JP2014127624A - Magnetic sheet - Google Patents

Magnetic sheet Download PDF

Info

Publication number
JP2014127624A
JP2014127624A JP2012284444A JP2012284444A JP2014127624A JP 2014127624 A JP2014127624 A JP 2014127624A JP 2012284444 A JP2012284444 A JP 2012284444A JP 2012284444 A JP2012284444 A JP 2012284444A JP 2014127624 A JP2014127624 A JP 2014127624A
Authority
JP
Japan
Prior art keywords
magnetic
filler
magnetic sheet
sheet
magnetic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012284444A
Other languages
Japanese (ja)
Other versions
JP6187800B2 (en
Inventor
Kenta Furuyoshi
健太 古吉
Norihisa Kotani
典久 小谷
Reiji Nishiyama
玲児 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2012284444A priority Critical patent/JP6187800B2/en
Publication of JP2014127624A publication Critical patent/JP2014127624A/en
Application granted granted Critical
Publication of JP6187800B2 publication Critical patent/JP6187800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sheet which can be used advantageously for reducing the size and profile of an electronic component including a magnetic material member having a high permeability and a high saturation magnetic flux density, and containing a metal particle magnetic filler having a high surface resistance value with a high filling rate.SOLUTION: A magnetic sheet is composed of a magnetic filler added with binding resin, and the filling rate of the magnetic filler is at least 90 wt%. The magnetic filler contains at least one kind of metal particle magnetic filler, out of an amorphous metal and a crystalline metal subjected to insulating surface treatment, and the magnetic sheet has a surface resistance value of 10Ω/sq. or more.

Description

本発明は、高透磁率かつ高飽和磁束密度を有し、しかも高表面抵抗値を有する、金属粒子磁性フィラーを高い充填率で含有する磁性シートに関する。   The present invention relates to a magnetic sheet containing a metal particle magnetic filler having a high magnetic permeability and a high saturation magnetic flux density and a high surface resistance value at a high filling rate.

電子部品のうちには、インダクタ、トランス等の磁性体部材を有するものがある。このような電子部品も、電子機器の小型に対応すべく、小型化、低背化が求められている。磁性体部材を有する電子部品の小型化、低背化のために磁性体部材に要請される特性としては、高透磁率、高飽和磁束密度であることが挙げられる。   Some electronic components have magnetic members such as inductors and transformers. Such electronic components are also required to be small and low-profile in order to cope with the small size of electronic devices. The characteristics required of the magnetic member in order to reduce the size and height of the electronic component having the magnetic member include high magnetic permeability and high saturation magnetic flux density.

磁性体部材に含有される磁性フィラーとしては、高表面抵抗率を有するフェライトが広く用いられている。例えば、特許文献1には、フェライトドラムコアを有するドラム・スリーブ構成を有する表面実装インダクタが開示されている。しかしながら、フェライトは飽和磁束密度が低い。これに対して、金属フィラーは、高飽和磁束密度であり、小型化、低背化に有利である。しかしながら、金属フィラーは低表面抵抗値であり、渦電流損が、とりわけ高周波領域で大きくなる欠点があるため、電子部品用途には適していないと考えられていた。   As the magnetic filler contained in the magnetic member, ferrite having a high surface resistivity is widely used. For example, Patent Document 1 discloses a surface mount inductor having a drum / sleeve configuration having a ferrite drum core. However, ferrite has a low saturation magnetic flux density. On the other hand, the metal filler has a high saturation magnetic flux density and is advantageous for downsizing and low profile. However, since the metal filler has a low surface resistance value and has a disadvantage that eddy current loss becomes large particularly in a high frequency region, it has been considered that the metal filler is not suitable for electronic parts.

高透磁率を達成するためには、磁性フィラーの充填率を極めて高くする必要がある。しかしながら、磁性フィラーの充填率を高くすることは必ずしも容易ではなく、例えば、高充填率を目指した磁性シートにおいて、特許文献2では79重量%の充填率を、特許文献3では80重量%の充填率を、それぞれ開示している。また、充填率を高くするだけではシートとして実用的な強度や取扱性が確保しづらくなる。例えば、特許文献4には、磁性フィラーを90重量%含有する磁性体層が開示されているが、支持体上に塗工されたものであり、磁性体層自体がシートとしての機能を発揮するものではない。   In order to achieve high magnetic permeability, it is necessary to make the filling rate of the magnetic filler extremely high. However, it is not always easy to increase the filling rate of the magnetic filler. For example, in a magnetic sheet aiming at a high filling rate, a filling rate of 79% by weight in Patent Document 2 and 80% by weight in Patent Document 3 is used. Each rate is disclosed. Moreover, it is difficult to ensure practical strength and handling properties as a sheet only by increasing the filling rate. For example, Patent Document 4 discloses a magnetic layer containing 90% by weight of a magnetic filler, which is coated on a support, and the magnetic layer itself exhibits a function as a sheet. It is not a thing.

特開2010−141191号公報JP 2010-141191 A 特開2000−311806号公報JP 2000-31806 A 特開平10−106821号公報Japanese Patent Laid-Open No. 10-106821 特開平7−212079号公報Japanese Patent Laid-Open No. 7-212079

従って本発明は、高透磁率かつ高飽和磁束密度を有し、しかも高表面抵抗値を有する、金属粒子磁性フィラーを高い充填率で含有し、磁性体部材を有する電子部品の小型化、低背化のために有利に用いることができる磁性シートを提供することを目的とする。   Accordingly, the present invention provides a small-sized, low-profile electronic component having a magnetic material member that has a high permeability, a high saturation magnetic flux density, a high surface resistance, and a metal particle magnetic filler with a high filling rate. An object of the present invention is to provide a magnetic sheet that can be advantageously used for the preparation.

本発明は、磁性フィラーに結着樹脂を含有させてなり、前記磁性フィラーの充填率が少なくとも90重量%である磁性シートであって、前記磁性フィラーは、非晶質金属及び絶縁性表面処理した結晶質金属のうちの少なくとも1種の金属粒子磁性フィラーを含有し、表面抵抗値が、10Ω/□以上である磁性シートである。
本発明はまた、磁性シート間にコイルを挟持してなる積層体を加熱加圧し、前記シート同士を圧着して前記コイルを封止してなる電子回路用インダクタであって、前記磁性シートは上記の磁性シートを含む電子回路用インダクタである。
本発明はまた、(1)第一の磁性シートの上に、コイルを載置し、さらにその上に、第二の磁性シートを載置し、(2)前記第一の磁性シート、前記第二の磁性シート及びこれらの磁性シートで挟まれた前記コイルを一体に加熱加圧して、前記磁性シート同士を圧着し、前記コイルを封止する、ことを含む電子回路用インダクタの製造方法であって、前記(1)の第一の磁性シート及び第二の磁性シートのうち少なくとも一方が、上記の磁性シートを含む磁性シートである、電子回路用インダクタの製造方法である。
The present invention is a magnetic sheet comprising a magnetic filler containing a binder resin and a filling rate of the magnetic filler of at least 90% by weight, wherein the magnetic filler is treated with an amorphous metal and an insulating surface. It is a magnetic sheet containing at least one metal particle magnetic filler of crystalline metals and having a surface resistance value of 10 6 Ω / □ or more.
The present invention is also an electronic circuit inductor formed by heating and pressurizing a laminate formed by sandwiching a coil between magnetic sheets, and crimping the sheets together to seal the coil. An electronic circuit inductor including the magnetic sheet.
In the present invention, (1) a coil is placed on the first magnetic sheet, and a second magnetic sheet is placed thereon, (2) the first magnetic sheet, the first magnetic sheet, A magnetic sheet inductor and a coil sandwiched between these magnetic sheets are integrally heated and pressed, the magnetic sheets are pressure-bonded to each other, and the coil is sealed. In the electronic circuit inductor manufacturing method, at least one of the first magnetic sheet and the second magnetic sheet according to (1) is a magnetic sheet including the magnetic sheet.

