JP2013026324A - Composite magnetic body - Google Patents

Composite magnetic body Download PDF

Info

Publication number
JP2013026324A
JP2013026324A JP2011157917A JP2011157917A JP2013026324A JP 2013026324 A JP2013026324 A JP 2013026324A JP 2011157917 A JP2011157917 A JP 2011157917A JP 2011157917 A JP2011157917 A JP 2011157917A JP 2013026324 A JP2013026324 A JP 2013026324A
Authority
JP
Japan
Prior art keywords
component
composite magnetic
magnetic body
resin
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011157917A
Other languages
Japanese (ja)
Inventor
Takeshi Hashimoto
武司 橋本
Yasuhiro Sugimoto
保弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Tomoegawa Co Ltd
Original Assignee
Daido Steel Co Ltd
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Tomoegawa Paper Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2011157917A priority Critical patent/JP2013026324A/en
Publication of JP2013026324A publication Critical patent/JP2013026324A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic body having sufficient flexibility which can be produced with high manufacturing efficiency without causing poor form during reflow soldering.SOLUTION: Soft magnetic metal powder is dispersed into a resin composition containing (A)component: bisphenol epoxy resin, (B)component: synthetic rubber, (C)component: phenol resin-based hardener for epoxy resin, and a mass ratio represented by (B)component/[(A)component+(C)component] is 0.5-1.5.

Description

本発明は、電子機器等から発生する電磁波ノイズを吸収し、外部への放出や外部からの侵入を抑制する、あるいは電子機器内部における部品間の干渉による誤動作を防止する等の目的のために使用される複合磁性体において、回路基板、電子部品、フレキシブルプリント配線板等の凹凸等に追従できる柔軟性を有し、チップ部品等の電子部品の基板への表面実装技術の基本プロセスとなっているリフローはんだ付けに使用できる複合磁性体に関する。  The present invention is used for the purpose of absorbing electromagnetic wave noise generated from an electronic device, etc., suppressing emission to the outside and entry from the outside, or preventing malfunction due to interference between components inside the electronic device. The composite magnetic material has the flexibility to follow irregularities such as circuit boards, electronic components, flexible printed wiring boards, etc., and is a basic process for surface mounting technology of electronic components such as chip components to the substrate. The present invention relates to a composite magnetic material that can be used for reflow soldering.

近年、電子機器の高機能化により、電子部品の作動周波数は高周波化されており、放射されるノイズ電磁波の強度が増し、かつ、より広範囲の周波数成分を含むようになってきている。これらの電子機器には、さらなる小型化、軽量化の要求が高まっており、この要求に伴い、使用される電子部品は、小型化、薄型化及び高密度実装化される傾向にある。電子機器が高周波化、高密度実装化されるに伴い、電子部品やプリント配線、あるいはモジュール間の配線から放射されるノイズ電磁波が発生しやすくなるという問題がある。
一般に、各種電子機器のノイズ電磁波の抑制策として、複合磁性体が用いられている。
複合磁性体としては、例えば、塩素化ポリエチレンゴム、アクリルゴム、エチレンアクリルゴム等のバインダー樹脂に、軟磁性金属の粉末としてセンダスト(Fe−Si−Al合金)、パーマロイ(Fe−Ni合金)やFe−Cr合金等のアトマイズ粉末を分散させシート状に成形した電磁波抑制シートが知られている(例えば、特許文献1)。
In recent years, due to higher functionality of electronic devices, the operating frequency of electronic components has been increased, the intensity of emitted noise electromagnetic waves has increased, and a wider range of frequency components has been included. There is an increasing demand for further downsizing and weight reduction in these electronic devices. With this demand, electronic components used tend to be downsized, thinned, and mounted with high density. There is a problem that noise electromagnetic waves radiated from electronic components, printed wiring, or wiring between modules are likely to be generated as electronic devices are increased in frequency and mounted in high density.
In general, a composite magnetic material is used as a measure for suppressing noise electromagnetic waves in various electronic devices.
Examples of the composite magnetic material include binder resin such as chlorinated polyethylene rubber, acrylic rubber, and ethylene acrylic rubber, and powder of soft magnetic metal such as Sendust (Fe-Si-Al alloy), Permalloy (Fe-Ni alloy), Fe An electromagnetic wave suppression sheet in which atomized powder such as a Cr alloy is dispersed and formed into a sheet shape is known (for example, Patent Document 1).

複合磁性体のノイズ電磁波の抑制能力は、その厚さに依存し、用途に応じて、種々の厚さの複合磁性体が供給されている。このため、複合磁性体の供給においては、製造効率の向上のために、任意の厚さの複合磁性体を製造し、これをユーザーの要望に応じて積層している。例えば、特許文献1の発明の電磁波抑制シートのように、熱可塑性樹脂が用いられた複合磁性体は、軟磁性金属粉体が液状の樹脂組成物に分散されて溶液状態(Aステージ)の磁性体塗料とされ、この磁性体塗料が基材に塗工され乾燥されて半硬化状態(Bステージ)の半硬化状シート物とされ、半硬化状シート物が硬化されて硬化状態(Cステージ)とされる。そして、電磁波抑制シートは、必要に応じて重ねられ、熱プレスされることで、所望の厚さの電磁波抑制シートとされている。  The ability of the composite magnetic body to suppress noise electromagnetic waves depends on its thickness, and various thicknesses of composite magnetic bodies are supplied depending on the application. For this reason, in the supply of the composite magnetic material, a composite magnetic material having an arbitrary thickness is manufactured and laminated according to the user's request in order to improve manufacturing efficiency. For example, as in the electromagnetic wave suppression sheet of the invention of Patent Document 1, a composite magnetic body using a thermoplastic resin has a solution state (A stage) magnetism in which a soft magnetic metal powder is dispersed in a liquid resin composition. A body paint, this magnetic paint is applied to a substrate and dried to form a semi-cured sheet material in a semi-cured state (B stage), and the semi-cured sheet material is cured and cured (C stage) It is said. And the electromagnetic wave suppression sheet | seat is made into the electromagnetic wave suppression sheet | seat of desired thickness by overlapping as needed and heat-pressing.

ところで、チップ部品等の電子部品の基板への表面実装技術は、リフローはんだ付けが基本プロセスとなっている。一般的な複合磁性体は、耐熱性に乏しいため、リフローはんだ付け時のリフロー炉での加熱により、軟化して形状が保持できなかったり、局部的な粉化、ひび、割れ、発泡等の形態不良が生じやすく、リフローはんだ付け等の高温雰囲気で使用できない。従って、複合磁性体をリフローはんだ付け後に貼り付けなければならず、これがプロセス上の問題となっていた。  By the way, reflow soldering is a basic process for surface mounting technology of electronic parts such as chip parts to a substrate. Since general composite magnetic materials have poor heat resistance, they are softened by heating in a reflow furnace during reflow soldering and cannot retain their shape, or are in the form of local powdering, cracking, cracking, foaming, etc. Defects tend to occur and cannot be used in high-temperature atmospheres such as reflow soldering. Therefore, the composite magnetic body has to be pasted after reflow soldering, which has been a process problem.

従来、耐熱性の向上や柔軟性の向上を図った発明が提案されている。
例えば、偏平状軟磁性粉末をポリウレタン樹脂中に分散させた電磁波抑制シートを半導体部品の上面に塔載し、該電磁波抑制シートを覆うように、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂を塗布し固定した後、240℃のはんだリフロー炉を通過させて、熱硬化性樹脂を硬化させ、電磁波抑制シートを熱硬化性樹脂で封じ込めて固定する発明が提案されている(例えば、特許文献2)。特許文献2の発明によれば、リフロー工程後でも、電磁波抑制シートに変質や不具合が発生しなかったと記載されている。
また、軟磁性金属粉末をエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂のいずれかの熱硬化性樹脂シート中に埋設した電磁波抑制シートが提案されている(例えば、特許文献3)。
あるいは、1分子中に2個以上の、カルボキシル基及び/又はその酸無水物基を有する化合物、1分子中に2個以上のエポキシ基を有する化合物、及び軟磁性粉を含む電磁波吸収材料組成物が提案されている(例えば、特許文献4)。
また、例えば、扁平軟磁性材料粉末、エポキシ樹脂、エポキシ樹脂硬化剤、硬化促進剤、グリシジル(メタ)アクリレートを含むエポキシ基含有アクリル系共重合体と、分散剤と、有機ホスフィン酸塩化合物と、金属水酸化物とを含有する難燃化ノイズ抑制シートが提案されている(例えば、特許文献5)。
Conventionally, inventions that improve heat resistance and flexibility have been proposed.
For example, an electromagnetic wave suppression sheet in which flat soft magnetic powder is dispersed in a polyurethane resin is mounted on the upper surface of a semiconductor component, and heat such as a phenol resin, an epoxy resin, or an unsaturated polyester resin is covered so as to cover the electromagnetic wave suppression sheet. An invention has been proposed in which a curable resin is applied and fixed, and then passed through a solder reflow oven at 240 ° C. to cure the thermosetting resin, and the electromagnetic wave suppression sheet is sealed and fixed with the thermosetting resin (for example, Patent Document 2). According to the invention of Patent Document 2, it is described that the electromagnetic wave suppression sheet was not altered or malfunctioned even after the reflow process.
In addition, an electromagnetic wave suppression sheet in which soft magnetic metal powder is embedded in a thermosetting resin sheet of any one of an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, and a urea resin has been proposed (for example, Patent Document 3). ).
Alternatively, an electromagnetic wave absorbing material composition comprising a compound having two or more carboxyl groups and / or acid anhydride groups in one molecule, a compound having two or more epoxy groups in one molecule, and soft magnetic powder Has been proposed (for example, Patent Document 4).
Further, for example, flat soft magnetic material powder, epoxy resin, epoxy resin curing agent, curing accelerator, epoxy group-containing acrylic copolymer containing glycidyl (meth) acrylate, dispersant, organic phosphinate compound, A flame retardant noise suppression sheet containing a metal hydroxide has been proposed (for example, Patent Document 5).

特開2002−299112号公報JP 2002-299112 A 特開平11−307983号公報JP 11-307983 A 特開2002−111276号公報JP 2002-111276 A 特開2005−252221号公報JP 2005-252221 A 特開2009−59752号公報JP 2009-59752 A

しかしながら、特許文献2〜3の発明は、リフローはんだ付けにおける形態不良の防止(耐リフロー性)が図られているものの、柔軟性を満足できるものではなかった。特許文献4〜5の発明は、柔軟性の向上が図られているものの、満足できる耐リフロー性ではなかった。加えて、熱硬化性樹脂が用いられた複合磁性体は、硬化状態のものを重ね、熱プレスしても密着しにくい。このため、半硬化状シート物を最終製品の厚さに応じて製造する必要があり、効率的に製造できないという問題があった。
そこで、本発明は、効率的に製造でき、かつ十分な柔軟性と耐リフロー性とを両立できる複合磁性体を目的とする。
However, the inventions of Patent Documents 2 to 3 are not satisfactory in flexibility, although prevention of form defects (reflow resistance) is achieved in reflow soldering. Although the inventions of Patent Documents 4 to 5 are improved in flexibility, they are not satisfactory reflow resistance. In addition, the composite magnetic body using the thermosetting resin is hard to adhere even if it is cured and stacked. For this reason, there is a problem in that it is necessary to produce a semi-cured sheet according to the thickness of the final product, which cannot be produced efficiently.
Accordingly, the present invention is directed to a composite magnetic body that can be efficiently manufactured and that can achieve both sufficient flexibility and reflow resistance.

