WO2019112002A1 - Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component - Google Patents

Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component Download PDF

Info

Publication number
WO2019112002A1
WO2019112002A1 PCT/JP2018/044903 JP2018044903W WO2019112002A1 WO 2019112002 A1 WO2019112002 A1 WO 2019112002A1 JP 2018044903 W JP2018044903 W JP 2018044903W WO 2019112002 A1 WO2019112002 A1 WO 2019112002A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
powder
magnetic resin
resin composition
resin
Prior art date
Application number
PCT/JP2018/044903
Other languages
French (fr)
Japanese (ja)
Inventor
大三 馬場
佐々木 大輔
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019558274A priority Critical patent/JP7194909B2/en
Priority to CN201880078778.0A priority patent/CN111466001A/en
Publication of WO2019112002A1 publication Critical patent/WO2019112002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent

Definitions

  • the present invention relates to composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component.
  • Patent Document 1 discloses an inductor component including a coiled wiring and a cured product of a resin sheet (hereinafter, magnetic material) that covers the coiled wiring.
  • This resin sheet contains an epoxy resin, a phenoxy resin, a linear elastomer, a curing agent, and an inorganic filler.
  • the content of the inorganic filler is 80 to 98% by mass with respect to the total amount of the resin sheet.
  • the content of the linear elastomer is 0.01 to 0.5 parts by mass with respect to a total of 100 parts by mass of the constituent components of the resin sheet excluding the linear elastomer.
  • the conventional magnetic material as described in Patent Document 1 has a Q value (quality factor, hereinafter referred to as Q value of the magnetic material) indicating a small loss of the magnetic material in a high frequency band (for example, 100 MHz) Low, high loss in high frequency band.
  • Q value of the magnetic material quality factor, hereinafter referred to as Q value of the magnetic material
  • the object of the present invention is to provide a composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic foil with metal foil, which can increase Q value of magnetic material in high frequency band. It is providing a resin sheet, a magnetic prepreg, and an inductor component.
  • the composite magnetic powder according to one aspect of the present invention contains a magnetic powder containing a first powder and a nonmagnetic powder containing a second powder, and the first powder comprises an alloyed iron powder,
  • the second powder comprises at least one of alumina powder and silica powder, and the average particle diameter of the first powder is less than 5 ⁇ m, and at least 3 times and 30 times the average particle diameter of the second powder. It is below.
  • the magnetic resin composition according to one aspect of the present invention contains the composite magnetic powder, and at least one resin selected from the group consisting of a curable resin and a thermoplastic resin.
  • the magnetic resin composition is paste-like.
  • the magnetic resin composition is powdery.
  • the magnetic resin composition further contains a solvent and is in the form of a slurry.
  • the magnetic resin composition is in the form of a sheet.
  • the magnetic resin sheet with metal foil includes the magnetic resin sheet and a metal foil having a thickness of 5 ⁇ m or less laminated on at least one surface of the magnetic resin sheet.
  • the magnetic prepreg according to one aspect of the present invention includes a fibrous base material, and the magnetic resin composition or a semi-cured product of the magnetic resin composition.
  • the inductor component according to one aspect of the present invention includes a coiled wire and an insulating layer covering the coiled wire, and the insulating layer is formed of a cured product or a solidified product of the magnetic resin composition.
  • FIG. 1A is a schematic cross-sectional view for explaining the positional relationship between magnetic particles constituting a first powder and nonmagnetic particles constituting a second powder in the composite magnetic powder of the present invention.
  • FIG. 1B is a schematic cross-sectional view showing a seemingly large lump of large particles in which a plurality of large diameter magnetic particles are formed close to each other.
  • FIG. 1C is a schematic cross-sectional view for explaining the positional relationship between the magnetic particles and the nonmagnetic particles when the average particle diameter of the first powder is less than three times the average particle diameter of the second powder. .
  • FIG. 1A is a schematic cross-sectional view for explaining the positional relationship between magnetic particles constituting a first powder and nonmagnetic particles constituting a second powder in the composite magnetic powder of the present invention.
  • FIG. 1B is a schematic cross-sectional view showing a seemingly large lump of large particles in which a plurality of large diameter magnetic particles are formed close to each other.
  • FIG. 1C is a schematic cross
  • FIG. 1D is a schematic cross-sectional view for explaining the positional relationship between the magnetic particles and the nonmagnetic particles when the average particle diameter of the first powder is more than 30 times the average particle diameter of the second powder.
  • FIG. 2A is a schematic cross-sectional view for describing a part of the method for manufacturing a magnetic resin sheet according to the embodiment of the present invention.
  • FIG. 2B is a schematic cross-sectional view for describing a part of the method of manufacturing a magnetic resin sheet according to the embodiment of the present invention.
  • FIG. 2C is a schematic cross-sectional view for describing a part of the method for manufacturing a magnetic resin sheet according to the embodiment of the present invention.
  • FIG. 3 is a schematic view for explaining the method of measuring the glycin value.