(1)本発明の磁性シートは、シートとして実用的な強度や取扱性を確保しつつ、磁性フィラーを極めて高い充填率で含有することができる。
(2)本発明の磁性シートは、金属粒子磁性フィラーを高い充填率で含有するので高透磁率かつ高飽和磁束密度を有し、しかも金属粒子磁性フィラーを高い充填率で含有しながら高表面抵抗値を有する。
(3)本発明の磁性シートは、各種用途に使用可能であるが、インダクタ等の電子回路実装用電子部品に好適に使用できる。
(4)本発明のインダクタは、フェライトドラムコアを有する構造の表面実装インダクタに対して、一層の小型化、低背化が可能な新規代替構造を有するインダクタを提供でき、携帯電話、スマートフォン、タブレット端末等の携帯電子端末に有利に適用できる。
(5)本発明のインダクタ製造方法は、ドラムコアとスリーブコアとの組み立て工程を不要とするので、工程が簡素であり、しかもインダクタの耐衝撃性が増加する。
(1) The magnetic sheet of the present invention can contain a magnetic filler at an extremely high filling rate while ensuring practical strength and handleability as a sheet.
(2) Since the magnetic sheet of the present invention contains the metal particle magnetic filler at a high filling rate, it has a high magnetic permeability and a high saturation magnetic flux density, and also has a high surface resistance while containing the metal particle magnetic filler at a high filling rate. Has a value.
(3) The magnetic sheet of the present invention can be used for various applications, but can be suitably used for electronic components for mounting electronic circuits such as inductors.
(4) The inductor of the present invention can provide an inductor having a novel alternative structure that can be further reduced in size and height compared to a surface mount inductor having a structure having a ferrite drum core. It can be advantageously applied to portable electronic terminals such as the above.
(5) Since the inductor manufacturing method of the present invention does not require the assembly process of the drum core and the sleeve core, the process is simple, and the impact resistance of the inductor is increased.

金属粒子磁性フィラーは、非晶質金属及び絶縁性表面処理した結晶質金属のうちの少なくとも1種の金属粒子である。金属粒子磁性フィラーは、一般にフェライトに比べて飽和磁束密度が高いことが知られている。   The metal particle magnetic filler is at least one kind of metal particles of an amorphous metal and an insulating surface-treated crystalline metal. It is known that metal particle magnetic fillers generally have a higher saturation magnetic flux density than ferrite.

上記結晶質金属としては、例えば、ニッケル系合金、コバルト系合金、鉄アルミニウムケイ素合金、鉄ニッケル合金、鉄コバルト合金、鉄コバルトケイ素合金、鉄ケイ素バナジウム合金、鉄クロムケイ素合金、鉄ケイ素合金等の鉄系合金、カルボニル鉄、電解鉄等の純鉄等を挙げることができる。透磁率、磁束密度等の磁気特性の観点から、鉄系合金、純鉄が好ましい。   Examples of the crystalline metal include nickel alloys, cobalt alloys, iron aluminum silicon alloys, iron nickel alloys, iron cobalt alloys, iron cobalt silicon alloys, iron silicon vanadium alloys, iron chromium silicon alloys, and iron silicon alloys. Examples thereof include pure alloys such as iron-based alloys, carbonyl iron, and electrolytic iron. From the viewpoint of magnetic properties such as magnetic permeability and magnetic flux density, iron-based alloys and pure iron are preferable.

絶縁性表面処理としては、上記結晶質金属粒子の表面を絶縁性にするための表面処理であり、例えば、燐酸塩処理、金属酸化物、SiO2等の酸化物膜形成、SiN等の窒化物、SiON等の酸化窒化物、無機SOGといった無機物による被膜形成、ポリイミド系樹脂、シリコン系樹脂、フッ素系樹脂、有機SOGといった有機物による被膜形成等の表面処理を挙げることができる。   The insulating surface treatment is a surface treatment for making the surface of the crystalline metal particles insulative, for example, phosphate treatment, metal oxide, formation of an oxide film such as SiO2, nitride such as SiN, Examples of the surface treatment include film formation with an inorganic material such as oxynitride such as SiON and inorganic SOG, and film formation with an organic material such as polyimide resin, silicon resin, fluorine resin, and organic SOG.

上記非晶質金属としては、例えば、コバルト系アモルファス合金、鉄ケイ素ホウ素クロムアモルファス合金等の鉄系アモルファス合金等を挙げることができる。また非晶質金属に前記絶縁性表面処理を施すことも可能である。   Examples of the amorphous metal include iron-based amorphous alloys such as cobalt-based amorphous alloys and iron-silicon-boron-chromium amorphous alloys. It is also possible to subject the amorphous metal to the insulating surface treatment.

磁性フィラーとしては、絶縁性表面処理したFe、絶縁性表面処理したFe系合金、Fe系アモルファス合金及び絶縁性表面処理したFe系アモルファス合金のうちの少なくとも1種の金属粒子磁性フィラーが好ましい。   As the magnetic filler, at least one kind of metal particle magnetic filler is preferable among the insulating surface-treated Fe, the insulating surface-treated Fe-based alloy, the Fe-based amorphous alloy, and the insulating-surface-treated Fe-based amorphous alloy.

金属粒子の形状としては、球状、角状、柱状、鱗片状等を含み、球状が好ましい。粒径は、もしも測定方法により有意に異なる場合は、平均粒子径d50を用いる。用いる金属粒子は、アスペクト比や粒径において複数種類を組み合わせることができ、例えば、平均粒径d50が異なるもの、の2種類や3種類又はそれ以上の種類の粒子を組み合わせることができる。粒径やアスペクト比の異なる金属粒子を組み合わせて用いることは、充填率を上げる上で有利である。   The shape of the metal particles includes a spherical shape, a square shape, a columnar shape, a scale shape, and the like, and a spherical shape is preferable. If the particle diameter varies significantly depending on the measurement method, the average particle diameter d50 is used. A plurality of types of metal particles can be combined in terms of aspect ratio and particle size. For example, two, three or more types of particles having different average particle sizes d50 can be combined. Use of metal particles having different particle sizes and aspect ratios in combination is advantageous in increasing the filling rate.