一般に、高耐熱性のエンジニアリングプラスチックスは、電磁波抑制機能を得るために軟磁性金属粉末の充填量を多くすると、成形体が脆くなったり、柔軟性が損なわれ、満足できる複合磁性体を得ることが困難である。他方、耐熱性の低い熱可塑性樹脂の中には、軟磁性金属粉末の充填量を多くすることができるものがあるが、これにより得られる複合磁性体の耐熱性は不十分となる。
本発明者らは鋭意検討した結果、特定のエポキシ樹脂と、合成ゴムとを特定の比率で配合すると共に、特定のエポキシ樹脂用硬化剤を用いることで、電磁波抑制機能を損ねることなく、十分な柔軟性と耐リフロー性とを両立でき、かつ半硬化状シート物を重ね、熱処理を施して積層することで、任意の厚さの複合磁性体を効率的に製造できることを見出し、本発明に至った。
In general, when engineering plastics with high heat resistance increase the amount of soft magnetic metal powder in order to obtain an electromagnetic wave suppression function, the molded body becomes brittle or the flexibility is impaired, so that a satisfactory composite magnetic body can be obtained. Is difficult. On the other hand, some thermoplastic resins having low heat resistance can increase the filling amount of the soft magnetic metal powder, but the heat resistance of the resulting composite magnetic material is insufficient.
As a result of intensive studies, the present inventors have blended a specific epoxy resin and a synthetic rubber at a specific ratio, and by using a specific curing agent for an epoxy resin, the electromagnetic wave suppression function is not impaired and sufficient. It has been found that a composite magnetic body having an arbitrary thickness can be efficiently produced by stacking semi-cured sheet materials and laminating them by heat treatment so that both flexibility and reflow resistance can be achieved. It was.

即ち、本発明の複合磁性体は、(A)成分:ビスフェノール型エポキシ樹脂と、(B)成分:合成ゴムと、(C)成分:フェノール樹脂系のエポキシ樹脂用硬化剤とを含有する樹脂組成物中に、軟磁性金属粉末が分散され、(B)成分/[(A)成分+(C)成分]で表される質量比は、0.5〜1.5であることを特徴とする。
前記(A)成分は、平均エポキシ当量100〜700g/eqであることが好ましく、前記(B)成分は、ポリイソブテン、ブタジエンゴム、スチレン−ブタジエンゴム及びニトリルゴムから選ばれる少なくとも1種であることが好ましく、アクリロニトリル5〜50質量%のニトリルゴムであることがより好ましく、カルボキシル基を有するニトリルゴムであることがさらに好ましく、前記カルボキシル基を有するニトリルゴムは、ムーニー粘度50〜90M1+4(100℃)であることが特に好ましく、前記(C)成分は、前記(A)成分のエポキシ基1当量に対して、活性水素当量が0.1〜1.0当量となる量であることが好ましい。
That is, the composite magnetic body of the present invention has a resin composition containing (A) component: bisphenol type epoxy resin, (B) component: synthetic rubber, and (C) component: phenol resin-based curing agent for epoxy resin. The soft magnetic metal powder is dispersed in the product, and the mass ratio represented by (B) component / [(A) component + (C) component] is 0.5 to 1.5. .
The component (A) preferably has an average epoxy equivalent of 100 to 700 g / eq, and the component (B) is at least one selected from polyisobutene, butadiene rubber, styrene-butadiene rubber and nitrile rubber. Preferably, the nitrile rubber is preferably 5 to 50% by mass of acrylonitrile, more preferably a nitrile rubber having a carboxyl group, and the nitrile rubber having a carboxyl group has a Mooney viscosity of 50 to 90 M 1 + 4 (100 ° C.). It is particularly preferable that the component (C) is an amount such that the active hydrogen equivalent is 0.1 to 1.0 equivalent relative to 1 equivalent of the epoxy group of the component (A).

本発明の複合磁性体によれば、効率的に製造でき、十分な柔軟性と耐リフロー性とを両立できる。  According to the composite magnetic body of the present invention, it can be efficiently produced, and both sufficient flexibility and reflow resistance can be achieved.

(複合磁性体)
本発明の複合磁性体は、樹脂組成物中に軟磁性金属粉末が分散されたものであり、例えば、シート状に成形されたものである。
(Composite magnetic material)
The composite magnetic body of the present invention is one in which soft magnetic metal powder is dispersed in a resin composition, for example, formed into a sheet shape.

<樹脂組成物>
本発明の樹脂組成物は、(A)成分:ビスフェノール型エポキシ樹脂と、(B)成分:合成ゴムと、(C)成分:フェノール樹脂系のエポキシ樹脂用硬化剤とを含有するものである。
複合磁性体中の樹脂組成物の含有量は、2〜50質量%が好ましく、5〜40質量%がより好ましく、5〜20質量%がさらに好ましい。上記下限値未満であると、軟磁性金属粉末のバインダーとしての機能が損なわれ、複合磁性体の成形性が損なわれるおそれがあり、上記上限値超であると、複合磁性体の電磁波制御性能が不十分になるおそれがある。
<Resin composition>
The resin composition of the present invention contains (A) component: bisphenol type epoxy resin, (B) component: synthetic rubber, and (C) component: phenol resin-based curing agent for epoxy resin.
2-50 mass% is preferable, as for content of the resin composition in a composite magnetic body, 5-40 mass% is more preferable, and 5-20 mass% is further more preferable. If it is less than the lower limit, the function of the soft magnetic metal powder as a binder may be impaired, and the moldability of the composite magnetic body may be impaired. If the upper limit is exceeded, the electromagnetic wave control performance of the composite magnetic body may be impaired. May be insufficient.

≪(A)成分:ビスフェノール型エポキシ樹脂≫
(A)成分は、ビスフェノール型エポキシ樹脂である。(A)成分としては、ビスフェノール類と、エピクロルヒドリン又はβ−メチルエピクロルヒドリン等のハロエポキシドとの反応により得られるものである。ビスフェノール類としては、フェノール又は2,6−ジハロフェノールと、ホルムアルデヒド、アセトアルデヒド、アセトン、アセトフェノン、シクロヘキサノン、ベンゾフェノン等のアルデヒド類又はケトン類との反応物、ジヒドロキシフェニルスルフィドの過酸による酸化物、ハイドロキノン同士のエーテル化反応等により得られるもの等が挙げられる。
(A)成分としては、最も汎用で、低価格であることから、ビスフェノールA型エポキシ樹脂が好ましい。
≪ (A) component: bisphenol type epoxy resin≫
The component (A) is a bisphenol type epoxy resin. (A) As a component, it is obtained by reaction of bisphenols and haloepoxides, such as epichlorohydrin or (beta) -methyl epichlorohydrin. Bisphenols include reaction products of phenol or 2,6-dihalophenol with aldehydes or ketones such as formaldehyde, acetaldehyde, acetone, acetophenone, cyclohexanone, benzophenone, oxides of perhydroxy acids of dihydroxyphenyl sulfide, hydroquinone What is obtained by mutual etherification reaction etc. is mentioned.
As the component (A), a bisphenol A type epoxy resin is preferable because it is the most versatile and inexpensive.

(A)成分の平均エポキシ当量は、用途に応じて決定できるが、100〜700g/eqが好ましい。100g/eq未満では、得られる複合磁性体の形状保持性が高温下で低下する傾向にあり、700g/eq超では、複合磁性体の保存安定性が低下する傾向にある。  Although the average epoxy equivalent of (A) component can be determined according to a use, 100-700 g / eq is preferable. If it is less than 100 g / eq, the shape-retaining property of the obtained composite magnetic body tends to decrease at high temperatures, and if it exceeds 700 g / eq, the storage stability of the composite magnetic body tends to decrease.

樹脂組成物中の(A)成分の含有量は、平均エポキシ当量と後述する(C)成分の含有量及び活性水素当量とを勘案して決定され、樹脂組成物中の(A)成分と(C)成分との合計量が、好ましくは20〜67質量%、より好ましくは40〜67質量%とされる。上記下限値未満では、複合磁性体の耐リフロー性が低下するおそれがあり、上記上限値超では、複合磁性体の柔軟性が低下するおそれがある。  The content of the component (A) in the resin composition is determined in consideration of the average epoxy equivalent, the content of the component (C) described later and the active hydrogen equivalent, and the component (A) in the resin composition ( The total amount of the component (C) is preferably 20 to 67% by mass, more preferably 40 to 67% by mass. If it is less than the lower limit, the reflow resistance of the composite magnetic body may be reduced, and if it exceeds the upper limit, the flexibility of the composite magnetic body may be reduced.

≪(B)成分:合成ゴム≫
(B)成分は、合成ゴムである。(B)成分としては、得られる複合磁性体に適度の柔軟性を付与しうるものであればよく、例えば、ニトリルゴム(NBR)、ポリイソブテン(PIB)、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)等が挙げられ、中でも、複合磁性体の電気特性を考慮するとニトリルゴムが好ましい。
ニトリルゴムは、アクリロニトリル−ブタジエン共重合体であり、カルボキシル基を有するものがより好ましい。カルボキシル基を有するニトリルゴムは、加熱時の溶融粘度が高いため、複合磁性体の熱安定性をより高めたり、複合磁性体の引張り強度を高めたりできる。加えて、カルボキシル基を有するニトリルゴムは、他の樹脂との相溶性が高いため、製造効率をより高めたり、安定した品質の複合磁性体を得られやすい。
≪ (B) component: Synthetic rubber≫
The component (B) is a synthetic rubber. As the component (B), any compound that can impart appropriate flexibility to the obtained composite magnetic material may be used. For example, nitrile rubber (NBR), polyisobutene (PIB), butadiene rubber (BR), styrene-butadiene rubber (SBR) and the like. Among them, nitrile rubber is preferable in consideration of the electrical characteristics of the composite magnetic material.
The nitrile rubber is an acrylonitrile-butadiene copolymer, and more preferably has a carboxyl group. Since the nitrile rubber having a carboxyl group has a high melt viscosity when heated, the thermal stability of the composite magnetic body can be further increased, and the tensile strength of the composite magnetic body can be increased. In addition, since the nitrile rubber having a carboxyl group is highly compatible with other resins, it is easy to increase the production efficiency or obtain a composite magnetic body having a stable quality.