  • FIG. 4 is a schematic cross-sectional view of a magnetic resin sheet with a metal foil according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a magnetic prepreg according to
  • the present embodiment relates to a composite magnetic powder, and in particular to a composite magnetic powder suitably used as a magnetic material.
  • the composite magnetic powder (hereinafter, composite magnetic powder) according to the present embodiment contains a magnetic powder and a nonmagnetic powder.
  • the magnetic powder comprises a first powder.
  • the first powder comprises an alloyed iron powder.
  • the nonmagnetic powder comprises a second powder.
  • the second powder comprises at least one of alumina powder and silica powder.
  • the average particle size of the first powder is less than 5 ⁇ m and at least 3 times and not more than 30 times the average particle size of the second powder.
  • Magnetic powder is an aggregate of magnetic particles.
  • Nonmagnetic powder is an aggregate of nonmagnetic particles.
  • magnetic particles constituting the first powder are referred to as large-diameter magnetic particles 10
  • nonmagnetic particles constituting the second powder among the nonmagnetic particles are referred to as small-diameter nonmagnetic particles 20.
  • the magnetic particles are particles composed of a substance (magnetic material) that can be made magnetic by an external magnetic field, and representative substances include iron oxide, chromium oxide, cobalt, ferrite and the like.
  • the nonmagnetic particles are particles of a substance which is not contained in the magnetic substance (it is not magnetic even when an external magnetic field is applied).
  • average particle diameter means, in principle, the particle diameter at an integrated value of 50% in a particle size distribution measured based on a particle size distribution measuring device based on a laser scattering / diffraction method, ie 50% volume average particle diameter ( It means D 50 ).
  • an average particle diameter means the average value of the particle diameter measured by scanning electron microscope (SEM) observation.
  • the composite magnetic powder is suitably used as a raw material of a magnetic material of an inductor component (hereinafter, high frequency inductor component) for controlling noise in a high frequency band.
  • the performance of high frequency inductor components can be evaluated by the Q value of the magnetic material.
  • the Q value of the magnetic material As the Q value of the magnetic material is higher, the loss of the magnetic material is smaller and the resistance component R of the inductor is smaller, so the Q value of the inductor is higher and the performance of the high frequency inductor component is higher.
  • the Q value of the magnetic material at 100 MHz needs to be 20 or more, and preferably 33 or more from the viewpoint of enhancing the performance of the high frequency inductor component.
  • the high frequency band means several tens of MHz or more and several GHz or less.
  • the magnetic material refers to a cured product of a first magnetic resin composition described later or a solidified product of a second magnetic resin composition described later.
  • the Q value of the magnetic material can be determined in the same manner as the method (RF impedance analyzer) described in the examples.
  • the real part ( ⁇ ') at 100 MHz is preferably 6.0 or more in designing a high frequency inductor component.
  • the average particle size of the first powder is at least 3 times and not more than 30 times the average particle size of the second powder.
  • the imaginary part ( ⁇ ′ ′) is low at 100 MHz, and the Q value of the magnetic material can be made 20 or more. This is because adjacent large-diameter magnetic particles 10, 10 are less likely to aggregate, adjacent to each other It is assumed that the main reason is that the electrical insulation of the large-diameter magnetic particles 10 is secured to each other Specifically, in the magnetic material before treatment, as shown in FIG.
  • a plurality of small-diameter nonmagnetic particles 20 are uniformly disposed around one particle and one particle of the magnetic particle 10, and a layer 21 composed of the small-diameter nonmagnetic particles 20 is easily formed on the surface of the large-diameter magnetic particle 10.
  • Each large diameter magnetic particle 10 tends to behave as an independent particle, and the spacing I between adjacent large diameter magnetic particles 10 can be optimized. In other words, as shown in FIG. of The magnetic particles 10, 10 do not seem to behave as a single large particle 11.
  • the second powder is made of at least one of alumina powder and silica powder, so the layer 21 has insulation properties.
  • the inter-particle eddy current flowing across adjacent large-diameter magnetic particles 10 is less likely to occur, and eddy current loss can be further reduced, and it is presumed that the imaginary part ( ⁇ ′ ′) at 100 MHz will be low.
  • Ru The magnetic material before treatment is the state before the magnetic material is cured or solidified, and the first magnetic resin composition before curing, the magnetic resin paste described later, the magnetic resin powder described later, the resin magnetic slurry described later And a magnetic resin sheet described later, a second magnetic resin composition before solidification, and the like.
  • the composite magnetic powder may further contain a powder different from the first powder and the second powder, as long as it is a mixed powder containing the first powder and the second powder. That is, in the particle size distribution measured in terms of volume of the composite magnetic powder, at least two peaks representing the frequency of presence may be present, and three or more peaks may be present.
  • the shapes of the magnetic particles and nonmagnetic particles constituting the composite magnetic powder are not particularly limited, and examples thereof include spheres, ellipsoids, flats, and fractures.
  • the shapes of the magnetic particles and the nonmagnetic particles may be all the same or different. Among them, the shapes of the magnetic particles and the nonmagnetic particles are preferably all spherical. If the shapes of the magnetic particles and the nonmagnetic particles are all spherical, the filling amount of the composite magnetic powder to the magnetic material can be increased.
