JPH10107541A - Composite magnetic body, its manufacture and electromagnetic interference suppressing body - Google Patents

Composite magnetic body, its manufacture and electromagnetic interference suppressing body

Info

Publication number
JPH10107541A
JPH10107541A JP8258310A JP25831096A JPH10107541A JP H10107541 A JPH10107541 A JP H10107541A JP 8258310 A JP8258310 A JP 8258310A JP 25831096 A JP25831096 A JP 25831096A JP H10107541 A JPH10107541 A JP H10107541A
Authority
JP
Japan
Prior art keywords
composite magnetic
magnetic material
demagnetizing field
coating
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8258310A
Other languages
Japanese (ja)
Inventor
Norihiko Ono
典彦 小野
Mitsuharu Sato
光晴 佐藤
栄▲吉▼ ▲吉▼田
Eikichi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8258310A priority Critical patent/JPH10107541A/en
Priority to PCT/JP1997/003068 priority patent/WO1998009788A1/en
Priority to CN97191127A priority patent/CN1082871C/en
Priority to KR1019980703164A priority patent/KR20000064304A/en
Priority to EP97937877A priority patent/EP0873839B1/en
Priority to US09/068,144 priority patent/US6187120B1/en
Priority to DE69731727T priority patent/DE69731727T2/en
Priority to KR19987003164A priority patent/KR100475768B1/en
Publication of JPH10107541A publication Critical patent/JPH10107541A/en
Priority to US09/613,330 priority patent/US6740289B1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin composite magnetic body with an excellent high frequency permeability characteristic and a high electromagnetic interference suppression effect. SOLUTION: Soft magnetic powder 2 each particle of which is processed to be flat and an organic binder 3 are kneaded with a solvent and the mixture is painted and dried to obtain a composite magnetic body 1. In this case, in order that a ratio of Hdd /Hdc a ratio of a demagnetizing field Hdd in a direction of a magnetization difficult axis to a demagnetizing field Hdc in a direction of a magnetization easy axis when the composite magnetic body is formed in a cube, is 4 or over, a shear stress is exerted in the painting direction in the stage of the painting above or before the drying. Or a magnetic field may be applied in a planer direction in place of exertion of the shear stress. Or the compound may be formed into a sheet by using the roll mill method without the use of painting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波領域に於い
て優れた複素透磁率特性を有する複合磁性材料およびそ
の一応用例である電磁波吸収体に関し、詳しくは、高周
波電子回路/装置に於いて問題となる電磁干渉の抑制に
有効な複素透磁率特性の優れた複合磁性体と、及びその
製造方法ならびに電磁干渉抑制体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material having excellent complex magnetic permeability characteristics in a high frequency range and an electromagnetic wave absorber as one application example thereof, and more particularly to a problem in a high frequency electronic circuit / device. The present invention relates to a composite magnetic material having an excellent complex magnetic permeability characteristic effective for suppressing electromagnetic interference, a method for producing the same, and an electromagnetic interference suppressor.

【0002】[0002]

【従来の技術】近年、デジタル電子機器をはじめ高周波
を利用する電子機器類の普及が進み、中でも準マイクロ
波帯域を使用する移動通信機器類の普及がめざましい。
このような携帯電話に代表される移動体通信機器では、
小型化・軽量化の要求が高く、電子部品の高密度実装化
が最大の技術課題となっている。このような過密実装に
おいては、電子部品類やプリント配線あるいはモジュー
ル間配線等が互いに極めて接近することになる。更に、
信号処理速度の高速化も図られている為、静電結合及び
/又は電磁結合による線間結合の増大化や放射ノイズに
よる干渉などが生じ、機器の正常な動作を妨げる事態が
少なからず生じている。
2. Description of the Related Art In recent years, electronic devices using high frequencies such as digital electronic devices have become widespread. In particular, mobile communication devices using a quasi-microwave band have been remarkably spread.
In mobile communication devices represented by such mobile phones,
There is a high demand for miniaturization and weight reduction, and high-density mounting of electronic components is the biggest technical issue. In such a dense mounting, electronic components, printed wiring, wiring between modules, and the like are extremely close to each other. Furthermore,
Since the signal processing speed has also been increased, interference between lines due to electrostatic coupling and / or electromagnetic coupling has increased, and interference due to radiated noise has occurred. I have.

【0003】このようないわゆる電磁障害に対して従来
は、主に導体シールドを施す事による対策がなされてき
た。
Conventionally, measures against such a so-called electromagnetic interference have been taken mainly by providing a conductor shield.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、導体シ
ールドは、空間とのインピーダンス不整合に起因する電
磁波の反射を利用する電磁障害対策である為に、遮蔽効
果は、得られても不要輻射源からの反射による電磁結合
が助長される欠点がある。その欠点を解決するために、
二次的な電磁障害対策として、磁性体の磁気損失、即ち
虚数部透磁率μ”を利用した不要輻射の抑制が有効であ
る。
However, since the conductor shield is a countermeasure against electromagnetic interference utilizing the reflection of electromagnetic waves caused by impedance mismatch with the space, even if the shielding effect is obtained, it is possible to prevent the unnecessary shielding from unnecessary radiation sources. There is a disadvantage that electromagnetic coupling due to reflection of light is promoted. To solve that shortcoming,
As a secondary countermeasure against electromagnetic interference, it is effective to suppress unnecessary radiation using the magnetic loss of the magnetic material, that is, the imaginary part magnetic permeability μ ″.

【0005】即ち、前記シールド体と不要輻射源の間に
磁気損失の大きい磁性体を配設する事で不要輻射を抑制
することが出来る。
That is, unnecessary radiation can be suppressed by disposing a magnetic material having a large magnetic loss between the shield and the unnecessary radiation source.