ニトリルゴムにおけるアクリロニトリル由来の単量体単位の含有率(アクリロニトリル(AN)含有率)は、5〜50質量%が好ましく、10〜40質量%がより好ましく、10〜30質量%がさらに好ましい。AN含有率が上記下限値未満であると、耐リフロー性の向上が図りにくく、上記上限値超であると、溶剤への溶解性が低下したり、半硬化状シート物同士を積層しにくくなったりして、複合磁性体の製造作業性が低下したりするおそれがある。  5-50 mass% is preferable, as for the content rate (acrylonitrile (AN) content rate) of the acrylonitrile origin monomer unit in a nitrile rubber, 10-40 mass% is more preferable, and 10-30 mass% is further more preferable. When the AN content is less than the lower limit, it is difficult to improve the reflow resistance. When the AN content exceeds the upper limit, the solubility in a solvent is reduced or it is difficult to stack semi-cured sheets. The manufacturing workability of the composite magnetic body may be reduced.

カルボキシル基を有するニトリルゴムのムーニー粘度は、50〜90M1+4(100℃)が好ましく、55〜90M1+4(100℃)がより好ましく、60〜70M1+4(100℃)がさらに好ましい。ムーニー粘度が上記範囲内であると、複合磁性体の熱安定性が良好になり、耐リフロー性がより高まる。加えて、ムーニー粘度が上記範囲内であると、溶剤溶解性の向上、溶融粘度の低下により、磁性体塗料の加工性、接着性が良好となる。
ムーニー粘度が上記下限値未満であると、樹脂組成物の耐熱性が低下し、耐リフロー性が低下するおそれがある。また、半硬化状シート物における溶融粘度が低下し、後述する製膜工程で磁性体塗料の流れ出しが多くなり、加工性を低下させるおそれがある。ムーニー粘度が上記上限値超であると、後述する塗料調製工程で、溶剤への溶解性が低下したり、後述する製膜工程で、磁性体塗料の流動性が低下し、製膜が困難になったり、半硬化状シート物同士を積層しにくくなったりして、複合磁性体の製造効率が低下するおそれがある。
ムーニー粘度は、JIS K6300−1に準拠して、ムーニービスコメーター(株式会社島津製作所製)を用いて測定される値である。
The Mooney viscosity of the nitrile rubber having a carboxyl group, 50~90M 1 + 4 (100 ℃ ) are preferred, 55~90M 1 + 4 (100 ℃ ) is more preferable, 60~70M 1 + 4 (100 ℃ ) it is more preferred. When the Mooney viscosity is within the above range, the thermal stability of the composite magnetic material is improved, and the reflow resistance is further improved. In addition, when the Mooney viscosity is within the above range, the workability and adhesiveness of the magnetic coating material are improved due to the improvement in solvent solubility and the decrease in melt viscosity.
When the Mooney viscosity is less than the above lower limit, the heat resistance of the resin composition is lowered, and the reflow resistance may be lowered. In addition, the melt viscosity of the semi-cured sheet decreases, and the flow of the magnetic coating material increases in the film forming process described later, which may reduce the workability. If the Mooney viscosity exceeds the above upper limit, the solubility in a solvent is reduced in the coating preparation process described later, or the fluidity of the magnetic coating material is decreased in the film forming process described later, making film formation difficult. Or it may become difficult to laminate semi-cured sheets, and the production efficiency of the composite magnetic body may be reduced.
The Mooney viscosity is a value measured using a Mooney viscometer (manufactured by Shimadzu Corporation) in accordance with JIS K6300-1.

樹脂組成物中の(B)の含有量は、(A)成分と(C)成分との含有量を勘案して決定でき、(B)成分/[(A)成分+(C)成分]で表される質量比(以下、(B)/[(A)+(C)]比ということがある)が0.5〜1.5であり、好ましくは0.5〜1.25であり、より好ましくは0.6〜1.0である。上記下限値未満であると、柔軟性が不十分になったり、軟磁性金属粉末の密着性が不十分になるおそれがあり、上記上限値超であると耐リフロー性が不十分になる。  The content of (B) in the resin composition can be determined in consideration of the content of component (A) and component (C), and is (B) component / [(A) component + (C) component]. The expressed mass ratio (hereinafter sometimes referred to as (B) / [(A) + (C)] ratio) is 0.5 to 1.5, preferably 0.5 to 1.25, More preferably, it is 0.6-1.0. If it is less than the above lower limit value, the flexibility may be insufficient or the adhesion of the soft magnetic metal powder may be insufficient, and if it exceeds the above upper limit value, the reflow resistance becomes insufficient.

≪(C)成分:フェノール樹脂系のエポキシ樹脂用硬化剤≫
(C)成分は、フェノール樹脂系のエポキシ樹脂用硬化剤である。(C)成分としては、特に限定されず、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、ポリp−ビニルフェノール等が挙げられる。(C)成分は、潜在性硬化剤であるため、半硬化状態では(A)成分のエポキシ基との硬化反応が進行しにくい。このため、半硬化状シート物は、重ねられ、熱処理が施されることで、未反応のエポキシ基が表面タックを発現して、容易に密着される。
≪ (C) component: Phenolic resin type epoxy resin curing agent≫
Component (C) is a phenol resin-based curing agent for epoxy resins. (C) It does not specifically limit as a component, For example, a phenol novolak resin, a cresol novolak resin, a bisphenol novolak resin, poly p-vinylphenol etc. are mentioned. Since the component (C) is a latent curing agent, the curing reaction with the epoxy group of the component (A) hardly proceeds in a semi-cured state. For this reason, the semi-cured sheet material is overlaid and subjected to heat treatment, whereby unreacted epoxy groups develop surface tack and are easily adhered.

樹脂組成物中の(C)成分の含有量は、(A)成分の種類や含有量、(C)成分の種類等を勘案して決定することが好ましく、(A)成分に由来するエポキシ基1当量に対し、(C)成分の活性水素当量(活性水素基を有する官能基の当量)が好ましくは0.1〜1当量となる量、より好ましくは0.5〜1当量となる量、さらに好ましくは0.8〜1当量となる量とされる。(C)成分の含有量が上記下限値未満であると、(A)成分の硬化が不十分となり、耐リフロー性が低下するおそれがあり、上記上限値超であると、半硬化状態の樹脂組成物中で、未反応の(C)成分の残留量が多くなり、耐リフロー性が低下するおそれがある。  The content of the component (C) in the resin composition is preferably determined in consideration of the type and content of the component (A), the type of the component (C), etc., and an epoxy group derived from the component (A) The amount that the active hydrogen equivalent of the component (C) (equivalent of the functional group having an active hydrogen group) is preferably 0.1 to 1 equivalent, more preferably 0.5 to 1 equivalent, relative to 1 equivalent, More preferably, the amount is 0.8 to 1 equivalent. When the content of the component (C) is less than the lower limit, the curing of the component (A) may be insufficient and the reflow resistance may be lowered. When the content exceeds the upper limit, the resin is in a semi-cured state. In the composition, the residual amount of the unreacted component (C) increases, and the reflow resistance may decrease.

樹脂組成物中の必須成分である(A)〜(C)成分の合計量は、多ければ多いほど、本発明の効果を高められ、90質量%以上が好ましく、95質量%以上が好ましく、100質量%がさらに好ましい。  The greater the total amount of components (A) to (C) that are essential components in the resin composition, the higher the effect of the present invention is, and 90 mass% or more is preferable, 95 mass% or more is preferable, and 100 More preferred is mass%.

≪樹脂組成物中の任意成分≫
樹脂組成物は、本発明の効果を妨げない範囲で、(A)〜(C)成分以外の樹脂(任意樹脂)、(C)成分以外のエポキシ樹脂用硬化剤(任意硬化剤)、硬化促進剤等の任意成分(以下、総じて樹脂組成物の任意成分という)を含有してもよい。
≪Optional component in resin composition≫
The resin composition is a resin (arbitrary resin) other than the components (A) to (C), an epoxy resin curing agent (arbitrary curing agent) other than the component (C), and curing acceleration, as long as the effects of the present invention are not hindered. You may contain arbitrary components, such as an agent (henceforth the arbitrary components of a resin composition generally).

任意樹脂としては、例えば、(A)成分以外のエポキシ樹脂、天然ゴム等が挙げられる。(C)成分以外の樹脂としては、ポリアミドアミン等が挙げられる。
これらの任意樹脂は、1種単独で又は2種以上を組み合わせて用いることができる。
樹脂組成物中の任意樹脂の含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、実質的に含まれない(1質量%以下)ことがさらに好ましい。
Examples of the optional resin include epoxy resins other than the component (A), natural rubber, and the like. (C) Polyamideamine etc. are mentioned as resin other than a component.
These optional resins can be used alone or in combination of two or more.
The content of the optional resin in the resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably not contained (1% by mass or less).

任意硬化剤としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジシアンジアミド等のポリアミン系硬化剤、ケチミン化合物、イソホロンジアミン、m−キシレンジアミン、m−フェニレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、N-アミノエチルピペラジン、4,4′−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン、ジアミノジフェニルスルフォン等があげられ、ポリカルボン酸系硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3,6−エンドメチレンテトラヒドロ無水フタル酸、ヘキサクロルエンドメチレンテトラヒドロ無水フタル酸、メチル−3,6−エンドメチレンテトラヒドロ無水フタル酸が挙げられる。これらの任意硬化剤を用いることで、半硬化状シート物の溶融温度を高めることができる。
樹脂組成物中の任意硬化剤の含有量は、半硬化状シート物に求める融点等を勘案して適宜決定できる。
Optional curing agents include polyamine curing agents such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dicyandiamide, ketimine compounds, isophorone diamine, m-xylene diamine, m-phenylene diamine, 1,3-bis (aminomethyl) Cyclohexane, N-aminoethylpiperazine, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-diethyldiphenylmethane, diaminodiphenylsulfone and the like. Examples of polycarboxylic acid curing agents include phthalic anhydride Acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, methyl-3,6-endomethylenetetrahydrophthalic anhydride An example is taric acid. By using these optional curing agents, the melting temperature of the semi-cured sheet can be increased.
The content of the optional curing agent in the resin composition can be appropriately determined in consideration of the melting point and the like required for the semi-cured sheet.