  • the magnetic material before treatment in which the shape of each magnetic particle and nonmagnetic particle is all spherical and the magnetic material before treatment in which the shape of each magnetic particle and nonmagnetic particle is not all spherical.
  • the former is more excellent in the fluidity of the magnetic material before the treatment.
  • the Q value of the magnetic material at 100 MHz can be further enhanced.
  • Spheres include those having an average sphericity of 0.7 or more.
  • the sphericity of a certain number (preferably 200 or more) of particles is determined, and this average value is taken as the average sphericity.
  • the composite magnetic powder contains magnetic powder.
  • the magnetic powder comprises a first powder and may further comprise other magnetic powders.
  • the magnetic powder is preferably insulated. That is, the surface of each magnetic particle is preferably covered with an electrically insulating film. This makes it possible to lower the imaginary part ( ⁇ ′ ′) at 100 MHz and further increase the Q value of the magnetic material. Further, it is possible to improve the electrical insulation reliability of the magnetic material itself.
  • the imaginary number at 100 MHz The reason why the portion ( ⁇ ′ ′) can be made lower is estimated to be mainly because the insulating coating hardly generates interparticle eddy current flowing between adjacent magnetic particles, and eddy current loss can be further reduced. Be done.
  • a method of the insulation process for example, a method of mixing and drying a magnetic powder and an aqueous solution containing an electrically insulating filler may be mentioned.
  • an electrically insulating filler for example, phosphoric acid, boric acid, magnesium oxide and the like can be used.
  • This electrically insulating film is different from the layer 21 made of the small-diameter nonmagnetic particles 20. When the magnetic particles themselves have electrical insulation, they may not be covered with the electrically insulating film.
  • the mixing ratio of the magnetic powder is preferably 4.0 parts by mass or more and 19.0 parts by mass or less, more preferably 4.0 parts by mass or more and 5.7 parts by mass or less with respect to 1 part by mass of the nonmagnetic powder. More preferably, it is 4.3 parts by mass or more and 5.2 parts by mass or less. If the mixing ratio of the magnetic powder is within the above range, the Q value of the magnetic material at 100 MHz and the flowability of the magnetic material before the treatment can be balanced. This is presumed to be because, as shown in FIG. 1A, the thickness of the layer 21 composed of the nonmagnetic particles 20 disposed around the large diameter magnetic particles 10 can be made thinner, and the spacing I can be made more appropriate.
  • the first powder comprises an alloyed iron powder.
  • the alloyed iron powder is an aggregate of alloyed iron particles.
  • the material of the alloy iron particles is an alloy mainly composed of iron. Examples of the material of the alloy iron particles include Sendust, permendur, silicon steel, permalloy, Fe-Si-Cr alloy and the like. These are high permeability alloy irons.
  • Sendust is an alloy of iron, silicon and aluminum (Fe-Si-Al alloy). Sendust has high saturation magnetic flux density, high permeability, small core loss, and excellent wear resistance.
  • An example of the composition of Sendust is Fe-9.5Si-5.5Al (numerical values are mass%, balance Fe). In the vicinity of this composition region, both of the magnetostriction constant and the magnetic anisotropy constant become approximately zero. Therefore, high permeability and low coercivity can be obtained.
  • Permendur is an alloy based on iron and cobalt. Permendur has the largest saturation flux density among the soft magnetic materials put into practical use.
  • An example of the composition of permendur is Fe-49Co-2V (values are mass%, balance Fe).
  • Silicon steel is an alloy of iron and a small amount of silicon. Silicon steel is also called silicon iron because it does not contain carbon.
  • Permalloy is an alloy of Ni-Fe. Permalloy includes permalloy A, permalloy B, permalloy C, and permalloy D, which are referred to as JIS standards.
  • the average particle size of the first powder is 3 to 30 times the average particle size of the second powder, preferably 3.5 to 20 times, more preferably 4 to 15 times. . If the average particle size of the first powder is less than 3 times the average particle size of the second powder, the imaginary part ( ⁇ ′ ′) may be high at 100 MHz and the Q value of the magnetic material may be less than 20. There is. The reason why the imaginary part ( ⁇ ′ ′) at 100 MHz is high is presumed to be that the layer 21 composed of the small nonmagnetic particles 20 is not easily formed on the surface of the large diameter magnetic particles 10 as shown in FIG. 1C. .
  • the real part ( ⁇ ') may be low at 100 MHz and the Q value of the magnetic material may be less than 20. is there.
  • the fact that the real part ( ⁇ ′) at 100 MHz is lowered is that the layer 21 composed of the small-diameter nonmagnetic particles 20 is easily formed on the surface of the large-diameter magnetic particles 10. It is presumed that the distance I between the particles 10 is too wide.
  • the first powder is a mixed powder obtained by mixing two or more powders having different average particle sizes
  • the average particle size of the first powder indicates the average particle size of the mixed powder.
  • the second powder is a mixed powder in which two or more powders having different average particle sizes are mixed
  • the average particle size of the second powder indicates the average particle size of the mixed powder.