【0006】ここで、磁性体の厚さdは、μ”>μ’な
る関係を満足する周波数帯域にてμ”に反比例するの
で、前述した電子機器の小型化・軽量化要求に迎合する
薄い電磁干渉抑制体即ち、シールド体と吸収体からなる
複合体を得るためには、虚数部透磁率μ”の大きな磁性
体が必要となる。
Here, the thickness d of the magnetic material is inversely proportional to μ ″ in a frequency band satisfying the relationship of μ ″> μ ′, so that the thickness d is thin in order to meet the above-mentioned demand for downsizing and weight reduction of electronic devices. In order to obtain an electromagnetic interference suppressor, that is, a composite including a shield and an absorber, a magnetic material having a large imaginary part permeability μ ”is required.

【0007】磁気損失すなわち虚数部透磁率μ”を大き
くするためには、実部透磁率μ’を大きくすることが必
要であり、そのためには、前記複合磁性体の反磁界を小
さくすることが必要である。ここで、複合磁性体の反磁
界の大きさは、前記扁平状軟磁性粉末の反磁界係数Nd
と、前記扁平状軟磁性粉末の前記複合磁性体中での配列
のされ方、および前記軟磁性粉末の充填量等により決定
され、前記扁平状軟磁性粉末を前記複合磁性体の面内方
向に高い配向度で配列させることにより減少する。した
がって、扁平状の形状を有する軟磁性粉末をいかに同じ
方向に並べるかがμ”の大きさを改善するための課題で
あり、また、配向の程度、すなわち軟磁性粉末の並び具
合を定量的に把握するための有効なパラメータの導入も
工業的に重要である。
In order to increase the magnetic loss, that is, the imaginary part magnetic permeability μ ″, it is necessary to increase the real part magnetic permeability μ ′. To this end, it is necessary to reduce the demagnetizing field of the composite magnetic body. Here, the magnitude of the demagnetizing field of the composite magnetic material is determined by the demagnetizing factor N d of the flat soft magnetic powder.
And the manner in which the flat soft magnetic powder is arranged in the composite magnetic body, and the filling amount of the soft magnetic powder, etc., and the flat soft magnetic powder is moved in the in-plane direction of the composite magnetic body. It is reduced by aligning with a high degree of orientation. Therefore, how to arrange soft magnetic powders having a flat shape in the same direction is a problem for improving the size of μ ″, and the degree of orientation, that is, the arrangement of the soft magnetic powders is quantitatively determined. The introduction of effective parameters for grasping is also industrially important.

【0008】そこで、本発明は、さらに配向度が改善さ
れ、その結果として優れた磁気損失特性を有する複合磁
性体を提供すること、および磁性粉末の配向度の目安と
なるパラメータの導入を目的とする。
Accordingly, an object of the present invention is to provide a composite magnetic material having a further improved degree of orientation and, as a result, excellent magnetic loss characteristics, and to introduce a parameter which is a measure of the degree of orientation of a magnetic powder. I do.

【0009】[0009]

【課題を解決するための手段】本発明によれば、形状異
方性を有する軟磁性体粉末を有機結合剤中に分散してな
る複合磁性体であって、立方体と成した時の磁化困難軸
方向の反磁界Hddと磁化容易軸方向の反磁界Hdeとの比
dd/Hdeが4以上を呈することを特徴とする複合磁性
体が得られる。
According to the present invention, there is provided a composite magnetic material obtained by dispersing a soft magnetic powder having shape anisotropy in an organic binder. A composite magnetic material is obtained in which the ratio H dd / H de of the demagnetizing field H dd in the axial direction to the demagnetizing field H de in the easy axis direction is 4 or more.

【0010】前記形状異方性を有する軟磁性体粉末とし
ては、その粉末粒子が扁平状のものが好都合である。
As the soft magnetic powder having the shape anisotropy, a powder having a flat powder particle is convenient.

【0011】又、本発明によれば、形状異方性を有する
軟磁性体粉末と有機結合剤とを溶媒と共に混練し、これ
を塗工、乾燥してなる複合磁性体の製造方法において、
該複合磁性体を立方体と成した時の磁化困難軸方向の反
磁界Hddと磁化容易軸方向の反磁界Hdeとの比Hdd/H
deが4以上を呈するようにするために、前記塗工時ない
し乾燥前の段階で塗工方向に剪断応力を加えることを特
徴とする。
According to the present invention, there is further provided a method for producing a composite magnetic material comprising kneading a soft magnetic material powder having shape anisotropy and an organic binder together with a solvent, coating and kneading the mixture.
The ratio H dd / H between the demagnetizing field H dd in the hard axis direction and the demagnetizing field H de in the easy axis direction when the composite magnetic body is formed as a cube.
In order for de to be 4 or more, a shear stress is applied in the coating direction during the coating or before drying.

【0012】又、剪断応力を加える代わりに、前記塗工
時ないし乾燥前の段階で塗工面方向に外部磁界を印加し
てもよい。
Instead of applying a shear stress, an external magnetic field may be applied in the direction of the coating surface during the coating or before drying.

【0013】あるいは、塗工、乾燥によらず、混練物を
ロール圧延することによって、該複合磁性体を立方体と
成した時の磁化困難軸方向の反磁界Hddと磁化容易軸方
向の反磁界Hdeとの比Hdd/Hdeが4以上を呈するよう
にしてもよい。
Alternatively, when the kneaded material is roll-rolled regardless of coating and drying, the demagnetizing field H dd in the hard axis direction and the demagnetizing field in the easy axis direction when the composite magnetic body is formed into a cube. the ratio H dd / H de with H de may also be present a 4 or higher.

【0014】さらに、本発明によれば、前記の複合磁性
体を材料とした電磁干渉抑制効果の優れた電磁干渉抑制
体を得ることができる。
Further, according to the present invention, it is possible to obtain an electromagnetic interference suppressor using the composite magnetic material as a material and having an excellent effect of suppressing electromagnetic interference.