硬化促進剤としては、(A)成分と(C)成分との硬化反応を促進できるものであればよく、例えば、1,8−ジアザ−ビシクロ[5.4.0]ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類;2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール類;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。これらの硬化促進剤は、1種単独で又は2種以上を組み合わせて用いることができる。
樹脂組成物中の硬化促進剤の含有量は、エポキシ樹脂100質量部に対し、0.1〜5質量部が好ましい。
Any curing accelerator may be used as long as it can accelerate the curing reaction between the component (A) and the component (C). For example, 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine , Tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecyl Imidazoles such as imidazole; Organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine; tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole tetraf Niruboreto, tetraphenyl boron salts such as N- methylmorpholine tetraphenylborate and the like. These curing accelerators can be used alone or in combination of two or more.
As for content of the hardening accelerator in a resin composition, 0.1-5 mass parts is preferable with respect to 100 mass parts of epoxy resins.

<軟磁性金属粉末>
軟磁性金属粉末としては、従来、複合磁性体に用いられているものが挙げられ、例えば、純鉄粉末、Fe−Si系合金粉末、Fe−Si−Al系合金粉末、Fe−Ni系合金粉末、Fe−Ni−Mo系合金粉末、Fe−Ni−Mo−Cu系合金粉末、Fe−Co系合金粉末、Fe−Ni−Co系合金粉末、Fe−Cr系合金粉末、Fe−Cr−Si系合金粉末、Fe−Ni−Cr系合金粉末、あるいはFe−Cr−Al系合金粉末等が挙げられ、中でも、それ自体の保磁力が低い、PCパーマロイ粉末等のFe−Cr系合金粉末、Fe−Si系合金粉末、Fe−Si−Al系合金粉末、Fe−Co系合金粉末、Fe−Ni系合金粉末が好ましい。軟磁性金属粉末は、水アトマイズ法、ガスアトマイズ法、粉砕法又は化学処理を用いた湿式法により得られる。
軟磁性金属粉末としては、前記アトマイズ粉末をアトライタ又はビーズミルにより処理したものが好ましい。このような処理を施すことで、軟磁性金属粉末を所望する平均粒径又は扁平度とすることができる。
軟磁性金属粉末の平均粒径は、30〜200μmが好ましい。平均粒径が上記下限値未満であると磁気特性が低位となりやすく、平均粒径が上記上限値超であると所望する形状を維持しにくくなる。
平均粒径は、レーザー回析・散乱式粒子径・粒度分布測定装置により求められる値である。
<Soft magnetic metal powder>
Examples of soft magnetic metal powders include those conventionally used in composite magnetic materials, such as pure iron powder, Fe-Si alloy powder, Fe-Si-Al alloy powder, Fe-Ni alloy powder. Fe-Ni-Mo alloy powder, Fe-Ni-Mo-Cu alloy powder, Fe-Co alloy powder, Fe-Ni-Co alloy powder, Fe-Cr alloy powder, Fe-Cr-Si alloy Alloy powder, Fe—Ni—Cr alloy powder, Fe—Cr—Al alloy powder, etc. Among them, Fe—Cr alloy powder such as PC permalloy powder, Fe—Cr alloy powder, Fe—Cr alloy powder, Fe— Si-based alloy powder, Fe-Si-Al-based alloy powder, Fe-Co-based alloy powder, and Fe-Ni-based alloy powder are preferable. The soft magnetic metal powder is obtained by a wet method using a water atomization method, a gas atomization method, a pulverization method, or a chemical treatment.
As the soft magnetic metal powder, a powder obtained by treating the atomized powder with an attritor or a bead mill is preferable. By performing such treatment, the desired average particle diameter or flatness of the soft magnetic metal powder can be obtained.
The average particle size of the soft magnetic metal powder is preferably 30 to 200 μm. When the average particle size is less than the lower limit, the magnetic properties tend to be low, and when the average particle size exceeds the upper limit, it is difficult to maintain a desired shape.
The average particle diameter is a value determined by a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus.

軟磁性金属粉末の扁平度は、30〜200が好ましい。扁平度が上記下限値未満であると、磁気特性が低位となりやすく、扁平度が上記上限値超であると所望する形状を維持しにくくなる。
ここで、「扁平度」の値は、L/dで表されるものである。Lは軟磁性金属粉末の平均径であり、軟磁性金属粉末を面方向からSEM観察し、長軸Lと短軸Sとを測定し、その平均値(L+S)/2で求められるものである。dは、軟磁性金属粉末の厚さであり、軟磁性金属粉末を樹脂に埋め込んで研磨し、粉末の厚さ方向を光学顕微鏡で観察して最大厚さdmaxと最小厚さdminとを測定して、その平均値(dmax+dmin)/2で求められるものである。
The flatness of the soft magnetic metal powder is preferably 30 to 200. When the flatness is less than the above lower limit value, the magnetic characteristics tend to be low, and when the flatness exceeds the upper limit value, it is difficult to maintain a desired shape.
Here, the value of “flatness” is represented by L a / d a . L a is the average size of the soft magnetic metal powder, the soft magnetic metal powder and SEM observation from the surface direction to measure the major axis L and the short axis S, but sought the average value (L + S) / 2 is there. d a is the thickness of the soft magnetic metal powder. The soft magnetic metal powder is embedded in the resin and polished, and the thickness direction of the powder is observed with an optical microscope, and the maximum thickness d max and the minimum thickness d min are , And the average value (d max + d min ) / 2 is obtained.

複合磁性体中の軟磁性金属粉末の含有量は、樹脂組成物の含有量を勘案して決定でき、軟磁性金属粉末/樹脂組成物で表される質量比(以下、金属/樹脂比ということがある)が、好ましくは2〜12とされる。金属/樹脂比が上記下限値未満であると、電磁波抑制特性が低下するおそれがあり、金属/樹脂比が上記上限値超であると、樹脂組成物による軟磁性金属粉末の密着性が不十分になるおそれがある。  The content of the soft magnetic metal powder in the composite magnetic material can be determined in consideration of the content of the resin composition. The mass ratio represented by the soft magnetic metal powder / resin composition (hereinafter referred to as the metal / resin ratio). However, it is preferably 2-12. If the metal / resin ratio is less than the above lower limit, the electromagnetic wave suppression characteristics may be reduced, and if the metal / resin ratio exceeds the above upper limit, the adhesion of the soft magnetic metal powder by the resin composition is insufficient. There is a risk of becoming.

<複合磁性体中の任意成分>
軟磁性金属粉末は、本発明の効果を損なわない範囲で、必要に応じて、難燃剤、難燃助剤、充填剤、離型剤、表面処理剤、粘度調節剤、可塑剤、抗菌剤、防黴剤、レベリング剤、消泡剤、着色剤、安定剤、カップリング剤等の任意成分(以下、総じて、複合磁性体の任意成分という)を含有してもよい。
<Arbitrary component in composite magnetic material>
The soft magnetic metal powder is a flame retardant, a flame retardant aid, a filler, a mold release agent, a surface treatment agent, a viscosity modifier, a plasticizer, an antibacterial agent, as long as the effect of the present invention is not impaired. You may contain arbitrary components, such as an antifungal agent, a leveling agent, an antifoamer, a coloring agent, a stabilizer, a coupling agent (henceforth, it is generally called the arbitrary component of a composite magnetic body).

難燃剤としては、従来公知の難燃剤が挙げられ、ハロゲンフリーと、耐リフロー性のさらなる向上との観点から、水酸化アルミニウム及び/又は水酸化マグネシウムが挙げられる。
複合磁性体中の難燃剤の含有量は、樹脂組成物100質量部に対して40〜150質量部が好ましい。上記下限値未満であると、十分な難燃性が得られないおそれがあり、上記上限値超であると軟磁性金属粉末の密着性が不十分となる場合がある。
Examples of the flame retardant include conventionally known flame retardants, and include aluminum hydroxide and / or magnesium hydroxide from the viewpoint of halogen-free and further improvement in reflow resistance.
The content of the flame retardant in the composite magnetic body is preferably 40 to 150 parts by mass with respect to 100 parts by mass of the resin composition. If it is less than the lower limit, sufficient flame retardancy may not be obtained, and if it exceeds the upper limit, the adhesion of the soft magnetic metal powder may be insufficient.

難燃助剤としては、従来公知の難燃助剤が挙げられ、ハロゲンフリーの観点から、例えば、赤リン、ポリリン酸アンモニウム、ポリリン酸メラミン及びリン酸エステルから選ばれる少なくとも1種が好ましい。
複合磁性体中の難燃助剤の含有量は、樹脂組成物100質量部に対して1〜10質量部が好ましい。上記下限値未満であると、十分な難燃性が得られないおそれがあり、上記上限値超であると耐熱性が低下するおそれがある。
Examples of the flame retardant aid include conventionally known flame retardant aids. From the viewpoint of halogen-free, for example, at least one selected from red phosphorus, ammonium polyphosphate, melamine polyphosphate, and phosphate ester is preferable.
The content of the flame retardant aid in the composite magnetic material is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the resin composition. If it is less than the lower limit, sufficient flame retardancy may not be obtained, and if it exceeds the upper limit, heat resistance may be reduced.

(製造方法)
本発明の複合磁性体の製造方法は、例えば、(A)〜(C)成分と軟磁性金属粉体とが溶剤に分散された磁性体塗料を得る工程(塗料調製工程)と、磁性体塗料を所望の厚さに塗布、乾燥して半硬化状シート物を得る工程(製膜工程)と、半硬化状シート物を加熱して硬化させる工程(硬化工程)とを有するものが挙げられる。
(Production method)
The method for producing a composite magnetic body of the present invention includes, for example, a step of obtaining a magnetic coating material in which components (A) to (C) and a soft magnetic metal powder are dispersed in a solvent (paint preparation step), and a magnetic coating material. Is applied to a desired thickness and dried to obtain a semi-cured sheet material (film forming process), and a process of curing the semi-cured sheet material by heating (curing process).

磁性体塗料の調製方法は、従来公知の方法を用いることができ、例えば、溶剤に(A)〜(C)成分と、必要に応じて樹脂組成物の任意成分とを添加し、攪拌して樹脂溶液とし、この樹脂溶液に軟磁性金属粉体と、必要に応じて複合磁性体の任意成分とを添加し、攪拌する方法が挙げられる。また、例えば、(A)〜(C)成分と、必要に応じて樹脂組成物の任意成分又は複合磁性体の任意成分とを溶剤に添加し、攪拌し、次いで、軟磁性金属粉体を添加し、攪拌する方法が挙げられる。  As a method for preparing the magnetic coating material, a conventionally known method can be used. For example, the components (A) to (C) and optional components of the resin composition are added to a solvent, and stirred. A method of adding a soft magnetic metal powder and, if necessary, an optional component of the composite magnetic material to the resin solution and stirring the resin solution may be mentioned. In addition, for example, the components (A) to (C) and the optional component of the resin composition or the optional component of the composite magnetic material are added to the solvent, if necessary, and then the soft magnetic metal powder is added. And stirring.