  • the average particle size of the first powder is less than 5 ⁇ m, preferably 0.05 ⁇ m or more and less than 5 ⁇ m, more preferably 0.5 ⁇ m or more and less than 5 ⁇ m.
  • the average particle diameter of the first powder is 5 ⁇ m or more, the imaginary part ( ⁇ ′ ′) at 100 MHz is high, and the Q value of the magnetic material may be less than 20.
  • the content of the first powder may be appropriately adjusted according to the material of the other magnetic powder, the average particle diameter, etc., and is preferably 20% by mass or more and 100% by mass or less with respect to the total mass of the magnetic powder. Preferably it is 40 mass% or more and 100 mass% or less. If the content of the first powder is within the above range, the real part ( ⁇ ′) can be further improved while maintaining the Q value of the high magnetic material at 100 MHz.
  • the magnetic powder may contain other magnetic powder different from the first powder.
  • the other magnetic powder is an aggregate of other magnetic particles different from the large-diameter magnetic particles 10.
  • pure iron As a material of another magnetic particle, pure iron, a metal oxide, an alloy, resin, etc. can be used, for example.
  • Pure iron is high purity iron of 99.90% by mass or more and 99.95% by mass or less.
  • examples of pure iron include carbonyl iron, armco iron, sponge iron, electrolytic iron and the like.
  • Carbonyl iron is obtained by thermal decomposition of iron carbonyl Fe (CO) 5 .
  • the metal oxide for example, ferrite, magnetite or the like can be used.
  • Ferrite is a general term for ceramics mainly composed of iron oxide, and has insulating properties.
  • As an alloy, nickel, a cobalt base alloy, etc. can be used, for example. Among them, it is preferable to use ferrite as the material of the other magnetic particles.
  • the real part ( ⁇ ′) at 100 MHz can be further improved.
  • the ferrite may be soft ferrite exhibiting soft magnetism or hard ferrite exhibiting ferromagnetism.
  • Examples of the crystal structure of ferrite include spinel ferrite, hexagonal ferrite, garnet ferrite and the like.
  • Spinel ferrite has a spinel type crystal structure, composition formula MeO ⁇ Fe 2 O 3 or MeFe 2 O 4: represented by (Me Zn, Ni, Cu, Mn, Mg, transition metals such as Co). Most of the spinel ferrite is soft ferrite. Specific examples thereof include manganese magnesium ferrite, manganese zinc ferrite, nickel zinc ferrite and copper zinc ferrite. Spinel ferrite is effective as an inductor component for a high frequency circuit because it has a high permeability and a high electrical resistance, so that the eddy current loss in a high frequency region is small.
  • the hexagonal ferrite has a magnetoplumbite type hexagonal crystal structure, and the composition formula is represented by MO ⁇ 6Fe 2 O 3 or MFe 12 O 19 (M: alkaline earth metal such as Ba, Sr, Pb, etc.) .
  • the hexagonal ferrite is also called magnetoplumbite ferrite or M-type ferrite.
  • Hexagonal ferrite is a typical hard ferrite exhibiting a large coercive force because of its large magnetic anisotropy compared to spinel ferrite. Specific examples thereof include barium ferrite and strontium ferrite.
  • the garnet ferrite has a garnet-type crystal structure, and the composition formula is represented by 3R 2 O 3. 5 Fe 2 O 3 or R 3 Fe 5 O 12 (R: rare earth elements such as Y, Sm, Gd, etc.).
  • Garnet ferrite is also called RIG (Rare-earth Iron Garnet, rare earth iron garnet).
  • RIG Rare-earth Iron Garnet, rare earth iron garnet
  • YIG Yttrium Iron Garnet
  • Garnet ferrite is effective as an inductor component for microwaves because the magnetic loss in a high frequency region is small.
  • the average particle size of the other magnetic powder is not particularly limited, and is preferably 0.05 ⁇ m or more and 5 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less. If the average particle size of the other magnetic particle sizes is within the above range, the imaginary part ( ⁇ ′ ′) at 100 MHz can be made lower.
  • the mixing ratio of the other magnetic powder may be appropriately adjusted according to the average particle diameter of the other magnetic powder and the like.
  • the mixing ratio of the other magnetic powder is preferably less than 12% by mass, more preferably 0.5, with respect to the first powder. It is mass% or more and 10 mass% or less.
  • the Q value of the magnetic material at 100 MHz can be made 20 or more, and the magnetic resin sheet obtained Is excellent in fluidity.
  • the composite magnetic powder contains nonmagnetic powder.
  • the nonmagnetic powder includes the second powder and may further include other nonmagnetic powder.
  • the second powder is at least one of silica powder and alumina powder. That is, the composition of the second powder is a composition consisting only of silica powder, a composition consisting only of alumina powder, or a composition consisting of silica powder and alumina powder. Since the silica powder and the alumina powder both have high electrical insulation, the second powder can suppress the flow of eddy current.
  • Silica powder is an aggregate of silica particles.
  • a silica particle a crystalline silica particle, a non-crystalline silica particle, etc. can be used, for example.
  • the silica particles may be porous.
  • Alumina powder is an aggregate of alumina particles.