【0015】[0015]

【作用】本発明者らは、軟磁性体の高周波透磁率が反磁
界の大きさに強く依存することに着目し、前記反磁界の
大きさを定量的に把握できるパラメータとして、磁化困
難軸方向の反磁界Hddと磁化容易軸方向の反磁界Hde
の比Hdd/Hdeを求めることによって、複合磁性体試料
中の磁性粉末の充填率や、粉末その者の反磁界係数が変
化した場合でも実効的な反磁界の大きさが把握できるよ
うにし、さらに、その比率を試料形状を立方体としたと
きに4以上とすることで、優れた透磁率特性が得られる
ことを見出した。また、この比Hdd/Hdeの制御は、上
のように複合磁性体の製造方法によって行える。
The present inventors have paid attention to the fact that the high-frequency magnetic permeability of the soft magnetic material strongly depends on the magnitude of the demagnetizing field. By calculating the ratio H dd / H de of the demagnetizing field H dd and the demagnetizing field H de in the easy axis direction, the filling rate of the magnetic powder in the composite magnetic material sample and the demagnetizing coefficient of the powder itself change. In this case, it has been found that excellent magnetic permeability characteristics can be obtained by making it possible to grasp the effective magnitude of the demagnetizing field and setting the ratio to 4 or more when the sample shape is a cube. The control of the ratio H dd / H de can be performed by the method of manufacturing a composite magnetic material as described above.

【0016】尚、ここで、「反磁界」Hdについて、図
1を参照して説明する。
Here, the "diamagnetic field" Hd will be described with reference to FIG.

【0017】複合磁性体試料に、その磁性粒子配向方向
がわかるように、印を付して、立方体形状に加工する。
この立方体試料についてVSM(振動型磁力計)を用い
て、磁性粒子の配向方向(磁化容易軸方向)および配向
方向に直行する方向(磁化困難軸方向)の各々のM−H
曲線(磁化曲線)を求める。M−H曲線を図1に示す。
得られたM−H曲線の線形の領域部分に平行に原点を通
る直線(図1に点線で示す)を引き、この直線とMs線
(飽和磁化線)との交点に対応する磁界を「反磁界」H
dとする。
The composite magnetic material sample is marked and processed into a cubic shape so that the orientation direction of the magnetic particles can be recognized.
Using a VSM (vibrating magnetometer) for this cubic sample, each MH in the orientation direction (easy axis direction of magnetization) and the direction perpendicular to the orientation direction (hard axis direction) of the magnetic particles was measured.
Find a curve (magnetization curve). The MH curve is shown in FIG.
A straight line (shown by a dotted line in FIG. 1) passing through the origin is drawn in parallel with the linear region of the obtained MH curve, and the magnetic field corresponding to the intersection of this straight line and the Ms line (saturated magnetization line) is referred to as " Magnetic field "H
d.

【0018】尚、「磁化容易軸方向」の反磁界をHde
表し、「磁化困難軸方向」の反磁界をHddで表すものと
する。
The demagnetizing field in the “easy axis direction” is represented by H de , and the demagnetizing field in the “hard axis direction” is represented by H dd .

【0019】[0019]

【発明の実施の形態】本発明に於いては、高周波透磁率
の大きな鉄アルミ珪素合金(センダスト)、鉄ニッケル
合金(パーマロイ)、或いはアモルファス合金等の金属
軟磁性材料を原料素材として用いることが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a metal soft magnetic material such as an iron aluminum silicon alloy (Sendust), an iron nickel alloy (Permalloy), or an amorphous alloy having a high high-frequency magnetic permeability is used as a raw material. I can do it.

【0020】本発明では、これらの粗原料を粉砕、延伸
・引裂加工等により扁平化し、その厚みを表皮深さと同
等以下にすると共に、粉末の反磁界係数Nd をほぼ1に
するために扁平化された軟磁性体材料のアスペクト比を
概ね10以上とする必要がある。ここで表皮深さδは次
式により与えられる。
In the present invention, crushing these raw materials, it was flattened by stretching and tearing process or the like, flat and its thickness as well as to equal to or less than the skin depth, to the demagnetization factor N d of the powder to about 1 It is necessary to make the aspect ratio of the soft magnetic material material approximately 10 or more. Here, the skin depth δ is given by the following equation.

【0021】δ=(ρ/πμf)1/2 前式において、ρは比抵抗、μは透磁率、fは周波数を
表す。ここで、目的の周波数によってその値が異なって
くるが、所望の表皮深さとアスペクト比を得るには、出
発粗原料粉末の平均粒径を特定するのが最も簡便な手段
の一つである。この粉砕、延伸・引裂加工に用いること
の出来る代表的な粉砕手段として、ボ−ルミル、アトラ
イタ、ピンミル等を挙げることが出来、前述した条件を
満足する軟磁性体粉末の厚さとアスペクト比が得られれ
ば粉砕手段に制限はないが、本発明の効果に密接にかか
わる延伸・引裂加工により生じる残留歪みの大きさを考
慮して加工手段及び加工条件を設定する必要がある。
Δ = (ρ / πμf) 1/2 In the above equation, ρ represents specific resistance, μ represents magnetic permeability, and f represents frequency. Here, the value differs depending on the target frequency, but one of the simplest means to obtain the desired skin depth and aspect ratio is to specify the average particle size of the starting crude material powder. Typical milling means that can be used for the milling, stretching and tearing operations include a ball mill, an attritor, a pin mill, and the like. The thickness and aspect ratio of the soft magnetic material powder satisfying the above conditions can be obtained. There is no limitation on the crushing means as long as it is possible, but it is necessary to set the processing means and the processing conditions in consideration of the magnitude of the residual strain caused by the stretching / tearing, which is closely related to the effect of the present invention.