塗料調製工程に用いられる溶剤としては、例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン溶剤、酢酸エチル、酢酸ブチル等のエステル溶剤、トルエン、キシレン等の芳香族溶剤、セロソルブアセテート、メチルセロソルブアセテート等のセロソルブ溶剤、テトラヒドロフラン、ジエチレングリコールジメチルエーテル等のエーテル溶剤、イソプロピルアルコール、n−ブチルアルコール等のアルコール、ジメチルホルムアミド等の非プロトン性極性溶剤が挙げられる。
磁性体塗料中の溶剤の含有量は、磁性体塗料に求める粘度等を勘案して、適宜決定される。
Solvents used in the coating preparation process include, for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone, ester solvents such as ethyl acetate and butyl acetate, aromatic solvents such as toluene and xylene, cellosolve acetate, methyl cellosolve acetate And an aprotic polar solvent such as dimethylformamide, an ether solvent such as tetrahydrofuran and diethylene glycol dimethyl ether, an alcohol such as isopropyl alcohol and n-butyl alcohol, and the like.
The content of the solvent in the magnetic coating material is appropriately determined in consideration of the viscosity required for the magnetic coating material.

製膜工程は、従来公知の製膜方法を用いることができ、例えば、剥離性フィルムに、磁性体塗料を任意の厚さで塗布し、これを乾燥するものが挙げられる。
塗布方法としては、バーコーター、コンマコーター、ダイコーター等を用いた方法が挙げられる。
半硬化状シート物の厚さは、特に限定されないが、例えば、50〜500μmが好ましく、50〜100μmがより好ましい。
In the film forming step, a conventionally known film forming method can be used, and examples thereof include a method in which a magnetic coating material is applied to a peelable film at an arbitrary thickness and dried.
Examples of the coating method include a method using a bar coater, a comma coater, a die coater, or the like.
Although the thickness of a semi-hardened sheet material is not specifically limited, For example, 50-500 micrometers is preferable and 50-100 micrometers is more preferable.

剥離性フィルムとしては、ポリプロピレンフィルム、フッ素樹脂系フィルム、ポリエチレンフィルム、ポリエチレンテレフタレート(PET)フィルム、紙及びこれらにシリコーン樹脂で剥離処理を施したもの(剥離処理フィルム)等が挙げられる。
剥離性フィルムの厚さは、特に限定されないが、1〜200μmが好ましく、10〜50μmがより好ましい。
剥離性フィルムは、ピール強度が0.01〜7.0g/cmが好ましい。上記下限値以上であれば、複合磁性体と剥離性フィルムとが容易に剥離せず、複合磁性体の取扱いが容易であり、上記上限値未満であれば、複合磁性体を剥離性フィルムから剥離する際に、欠損等を生ぜず、製造効率が高まる。
Examples of the peelable film include a polypropylene film, a fluororesin film, a polyethylene film, a polyethylene terephthalate (PET) film, paper, and those obtained by subjecting these to a release treatment with a silicone resin (release treatment film).
Although the thickness of a peelable film is not specifically limited, 1-200 micrometers is preferable and 10-50 micrometers is more preferable.
The peelable film preferably has a peel strength of 0.01 to 7.0 g / cm. If the above lower limit is exceeded, the composite magnetic body and the peelable film are not easily peeled off, and the composite magnetic body is easy to handle. If less than the above upper limit, the composite magnetic body is peeled from the peelable film. When this is done, defects and the like do not occur, and manufacturing efficiency increases.

乾燥方法は、剥離性フィルムに塗布された磁性体塗料中の溶剤を蒸発させ、樹脂組成物を半硬化状態にするものであれば特に限定されず、例えば、剥離性フィルムに塗布された磁性体塗料を任意の温度で加熱する方法が挙げられる。
製膜工程における加熱温度は、(A)成分、(C)成分や溶剤の種類等を勘案して決定できる。
製膜工程における加熱時間は、(A)成分、(C)成分や溶剤の種類等を勘案して決定できる。
半硬化状シート物は、乾燥後、直ちに硬化工程に供されてもよいし、仕掛品として保管されてもよい。
The drying method is not particularly limited as long as it evaporates the solvent in the magnetic coating material applied to the peelable film and brings the resin composition into a semi-cured state. For example, the magnetic material applied to the peelable film The method of heating a coating material at arbitrary temperatures is mentioned.
The heating temperature in the film forming step can be determined in consideration of the component (A), the component (C), the type of solvent, and the like.
The heating time in the film forming process can be determined in consideration of the types of the component (A), the component (C) and the solvent.
The semi-cured sheet material may be immediately subjected to a curing process after drying, or may be stored as a work in progress.

硬化工程は、半硬化状シート物を加熱し、樹脂組成物を硬化させ、複合磁性体を得る工程である。
硬化方法は、従来、公知の硬化方法を用いることができ、例えば、任意の温度で加熱する方法、任意の圧力でプレスしながら任意の温度で加熱する方法が挙げられる。
硬化工程における加熱温度は、(A)成分及び(C)成分の種類等を勘案して決定できる。
硬化工程でプレスする場合、その圧力は、特に限定されないが、例えば、5〜30MPaとされる。
樹脂組成物が硬化状態とされた複合磁性体は、所望する寸法に切り出されて、製品化される。
硬化工程では、半硬化状シート物を最終製品の厚さに応じて重ね、例えば熱プレスして硬化させ、複合磁性体としてもよい。半硬化状シート物には、未反応のエポキシ基((A)成分由来)が残存している。このため、半硬化状シート物は、重ねられ、熱処理が施されると、接触面で前記の未反応のエポキシ基が表面タックを発現して密着される。
The curing step is a step of heating the semi-cured sheet material to cure the resin composition to obtain a composite magnetic body.
A conventionally known curing method can be used as the curing method, and examples thereof include a method of heating at an arbitrary temperature and a method of heating at an arbitrary temperature while pressing at an arbitrary pressure.
The heating temperature in the curing step can be determined in consideration of the types of the component (A) and the component (C).
When pressing in the curing step, the pressure is not particularly limited, but is, for example, 5 to 30 MPa.
The composite magnetic body in which the resin composition is in a cured state is cut into a desired dimension and commercialized.
In the curing step, the semi-cured sheet material may be stacked according to the thickness of the final product and cured by, for example, hot pressing to form a composite magnetic body. An unreacted epoxy group (derived from the component (A)) remains in the semi-cured sheet. For this reason, when the semi-cured sheet material is stacked and subjected to heat treatment, the unreacted epoxy groups are brought into close contact with each other on the contact surface.

必要に応じて、硬化工程の前又は後に、剥離性フィルム上の半硬化状シート物又は複合磁性体の露出面に新たな剥離性フィルムを積層してもよい。こうして、複合磁性体の両面に剥離性フィルムが設けられることで、異物の付着等を防止できる。   As needed, you may laminate | stack a new peelable film on the exposed surface of the semi-hardened sheet material or composite magnetic body on a peelable film before or after a hardening process. Thus, by providing the peelable film on both surfaces of the composite magnetic body, it is possible to prevent adhesion of foreign matters.

また、複合磁性体には、片面又は両面に耐熱粘着層が設けられていてもよい。耐熱粘着層が設けられていることで、複合磁性体を貼付対象に容易に固定できる。
耐熱粘着層を構成する粘着剤としては、従来公知のものが挙げられ、例えば、メチルフェニル系シリコーン粘着剤、付加反応型シリコーン粘着剤、過酸化物硫化型シリコーン粘着剤等が挙げられる。
The composite magnetic body may be provided with a heat resistant adhesive layer on one side or both sides. By providing the heat-resistant adhesive layer, the composite magnetic body can be easily fixed to the object to be pasted.
Examples of the pressure-sensitive adhesive constituting the heat-resistant pressure-sensitive adhesive layer include conventionally known pressure-sensitive adhesives such as a methylphenyl silicone pressure-sensitive adhesive, an addition reaction type silicone pressure-sensitive adhesive, and a peroxide sulfide type silicone pressure-sensitive adhesive.

上述の通り、本発明によれば、(A)成分と(B)成分とを特定の比率で含有するため、柔軟性と耐リフロー性とを両立できる。
加えて、硬化剤として(C)成分を用いるため、半硬化状シート物を必要に応じて重ね、熱プレス等を施すことで、所望の厚さの複合磁性体の製品を効率的に製造できる。
As described above, according to the present invention, since the component (A) and the component (B) are contained at a specific ratio, both flexibility and reflow resistance can be achieved.
In addition, since the component (C) is used as a curing agent, it is possible to efficiently produce a composite magnetic body product having a desired thickness by stacking semi-cured sheets as necessary and performing hot pressing or the like. .

以下、本発明を実施例によって説明するが、本発明は、これらの実施例によって限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these Examples.

(実施例1)
Fe−Si−Al合金の溶湯をガスアトマイズして、平均粒径が100μmの球状粉末を得た。これをアトライターに入れて攪拌することにより、平均粒径50μm、厚さ1μm、扁平度50の軟磁性金属粉体を得た。
(A)成分:ビスフェノールA型エポキシ樹脂(平均エポキシ当量190g/eq、エピコート828、三菱化学株式会社製)8g、(B)成分:カルボキシル基を有するNBR(ムーニー粘度60M1+4(100℃)、アクリロニトリル含有率(AN含有率)27質量%)8g、(C)成分:フェノールノボラック樹脂(活性水素当量106g/eq、タマノル759、荒川化学工業株式会社製)4g、エポキシ樹脂用硬化促進剤:2−エチル−4−メチルイミダゾール0.02g、難燃剤:水酸化アルミニウム21g、難燃助剤:赤リン1.2gをトルエン200gに加え攪拌し、さらに軟磁性金属粉体170gを加え、攪拌して、磁性体塗料を得た。
得られた磁性体塗料を、乾燥後の厚さが150μmになるように剥離処理フィルム(PET製)の剥離処理面に塗布し、熱風循環型乾燥機中にて120℃で3分間加熱し、半硬化状シート物を得た。得られた半硬化状シート物について、積層性を評価した。さらに軟磁性金属粉末の配向性を高めるために、半硬化状シート物を熱圧プレス機にて150℃、30分間、20MPaでプレスして、厚さ99μmの複合磁性体を得た。得られた複合磁性体について、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
なお、表中、(C)成分を「P系」と記載し、(C)成分の活性水素当量を(A)成分のエポキシ基1当量に対する当量として記載した(以降において同じ)。
Example 1
The molten Fe—Si—Al alloy was gas atomized to obtain a spherical powder having an average particle size of 100 μm. This was put into an attritor and stirred to obtain a soft magnetic metal powder having an average particle diameter of 50 μm, a thickness of 1 μm, and a flatness of 50.
(A) component: Bisphenol A type epoxy resin (average epoxy equivalent 190 g / eq, Epicoat 828, manufactured by Mitsubishi Chemical Corporation) 8 g, (B) component: NBR having a carboxyl group (Mooney viscosity 60M 1 + 4 (100 ° C.), acrylonitrile) Content (AN content 27 mass%) 8 g, (C) component: phenol novolak resin (active hydrogen equivalent 106 g / eq, Tamano 759, Arakawa Chemical Industries, Ltd.) 4 g, epoxy resin curing accelerator: 2- Add 0.02 g of ethyl-4-methylimidazole, flame retardant: 21 g of aluminum hydroxide, flame retardant aid: 1.2 g of red phosphorus to 200 g of toluene, stir, and further add 170 g of soft magnetic metal powder, stir, A magnetic coating was obtained.
The obtained magnetic coating material was applied to the release-treated surface of the release-treated film (PET) so that the thickness after drying was 150 μm, and heated at 120 ° C. for 3 minutes in a hot-air circulating dryer, A semi-cured sheet was obtained. The resulting semi-cured sheet was evaluated for laminate properties. Further, in order to enhance the orientation of the soft magnetic metal powder, the semi-cured sheet was pressed at 150 ° C. for 30 minutes at 20 MPa by a hot press machine to obtain a composite magnetic body having a thickness of 99 μm. The obtained composite magnetic body was evaluated for magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.
In the table, the component (C) was described as “P system”, and the active hydrogen equivalent of the component (C) was described as an equivalent to 1 equivalent of the epoxy group of the component (A) (the same applies hereinafter).