磁性フィラーは、好ましくは、平均粒径d50が異なる複数の磁性フィラーを含有する。また、磁性フィラーは、好ましくは、平均粒径d50が10〜100μmである第一の磁性フィラーと平均粒径d50が第一の磁性フィラーの1/200〜1/4である第二の磁性フィラーとを含有する。好ましくは、上記第二の磁性フィラーの平均粒径d50が0.5〜5μmである。磁性フィラーは、好ましくは、第三の磁性フィラーをさらに含有し、第二の磁性フィラーの平均粒径d50<第三の磁性フィラーの平均粒径d50<第一の磁性フィラーの平均粒径d50の関係を満たすものである。好ましくは、上記第三の磁性フィラーの平均粒径d50が5〜15μmである。   The magnetic filler preferably contains a plurality of magnetic fillers having different average particle diameters d50. The magnetic filler is preferably a first magnetic filler having an average particle diameter d50 of 10 to 100 μm and a second magnetic filler having an average particle diameter d50 of 1/200 to 1/4 of the first magnetic filler. Containing. Preferably, the average particle diameter d50 of the second magnetic filler is 0.5 to 5 μm. The magnetic filler preferably further contains a third magnetic filler, and the average particle diameter d50 of the second magnetic filler <the average particle diameter d50 of the third magnetic filler <the average particle diameter d50 of the first magnetic filler. Satisfies the relationship. Preferably, the average particle diameter d50 of the third magnetic filler is 5 to 15 μm.

本発明を損なわない範囲で、絶縁性表面処理をしていない結晶質金属粒子を併用することも可能である。従って、例えば、小粒径の絶縁性表面処理粒子の入手が困難である場合に、表面抵抗値等の他の特性に与える影響が許容される範囲内で、表面処理をしていない小粒径結晶質金属粒子を併用して充填率を高くすることを目指すことができる。絶縁性表面処理をしていない結晶質金属粒子としては、絶縁性表面処理をしていない上述の金属粒子を挙げることができる。   It is also possible to use crystalline metal particles that have not been subjected to an insulating surface treatment within the range not impairing the present invention. Therefore, for example, when it is difficult to obtain insulating surface-treated particles having a small particle diameter, a small particle diameter that has not been surface-treated within a range in which the influence on other characteristics such as a surface resistance value is allowed. It is possible to aim to increase the filling rate by using crystalline metal particles together. Examples of the crystalline metal particles not subjected to the insulating surface treatment include the above-described metal particles not subjected to the insulating surface treatment.

結着樹脂としては、特に限定されず、熱可塑性樹脂や熱硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリ塩化ビニル、ポリエチレン、合成ゴム(例えば、ポリブタジエン、ブタジエン−スチレン共重合体、ポリイソプレン、ポリクロロプレン、エチレン−プロピレン共重合体。)、ポリ酢酸ビニル、ポリ(メタ)アクリル酸エステル、ポリアクリル酸アミド、ポリオキシメチレン、ポリフェニレンオキシド、ポリエステル、ポリアミド、ポリカーボネート、セルロース系樹脂、ポリアクリロニトリル、熱可塑性ポリイミド、ポリビニルアルコール、ポリビニルピロリドン等を挙げることができる。   The binder resin is not particularly limited, and a thermoplastic resin or a thermosetting resin can be used. Examples of the thermoplastic resin include polyvinyl chloride, polyethylene, synthetic rubber (for example, polybutadiene, butadiene-styrene copolymer, polyisoprene, polychloroprene, ethylene-propylene copolymer), polyvinyl acetate, poly (meta ) Acrylic acid ester, polyacrylic acid amide, polyoxymethylene, polyphenylene oxide, polyester, polyamide, polycarbonate, cellulosic resin, polyacrylonitrile, thermoplastic polyimide, polyvinyl alcohol, polyvinylpyrrolidone and the like.

上記熱硬化性樹脂としては、例えば、エポキシ樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂、イミド系、アミド系樹脂を挙げることができ、これらのうち、エポキシ樹脂を好ましく用いることができる。   As said thermosetting resin, an epoxy resin, a melamine resin, a urea resin, a phenol resin, an imide type | system | group, an amide type resin can be mentioned, for example, Among these, an epoxy resin can be used preferably.

上記エポキシ樹脂としては、特に限定されず、常温で固形のものでも液状のものでもよい。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニえルノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、水素化添加ビスフェノールA型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジシクロペンジエン型エポキシ樹脂、ナフタレンエポキシ樹脂、サルファイド変性エポキシ樹脂、ダイマー酸変性エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、アミノエポキシ樹脂、トリグリシジルイソシアヌレート、ポリ(エポキシ化シクロヘキセンオキサイド)等の多官能エポキシ樹脂等が好ましく挙げられる。これらのエポキシ樹脂は、単独もしくは2種類以上用いてもよい。   The epoxy resin is not particularly limited, and may be solid or liquid at room temperature. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol AD type epoxy resin, bisphenol B type epoxy resin, bisphenol S type epoxy resin, biphenyle novolac type epoxy resin, phenol novolac type epoxy resin , Cresol novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, naphthol novolac type epoxy resin, dicyclopentene type epoxy resin, naphthalene epoxy resin, sulfide modified epoxy resin, dimer acid modified epoxy resin, alkyl modified triphenolmethane Type epoxy resin, amino epoxy resin, triglycidyl isocyanurate, polyfunctional epoxy such as poly (epoxidized cyclohexene oxide) Butter, and the like are preferably mentioned. These epoxy resins may be used alone or in combination of two or more.

熱硬化性樹脂において硬化系を構成するために用いる硬化剤、促進剤等は、当業者に周知であり、本発明でもそれらを用いることができる。   Curing agents, accelerators and the like used for constituting a curing system in the thermosetting resin are well known to those skilled in the art, and they can also be used in the present invention.

例えば、結着樹脂においては、硬化系の構成に必要な硬化剤、硬化促進剤、またその他、一般に、必要により、応力緩和剤、可撓性付与剤、チクソ性付与剤等を用いてもよい。また、高沸点溶剤を使用してもよい。このような溶剤を使用することにより、高い充填率であっても、シートとして実用的な強度や取扱性を確保しやすくなり、また、密着性や流動性が向上する。以下、断らないかぎり、エポキシ樹脂の場合を例としてこれら添加剤を説明するが、他の樹脂の場合もこれらの記載を参照して実施することができる。   For example, in the binder resin, a curing agent and a curing accelerator necessary for the constitution of the curing system, and generally, if necessary, a stress relaxation agent, a flexibility imparting agent, a thixotropic imparting agent, and the like may be used. . Further, a high boiling point solvent may be used. By using such a solvent, even if the filling rate is high, it becomes easy to secure practical strength and handleability as a sheet, and adhesion and fluidity are improved. Hereinafter, unless otherwise specified, these additives will be described by taking the case of an epoxy resin as an example, but the case of other resins can also be carried out with reference to these descriptions.

上記エポキシ樹脂硬化剤としては、例えば、フェノール系硬化剤、ジシアンジアミド系硬化剤、尿素系硬化剤、有機酸ヒドラジド系硬化剤、ポリアミン塩系硬化剤、アミンアダクト系硬化剤等を挙げることができる。これらは単独で使用してもよく、2種以上を組み合わせて用いてもよい。   Examples of the epoxy resin curing agent include phenolic curing agents, dicyandiamide curing agents, urea curing agents, organic acid hydrazide curing agents, polyamine salt curing agents, and amine adduct curing agents. These may be used alone or in combination of two or more.