【0022】尚、軟磁性体としては、磁歪定数λがゼロ
のものでも、正のものでも、負のものでもよいが、正の
原料磁性体を用いた場合には、延伸・引裂加工により形
状磁気異方性が生じると共に、残留歪みによる歪磁気異
方性(磁気弾性効果)が生じ、両者の向きが同じとなる
為、異方性磁界は両者の和となる。従って、磁歪定数λ
がゼロである原料を用いた場合に比べて、異方性磁界は
より大きな値となり、磁気共鳴周波数もより高いものと
なる。ところでこの扁平化加工により生じる残留歪み
は、適当な焼鈍処理を施すことにより緩和されるので、
扁平化処理後に焼鈍処理を行った原料粉末を用いた複合
磁性体では、焼鈍処理条件に応じた周波数frに磁気共
鳴が現れる。この磁気共鳴周波数frは、焼鈍処理をし
ていない磁性粉を用いた複合磁性体よりも低く、磁歪定
数λがゼロの磁性粉を用いた複合磁性体よりも高くな
り、焼鈍処理条件を製御することで、磁気共鳴周波数を
その範囲に任意に設定することが可能である。
The soft magnetic material may have a magnetostriction constant λ of zero, a positive material, or a negative material. However, when a positive raw material magnetic material is used, the soft magnetic material is shaped by stretching and tearing. Along with the occurrence of magnetic anisotropy, a strain magnetic anisotropy (magnetoelastic effect) due to residual strain occurs, and the directions of the two become the same. Therefore, the magnetostriction constant λ
The value of the anisotropic magnetic field becomes larger and the magnetic resonance frequency becomes higher as compared with the case where the raw material having zero is used. By the way, since the residual strain caused by the flattening process is reduced by performing an appropriate annealing process,
In the composite magnetic material using the raw material powder subjected to the annealing treatment after the flattening treatment, magnetic resonance appears at a frequency fr corresponding to the annealing treatment conditions. This magnetic resonance frequency fr is lower than that of the composite magnetic material using the magnetic powder that has not been subjected to the annealing treatment, and is higher than that of the composite magnetic material using the magnetic powder having the zero magnetostriction constant λ. By doing so, it is possible to arbitrarily set the magnetic resonance frequency within the range.

【0023】一方、磁歪定数λが負の原料磁性体を用い
た場合には、残留歪みにより生じる歪み磁気異方性(磁
気弾性効果)の向きが形状磁気異方性の向きと直交する
ことになり、異方性磁界が小さくなり、磁気共鳴周波数
が、磁歪定数のゼロの原料の場合に比べて低くなる。
On the other hand, when a raw material magnetic material having a negative magnetostriction constant λ is used, the direction of the strain magnetic anisotropy (magnetoelastic effect) caused by the residual strain is orthogonal to the direction of the shape magnetic anisotropy. As a result, the anisotropic magnetic field becomes smaller, and the magnetic resonance frequency becomes lower than that of a raw material having zero magnetostriction constant.

【0024】このように、形状異方性と磁歪定数λの符
号、及び焼鈍処理条件を組み合わせることにより、磁気
共鳴周波数frを大幅に可変する事が可能となる。
As described above, by combining the shape anisotropy, the sign of the magnetostriction constant λ, and the annealing conditions, the magnetic resonance frequency fr can be greatly varied.

【0025】さらに、複合磁性体中における個々の磁性
粉末同士を電気的に絶縁して、磁性粉の高充填状態にお
いても複合磁性体の絶縁特性を確保するためには、軟磁
性体粉末は、その表面に誘電体層が形成されている必要
がある。この誘電体層は、金属磁性粉末の表面を酸化す
ることにより、粉末構成金属の酸化物層として得られ
る。例えば、鉄アルミ珪素合金(センダスト)の場合に
は、主にAlOx 及びSiOx であると推察される。金
属粉末の表面を酸化させる手段の一例として、特に粉末
の大きさが比較的小さく、活性度の高いものについて
は、炭化水素系有機溶媒中あるいは不活性ガス雰囲気中
にて酸素分圧の制御された窒素−酸素混合ガスを導入す
る液相中徐酸法あるいは気相中徐酸法により酸化処理す
る事が制御の容易性、安定性、及び安全性の点で好まし
い。
Further, in order to electrically insulate the individual magnetic powders in the composite magnetic body and to secure the insulating properties of the composite magnetic body even in a state where the magnetic powder is highly filled, the soft magnetic powder is A dielectric layer must be formed on the surface. This dielectric layer is obtained as an oxide layer of a metal constituting the powder by oxidizing the surface of the metal magnetic powder. For example, in the case of iron aluminum silicon alloy (Sendust), it is presumed that it is mainly AlO x and SiO x . As an example of a means for oxidizing the surface of the metal powder, particularly for powders having a relatively small size and high activity, the oxygen partial pressure is controlled in a hydrocarbon organic solvent or in an inert gas atmosphere. Oxidation by a slow acid method in a liquid phase or a slow acid method in a gas phase, in which a mixed gas of nitrogen and oxygen is introduced, is preferred in terms of controllability, stability, and safety.

【0026】尚、この表面酸化の為の徐酸処理と、先に
説明した残留歪み低減の為の焼鈍処理とは、どちらを先
に行ってもよく、また、同一工程にて行う事も可能であ
る。
It is to be noted that either the slow acid treatment for surface oxidation or the annealing treatment for reducing residual strain described above may be performed first, or may be performed in the same step. It is.

【0027】本発明の複合磁性体の一構成要素として用
いる有機結合剤としては、ポリエステル系樹脂、ポリエ
チレン系樹脂、ポリ塩化ビニル系樹脂、ポリビニルブチ
ラール樹脂、ポリウレタン樹脂、セルロース系樹脂、A
BS樹脂、ニトリル−ブタジエン系ゴム、スチレン−ブ
タジエン系ゴム、エポキシ樹脂、フェノール樹脂、アミ
ド系樹脂、イミド系樹脂、或いはそれらの共重合体を挙
げることが出来る。
The organic binder used as one component of the composite magnetic material of the present invention includes polyester resin, polyethylene resin, polyvinyl chloride resin, polyvinyl butyral resin, polyurethane resin, cellulose resin,
Examples include BS resin, nitrile-butadiene rubber, styrene-butadiene rubber, epoxy resin, phenol resin, amide resin, imide resin, and copolymers thereof.