  • a material of the alumina particles for example, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and the like can be used.
  • the average particle diameter of the second powder is in accordance with the average particle diameter of the first powder, etc. so that the average particle diameter of the first powder is 3 times to 30 times the average particle diameter of the second powder It is adjusted, preferably 0.05 ⁇ m or more and 5 ⁇ m or less, more preferably 0.5 ⁇ m or more and 2 ⁇ m or less. If the average particle diameter of the second powder is within the above range, the flowability of the magnetic material before the treatment can be easily secured.
  • the content of the second powder may be appropriately adjusted according to the material, average particle diameter, and the like of the other nonmagnetic powder, and is preferably 50% by mass to 100% by mass with respect to the total mass of the nonmagnetic powder. More preferably, they are 70 mass% or more and 100 mass% or less.
  • the nonmagnetic powder may further contain other nonmagnetic powder.
  • the other nonmagnetic powder is an aggregate of other nonmagnetic particles different from the small diameter nonmagnetic particles 20.
  • nonmagnetic particles for example, carbon black, titanium oxide, cerium oxide, tin oxide, tungsten oxide, ZnO, ZrO 2 , SiO 2 , Cr 2 O 3 or the like can be used.
  • the other nonmagnetic powder preferably has electrical insulation. That is, the surface of the other nonmagnetic particles is preferably covered with an electrically insulating film.
  • an electrically insulating film As a method of the insulation treatment, for example, a method of mixing and drying a nonmagnetic powder and an aqueous solution containing an electrically insulating filler may be mentioned.
  • a material of the electrically insulating filler for example, phosphoric acid, boric acid, magnesium oxide and the like can be used.
  • the average particle size of the other nonmagnetic powder is not particularly limited, and may be about the same as the average particle size of the second powder.
  • the magnetic resin composition according to the present embodiment contains a composite magnetic powder, and at least one resin selected from the group consisting of a curable resin and a thermoplastic resin.
  • the magnetic resin composition may be a resin composition containing a curable resin (hereinafter referred to as a first magnetic resin composition), and a resin composition containing a thermoplastic resin (hereinafter referred to as a second magnetic resin) It may be called a composition).
  • the cured product or solidified product of the magnetic resin composition preferably has a Q value of 20 or more at a frequency of 100 MHz. That is, the cured product of the first magnetic resin composition preferably has a Q value of 20 or more at a frequency of 100 MHz, and the solidified product of the second magnetic resin composition has a Q value of 20 or more at a frequency of 100 MHz. Is preferred.
  • the magnetic resin composition can be suitably used as the magnetic material of the high frequency inductor component.
  • the cured product or solidified product of the magnetic resin composition more preferably has a Q value of 33 or more at a frequency of 100 MHz.
  • the first magnetic resin composition contains a composite magnetic powder and a curable resin.
  • the first magnetic resin composition contains a curable resin.
  • curable resins include thermosetting resins and photocurable resins.
  • the first magnetic resin composition may contain only a thermosetting resin, may contain only a photocurable resin, or may contain both a thermosetting resin and a photocurable resin. Good.
  • the photocurable resin is a reactive compound capable of absorbing light and causing a crosslinking reaction.
  • the photocurable resin is not particularly limited as long as it is a photocurable resin.
  • a resin having a polymerizable unsaturated group may be used.
  • photocurable resins include methacrylic resins, acrylic resins, epoxy resins, and oxetane resins.
  • the photocurable resin contained in the first magnetic resin composition may be used alone or in combination of two or more.
  • the photocurable resin may be liquid at room temperature or solid such as powder.
  • methacrylic resins examples include methacrylic acid esters, polymethacrylic acid esters, and ethylene-methacrylic acid copolymers.
  • acrylic resins include ethylene-acrylic acid copolymers, ethylene-methyl acrylic acid copolymers, acrylic acid esters, and polyacrylic acid esters.
  • the epoxy resin may be a monofunctional epoxy resin having one epoxy group in one molecule, or a polyfunctional epoxy resin having two or more epoxy groups in one molecule.
  • polyfunctional epoxy resins include polybutadiene epoxy resins, bisphenol A epoxy resins, bisphenol type epoxy compounds such as bisphenol F epoxy resins, naphthalene type epoxy compounds, aliphatic epoxy compounds, biphenyl type epoxy, glycidyl amine type epoxy compounds, Alcohol type epoxy compounds such as hydrogenated bisphenol A type epoxy compounds, epoxy modified silicones, phenol novolac type epoxy compounds, novolac type epoxy compounds such as cresol novolac type epoxy compounds, alicyclic epoxy compounds, heterocyclic epoxy type compounds, many Halogenated epoxy compounds such as functional epoxy compounds, glycidyl ether type epoxy compounds, glycidyl ester type epoxy compounds, brominated epoxy compounds, rubber modified epoxy compounds Including styrene block copolymer, epoxy group-containing polyester compounds, epoxy group-containing polyurethane compound, an epoxy group-containing
  • the oxetane resins may be used alone or in combination of two or more.
  • the first magnetic resin composition may contain a photopolymerization initiator as needed.