(実施例2)
平均粒径30μm、厚さ1μm、扁平度30の軟磁性金属粉体を使用した以外は、実施例1と同様にして、半硬化状シート物及び厚さ102μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 2)
A semi-cured sheet and a composite magnetic body having a thickness of 102 μm were obtained in the same manner as in Example 1 except that a soft magnetic metal powder having an average particle size of 30 μm, a thickness of 1 μm, and a flatness of 30 was used. The magnetic permeability, reflow resistance, flexibility, and internal stress relaxation were evaluated.

(実施例3)
平均粒径50μm、厚さ2μm、扁平度25の軟磁性金属粉体を使用した以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 3)
A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 1 except that a soft magnetic metal powder having an average particle size of 50 μm, a thickness of 2 μm, and a flatness of 25 was used. The magnetic permeability, reflow resistance, flexibility, and internal stress relaxation were evaluated.

(実施例4)
平均粒径49μm、厚さが1μm、扁平度30のFe−Si合金の軟磁性金属粉体を使用した以外は、実施例1と同様にして、半硬化状シート物及び厚さ98μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
Example 4
A semi-cured sheet material and a composite magnetic material having a thickness of 98 μm were used in the same manner as in Example 1 except that an Fe—Si alloy soft magnetic metal powder having an average particle size of 49 μm, a thickness of 1 μm, and a flatness of 30 was used. A body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例5)
平均粒径52μm、厚さが1μm、扁平度52のFe−Ni合金の軟磁性金属粉体を使用した以外は、実施例1と同様にして、半硬化状シート物及び厚さ98μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 5)
A semi-cured sheet material and a composite magnetic material with a thickness of 98 μm were used in the same manner as in Example 1 except that an Fe—Ni alloy soft magnetic metal powder having an average particle size of 52 μm, a thickness of 1 μm, and a flatness of 52 was used. A body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例6)
(A)成分を12g、(B)成分を12g、(C)成分を6g、水酸化アルミニウムを32g、赤リンを1.8g、軟磁性金属粉体を150gとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 6)
Example 1 except that component (A) is 12 g, component (B) is 12 g, component (C) is 6 g, aluminum hydroxide is 32 g, red phosphorus is 1.8 g, and soft magnetic metal powder is 150 g. Similarly, a semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained, and the lamination property, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation were evaluated.

(実施例7)
(A)成分を平均エポキシ当量480g/eqのビスフェノール型エポキシ樹脂(エピコート1001、三菱化学株式会社製)とし、(A)成分を8g、(B)成分を8g、(C)成分を1g、水酸化アルミニウムを20g、赤リンを1g、軟磁性金属粉体を160gとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ99μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 7)
The component (A) is a bisphenol type epoxy resin (Epicoat 1001, manufactured by Mitsubishi Chemical Corporation) having an average epoxy equivalent of 480 g / eq, the component (A) is 8 g, the component (B) is 8 g, the component (C) is 1 g, water Except for 20 g of aluminum oxide, 1 g of red phosphorus, and 160 g of soft magnetic metal powder, a semi-cured sheet and a composite magnetic body having a thickness of 99 μm were obtained in the same manner as in Example 1 to obtain laminate properties, transparent properties. The magnetic susceptibility, reflow resistance, flexibility, and internal stress relaxation were evaluated.

(実施例8)
(B)成分をムーニー粘度60M1+4(100℃)、AN含有率27質量%の、カルボキシル基を有しないNBRとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ103μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 8)
The semi-cured sheet and the thickness of 103 μm were the same as in Example 1 except that the component (B) was a Mooney viscosity of 60M 1 + 4 (100 ° C.), an N content of 27% by mass, and NBR having no carboxyl group. The composite magnetic body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例9)
(B)成分をムーニー粘度75M1+4(100℃)、AN含有率40.5質量%の、カルボキシル基を有するNBRとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
Example 9
(B) A semi-cured sheet and a thickness in the same manner as in Example 1 except that the component is NBR having a carboxyl group with a Mooney viscosity of 75M 1 + 4 (100 ° C.) and an AN content of 40.5% by mass. A composite magnetic body having a thickness of 100 μm was obtained and evaluated for lamination properties, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation properties.

(実施例10)
(A)成分を平均エポキシ当量90g/eqのビスフェノール型エポキシ樹脂とし、(A)成分を8g、(B)成分を8g、(C)成分を8g、水酸化アルミニウムを25.5g、赤リンを1.5g、軟磁性金属粉体を204gとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 10)
The component (A) is a bisphenol type epoxy resin having an average epoxy equivalent of 90 g / eq, the component (A) is 8 g, the component (B) is 8 g, the component (C) is 8 g, the aluminum hydroxide is 25.5 g, red phosphorus A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 1 except that 1.5 g and the soft magnetic metal powder were 204 g, and the lamination property, magnetic permeability, reflow resistance, Flexibility and internal stress relaxation were evaluated.

(実施例11)
(A)成分を平均エポキシ当量100g/eqのビスフェノール型エポキシ樹脂とした以外は、実施例10と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 11)
(A) A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 10 except that the component was a bisphenol type epoxy resin having an average epoxy equivalent of 100 g / eq, and a laminate property and magnetic permeability were obtained. Evaluation was made on reflow resistance, flexibility, and internal stress relaxation.

(実施例12)
(A)成分を平均エポキシ当量700g/eqのビスフェノール型エポキシ樹脂とし、(A)成分を8g、(B)成分を8g、(C)成分を1g、水酸化アルミニウムを20g、赤リンを1g、軟磁性金属粉体を160gとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 12)
The component (A) is a bisphenol type epoxy resin having an average epoxy equivalent of 700 g / eq, the component (A) is 8 g, the component (B) is 8 g, the component (C) is 1 g, the aluminum hydroxide is 20 g, the red phosphorus is 1 g, A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 1 except that the amount of the soft magnetic metal powder was 160 g, and the lamination property, magnetic permeability, reflow resistance, flexibility, internal The stress relaxation property was evaluated.

(実施例13)
(A)成分を平均エポキシ当量750g/eqのビスフェノール型エポキシ樹脂とした以外は、実施例12と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 13)
(A) A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 12 except that the component was a bisphenol type epoxy resin having an average epoxy equivalent of 750 g / eq, and the laminate property and magnetic permeability were obtained. Evaluation was made on reflow resistance, flexibility, and internal stress relaxation.

(実施例14)
(B)成分をムーニー粘度45M1+4(100℃)、AN含有率27質量%の、カルボキシル基を有するNBRとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 14)
The component (B) was a semi-cured sheet and a thickness of 100 μm in the same manner as in Example 1 except that the component was a Mooney viscosity 45M 1 + 4 (100 ° C.), an N content of 27 mass%, and NBR having a carboxyl group. A composite magnetic body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例15)
(B)成分をムーニー粘度95M1+4(100℃)、AN含有率27質量%の、カルボキシル基を有するNBRとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 15)
The component (B) was a semi-cured sheet and a thickness of 100 μm in the same manner as in Example 1 except that the component was Mooney viscosity 95M 1 + 4 (100 ° C.), AN content 27% by mass, and NBR having a carboxyl group. A composite magnetic body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例16)
(B)成分をムーニー粘度60M1+4(100℃)、AN含有率3質量%の、カルボキシル基を有するNBRとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 16)
The component (B) was a semi-cured sheet and a thickness of 100 μm in the same manner as in Example 1 except that the component was Mooney viscosity 60M 1 + 4 (100 ° C.), AN content 3% by mass, and NBR having a carboxyl group. A composite magnetic body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例17)
(B)成分をムーニー粘度60M1+4(100℃)、AN含有率55質量%の、カルボキシル基を有するNBRとした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 17)
The component (B) was a semi-cured sheet and a thickness of 100 μm in the same manner as in Example 1 except that the component was a Mooney viscosity 60M 1 + 4 (100 ° C.), an N content of 55% by mass, and an NBR having a carboxyl group. A composite magnetic body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(実施例18)
(B)成分をポリイソブテン(PIB)とした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 18)
(B) A semi-cured sheet and a composite magnetic body having a thickness of 100 μm are obtained in the same manner as in Example 1 except that the component is polyisobutene (PIB), and laminateability, magnetic permeability, reflow resistance, and flexibility are obtained. The internal stress relaxation property was evaluated.

(実施例19)
(B)成分をブタジエンゴム(BR)とした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 19)
(B) A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 1 except that the component was butadiene rubber (BR), and the lamination property, magnetic permeability, reflow resistance, and flexibility were obtained. And internal stress relaxation properties were evaluated.

(実施例20)
(B)成分をスチレン−ブタジエンゴム(SBR)とした以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Example 20)
(B) A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 1 except that the component was styrene-butadiene rubber (SBR), and the lamination property, magnetic permeability, and reflow resistance were obtained. , Flexibility and internal stress relaxation were evaluated.

(比較例1)
(A)成分を8g、(B)成分を0g、(C)成分を4g、エポキシ樹脂用硬化促進剤を0.02g、難燃剤を13g、難燃助剤を0.7g、軟磁性金属粉末を104gとした以外は、実施例1と同様にして半硬化状シート物及び厚さ99μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Comparative Example 1)
(A) Component 8g, (B) Component 0g, (C) Component 4g, Epoxy Resin Curing Accelerator 0.02g, Flame Retardant 13g, Flame Retardant Aid 0.7g, Soft Magnetic Metal Powder The composite magnetic body having a semi-cured sheet and a thickness of 99 μm was obtained in the same manner as in Example 1 except that the thickness was changed to 104 g, and the lamination property, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation were evaluated. .