【0028】この混練・分散された磁性体混合物から複
合磁性体を得るための一つの方法は、磁性体混合物を支
持体上に塗工して、乾燥することであるが、本発明によ
れば、この塗工時に磁性粉の大きさと同等レベルないし
それ以下のギャップを有するドクタブレード装置(アプ
レケータ)を用いるか、または乾燥の前に支持体を引っ
張るなどして、剪断応力を加える。これによって、製造
された複合磁性体を立方体に成した時の磁化困難軸方向
の反磁界Hddと磁化容易軸方向の反磁界Hdeとの比Hdd
/Hdeを4以上とすることができ、優れた高周波透磁率
を有する複合磁性体を得ることができる。
One method for obtaining a composite magnetic material from the kneaded and dispersed magnetic material mixture is to coat the magnetic material mixture on a support and to dry it. During the coating, a shearing stress is applied by using a doctor blade device (applicator) having a gap equal to or smaller than the size of the magnetic powder, or by pulling the support before drying. Thereby, the ratio H dd between the demagnetizing field H dd in the hard axis direction and the demagnetizing field H de in the easy axis direction when the manufactured composite magnetic body is formed into a cube.
/ H de can be 4 or more, and a composite magnetic material having excellent high-frequency magnetic permeability can be obtained.

【0029】比Hdd/Hdeを4以上とするために、この
剪断力を与える代わりに、磁場を印加する方法を採用す
ることもできる。
In order to set the ratio H dd / H de to 4 or more, a method of applying a magnetic field instead of applying the shearing force may be employed.

【0030】又、塗工法を採用せず、混練・分散された
磁性体を直接ロール圧延によって、シート状に形成して
もよい。このロール圧延により、比Hdd/Hdeが4以上
を実現することができる。
Alternatively, the kneaded and dispersed magnetic material may be directly formed into a sheet by roll rolling without using a coating method. By this roll rolling, a ratio H dd / H de of 4 or more can be realized.

【0031】本発明の複合磁性体の構造を説明するため
に、その断面を図1に模式的に示す。同図を参照して、
複合磁性体1は、扁平状軟磁性体粒子2を有機結合剤3
の層の中に分散して結着したものである。尚、4は支持
体で、絶縁板でも、金属板でも必要に応じて使い分けれ
ばよいし、使用しなくてもよい。
In order to explain the structure of the composite magnetic material of the present invention, its cross section is schematically shown in FIG. Referring to FIG.
The composite magnetic body 1 is obtained by mixing the flat soft magnetic particles 2 with an organic binder 3.
Are dispersed and bound in a layer of Reference numeral 4 denotes a support, which may be an insulating plate or a metal plate, which may be used as needed, or may not be used.

【0032】以下実施例について述べる。An embodiment will be described below.

【0033】[0033]

【実施例】水アトマイズ法により作製された複数の鉄ア
ルミ珪素合金粉末を用意し、アトライタ及びピンミルを
用い様々な条件下にて粉砕、延伸・引裂加工を行い、更
に、炭化水素系有機溶媒中で酸素分圧35%の窒素−酸
素混合ガスを導入しながら8時間撹拌し液相中徐酸処理
した後、複数の粉末試料を得た。ここで得られた粉末を
表面分析した結果、金属酸化物の生成が明確に確認さ
れ、試料粉末の表面に於ける酸化被膜の存在が認められ
た。
EXAMPLE A plurality of iron-aluminum-silicon alloy powders prepared by a water atomizing method were prepared, pulverized, stretched and torn under various conditions using an attritor and a pin mill. Then, the mixture was stirred for 8 hours while introducing a nitrogen-oxygen mixed gas having an oxygen partial pressure of 35%, and gradually acidified in a liquid phase, to obtain a plurality of powder samples. As a result of surface analysis of the powder obtained here, formation of a metal oxide was clearly confirmed, and the presence of an oxide film on the surface of the sample powder was recognized.

【0034】尚、粉砕、延伸・引裂加工処理された鉄ア
ルミ珪素合金粉末を減圧乾燥し、これを酸素分圧20%
の窒素−酸素混合ガス雰囲気中で気相徐酸した試料につ
いてもその表面に金属酸化物が検出され、本発明の複合
磁性体に用いることの出来る少なくともその表面が酸化
された軟磁性体粉末が液相中徐酸法あるいは気相中徐酸
法にて作成できることが確認された。
The pulverized, stretched and torn iron-silicon alloy powder was dried under reduced pressure, and then dried at an oxygen partial pressure of 20%.
Metal oxides are also detected on the surface of the sample that has undergone gas phase deoxidation in a nitrogen-oxygen mixed gas atmosphere, and at least the surface of the oxidized soft magnetic material powder that can be used for the composite magnetic material of the present invention is obtained. It was confirmed that it can be prepared by a slow acid method in a liquid phase or a slow acid method in a gas phase.

【0035】これらの試料粉末を用いて以下の複合磁性
体試料を得た。
The following composite magnetic material samples were obtained using these sample powders.

【0036】[試料1]以下の配合からなる軟磁性体ペ
ーストを調合し、これをドクターブレード法により支持
体上に製膜し、塗工方向に引っ張り力を与え剪断力を加
えた。これに熱プレスを施して後、85℃にて24時間
キュアリングを行い試料1を得た。
[Sample 1] A soft magnetic paste having the following composition was prepared, formed into a film on a support by a doctor blade method, and a shearing force was applied by applying a pulling force in a coating direction. This was subjected to hot pressing, and then cured at 85 ° C. for 24 hours to obtain Sample 1.

【0037】尚、得られた試料1を走査型電子顕微鏡を
用いて解析したところ、粒子配列方向は試料膜面内方向
であった。
When the obtained sample 1 was analyzed using a scanning electron microscope, the particle arrangement direction was in the in-plane direction of the sample film.