  • photopolymerization initiators include photo radical generation initiators and photo acid generation initiators.
  • the first magnetic resin composition preferably contains a photoradical generation initiator.
  • the photo radical generation initiator is not particularly limited as long as it generates radicals to initiate the photopolymerization reaction.
  • the first magnetic resin composition preferably contains a photoacid generation initiator.
  • the photoacid generation initiator is not particularly limited, and may be an ionic photoacid generation initiator or a non-ionic photoacid generation initiator.
  • the first magnetic resin composition preferably contains a thermosetting resin.
  • a thermosetting resin is a reactive compound which can cause a crosslinking reaction by heat.
  • the thermosetting resin for example, bisphenol A epoxy resin, bisphenol F epoxy resin, polyfunctional epoxy resin, biphenyl epoxy resin, cresol novolac epoxy resin, phenol novolac epoxy resin, imide resin can be used.
  • the polyfunctional epoxy resin is a resin having three or more epoxy groups in one molecule.
  • the thermosetting resin contained in the first magnetic resin composition may be used alone or in combination of two or more.
  • the thermosetting resin may be liquid at room temperature or solid such as powder.
  • the content of the thermosetting resin is preferably 75% by mass or more and 100% by mass or less based on the total mass of the resin component in the first magnetic resin composition.
  • the first magnetic resin composition may further contain a curing agent.
  • the curing agent is an additive that cures the thermosetting resin.
  • a curing agent dicyandiamide, a phenol based curing agent, cyclopentadiene, an amine based curing agent, an acid anhydride or the like can be used.
  • the phenolic curing agent has two or more phenolic hydroxyl groups in one molecule.
  • phenol-based curing agent for example, phenol novolak resin, phenol aralkyl resin, naphthalene type phenol resin, bisphenol resin and the like can be used.
  • a bisphenol resin bisphenol A resin, bisphenol F resin etc. can be used, for example.
  • the curing agent may be liquid or solid at normal temperature. The content of the curing agent is preferably 20% by mass or less based on the total mass of the resin component of the first magnetic resin composition.
  • the first magnetic resin composition may further contain a curing accelerator.
  • a curing accelerator for example, tertiary amines, tertiary amine salts, imidazoles, phosphines, phosphonium salts and the like can be used.
  • the imidazole 2-ethyl-4-methylimidazole can be used.
  • the content of the curing accelerator may be appropriately adjusted according to the materials of the thermosetting resin and the curing agent.
  • the first magnetic resin composition may further contain a thermoplastic resin. Thereby, bending followability, elasticity etc. can be provided to the magnetic resin sheet 1 mentioned later.
  • a phenoxy resin etc. can be used as a thermoplastic resin.
  • the content of the thermoplastic resin is preferably 2% by mass or more and 50% by mass or less based on the total mass of the resin component of the first magnetic resin composition.
  • the first magnetic resin composition may further contain a surface treatment agent.
  • a surface treatment agent a silane coupling agent, a dispersing agent, etc. can be used, for example.
  • silane coupling agent for example, 3-glycidyloxypropyltriethoxysilane can be used.
  • the dispersant for example, higher fatty acid phosphates, amine salts of higher fatty acid phosphates, alkylene oxides of higher fatty acid phosphates, and the like can be used.
  • the higher fatty acid phosphate octyl phosphate, decyl phosphate, lauryl phosphate and the like can be used.
  • the content of the surface treatment agent is preferably 0% by mass or more and 30% by mass or less based on the total mass of the resin component of the first magnetic resin composition.
  • the first magnetic resin composition may further contain an elastomer.
  • an elastomer for example, a thermosetting elastomer or a thermoplastic elastomer can be used.
  • the first magnetic resin composition may further contain a solvent.
  • a solvent Methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF), acetone, methyl isobutyl ketone (MIBK) and the like can be used.
  • MEK Methyl ethyl ketone
  • DMF N-dimethylformamide
  • MIBK methyl isobutyl ketone
  • the solvents may be used alone or in combination of two or more. When two or more solvents are mixed, the mixing ratio (mass ratio and volume ratio) is not particularly limited.
  • the content of the composite magnetic powder is preferably 70% by mass or more of the total solid content of the first magnetic resin composition, more preferably 75% by mass or more, particularly preferably 80% by mass or more preferable. If the content of the composite magnetic powder is 70% by mass or more of the total solid content of the magnetic resin composition, the real part ( ⁇ ′) at 100 MHz tends to be 6.0 or more, and the high frequency inductor should be designed well Can.
  • the content of the composite magnetic powder is preferably 99.5% by mass or less, more preferably 99% by mass or less, of the total solid content of the first magnetic resin composition, and 98.5% by mass It is particularly preferred that When the content of the composite magnetic powder is 99.5% by mass or less of the total solid content of the magnetic resin composition, the Q value of the magnetic material tends to be high.
  • the solid content of the magnetic resin composition is the amount obtained by removing the solvent from the magnetic resin composition.
  • a method of preparing the first magnetic resin composition for example, a method of mixing a composite magnetic powder, a curable resin, and as necessary, a curing agent, a curing accelerator, a thermoplastic resin, a surface treatment agent, an elastomer, etc. Etc.