(比較例2)
(A)〜(C)成分及びエポキシ樹脂用硬化促進剤に換えて、塩素化ポリエチレン(塩素化PE)を用いた以外は、実施例1と同様にして、半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Comparative Example 2)
A semi-cured sheet and a thickness of 100 μm were obtained in the same manner as in Example 1 except that chlorinated polyethylene (chlorinated PE) was used instead of the components (A) to (C) and the epoxy resin curing accelerator. The composite magnetic body was obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(比較例3)
(A)成分を8g、(B)成分を1.2g、(C)成分を4g、エポキシ樹脂用硬化促進剤を0.01g、難燃剤を13g、難燃助剤を0.72g、軟磁性金属粉末を104gとした以外は、実施例1と同様にして半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Comparative Example 3)
(A) component 8g, (B) component 1.2g, (C) component 4g, epoxy resin curing accelerator 0.01g, flame retardant 13g, flame retardant aid 0.72g, soft magnetic A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained in the same manner as in Example 1 except that the metal powder was changed to 104 g, and the lamination property, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation properties were obtained. evaluated.

(比較例4)
(A)成分を8g、(B)成分を24g、(C)成分を4g、エポキシ樹脂用硬化促進剤を0.02g、難燃剤を19g、難燃助剤を1.2g、軟磁性金属粉末を152gとした以外は、実施例1と同様にして半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Comparative Example 4)
(A) component 8g, (B) component 24g, (C) component 4g, epoxy resin curing accelerator 0.02g, flame retardant 19g, flame retardant auxiliary 1.2g, soft magnetic metal powder The composite magnetic body having a semi-cured sheet and a thickness of 100 μm was obtained in the same manner as in Example 1 except that the weight was changed to 152 g, and the lamination property, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation were evaluated. .

(比較例5)
(C)成分に換えてポリアミン系硬化剤(表中、PA系と記載する)であるジエチレントリアミンを用いた以外は、実施例1と同様にして半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Comparative Example 5)
(C) A semi-cured sheet material and a composite magnetic material having a thickness of 100 μm were used in the same manner as in Example 1 except that diethylenetriamine, which is a polyamine-based curing agent (described as PA-based in the table), was used in place of the component. Were evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(比較例6)
(C)成分に換えてポリカルボン酸系硬化剤(表中、PC系と記載する)である1,2,3,4−ブタンテトラカルボン酸を用いた以外は、実施例1と同様にして半硬化状シート物及び厚さ100μmの複合磁性体を得、積層性、透磁率、耐リフロー性、柔軟性、内部応力緩和性について評価した。
(Comparative Example 6)
(C) In the same manner as in Example 1, except that 1,2,3,4-butanetetracarboxylic acid, which is a polycarboxylic acid curing agent (in the table, described as PC-based), was used instead of component (C). A semi-cured sheet and a composite magnetic body having a thickness of 100 μm were obtained and evaluated for laminateability, magnetic permeability, reflow resistance, flexibility, and internal stress relaxation.

(評価方法)
<透磁率>
各例の複合磁性体について、実数項及び虚数項を求め、実数項80以上かつ虚数項20以上のものを合格「○」とし、実数項80未満又は虚数項20未満のものを不合格「×」と評価した。
(Evaluation method)
<Permeability>
For the composite magnetic body of each example, a real term and an imaginary term are obtained, and those having a real term of 80 or more and an imaginary term of 20 or more are regarded as “good”, and those having a real number less than 80 or less than the imaginary term 20 are rejected. ".

≪透磁率の実数項≫
各例の複合磁性体を外径7mm×内径3mmのリング状に打ち抜き、これに12ターンの巻き線を施して試験片とした。この試験片について、アジレントテクノロジー社製のインピーダンス測定器「プレシジョンインピーダンスアナライザーHP4294A」を用い、1MHzにおけるインピーダンスにより算出した。
≪Real term of permeability≫
The composite magnetic material of each example was punched into a ring shape having an outer diameter of 7 mm and an inner diameter of 3 mm, and this was wound with 12 turns to obtain a test piece. About this test piece, it calculated with the impedance in 1 MHz using the impedance measuring instrument "Precision Impedance Analyzer HP4294A" by Agilent Technologies.

≪透磁率の虚数項≫
「≪透磁率の実数項≫」で作製した試験片について、アジレントテクノロジー社製のSパラメータ測定器「ネットワークアナライザーE5071C」を用い、1MHz〜10GHzの範囲において損失項を測定し、その最大値を虚数項とした。
≪Imaginary term of permeability≫
For the test piece prepared in “<< Real number term of magnetic permeability >>”, the loss term is measured in the range of 1 MHz to 10 GHz using an S-parameter measuring device “Network Analyzer E5071C” manufactured by Agilent Technologies, and the maximum value is an imaginary number. Term.

≪耐リフロー性≫
各例の複合磁性体を50mm長×50mm幅の試験片とした。この試験片について、JIS C−5012「プリント配線板試験方法」10.4.1「はんだフロート法」に準拠し、はんだリフロー試験(260℃で10秒間×2回)を施した。はんだリフロー試験後の試験片を肉眼で観察し、下記評価基準に従って評価した。
≪Reflow resistance≫
The composite magnetic material of each example was used as a 50 mm long × 50 mm wide test piece. The test piece was subjected to a solder reflow test (twice at 260 ° C. for 10 seconds × 2 times) in accordance with JIS C-5012 “Test method for printed wiring board” 10.4.1 “Solder float method”. The test piece after the solder reflow test was observed with the naked eye and evaluated according to the following evaluation criteria.

[評価基準]
◎:リフロー試験前後で、外観に全く変化が認められない。
○:リフロー試験前後で、外観に殆ど変化が認められない。
△:リフロー試験後に歪みが認められるものの、膨れ、粉化、ひび及び割れは認められない。
×:リフロー試験前後で、膨れ、粉化、ひび又は割れが認められる。
[Evaluation criteria]
A: No change in appearance is observed before and after the reflow test.
○: Almost no change in appearance was observed before and after the reflow test.
Δ: Strain is observed after the reflow test, but swelling, powdering, cracking and cracking are not observed.
X: Swelling, powdering, cracking or cracking is observed before and after the reflow test.

≪柔軟性≫
各例の複合磁性体を50mm長×50mm幅の試験片とした。この試験片について、JIS C−5012「プリント配線板試験方法」10.4.1「はんだフロート法」に準拠し、はんだリフロー試験(260℃で10秒間×2回)を施した。はんだリフロー試験前後の試験片について、株式会社東洋精機製作所製、MIT耐揉疲労試験機、型番:DA、試験条件を屈曲速度175回/分、屈曲角度135°、荷重4.9Nとして、屈曲させた。屈曲後の試験片を肉眼で観察し、下記評価基準に従って評価した。
≪Flexibility≫
The composite magnetic material of each example was used as a 50 mm long × 50 mm wide test piece. The test piece was subjected to a solder reflow test (twice at 260 ° C. for 10 seconds × 2 times) in accordance with JIS C-5012 “Test method for printed wiring board” 10.4.1 “Solder float method”. The test pieces before and after the solder reflow test were bent with a MIT anti-fatigue testing machine, model number: DA, manufactured by Toyo Seiki Seisakusho Co., Ltd., with a bending speed of 175 times / minute, a bending angle of 135 °, and a load of 4.9 N. It was. The test piece after bending was observed with the naked eye and evaluated according to the following evaluation criteria.

[評価基準]
◎:屈曲部に白化、ひび及び割れが全く認められない。
○:屈曲部にひび及び割れは認められないが、白化が認められる。
△:屈曲部にひび又は割れが認められる。
×:屈曲部で切断された。
[Evaluation criteria]
A: No whitening, cracks or cracks are observed at the bent part.
○: Cracks and cracks are not observed in the bent part, but whitening is observed.
Δ: Cracks or cracks are observed in the bent portion.
X: It cut | disconnected by the bending part.

≪内部応力緩和性≫
各例の複合磁性体を市販のガラスエポキシ−プリント配線板に150℃で貼り合わせ、その後、熱圧プレス機にて150℃、20MPaでプレスして試験片とした。この試験片について、150℃×2時間、−40℃×2時間を1サイクルとし、10サイクルの熱サイクル試験を行った。熱サイクル試験後の試験片を肉眼で観察し、下記評価基準に従って評価した。
≪Internal stress relaxation≫
The composite magnetic material of each example was bonded to a commercially available glass epoxy-printed wiring board at 150 ° C., and then pressed at 150 ° C. and 20 MPa with a hot press machine to obtain a test piece. About this test piece, 150 degreeC * 2 hours and -40 degreeC * 2 hours were made into 1 cycle, and the heat cycle test of 10 cycles was done. The test piece after the heat cycle test was observed with the naked eye and evaluated according to the following evaluation criteria.

[評価基準]
◎:熱サイクル試験前後で、外観に全く変化が認められない。
○:熱サイクル試験前後で、外観に殆ど変化が認められない。
△:熱サイクル試験後に歪みが認められるものの、膨れ、粉化、ひび及び割れは認められない。
×:リフロー試験前後で、膨れ、ひび又は割れが認められる。
[Evaluation criteria]
A: No change in appearance was observed before and after the thermal cycle test.
○: Almost no change in appearance was observed before and after the thermal cycle test.
(Triangle | delta): Although distortion is recognized after a heat cycle test, a swelling, powdering, a crack, and a crack are not recognized.
X: Swelling, cracking or cracking is observed before and after the reflow test.

≪積層性≫
各例の半硬化状シート物を3枚重ね合わせ、150℃、20MPaで10秒間の熱プレスを施した。熱プレス後、複合磁性体を目視で観察し、密着状態を下記評価基準に従って評価した。
≪Laminating properties≫
Three semi-cured sheets of each example were stacked and subjected to hot pressing at 150 ° C. and 20 MPa for 10 seconds. After the hot pressing, the composite magnetic body was visually observed, and the adhesion state was evaluated according to the following evaluation criteria.

[評価基準]
◎:各層の境界が認められず、全体として1つの複合磁性体となっている。
○:各層の境界が認められるが、各層間が密着していて剥離しない。
△:各層の境界が認められ、手指で各層を剥離できる。
×:各層が剥離し分離している(効率的な製造が不可能な状態となる)。
[Evaluation criteria]
(Double-circle): The boundary of each layer is not recognized but it has become one composite magnetic body as a whole.
○: The boundary of each layer is recognized, but each layer is in close contact and does not peel off.
(Triangle | delta): The boundary of each layer is recognized and each layer can be peeled with fingers.
X: Each layer is separated and separated (efficient production is impossible).