【0038】 扁平状軟磁性体(Fe−Al−Si合金)微粉末A・・・95重量部 平均粒径 :φ20μm×0.3μmt 磁歪の大きさ :+0.72 焼鈍処理 :なし ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [試料2]以下の配合からなる軟磁性体ペーストを調合
し、これをドクターブレード法により支持体上に製膜し
た。これに面内方向の磁場を印加した後に、85℃にて
24時間キュアリングを行い試料2を得た。
Flat soft magnetic material (Fe-Al-Si alloy) fine powder A: 95 parts by weight Average particle size: φ20 μm × 0.3 μm t Magnetostriction size: +0.72 Annealing treatment: None Polyurethane resin ··· 8 parts by weight Curing agent (isocyanate compound) ··· 2 parts by weight Solvent (mixture of cyclohexanone and toluene) ··· 40 parts by weight [Sample 2] A soft magnetic paste having the following composition is prepared and mixed. A film was formed on a support by a doctor blade method. After applying an in-plane magnetic field thereto, curing was performed at 85 ° C. for 24 hours to obtain a sample 2.

【0039】尚、得られた試料2を走査型電子顕微鏡を
用いて解析したところ、粒子配列方向は試料膜面内方向
であった。
When the obtained sample 2 was analyzed using a scanning electron microscope, the particle arrangement direction was in the in-plane direction of the sample film.

【0040】 扁平状軟磁性体(Fe−Al−Si合金)微粉末B・・・95重量部 平均粒径 :φ20μm×0.3μmt 磁歪の大きさ :+0.72 焼鈍処理 :650℃×2hr ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [試料3]以下の配合からなる軟磁性体ペーストを調合
し、これをドクターブレード法により支持体上に製膜し
た。これに熱プレスを施した後に、85℃にて24時間
キュアリングを行い試料3を得た。
Flat soft magnetic material (Fe—Al—Si alloy) fine powder B: 95 parts by weight Average particle size: φ20 μm × 0.3 μm t Magnetostriction size: +0.72 Annealing treatment: 650 ° C. × 2 hr Polyurethane resin 8 parts by weight Hardener (isocyanate compound) 2 parts by weight Solvent (mixture of cyclohexanone and toluene) 40 parts by weight [Sample 3] A soft magnetic paste having the following composition is prepared. This was formed on a support by a doctor blade method. After subjecting this to hot pressing, it was cured at 85 ° C. for 24 hours to obtain Sample 3.

【0041】尚、得られた試料3を走査型電子顕微鏡を
用いて解析したところ、粒子配列方向は試料膜面内方向
であった。
When the obtained sample 3 was analyzed using a scanning electron microscope, it was found that the particle arrangement direction was the in-plane direction of the sample film.

【0042】 扁平状軟磁性体(Fe−Ni合金)微粉末C ・・・95重量部 平均粒径 :φ30μm×0.4μmt 磁歪の大きさ :−1.03 焼鈍処理 :なし ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 [試料4]以下の配合からなる軟磁性体を調合し、これ
をミキシングロールを用いてロール圧延により、シート
状に形成し、試料4を得た。
Flat soft magnetic material (Fe—Ni alloy) fine powder C: 95 parts by weight Average particle size: φ30 μm × 0.4 μm t Magnetostriction size: −1.03 Annealing treatment: None Polyurethane resin 8 parts by weight Curing agent (isocyanate compound) 2 parts by weight Solvent (mixture of cyclohexanone and toluene) 40 parts by weight [Sample 4] A soft magnetic material having the following composition is prepared and mixed on a mixing roll. , And formed into a sheet by roll rolling to obtain Sample 4.

【0043】尚、得られた試料4を走査型電子顕微鏡を
用いて解析したところ、粒子配列方向は試料膜面内方向
であった。
When the obtained sample 4 was analyzed using a scanning electron microscope, it was found that the particle arrangement direction was the in-plane direction of the sample film.

【0044】 扁平状軟磁性体(Fe−Al−Si合金)微粉末A・・・60重量部 平均粒径 :φ20μm×0.3μmt 磁歪の大きさ :+0.72 焼鈍処理 :なし 扁平状軟磁性体(Fe−Al−Si合金)微粉末B・・・35重量部 平均粒径 :φ20μm×0.3μmt 磁歪の大きさ :+0.72 焼鈍処理 :650℃×2hr ポリウレタン樹脂 ・・・ 8重量部 硬化剤(イソシアネート化合物) ・・・ 2重量部 溶剤(シクロヘキサノンとトルエンの混合物) ・・・40重量部 以上の試料について、HddおよびHdeを求めたところ、
4以上であり、又、試料をトロイダル形状に加工し、こ
れに1ターンのコイルを巻回し、コイルに高周波電流を
流して、そのインピーダンスを測定して、透磁率を求め
た。透磁率は良好な高周波特性を示した。
Flat soft magnetic material (Fe—Al—Si alloy) fine powder A: 60 parts by weight Average particle size: φ20 μm × 0.3 μm t Magnetostriction size: +0.72 Annealing treatment: None Flat soft Magnetic substance (Fe-Al-Si alloy) fine powder B: 35 parts by weight Average particle diameter: φ20 μm × 0.3 μm t Magnetostriction size: +0.72 Annealing treatment: 650 ° C. × 2 hr Polyurethane resin ・ ・ ・ 8 parts curing agent (isocyanate compound).. for 2 parts by weight solvent (mixture of cyclohexanone and toluene) ..... 40 parts by weight or more of the sample, was determined for H dd and H de,
The sample was processed into a toroidal shape, a one-turn coil was wound around the sample, a high-frequency current was passed through the coil, the impedance was measured, and the magnetic permeability was determined. Magnetic permeability showed good high frequency characteristics.

【0045】[0045]

【発明の効果】以上述べたように、本発明によれば、軟
磁性体粉末と有機結合剤からなる複合磁性体に於いて、
軟磁性体粉末を形状磁気異方性のある扁平状とし、複合
磁性体の製造方法の際に、塗工時ないし乾燥前の段階で
塗工方向に剪断応力を加えることにより、あるいは、面
内方向に磁界を印加することにより、該複合磁性体を立
方体と成した時の磁化困難軸方向の反磁界Hddと磁化容
易軸方向の反磁界Hdeとの比Hdd/Hdeが4以上となる
ようにすることによって、高周波透磁率特性に優れた複
合磁性体を得ることができる。
As described above, according to the present invention, in a composite magnetic material comprising a soft magnetic material powder and an organic binder,
The soft magnetic material powder is formed into a flat shape having magnetic anisotropy, and in the method of manufacturing the composite magnetic material, by applying a shear stress in the coating direction at the time of coating or before drying, or in-plane. By applying a magnetic field in the direction, the ratio H dd / H de of the demagnetizing field H dd in the hard axis direction to the demagnetizing field H de in the easy axis direction when the composite magnetic body is formed into a cube is 4 or more. By doing so, a composite magnetic body having excellent high-frequency magnetic permeability characteristics can be obtained.