上記硬化剤の配合量は、硬化剤の種類により異なるが、通常、エポキシ基1当量あたり、硬化剤の官能基当量数が0.5〜1.5当量が好ましく、0.7〜1当量であることがより好ましい。   Although the compounding quantity of the said hardening | curing agent changes with kinds of hardening | curing agent, 0.5-1.5 equivalent is normally preferable for the functional group equivalent number of a hardening | curing agent per 1 equivalent of epoxy groups, and 0.7-1 equivalent. More preferably.

上記エポキシ樹脂硬化促進剤としては、例えば、変性イミダゾール系硬化促進剤、変性脂肪族ポリアミン系促進剤、変性ポリアミン系促進剤等が挙げられる。これらは単独で使用してもよく、2種類以上を組み合わせて用いてもよい。   Examples of the epoxy resin curing accelerator include a modified imidazole curing accelerator, a modified aliphatic polyamine accelerator, and a modified polyamine accelerator. These may be used alone or in combination of two or more.

上記硬化促進剤の配合量は、硬化促進剤の種類によって異なるが、通常、エポキシ樹脂100重量部に対して、1〜80重量部が好ましく、1〜30重量部がより好ましい。   Although the compounding quantity of the said hardening accelerator changes with kinds of hardening accelerator, 1-80 weight part is preferable with respect to 100 weight part of epoxy resins normally, and 1-30 weight part is more preferable.

上記可撓性付与剤としては、例えば、ポリ塩化ビニル、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂等を挙げることができる。   Examples of the flexibility-imparting agent include polyvinyl chloride, polyamide resin, polyester resin, and polycarbonate resin.

上記可撓性付与剤の配合量は、エポキシ樹脂100重量部に対して、10〜50重量部が好ましく、20〜40重量部がより好ましい。   10-50 weight part is preferable with respect to 100 weight part of epoxy resins, and, as for the compounding quantity of the said flexibility imparting agent, 20-40 weight part is more preferable.

上記高沸点溶剤としては、例えば、沸点140℃以上の溶剤、具体的には、エチレンジグリコールアセテート等を挙げることができる。   Examples of the high boiling point solvent include a solvent having a boiling point of 140 ° C. or higher, specifically, ethylene diglycol acetate.

上記高沸点溶剤の配合量は、エポキシ樹脂100重量部に対して、0.1〜10重量部が好ましく、0.1〜5重量部がより好ましい。   0.1-10 weight part is preferable with respect to 100 weight part of epoxy resins, and, as for the compounding quantity of the said high boiling point solvent, 0.1-5 weight part is more preferable.

磁性フィラーの充填率は、少なくとも90重量%である。充填率がこれより低いと、高い透磁率を確保することが困難である。好ましくは少なくとも92重量%であり、より好ましくは少なくとも94重量%である。上限は、用いる粒子の粒径やアスペクト比によっても異なるが、通常、97重量%である。これより高い充填率では、シートとして実用的な強度や取扱性を確保しづらい。   The filling rate of the magnetic filler is at least 90% by weight. If the filling rate is lower than this, it is difficult to ensure high magnetic permeability. Preferably it is at least 92% by weight, more preferably at least 94% by weight. The upper limit is usually 97% by weight, although it depends on the particle size and aspect ratio of the particles used. When the filling rate is higher than this, it is difficult to ensure practical strength and handleability as a sheet.

なお、硬化前の磁性シートについて、動的粘弾性測定において、50℃から160℃の温度範囲で、昇温速度10℃/分、せん断速度6.28rad/秒で測定したときの弾性率の最小値が、例えば2×10Pa以下、より好ましくは5×10Pa以下となるようにすると、加熱成形時に高い流動性を確保することができるため好ましい。 In addition, regarding the magnetic sheet before curing, in the dynamic viscoelasticity measurement, the minimum elastic modulus when measured at a temperature rising rate of 10 ° C./min and a shear rate of 6.28 rad / sec in a temperature range of 50 ° C. to 160 ° C. When the value is, for example, 2 × 10 6 Pa or less, more preferably 5 × 10 5 Pa or less, it is preferable because high fluidity can be secured at the time of heat molding.

本発明の磁性シートの表面抵抗値は、10Ω/□以上である。表面抵抗率がこれより小さいと、渦電流損が過大となる。好ましくは、10Ω/□以上である。表面抵抗値は、非晶質金属、絶縁性表面処理した結晶質金属粒子、絶縁性表面処理をしていない結晶質金属粒子の組み合わせにより調節することができる。 The surface resistance value of the magnetic sheet of the present invention is 10 6 Ω / □ or more. If the surface resistivity is smaller than this, the eddy current loss becomes excessive. Preferably, it is 10 9 Ω / □ or more. The surface resistance value can be adjusted by a combination of amorphous metal, crystalline metal particles with an insulating surface treatment, and crystalline metal particles without an insulating surface treatment.

本発明の磁性シートは、複素透磁率が周波数10MHzにおいて11以上が好ましく、15以上がより好ましく、とくには20以上であることが好ましい。ただし温度により異なる場合は、25℃における値である。   In the magnetic sheet of the present invention, the complex permeability is preferably 11 or more at a frequency of 10 MHz, more preferably 15 or more, and particularly preferably 20 or more. However, when the temperature varies, the value is at 25 ° C.

本発明の磁性シートの製造方法としては、各成分をニーダー等の混合機で混合してワニスを作製し、ロールコーター等の塗工機で、離型処理されたPETフィルム離型基材上に塗布し、シート化する。シート化に際して、アノン等の希釈溶媒を加えて粘度を5000〜50000mPa・sに調整してもよく、必要に応じて60〜160℃で加熱乾燥してもよい。シート厚みは、例えば、10〜100μm程度とすることができる。またこれらシートを積層し、磁性シートとしての実用的な厚みを確保してもよい。作成されたシートは、シートとして実用的な強度や取扱性を確保することができる。   As a method for producing the magnetic sheet of the present invention, each component is mixed with a mixer such as a kneader to produce a varnish, and on a PET film release substrate that has been subjected to a release treatment with a coating machine such as a roll coater. Apply and sheet. In forming the sheet, the viscosity may be adjusted to 5000 to 50000 mPa · s by adding a diluting solvent such as anone, and may be heat-dried at 60 to 160 ° C. as necessary. The sheet thickness can be, for example, about 10 to 100 μm. Further, these sheets may be laminated to ensure a practical thickness as a magnetic sheet. The prepared sheet can ensure practical strength and handleability as a sheet.