  • the first magnetic resin composition can be in the form of paste, slurry, powder, or sheet
  • the first magnetic resin composition in an appropriate form according to the subsequent steps.
  • the subsequent steps include, for example, a transfer molding step using a mold, and a heating and pressurizing embedded molding step.
  • the second magnetic resin composition (hereinafter, the second magnetic resin composition) contains a composite magnetic powder and a thermoplastic resin.
  • Thermoplastic resins are compounds that soften by heating to the glass transition temperature or melting point and solidify by cooling to a temperature below the glass transition temperature or melting point.
  • a thermoplastic resin nylon etc. can be used, for example.
  • nylon, nylon 6 etc. can be used, for example.
  • the second magnetic resin composition may further contain a curable resin.
  • a curable resin curable resin which the said 1st magnetic resin composition may contain can be used.
  • the content of the curable resin is preferably 2% by mass or more and 50% by mass or less based on the total mass of the resin component of the second magnetic resin composition.
  • the second magnetic resin composition may further contain a surface treatment agent.
  • a surface treatment agent a silane coupling agent, a dispersing agent, etc. can be used, for example.
  • silane coupling agent for example, 3-glycidyloxypropyltriethoxysilane can be used.
  • the dispersant for example, higher fatty acid phosphates, amine salts of higher fatty acid phosphates, alkylene oxides of higher fatty acid phosphates, and the like can be used.
  • the higher fatty acid phosphate octyl phosphate, decyl phosphate, lauryl phosphate and the like can be used.
  • the content of the surface treatment agent is preferably 0% by mass or more and 30% by mass or less based on the total mass of the resin component of the second magnetic resin composition.
  • the second magnetic resin composition may further contain an elastomer.
  • rubber elasticity can be imparted to the solidified product of the second magnetic resin composition.
  • an elastomer a thermosetting elastomer, a thermoplastic elastomer, etc. can be used, for example.
  • the content of the elastomer may be appropriately adjusted depending on the application of the second magnetic resin composition and the like.
  • the second magnetic resin composition may further contain a solvent.
  • a solvent methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF), acetone, methyl isobutyl ketone (MIBK) or the like can be used.
  • MEK methyl ethyl ketone
  • DMF N-dimethylformamide
  • MIBK acetone
  • MIBK methyl isobutyl ketone
  • the solvents may be used alone or in combination of two or more. When two or more solvents are mixed, the mixing ratio (mass ratio and volume ratio) is not particularly limited.
  • the content of the composite magnetic powder is preferably 70% by mass or more of the total solid content of the second magnetic resin composition, more preferably 75% by mass or more, particularly preferably 80% by mass or more preferable.
  • the content of the composite magnetic powder is 70% by mass or more of the total solid content of the magnetic resin composition, the ratio of the composite magnetic powder to the second magnetic resin composition becomes high, and the solidified product with high complex magnetic permeability You can get Further, the content of the composite magnetic powder is preferably 99.5% by mass or less, more preferably 99% by mass or less, of the total solid content of the second magnetic resin composition, and 98.5% by mass It is particularly preferred that When the content of the composite magnetic powder is 99.5% by mass or less of the total solid content of the magnetic resin composition, the flowability of the second magnetic resin composition at the time of molding can be secured, and the complex permeability It is possible to obtain a solidified product with high magnetic permeability.
  • the solid content of the magnetic resin composition is the amount obtained by removing the solvent from the magnetic resin composition.
  • the second magnetic resin composition for example, a method of charging the composite magnetic powder and the thermoplastic resin, and, if necessary, an elastomer into a kneader, and melt-kneading may be mentioned.
  • a kneader for example, a screw extruder, a kneader, a Banbury mixer, a twin-screw kneader, or the like can be used.
  • the second magnetic resin composition obtained may be molded into a desired shape.
  • the second magnetic resin composition may be formed by extrusion molding, injection molding, or the like.
  • the second magnetic resin composition can be in the form of paste, slurry, powder, or sheet
  • the second magnetic resin composition of an appropriate form according to the subsequent steps can be used.
  • the subsequent steps include, for example, a transfer molding step using a mold, and a heating and pressurizing embedded molding step.
  • the magnetic resin composition is paste-like.
  • the pasty state means that the magnetic resin composition has fluidity at room temperature.
  • the magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. That is, in the magnetic resin paste, the first magnetic resin composition may be in the form of paste, and the second magnetic resin composition may be in the form of paste.
  • the filling ratio of the magnetic powder in the magnetic resin paste (hereinafter referred to as the content of the magnetic powder) is preferably from 20% by volume to 99% by volume, more preferably from 53% by volume to 95% by volume with respect to the entire solid content of the magnetic resin paste. % Or less. If the content of the magnetic powder is within the above range, the real part ( ⁇ ′) at 100 MHz can be increased, and the flowability of the magnetic resin paste can be easily controlled.