【0046】また、本発明によれば、軟磁性体粉末と有
機結合剤からなる複合磁性体に於いて、軟磁性体粉末を
形状磁気異方性のある扁平状とし、複合磁性体の製造方
法の際に、ロール圧延法によりシート状に形成すること
によって、該複合磁性体を立方体と成した時の磁化困難
軸方向の反磁界Hddと磁化容易軸方向の反磁界Hdeとの
比Hdd/Hdeが4以上となるようにすることによって、
高周波透磁率特性に優れた複合磁性体を得ることができ
る。
Further, according to the present invention, in a composite magnetic material comprising a soft magnetic material powder and an organic binder, the soft magnetic material powder is formed into a flat shape having magnetic anisotropy, and a method for producing the composite magnetic material is provided. In this case, the composite magnetic body is formed into a sheet by a roll rolling method, so that the ratio H of the demagnetizing field H dd in the hard axis direction and the demagnetizing field H de in the easy axis direction when the composite magnetic body is formed into a cube. By making dd / H de 4 or more,
A composite magnetic material having excellent high-frequency magnetic permeability characteristics can be obtained.

【0047】したがって、この複合磁性体を用いて、優
れた電磁干渉抑制に有効な薄厚の電磁干渉抑制体を得る
ことが出来る。
Therefore, a thin electromagnetic interference suppressor effective for excellent electromagnetic interference suppression can be obtained by using the composite magnetic material.

【0048】尚、本発明の複合磁性体及び電磁波の干渉
干渉抑制体は、その構成要素から判るように容易に可撓
性を付与することが可能であり、複雑な形状への対応
や、厳しい耐振動、衝撃要求への対応が可能である。
It should be noted that the composite magnetic body and the electromagnetic wave interference / interference suppressor of the present invention can easily be given flexibility as can be seen from the constituent elements thereof, and can cope with complicated shapes and have strict requirements. Capable of meeting vibration and shock requirements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の説明で用いる「反磁界」を説明するた
めの図である。
FIG. 1 is a diagram for explaining a “diamagnetic field” used in the description of the present invention.

【図2】本発明の複合磁性体の断面を模式的に示す図で
ある。
FIG. 2 is a diagram schematically showing a cross section of a composite magnetic body of the present invention.

【符号の説明】[Explanation of symbols]

1 複合磁性体 2 扁平状軟磁性体粉末粒子 3 有機結合剤 4 支持体 DESCRIPTION OF SYMBOLS 1 Composite magnetic substance 2 Flat soft magnetic substance powder particle 3 Organic binder 4 Support