本発明の磁性シートは、従来公知の各種用途に使用可能である。また、磁性体部材を有する実装電子部品に好適に適用することができる。すなわち,例えば、実装インダクタにおいて、巻線コイルを磁性シートで封止することにより、ドラム・スリーブ構成の表面実装インダクタに対して、一層の小型化、低背化が可能な新規代替構造を有するインダクタを提供することができる。このようなインダクタとしては、例えば、磁性シート間にコイルを挟持してなる積層体を加熱加圧し、前記シート同士を圧着して前記コイルを封止してなる電子回路用インダクタであって、前記磁性シートは本発明の磁性シートを含む、電子回路用インダクタを挙げることができる。上記積層体は、複数枚の磁性シート、例えば、第一の磁性シート及び第二の磁性シートの2枚の磁性シート間にコイルを挟持してなるものであってよい。この場合において、エポキシ結着樹脂に高沸点溶剤を添加することにより、コイルの封止性が向上する。第一の磁性シート及び第二の磁性シートは、それぞれ一層のシートで構成されていても良く、二層以上のシートで構成されていても良い。より具体的には、二層を積層した第一の磁性シートと、二層を積層した第二の磁性シート間にコイルを挟持した構成であっても良い。第一の磁性シート及び第二の磁性シートの少なくともいずれか一方は本発明の磁性シートを含むが、例えば、本発明の磁性シートを複数枚積層した構成でも良いし、本発明の磁性シートとそれ以外の磁性シートとを積層した構成でも良い。   The magnetic sheet of the present invention can be used for various known applications. Moreover, it can apply suitably for the mounting electronic component which has a magnetic body member. That is, for example, in a mounting inductor, an inductor having a new alternative structure that can further reduce the size and height of a surface mounting inductor having a drum / sleeve configuration by sealing a winding coil with a magnetic sheet. Can be provided. As such an inductor, for example, an electronic circuit inductor formed by heating and pressing a laminate formed by sandwiching a coil between magnetic sheets, and pressing the sheets together to seal the coil, Examples of the magnetic sheet include an inductor for electronic circuits including the magnetic sheet of the present invention. The laminated body may be formed by sandwiching a coil between a plurality of magnetic sheets, for example, two magnetic sheets of a first magnetic sheet and a second magnetic sheet. In this case, the sealing property of the coil is improved by adding a high boiling point solvent to the epoxy binder resin. Each of the first magnetic sheet and the second magnetic sheet may be composed of a single sheet or may be composed of two or more layers. More specifically, a configuration in which a coil is sandwiched between a first magnetic sheet in which two layers are laminated and a second magnetic sheet in which two layers are laminated may be employed. At least one of the first magnetic sheet and the second magnetic sheet includes the magnetic sheet of the present invention. For example, a configuration in which a plurality of the magnetic sheets of the present invention are stacked may be used. A configuration in which other magnetic sheets are laminated may be used.

このようなインダクタの製造方法としては、例えば、(1)第一の磁性シートの上にコイルを載置し、さらにその上に、第二の磁性シートを載置し、(2)前記第一の磁性シート、前記第二の磁性シート及びこれらの磁性シートで挟まれた前記コイルを一体に加熱加圧して、前記磁性シート同士を圧着し、前記コイルを封止する、ことを含む電子回路用インダクタの製造方法であって、前記(1)の第一の磁性シート及び第二の磁性シートのうち少なくとも一方が、本発明の磁性シートを含む磁性シートである、電子回路用インダクタの製造方法を挙げることができる。この場合において、一態様としては、結着樹脂は、エポキシ樹脂であり、工程(2)でエポキシ樹脂を加熱硬化することができる。   As a method for manufacturing such an inductor, for example, (1) a coil is placed on a first magnetic sheet, and a second magnetic sheet is placed thereon, and (2) the first magnetic sheet is placed on the first magnetic sheet. A magnetic sheet, the second magnetic sheet, and the coil sandwiched between these magnetic sheets are integrally heated and pressed, the magnetic sheets are pressure-bonded to each other, and the coil is sealed. A method of manufacturing an inductor for an electronic circuit, wherein at least one of the first magnetic sheet and the second magnetic sheet of (1) is a magnetic sheet including the magnetic sheet of the present invention. Can be mentioned. In this case, as one aspect, the binder resin is an epoxy resin, and the epoxy resin can be heat-cured in the step (2).

上記製造方法において、コイルとしては、例えばインダクタに使用される捲線コイルを用いる。磁性シートの厚みとしては、50〜500μm程度が好ましい。加熱加圧は、金型を用いた圧縮成形方法を適用してもよい。上記加熱加圧の条件としては、例えば、60〜140℃、0.5〜2kg/cm等の条件を適用できる。加熱加圧により本発明の磁性シートは、流動性を発揮してコイルを樹脂封止することができる。 In the above manufacturing method, for example, a coil used for an inductor is used as the coil. The thickness of the magnetic sheet is preferably about 50 to 500 μm. For heat and pressure, a compression molding method using a mold may be applied. As the heating and pressing conditions, for example, conditions such as 60 to 140 ° C. and 0.5 to 2 kg / cm 2 can be applied. By heating and pressing, the magnetic sheet of the present invention can exhibit fluidity and seal the coil with resin.

以下、実施例により本発明をさらに具体的に説明するが、以下の記載は専ら説明のためであって、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the following description is only for description and the present invention is not limited to these Examples.

以下の実施例、比較例中の略号の意味は以下のとおり。なお、表中の配合量の単位は重量部である。   The meanings of the abbreviations in the following examples and comparative examples are as follows. In addition, the unit of the compounding quantity in a table | surface is a weight part.

(1)結着樹脂の組成
エポキシ樹脂(RE310S):ビスフェノールA型エポキシ樹脂:日本化薬社製;配合量100重量部
PhOH硬化剤(TD2090):フェノールノボラック樹脂:DIC社製;配合量70重量部
硬化促進剤(2MZ−H):2−メチルイミダゾール:四国化成社製;配合量5重量部
可撓性付与剤(バイロン):ポリエステル樹脂:東洋紡社製;配合量30重量部
チクソ性付与剤(RY200S):微粉シリカ:日本アエロジル社製;配合量2重量部
その他添加剤:
A187:シランカップリング剤(日本ユニカー社製);配合量2重量部
IXE6136:イオンキャッチャー(東亜合成社製);配合量10重量部
(1) Composition of binder resin Epoxy resin (RE310S): Bisphenol A type epoxy resin: Nippon Kayaku Co., Ltd .; 100 parts by weight PhOH curing agent (TD2090): Phenol novolac resin: DIC; Part curing accelerator (2MZ-H): 2-methylimidazole: manufactured by Shikoku Kasei Co., Ltd .; 5 parts by weight flexibility imparting agent (Byron): polyester resin: manufactured by Toyobo; 30 parts by weight thixotropic imparting agent (RY200S): Fine silica: manufactured by Nippon Aerosil Co., Ltd .; 2 parts by weight of other additives:
A187: Silane coupling agent (manufactured by Nihon Unicar); 2 parts by weight IXE6136: Ion catcher (manufactured by Toa Gosei); 10 parts by weight

