07 Nagase Chemtex Corp Magnetic sheet
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2017112354A (en) * 2015-12-18 2017-06-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
WO2023149454A1 (en) * 2022-02-07 2023-08-10 パナソニックIpマネジメント株式会社 Magnetic resin composition, magnetic sheet, and inductor component

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284109A (en) * 2000-04-03 2001-10-12 Tokin Corp Composite magnetic material and electromagnetic interference suppressor using the same
JP2002271468A (en) * 2001-03-09 2002-09-20 Nec Tokin Corp Electromagnetic wave protective device and portable communication apparatus fixed with that device
JP4598975B2 (en) * 2001-03-09 2010-12-15 Necトーキン株式会社 Portable communication equipment with an electromagnetic wave protection device
US7532099B2 (en) 2001-06-08 2009-05-12 Vacuumschmelze Gmbh & Co. Kg Inductive component and method for producing the same
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2012222076A (en) * 2011-04-06 2012-11-12 Nec Tokin Corp Electromagnetic interference suppressor
JP2014127624A (en) * 2012-12-27 2014-07-07 Nagase Chemtex Corp Magnetic sheet
JP2017112354A (en) * 2015-12-18 2017-06-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
US10020112B2 (en) 2015-12-18 2018-07-10 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
US10395817B2 (en) 2015-12-18 2019-08-27 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
US10902995B2 (en) 2015-12-18 2021-01-26 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
WO2023149454A1 (en) * 2022-02-07 2023-08-10 パナソニックIpマネジメント株式会社 Magnetic resin composition, magnetic sheet, and inductor component

Similar Documents

Publication Publication Date Title
JPH0993034A (en) Compound magnetic substance, manufacture of the same and electromagnetic interference suppresser
JP3812977B2 (en) Electromagnetic interference suppressor
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP3401650B2 (en) Electromagnetic interference suppressor
US6972097B2 (en) Composite magnetic material and electromagnetic interference suppressor member using the same
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
JP2001210510A (en) Soft magnetic powder and composite magnetic unit using the same
JP3722391B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP2011249628A (en) Method for producing electromagnetic interference suppression body
JPH10106839A (en) Multilayer high-frequency inductor
JP4097160B2 (en) Method for manufacturing electromagnetic interference suppressor
WO2011046125A1 (en) Magnetic material for high frequency applications and high frequency device
JPH1083911A (en) Composite magnetic material and electromagnetic interference inhibition body using that
KR101948025B1 (en) Noise suppression sheet for near-field
Sonehara et al. Characterization of UHF band LC filter with RF spiral inductor using carbonyl-iron powder/epoxy composite magnetic and chip capacitor
JP5568944B2 (en) High frequency magnetic material and high frequency device
JP6978346B2 (en) Noise suppression sheet
JP2011086788A (en) Magnetic material for high frequency and high frequency device
JP3979541B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JPH1097912A (en) Composite magnetic element, manufacture thereof and electromagnetic interference suppressor
JPH10308592A (en) Composite magnetic body and electromagnetic interference suppressing body
POH Calculations of microwave permeability, permittivity and absorption properties of magnetic particle composites
JPH10107541A (en) Composite magnetic body, its manufacture and electromagnetic interference suppressing body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A02 Decision of refusal

Effective date: 20050323

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050609

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20050722

Free format text: JAPANESE INTERMEDIATE CODE: A912