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 形状異方性を有する軟磁性体粉末を有機
結合剤中に分散してなる複合磁性体であって、立方体と
成した時の磁化困難軸方向の反磁界Hddと磁化容易軸方
向の反磁界Hdeとの比Hdd/Hdeが4以上を呈すること
を特徴とする複合磁性体。
1. A composite magnetic material obtained by dispersing a soft magnetic material powder having shape anisotropy in an organic binder, wherein when a cubic material is formed, a demagnetizing field H dd in a hard axis direction and a magnetization easy A composite magnetic material having a ratio H dd / H de to the demagnetizing field H de in the axial direction of 4 or more.
【請求項2】 前記形状異方性を有する軟磁性体粉末の
粒子が扁平状であることを特徴とする請求項1記載の複
合磁性体。
2. The composite magnetic material according to claim 1, wherein the particles of the soft magnetic material powder having shape anisotropy are flat.
【請求項3】 形状異方性を有する軟磁性体粉末と有機
結合剤とを溶媒と共に混練し、これを塗工、乾燥してな
る複合磁性体の製造方法において、該複合磁性体を立方
体と成した時の磁化困難軸方向の反磁界Hddと磁化容易
軸方向の反磁界Hdeとの比Hdd/Hdeが4以上を呈する
ようにするために、前記塗工時ないし乾燥前の段階で塗
工方向に剪断応力を加えることを特徴とする複合磁性体
の製造方法。
3. A method for producing a composite magnetic material, comprising kneading a soft magnetic material powder having shape anisotropy and an organic binder together with a solvent, coating and kneading the mixture and drying the composite magnetic material with a cube. In order to make the ratio H dd / H de of the demagnetizing field H dd in the hard axis direction and the demagnetizing field H de in the easy axis direction at the time of formation to be 4 or more, it is necessary to carry out the coating at the time of coating or before drying. A method for producing a composite magnetic material, comprising applying a shear stress in a coating direction in a step.
【請求項4】 形状異方性を有する軟磁性体粉末と有機
結合剤とを溶媒と共に混練し、これを塗工、乾燥してな
る複合磁性体の製造方法において、該複合磁性体を立方
体と成した時の磁化困難軸方向の反磁界Hddと磁化容易
軸方向の反磁界Hdeとの比Hdd/Hdeが4以上を呈する
ようにするために、前記塗工時ないし乾燥前の段階で塗
工面方向に外部磁界を印加することを特徴とする複合磁
性体の製造方法。
4. A method for producing a composite magnetic body, comprising kneading a soft magnetic substance powder having shape anisotropy and an organic binder together with a solvent, coating and kneading the mixture, and forming the composite magnetic substance into a cube. In order to make the ratio H dd / H de of the demagnetizing field H dd in the hard axis direction and the demagnetizing field H de in the easy axis direction at the time of formation to be 4 or more, it is necessary to carry out the coating at the time of coating or before drying. A method for producing a composite magnetic body, comprising applying an external magnetic field in the direction of a coating surface in a step.
【請求項5】 形状異方性を有する軟磁性体粉末と有機
結合剤とを溶媒と共に混練し、これをロール圧延するこ
とによって、該複合磁性体を立方体と成した時の磁化困
難軸方向の反磁界Hddと磁化容易軸方向の反磁界Hde
の比Hdd/Hdeが4以上を呈する複合磁性体を製造する
ことを特徴とする複合磁性体の製造方法。
5. A soft magnetic material powder having shape anisotropy and an organic binder are kneaded together with a solvent, and this is roll-rolled to form a cubic body of the composite magnetic body in the direction of hard axis. A method of manufacturing a composite magnetic body, comprising manufacturing a composite magnetic body having a ratio H dd / H de of 4 or more between a demagnetizing field H dd and a demagnetizing field H de in an easy axis direction.
【請求項6】 請求項3乃至請求項5に記載のいずれか
の複合磁性体の製造方法において、前記形状異方性を有
する軟磁性体粉末は、粉砕、延伸・引裂加工された扁平
状粒子からなることを特徴とする複合磁性体の製造方
法。
6. The method of manufacturing a composite magnetic material according to claim 3, wherein the soft magnetic material powder having the shape anisotropy is crushed, stretched, and torn flat particles. A method for producing a composite magnetic material, comprising:
【請求項7】 請求項1乃至請求項2のいずれかに記載
の複合磁性体を材料とした電磁干渉抑制体。
7. An electromagnetic interference suppressor made of the composite magnetic material according to claim 1.
JP8258310A 1996-09-03 1996-09-30 Composite magnetic body, its manufacture and electromagnetic interference suppressing body Pending JPH10107541A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP8258310A JPH10107541A (en) 1996-09-30 1996-09-30 Composite magnetic body, its manufacture and electromagnetic interference suppressing body
PCT/JP1997/003068 WO1998009788A1 (en) 1996-09-03 1997-09-02 Method of manufacturing composite magnetic sheet
CN97191127A CN1082871C (en) 1996-09-03 1997-09-02 Method of mfg. composite magnetic sheet
KR1019980703164A KR20000064304A (en) 1996-09-03 1997-09-02 Manufacturing method of composite magnetic sheet
EP97937877A EP0873839B1 (en) 1996-09-03 1997-09-02 Method of manufacturing composite magnetic sheet
US09/068,144 US6187120B1 (en) 1996-09-03 1997-09-02 Method of manufacturing composite magnetic sheet
DE69731727T DE69731727T2 (en) 1996-09-03 1997-09-02 METHOD FOR MANUFACTURING MAGNETIC COMPOSITE FILM
KR19987003164A KR100475768B1 (en) 1996-09-03 1997-09-02 Method of manufacturing compsite magnetic sheet
US09/613,330 US6740289B1 (en) 1996-09-03 2000-06-16 Method of producing a composite magnetic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258310A JPH10107541A (en) 1996-09-30 1996-09-30 Composite magnetic body, its manufacture and electromagnetic interference suppressing body

Publications (1)

Publication Number Publication Date
JPH10107541A true JPH10107541A (en) 1998-04-24

Family

ID=17318481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258310A Pending JPH10107541A (en) 1996-09-03 1996-09-30 Composite magnetic body, its manufacture and electromagnetic interference suppressing body

Country Status (1)

Country Link
JP (1) JPH10107541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093512A1 (en) * 2003-04-17 2004-10-28 Miyagawa Kasei Industry Co., Ltd. Electromagnetic wave absorption complex, and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093512A1 (en) * 2003-04-17 2004-10-28 Miyagawa Kasei Industry Co., Ltd. Electromagnetic wave absorption complex, and method of producing the same
KR100777519B1 (en) 2003-04-17 2007-11-16 미야가와 카세이 고교 가부시키가이샤 Electromagnetic wave absorption complex, and method of producing the same
US7397414B2 (en) 2003-04-17 2008-07-08 Miyagawa Kasei Industry Co., Ltd. Electromagnetic wave absorption complex, and method of producing the same

Similar Documents

Publication Publication Date Title
US5827445A (en) Composite magnetic article for electromagnetic interference suppressor
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
US6051156A (en) Compound magnetic material and electromagnetic interference suppressor
Ramezanzaeh et al. Electromagnetic wave reflection loss and magnetic properties of M-type SrFe12− x (Mn0. 5Sn0. 5) xO19 hexagonal ferrite nanoparticles in the Ku microwave band
JP3785350B2 (en) Method for manufacturing sheet-like article, method for manufacturing composite magnetic body
Leger et al. Composite magnetic materials based on nanocrystalline powders for middle-and high-frequency applications up to 1 MHz
JP2011249628A (en) Method for producing electromagnetic interference suppression body
JP4069480B2 (en) Electromagnetic wave and magnetic shielding soft magnetic powder and shielding sheet
JP3722391B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP2010135567A (en) Radio wave absorbing material
KR20020034989A (en) Soft magnetic powder and composite magnetic material using the same
WO2011078044A1 (en) Magnetic material for high-frequency use, high-frequency device and magnetic particles
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
JPH10106839A (en) Multilayer high-frequency inductor
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
JP4097160B2 (en) Method for manufacturing electromagnetic interference suppressor
JPH10107541A (en) Composite magnetic body, its manufacture and electromagnetic interference suppressing body
JPH1083911A (en) Composite magnetic material and electromagnetic interference inhibition body using that
KR102264959B1 (en) high-permeability magnetic sheet and manufacturing method thereof
WO2011046125A1 (en) Magnetic material for high frequency applications and high frequency device
Li et al. Enhanced microwave absorption of flake-oriented Sendust sheets by tape casting
Xu et al. Excellent microwave absorption of Y2Fe15. 5Co0. 5Si/paraffin composites by tuning powder particle size
JPH1097912A (en) Composite magnetic element, manufacture thereof and electromagnetic interference suppressor
CN112521657B (en) Electromagnetic wave absorbing material and preparation method thereof
JP3979541B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616