(2)磁性フィラー
磁性フィラー1:金属粒子磁性フィラー1
磁性フィラー2:金属粒子磁性フィラー3
磁性フィラー3:金属粒子磁性フィラー6
磁性フィラー4:金属粒子磁性フィラー7
磁性フィラー5:金属粒子磁性フィラー1+金属粒子磁性フィラー8(重量比3:1)
磁性フィラー6:金属粒子磁性フィラー1+金属粒子磁性フィラー5+金属粒子磁性フィラー8(重量比1:3:1)
磁性フィラー7:金属粒子磁性フィラー6+金属粒子磁性フィラー7+金属粒子磁性フィラー8(重量比3:1:1)
磁性フィラー8:金属粒子磁性フィラー4
磁性フィラー9:金属粒子磁性フィラー8
磁性フィラー10:金属粒子磁性フィラー9
ただし、金属粒子磁性フィラー1〜9は以下のとおり。
(2−1)金属粒子磁性フィラー
1:Fe−Si合金、球状、粒径(d50)11μm、表面処理(SiO2)
2:Fe−Si合金、球状、粒径(d50)11μm、表面処理無し
3:Fe−Si−Cr合金、球状、粒径(d50)21μm、表面処理
4:Fe−Si−Cr合金、球状、粒径(d50)19μm、表面処理無し
5:Fe−Si−Al合金、球状、粒径(d50)22μm、表面処理無し
6:Fe−Si−B−Crアモルファス合金、粒径(d50)22μm、表面処理無し
7:Fe−Si−B−Crアモルファス合金、粒径(d50)11μm、表面処理無し
8:カルボニル鉄、球状、粒径(d50)1μm、表面処理無し
9:Mn−Zn系フェライト、角状、粒径(d50)13μm、表面処理無し
(2) Magnetic filler Magnetic filler 1: Metal particle magnetic filler 1
Magnetic filler 2: Metal particle magnetic filler 3
Magnetic filler 3: Metal particle magnetic filler 6
Magnetic filler 4: Metal particle magnetic filler 7
Magnetic filler 5: metal particle magnetic filler 1 + metal particle magnetic filler 8 (weight ratio 3: 1)
Magnetic filler 6: metal particle magnetic filler 1 + metal particle magnetic filler 5 + metal particle magnetic filler 8 (weight ratio 1: 3: 1)
Magnetic filler 7: metal particle magnetic filler 6 + metal particle magnetic filler 7 + metal particle magnetic filler 8 (weight ratio 3: 1: 1)
Magnetic filler 8: Metal particle magnetic filler 4
Magnetic filler 9: Metal particle magnetic filler 8
Magnetic filler 10: Metal particle magnetic filler 9
However, the metal particle magnetic fillers 1 to 9 are as follows.
(2-1) Metal particle magnetic filler 1: Fe—Si alloy, spherical, particle size (d50) 11 μm, surface treatment (SiO 2)
2: Fe—Si alloy, spherical, particle size (d50) 11 μm, no surface treatment 3: Fe—Si—Cr alloy, spherical, particle size (d50) 21 μm, surface treatment 4: Fe—Si—Cr alloy, spherical, Particle size (d50) 19 μm, no surface treatment 5: Fe—Si—Al alloy, spherical, particle size (d50) 22 μm, no surface treatment 6: Fe—Si—B—Cr amorphous alloy, particle size (d50) 22 μm, No surface treatment 7: Fe—Si—B—Cr amorphous alloy, particle size (d50) 11 μm, no surface treatment 8: carbonyl iron, spherical, particle size (d50) 1 μm, no surface treatment 9: Mn—Zn ferrite Square, particle size (d50) 13 μm, no surface treatment

実施例1〜7、比較例1〜3
表1の各充填率配合で磁性フィラーと上述の結着樹脂とを配合し、25℃でニーダーで混合して、ワニスを作製し、希釈溶媒(アノン)を加えて粘度を25000mPa・sに調整したものを、ロールコーターで、離型処理されたPETフィルム離型基材上に塗布し、厚さ70μmの各シートを得た。各シートは、140℃で2分間、乾燥させた。
各シートについて、シート表面抵抗値(表中、単に表面抵抗値という。)、シート透磁率(表中、単に透磁率という。)を測定した。結果を表1に示した。
Examples 1-7, Comparative Examples 1-3
The magnetic filler and the above-mentioned binder resin are blended with the respective filling ratios shown in Table 1, mixed with a kneader at 25 ° C. to prepare a varnish, and a viscosity is adjusted to 25000 mPa · s by adding a diluting solvent (anone). This was coated on a release film-treated PET film release substrate with a roll coater to obtain each sheet having a thickness of 70 μm. Each sheet was dried at 140 ° C. for 2 minutes.
For each sheet, a sheet surface resistance value (simply referred to as a surface resistance value in the table) and a sheet permeability (simply referred to as a permeability in the table) were measured. The results are shown in Table 1.

また、実施例5、6のシートについて、貯蔵弾性率G′の温度依存性(50℃〜160℃)を測定して、流動性を評価したところ、実施例5と実施例6とでは、実施例5の最小弾性率は1×10であり、一方、実施例6は2×10Paであり、実施例6のシートの方が充填率が高いにもかかわらず流動性は高かった。磁性フィラー6の球形度が高いためであると考えられる。さらに、実施例7のシートと実施例7のシートにおいて充填率を96重量%にしたシートとを、150℃におけるnormal force加圧下のシート厚み変化傾向を比較したところ、充填率が低い方が流動性が高いことが示された。このことから、流動性と充填率とはトレードオフの関係にあるが、フィラー粒子の形状を球形度の高いものにすれば、流動性を高めることができることがわかった。 Moreover, about the sheet | seat of Example 5, 6, when the temperature dependence (50 to 160 degreeC) of the storage elastic modulus G 'was measured and fluidity | liquidity was evaluated, in Example 5 and Example 6, it implemented. The minimum elastic modulus of Example 5 was 1 × 10 6 , while Example 6 was 2 × 10 5 Pa. The sheet of Example 6 had higher fluidity despite a higher filling rate. This is probably because the magnetic filler 6 has a high sphericity. Furthermore, when the sheet thickness change tendency of the sheet of Example 7 and the sheet of Example 7 having a filling rate of 96% by weight under normal force pressure at 150 ° C. is compared, the lower filling rate is more fluid It was shown that the nature is high. From this, it was found that the fluidity and the filling rate are in a trade-off relationship, but the fluidity can be enhanced by making the filler particles have a high sphericity.

[評価方法]
表面抵抗値(Ω/□)
測定装置:ハイレスタUP(株式会社三菱化学アナリテック社製)を用い、定電圧印加法により表面抵抗値を測定した。
複素透磁率(10MHzにおける値)
測定装置:ベクトルネットワークアナライザーを用い、25℃における複素透磁率を測定した。
[Evaluation method]
Surface resistance (Ω / □)
Measuring apparatus: The surface resistance value was measured by a constant voltage application method using Hiresta UP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.)
Complex permeability (value at 10 MHz)
Measuring apparatus: The complex magnetic permeability at 25 ° C. was measured using a vector network analyzer.

Figure 2014127624
Figure 2014127624

実施例の結果から、本発明の磁性シートは、磁性フィラーの充填率が極めて高いにもかかわらず表面抵抗値が高く、金属磁性粒子を用いているので高飽和磁束密度である。また、本発明の磁性シートは、シートとして強度を有し、磁性特性においても実用的な範囲のものであった。これに対して、比較例の磁性シートは、磁性フィラーの充填率が充分でなく、特性を考える上で、充分に実用的なものではなかった。   From the results of Examples, the magnetic sheet of the present invention has a high surface resistance value despite the extremely high filling rate of the magnetic filler, and has high saturation magnetic flux density because it uses metal magnetic particles. Further, the magnetic sheet of the present invention has strength as a sheet and has a practical range in magnetic properties. On the other hand, the magnetic sheet of the comparative example has an insufficient filling rate of the magnetic filler, and is not sufficiently practical in consideration of characteristics.