Figure 2013026324
Figure 2013026324

Figure 2013026324
Figure 2013026324

Figure 2013026324
Figure 2013026324

Figure 2013026324
Figure 2013026324

表1〜4は、各例の複合磁性体の組成と、評価結果とを示したものである。
表1〜3に示すように、本発明を適用した実施例1〜20は、いずれも透磁率が「○」であり、電子機器等から発生する電磁波ノイズを十分に吸収できるものであった。加えて、実施例1〜20は、内部応力緩和性が「○」又は「◎」であり、長期の使用においても品質劣化が生じにくいものであった。さらに、実施例1〜20は、耐リフロー性、柔軟性及び積層性が「○」又は「◎」であった。
表4に示すように、(B)成分を含有しない比較例1は、内部応力緩和性及び柔軟性が「×」であった。
樹脂組成物を塩化ポリエチレンとした比較例2は、耐リフロー性が「×」であり、はんだリフロー後には、変形が著しく、柔軟性を評価できなかった。(B)/[(A)+(C)]比が0.1である比較例3は、柔軟性が「×」であり、(B)/[(A)+(C)]比が2である比較例4は、耐リフロー性が「×」であった。
P系以外の樹脂硬化剤を用いた比較例5〜6は、積層性が「×」であったため、効率的に製造することができなかった。
これらの結果から、本発明を適用することで、十分な柔軟性を有すると共に、リフローはんだ付けにおいて形態不良を生じず、高い製造効率で製造できる複合磁性体を得られることが判った。
Tables 1 to 4 show the composition of the composite magnetic body of each example and the evaluation results.
As shown in Tables 1 to 3, all of Examples 1 to 20 to which the present invention was applied had a permeability of “◯”, and could sufficiently absorb electromagnetic wave noise generated from an electronic device or the like. In addition, in Examples 1 to 20, the internal stress relaxation property was “◯” or “◎”, and quality deterioration hardly occurred even in long-term use. Further, in Examples 1 to 20, the reflow resistance, the flexibility, and the laminate property were “◯” or “◎”.
As shown in Table 4, in Comparative Example 1 not containing the component (B), the internal stress relaxation property and flexibility were “x”.
In Comparative Example 2 in which the resin composition was made of chlorinated polyethylene, the reflow resistance was “x”, and after solder reflow, deformation was significant and the flexibility could not be evaluated. In Comparative Example 3 in which the (B) / [(A) + (C)] ratio is 0.1, the flexibility is “x”, and the (B) / [(A) + (C)] ratio is 2. In Comparative Example 4, the reflow resistance was “x”.
Comparative Examples 5 to 6 using a resin curing agent other than the P-based resin could not be efficiently manufactured because the lamination property was “x”.
From these results, it was found that by applying the present invention, it is possible to obtain a composite magnetic body that has sufficient flexibility and does not cause a defective shape in reflow soldering and can be manufactured with high manufacturing efficiency.

Claims (7)

(A)成分:ビスフェノール型エポキシ樹脂と、(B)成分:合成ゴムと、(C)成分:フェノール樹脂系のエポキシ樹脂用硬化剤とを含有する樹脂組成物中に、軟磁性金属粉末が分散され、
(B)成分/[(A)成分+(C)成分]で表される質量比は、0.5〜1.5であることを特徴とする複合磁性体。
Soft magnetic metal powder is dispersed in a resin composition containing (A) component: bisphenol type epoxy resin, (B) component: synthetic rubber, and (C) component: phenol resin-based curing agent for epoxy resin. And
A mass ratio represented by (B) component / [(A) component + (C) component] is 0.5 to 1.5.
前記(A)成分は、平均エポキシ当量100〜700g/eqであることを特徴とする請求項1に記載の複合磁性体。   The composite magnetic body according to claim 1, wherein the component (A) has an average epoxy equivalent of 100 to 700 g / eq. 前記(B)成分は、ポリイソブテン、ブタジエンゴム、スチレン−ブタジエンゴム及びニトリルゴムから選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載の複合磁性体。   The composite magnetic body according to claim 1, wherein the component (B) is at least one selected from polyisobutene, butadiene rubber, styrene-butadiene rubber, and nitrile rubber. 前記(B)成分は、アクリロニトリル5〜50質量%のニトリルゴムであることを特徴とする請求項1又は2に記載の複合磁性体。   The composite magnetic body according to claim 1, wherein the component (B) is a nitrile rubber having an acrylonitrile content of 5 to 50% by mass. 前記(B)成分は、カルボキシル基を有するニトリルゴムであることを特徴とする請求項1又は2に記載の複合磁性体。   The composite magnetic body according to claim 1, wherein the component (B) is a nitrile rubber having a carboxyl group. 前記カルボキシル基を有するニトリルゴムは、ムーニー粘度50〜90M1+4(100℃)であることを特徴とする請求項5に記載の複合磁性体。 6. The composite magnetic body according to claim 5, wherein the nitrile rubber having a carboxyl group has a Mooney viscosity of 50 to 90 M 1 + 4 (100 ° C.). 前記(C)成分は、前記(A)成分のエポキシ基1当量に対して、活性水素当量が0.1〜1.0当量となる量であることを特徴とする請求項1〜6のいずれか1項に記載の複合磁性体。   The component (C) is an amount such that an active hydrogen equivalent is 0.1 to 1.0 equivalent relative to 1 equivalent of the epoxy group of the component (A). 2. The composite magnetic material according to claim 1.
JP2011157917A 2011-07-19 2011-07-19 Composite magnetic body Withdrawn JP2013026324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157917A JP2013026324A (en) 2011-07-19 2011-07-19 Composite magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157917A JP2013026324A (en) 2011-07-19 2011-07-19 Composite magnetic body

Publications (1)

Publication Number Publication Date
JP2013026324A true JP2013026324A (en) 2013-02-04

Family

ID=47784347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157917A Withdrawn JP2013026324A (en) 2011-07-19 2011-07-19 Composite magnetic body

Country Status (1)

Country Link
JP (1) JP2013026324A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192445A1 (en) * 2013-05-27 2014-12-04 日東電工株式会社 Method for manufacturing circuit board with soft-magnetic film laminated thereto
EP2963529A4 (en) * 2013-02-26 2016-10-12 Nitto Denko Corp Magnetic circuit board, method for manufacturing same, and position detection device
JP2017034097A (en) * 2015-07-31 2017-02-09 日立化成株式会社 RESIN COMPOUND FOR Nd-Fe-B BASED BOND MAGNET, Nd-Fe-B BASED BOND MAGNET, AND MANUFACTURING METHOD THEREOF
KR20170015896A (en) 2014-05-29 2017-02-10 닛토덴코 가부시키가이샤 Soft magnetic resin composition and soft magnetic film
JP2019106431A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, mold, and method for manufacturing metal element-containing powder
WO2021210477A1 (en) * 2020-04-17 2021-10-21 富士フイルム株式会社 Magnetic resin composition, cured product, and electronic component
WO2022102712A1 (en) * 2020-11-12 2022-05-19 日東電工株式会社 Magnetic sheet and inductor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963529A4 (en) * 2013-02-26 2016-10-12 Nitto Denko Corp Magnetic circuit board, method for manufacturing same, and position detection device
US9844147B2 (en) 2013-05-27 2017-12-12 Nitto Denko Corporation Method for producing soft magnetic film laminate circuit board
CN105247975A (en) * 2013-05-27 2016-01-13 日东电工株式会社 Optical unit with shake correction function
JP2014229873A (en) * 2013-05-27 2014-12-08 日東電工株式会社 Method for manufacturing soft magnetic film-laminated circuit board
WO2014192445A1 (en) * 2013-05-27 2014-12-04 日東電工株式会社 Method for manufacturing circuit board with soft-magnetic film laminated thereto
CN105247975B (en) * 2013-05-27 2018-11-02 日东电工株式会社 The manufacturing method of soft magnetic film laminated circuit basal board
TWI642339B (en) * 2013-05-27 2018-11-21 日東電工股份有限公司 Soft magnetic film laminated circuit board manufacturing method
KR20170015896A (en) 2014-05-29 2017-02-10 닛토덴코 가부시키가이샤 Soft magnetic resin composition and soft magnetic film
JP2017034097A (en) * 2015-07-31 2017-02-09 日立化成株式会社 RESIN COMPOUND FOR Nd-Fe-B BASED BOND MAGNET, Nd-Fe-B BASED BOND MAGNET, AND MANUFACTURING METHOD THEREOF
JP2019106431A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, mold, and method for manufacturing metal element-containing powder
JP7180071B2 (en) 2017-12-11 2022-11-30 昭和電工マテリアルズ株式会社 METHOD FOR MANUFACTURING METAL ELEMENT-CONTAINING POWDER, MOLDED BODY, AND METAL ELEMENT-CONTAINING POWDER
WO2021210477A1 (en) * 2020-04-17 2021-10-21 富士フイルム株式会社 Magnetic resin composition, cured product, and electronic component
WO2022102712A1 (en) * 2020-11-12 2022-05-19 日東電工株式会社 Magnetic sheet and inductor

Similar Documents

Publication Publication Date Title
JP2016006822A (en) Composite magnetic substance
JP5941640B2 (en) Composite magnetic material
JP2013026324A (en) Composite magnetic body
JP6297281B2 (en) Soft magnetic resin composition, soft magnetic adhesive film, soft magnetic film laminated circuit board, and position detection device
JP4962220B2 (en) Flame retardant noise suppression sheet
WO2014132701A1 (en) Soft magnetic thermosetting adhesive film, soft magnetic film-laminated circuit board, and position-detecting device
EP3062316B1 (en) Soft magnetic resin composition and soft magnetic film
TW201831321A (en) Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
KR102191073B1 (en) Soft magnetic thermosetting adhesive film, magnetic film laminate circuit board, and position detection device
TW201223437A (en) Method for manufacturing electromagnetic interference shielding film
JP2016108561A (en) Soft magnetic resin composition and soft magnetic film
WO2014192445A1 (en) Method for manufacturing circuit board with soft-magnetic film laminated thereto
JP2016111172A (en) Composite electromagnetic wave suppressor
JP6526471B2 (en) Soft magnetic film
WO2014132700A1 (en) Magnetic circuit board, method for manufacturing same, and position detection device
WO2015182376A1 (en) Soft magnetic thermosetting film and soft magnetic film
JP7361447B2 (en) Conductive resin composition, conductive adhesive sheet and laminate
WO2014132879A1 (en) Soft magnetic thermosetting film and soft magnetic film
JP6290553B2 (en) Composite magnetic material
JP6297315B2 (en) Soft magnetic film
JP2011032296A (en) Epoxy resin composition, b-stage film, laminated film, copper-clad laminate, and multilayer substrate
JP6514461B2 (en) Soft magnetic particle powder, soft magnetic resin composition, soft magnetic film, soft magnetic film laminated circuit board and position detection device
JP6276531B2 (en) Composite magnetic material
WO2014132880A1 (en) Soft magnetic film
JP2015103659A (en) Soft magnetic thermosetting film, and soft magnetic film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007