Claims (13)

磁性フィラーに結着樹脂を含有させてなり、前記磁性フィラーの充填率が少なくとも90重量%である磁性シートであって、前記磁性フィラーは、非晶質金属および絶縁性表面処理した結晶質金属のうちの少なくとも1種の金属粒子磁性フィラーを含有し、シート表面抵抗値が、10Ω/□以上である磁性シート。 A magnetic sheet comprising a magnetic filler and a binder resin, wherein the magnetic filler has a filling rate of at least 90% by weight, and the magnetic filler comprises an amorphous metal and an insulating surface-treated crystalline metal. A magnetic sheet containing at least one metal particle magnetic filler and having a sheet surface resistance value of 10 6 Ω / □ or more. 磁性フィラーの充填率は、92重量%以上である請求項1記載の磁性シート。   The magnetic sheet according to claim 1, wherein a filling rate of the magnetic filler is 92% by weight or more. 磁性フィラーは、平均粒径d50が異なる複数の磁性フィラーを含有する請求項1又は2記載の磁性シート。   The magnetic sheet according to claim 1 or 2, wherein the magnetic filler contains a plurality of magnetic fillers having different average particle diameters d50. 磁性フィラーは、平均粒径d50が10〜100μmである第一の磁性フィラーと平均粒径d50が第一の磁性フィラーの1/200〜1/4である第二の磁性フィラーとを含有する請求項3記載の磁性シート。   The magnetic filler contains a first magnetic filler having an average particle diameter d50 of 10 to 100 μm and a second magnetic filler having an average particle diameter d50 of 1/200 to 1/4 of the first magnetic filler. Item 4. The magnetic sheet according to Item 3. 第二の磁性フィラーの平均粒径d50が0.5〜5μmである請求項4記載の磁性シート。   The magnetic sheet according to claim 4, wherein the second magnetic filler has an average particle diameter d50 of 0.5 to 5 μm. 磁性フィラーは、第三の磁性フィラーをさらに含有し、
第二の磁性フィラーの平均粒径d50<第三の磁性フィラーの平均粒径d50<第一の磁性フィラーの平均粒径d50
の関係を満たすものである請求項4又は5記載の磁性シート。
The magnetic filler further contains a third magnetic filler,
Average particle diameter d50 of the second magnetic filler <Average particle diameter d50 of the third magnetic filler <Average particle diameter d50 of the first magnetic filler
The magnetic sheet according to claim 4 or 5, which satisfies the following relationship.
複素透磁率が、15(10MHz)以上である請求項1〜6のいずれかに記載の磁性シート。   The magnetic permeability according to any one of claims 1 to 6, wherein the complex magnetic permeability is 15 (10 MHz) or more. 結着樹脂は、エポキシ樹脂である請求項1〜7のいずれかに記載の磁性シート。   The magnetic sheet according to claim 1, wherein the binder resin is an epoxy resin. 磁性フィラーは、絶縁性表面処理したFe、絶縁性表面処理したFe系合金、Fe系アモルファス合金及び絶縁性表面処理したFe系アモルファス合金のうちの少なくとも1種の金属粒子磁性フィラーを含有する請求項1〜8のいずれかに記載の磁性シート。   The magnetic filler contains at least one kind of metal particle magnetic filler selected from an insulating surface-treated Fe, an insulating surface-treated Fe-based alloy, an Fe-based amorphous alloy, and an insulating surface-treated Fe-based amorphous alloy. The magnetic sheet in any one of 1-8. 磁性シート間にコイルを挟持してなる積層体を加熱加圧し、前記シート同士を圧着して前記コイルを封止してなる電子回路用インダクタであって、前記磁性シートは請求項1〜9のいずれかに記載の磁性シートを含む電子回路用インダクタ。   An inductor for an electronic circuit in which a laminate formed by sandwiching a coil between magnetic sheets is heated and pressed, and the coils are sealed by pressure-bonding the sheets. The inductor for electronic circuits containing the magnetic sheet in any one. 積層体は、2枚の磁性シート間にコイルを挟持してなるものである請求項10記載のインダクタ。   The inductor according to claim 10, wherein the multilayer body is formed by sandwiching a coil between two magnetic sheets. (1)第一の磁性シートの上にコイルを載置し、さらにその上に、第二の磁性シートを載置し、
(2)前記第一の磁性シート、前記第二の磁性シート及びこれらの磁性シートで挟まれた前記コイルを一体に加熱加圧して、前記磁性シート同士を圧着し、前記コイルを封止する、ことを含む電子回路用インダクタの製造方法であって、前記(1)の第一の磁性シート及び第二の磁性シートのうち少なくとも一方が、請求項1〜9のいずれかに記載の磁性シートを含む磁性シートである、電子回路用インダクタの製造方法。
(1) A coil is placed on the first magnetic sheet, and a second magnetic sheet is placed thereon,
(2) The first magnetic sheet, the second magnetic sheet, and the coil sandwiched between these magnetic sheets are integrally heated and pressurized, the magnetic sheets are pressure-bonded, and the coil is sealed. A manufacturing method of an inductor for electronic circuits including the above, wherein at least one of the first magnetic sheet and the second magnetic sheet of (1) is the magnetic sheet according to any one of claims 1 to 9. A method for manufacturing an inductor for electronic circuits, which is a magnetic sheet.
結着樹脂は、エポキシ樹脂であり、工程(2)でエポキシ樹脂を加熱硬化する請求項12記載の製造方法。   The manufacturing method according to claim 12, wherein the binder resin is an epoxy resin, and the epoxy resin is heat-cured in the step (2).
JP2012284444A 2012-12-27 2012-12-27 Magnetic sheet Active JP6187800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012284444A JP6187800B2 (en) 2012-12-27 2012-12-27 Magnetic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284444A JP6187800B2 (en) 2012-12-27 2012-12-27 Magnetic sheet

Publications (2)

Publication Number Publication Date
JP2014127624A true JP2014127624A (en) 2014-07-07
JP6187800B2 JP6187800B2 (en) 2017-08-30

Family

ID=51406883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284444A Active JP6187800B2 (en) 2012-12-27 2012-12-27 Magnetic sheet

Country Status (1)

Country Link
JP (1) JP6187800B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012273A (en) * 2013-07-02 2015-01-19 Tdk株式会社 Dust core and electronic component
JP2016174142A (en) * 2016-01-20 2016-09-29 パナソニックIpマネジメント株式会社 Resin sheet and inductor component
JP2017112354A (en) * 2015-12-18 2017-06-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
JP2017188647A (en) * 2016-03-31 2017-10-12 Tdk株式会社 Electronic circuit package arranged by using composite magnetic sealing material
JP2017188646A (en) * 2016-03-31 2017-10-12 Tdk株式会社 Composite magnetic sealing material
CN108074878A (en) * 2016-11-16 2018-05-25 Tdk株式会社 Composite magnetic sealing material and use its electronic circuit package body
JP2019033227A (en) * 2017-08-09 2019-02-28 太陽誘電株式会社 Coil component
US10256194B2 (en) 2016-03-31 2019-04-09 Tdk Corporation Electronic circuit package using composite magnetic sealing material
US10615089B2 (en) 2016-03-31 2020-04-07 Tdk Corporation Composite magnetic sealing material
JP2021187894A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
WO2022118916A1 (en) 2020-12-04 2022-06-09 昭和電工マテリアルズ株式会社 Paste
WO2023095466A1 (en) 2021-11-25 2023-06-01 味の素株式会社 Resin sheet
US11769614B2 (en) 2019-09-30 2023-09-26 Murata Manufacturing Co., Ltd. Coil component and method for producing magnetic powder-containing resin material used therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097913A (en) * 1996-09-24 1998-04-14 Tokin Corp Compound magnetic body, its manufacture and electromagnetic interference restraint
JP2005045193A (en) * 2003-03-25 2005-02-17 Shin Etsu Polymer Co Ltd Electromagnetic wave absorber and electromagnetic noise control electronic apparatus
JP2006032929A (en) * 2004-06-14 2006-02-02 Nitta Ind Corp Electromagnetic interference inhibitor, method of reducing electromagnetic interference empolying it, and rf-id device
JP2007220747A (en) * 2006-02-14 2007-08-30 Sumida Corporation Composite magnetic sheet and method of manufacturing same
JP2008218724A (en) * 2007-03-05 2008-09-18 Nec Tokin Corp Winding component
JP2009021549A (en) * 2007-06-15 2009-01-29 Taiyo Yuden Co Ltd Coil part and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097913A (en) * 1996-09-24 1998-04-14 Tokin Corp Compound magnetic body, its manufacture and electromagnetic interference restraint
JP2005045193A (en) * 2003-03-25 2005-02-17 Shin Etsu Polymer Co Ltd Electromagnetic wave absorber and electromagnetic noise control electronic apparatus
JP2006032929A (en) * 2004-06-14 2006-02-02 Nitta Ind Corp Electromagnetic interference inhibitor, method of reducing electromagnetic interference empolying it, and rf-id device
JP2007220747A (en) * 2006-02-14 2007-08-30 Sumida Corporation Composite magnetic sheet and method of manufacturing same
JP2008218724A (en) * 2007-03-05 2008-09-18 Nec Tokin Corp Winding component
JP2009021549A (en) * 2007-06-15 2009-01-29 Taiyo Yuden Co Ltd Coil part and manufacturing method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012273A (en) * 2013-07-02 2015-01-19 Tdk株式会社 Dust core and electronic component
US10020112B2 (en) 2015-12-18 2018-07-10 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
JP2017112354A (en) * 2015-12-18 2017-06-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
US10902995B2 (en) 2015-12-18 2021-01-26 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
US10395817B2 (en) 2015-12-18 2019-08-27 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
JP2016174142A (en) * 2016-01-20 2016-09-29 パナソニックIpマネジメント株式会社 Resin sheet and inductor component
US10256194B2 (en) 2016-03-31 2019-04-09 Tdk Corporation Electronic circuit package using composite magnetic sealing material
CN107452690B (en) * 2016-03-31 2021-03-09 Tdk株式会社 Composite magnetic sealing material
CN107452690A (en) * 2016-03-31 2017-12-08 Tdk株式会社 Composite magnetic encapsulant
JP2017188647A (en) * 2016-03-31 2017-10-12 Tdk株式会社 Electronic circuit package arranged by using composite magnetic sealing material
CN107424961A (en) * 2016-03-31 2017-12-01 Tdk株式会社 Use the electronic circuit package of composite magnetic encapsulant
US10269727B2 (en) 2016-03-31 2019-04-23 Tdk Corporation Composite magnetic sealing material and electronic circuit package using the same as mold material
JP2017188646A (en) * 2016-03-31 2017-10-12 Tdk株式会社 Composite magnetic sealing material
US10615089B2 (en) 2016-03-31 2020-04-07 Tdk Corporation Composite magnetic sealing material
CN108074878A (en) * 2016-11-16 2018-05-25 Tdk株式会社 Composite magnetic sealing material and use its electronic circuit package body
CN108074878B (en) * 2016-11-16 2021-07-27 Tdk株式会社 Composite magnetic sealing material and electronic circuit package using same
JP2019033227A (en) * 2017-08-09 2019-02-28 太陽誘電株式会社 Coil component
US11769614B2 (en) 2019-09-30 2023-09-26 Murata Manufacturing Co., Ltd. Coil component and method for producing magnetic powder-containing resin material used therefor
JP2021187894A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
JP7338560B2 (en) 2020-05-26 2023-09-05 味の素株式会社 resin composition
WO2022118916A1 (en) 2020-12-04 2022-06-09 昭和電工マテリアルズ株式会社 Paste
KR20230114270A (en) 2020-12-04 2023-08-01 가부시끼가이샤 레조낙 paste
WO2023095466A1 (en) 2021-11-25 2023-06-01 味の素株式会社 Resin sheet

Also Published As

Publication number Publication date
JP6187800B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6187800B2 (en) Magnetic sheet
JP7388502B2 (en) Metal element-containing powders and molded bodies
JP6297281B2 (en) Soft magnetic resin composition, soft magnetic adhesive film, soft magnetic film laminated circuit board, and position detection device
US20170200540A1 (en) Magnetic metal powder-containing sheet, method for manufacturing inductor, and inductor
JP6624561B2 (en) Resin sheet, inductor parts
WO2010024166A1 (en) Magnetic sheet composition, magnetic sheet, and process for producing magnetic sheet
JP5881027B1 (en) Resin sheet, resin sheet manufacturing method, inductor component
JP2023111957A (en) Thermosetting resin composition, coil having magnetic core and/or outer package member, and method for manufacturing molded product
WO2019112002A1 (en) Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component
JP2023130438A (en) Magnetic core forming resin composition and structure
JPWO2019106813A1 (en) Compounds and tablets
JP2023015133A (en) Resin composition for melting molding, magnetic member, coil having magnetic member, and manufacturing method of magnetic member
WO2012005144A1 (en) Anisotropic conductive adhesive, process for producing same, connection structure, and process for producing same
JP7318422B2 (en) Resin composition and molded product
JP2013026324A (en) Composite magnetic body
WO2020235246A1 (en) Resin composition for magnetic member formation and method for producing magnetic member
WO2023157398A1 (en) Compound powder,compact, bonded magnet, and dust core
WO2022220295A1 (en) Magnetic powder, compound, molded body, bonded magnet, and powder magnetic core
JP2022180555A (en) Resin composition and molded article
JP6167560B2 (en) Insulating flat magnetic powder, composite magnetic body including the same, antenna and communication device including the same, and method for manufacturing composite magnetic body
JP2019189703A (en) Resin composition for transfer molding, electric and electronic device having molded article of the resin composition, and manufacturing method of molded article using the resin composition
WO2022118916A1 (en) Paste
KR20220038954A (en) Electrically insulated and heat radiated case
JP2019212664A (en) Resin composition for forming magnetic member, magnetic member, coil, manufacturing method of magnetic member, and kit for forming magnetic member
WO2020213500A1 (en) Resin composition for forming magnetic member, and method for manufacturing magnetic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

R150 Certificate of patent or registration of utility model

Ref document number: 6187800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250