  • the content of the magnetic powder was calculated from the compounding amounts of the respective materials constituting the solid content of the magnetic resin paste and the specific gravities of the respective materials. In the magnetic resin paste, when the magnetic resin composition contains a solvent, the solid content of the magnetic resin paste is the amount obtained by removing the solvent from the magnetic resin composition.
  • a method of preparing a magnetic resin paste for example, at least one liquid type resin selected from the group consisting of a curable resin and a thermoplastic resin is used, and a composite magnetic powder, a liquid type resin, and, if necessary, Examples thereof include methods of mixing a curing agent, a curing accelerator, a surface treatment agent, an elastomer, and the like.
  • the magnetic resin paste when the magnetic resin composition contains a solvent, for example, at least one resin selected from the group consisting of a curable resin and a thermoplastic resin is dissolved in the solvent to obtain a resin solution.
  • a magnetic resin paste can be obtained by mixing the composite magnetic powder and, if necessary, a curing agent, a curing accelerator, a surface treatment agent, an elastomer and the like with the resulting resin solution.
  • the magnetic resin paste may be in the form of a paste in which the magnetic resin composition contains a solvent, or may be in the form of a paste containing no solvent. That is, the first magnetic resin composition may be in the form of a paste containing a solvent, or may be in the form of a paste containing no solvent.
  • the second magnetic resin composition may be in the form of a paste containing a solvent, or may be in the form of a paste containing no solvent.
  • the magnetic resin paste is preferably in the form of a paste in which the magnetic resin composition does not contain a solvent.
  • a solvent since the magnetic resin paste does not contain a solvent, generation of voids can be prevented when the magnetic resin paste is stored or when it is heated.
  • it is possible to reduce the risk of contamination of members and equipment used with the magnetic resin paste by the solvent contained in the magnetic resin paste.
  • a solvent when a solvent is contained in the magnetic resin paste, it may be necessary to deal with explosion-proofing of a dedicated process or apparatus used in the manufacturing process. However, since the magnetic resin paste does not contain a solvent, the manufacturing process can be simplified.
  • the content of the solvent contained in the magnetic resin composition is 5% by mass or less of the total solid content of the magnetic resin composition Is preferable, and 1% by mass or less is more preferable, and 0.5% by mass or less is particularly preferable.
  • methyl ethyl ketone MEK
  • N, N-dimethylformamide DMF
  • acetone methyl isobutyl ketone (MIBK) or the like
  • the solvents may be used alone or in combination of two or more.
  • the mixing ratio mass ratio and volume ratio is not particularly limited.
  • the magnetic resin composition is powdery.
  • the magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition.
  • the magnetic resin powder may be powdery of the first magnetic resin composition, and the powder of the semi-cured product of the first magnetic resin composition It may be a letter.
  • a semi-cured product is one in which the resin composition is partially cured to such an extent that it can be cured further. That is, a semi-cured product refers to the B-stage state, and refers to the state of the intermediate stage of the curing reaction.
  • the intermediate stage refers to the stage between the varnish state (A stage state) and the completely cured state (C stage state).
  • the thermosetting resin composition when heated, the viscosity gradually decreases, and then curing starts and the viscosity gradually increases.
  • the semi-cured state is a state in which the viscosity starts to increase and before it is completely cured.
  • the average particle diameter of the particles constituting the magnetic resin powder is not particularly limited.
  • a method of preparing a magnetic resin powder for example, a method using an atomizing method using a magnetic resin slurry described later, and at least one resin selected from the group consisting of a composite magnetic powder, a curable resin and a thermoplastic resin
  • the method of mixing powder and a 3-roll mill etc., the method of crushing the magnetic resin sheet mentioned later, etc. are mentioned.
  • the atomizing method is particularly preferred in that individual particles constituting the magnetic resin powder can be made approximately spherical. When the individual particles that make up the magnetic resin powder are substantially spherical, the flowability during the subsequent molding process will be good.
  • the magnetic resin slurry is sprayed in a high temperature (for example, 140 ° C.) environment to form atomized particles, and the magnetic resin powder is prepared by rapidly drying to volatilize the solvent.
  • the first magnetic resin composition has a possibility that the viscosity becomes high because the content of the composite magnetic powder is relatively large.
  • the solvent which is a volatile component is rapidly dissipated and becomes powdery, Good handling of
  • the magnetic resin composition further contains a solvent and is in a slurry form.
  • the slurry state means that the magnetic resin composition contains a solvent and has fluidity at room temperature.
  • the magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. That is, the magnetic resin slurry may be in the form of a slurry in which the first magnetic resin composition contains a solvent, and may be in the form of a slurry in which the second magnetic resin composition contains a solvent.
  • methyl ethyl ketone MEK
  • N, N-dimethylformamide DMF
  • acetone methyl isobutyl ketone (MIBK) or the like
  • the solvents may be used alone or in combination of two or more.
  • the mixing ratio mass ratio and volume ratio
  • the content of the solvent in the magnetic resin slurry is not particularly limited.
  • the filling ratio of the magnetic powder in the magnetic resin slurry (hereinafter referred to as the content of the magnetic powder) is preferably from 20% by volume to 99% by volume, more preferably from 53% by volume to 95% by volume with respect to the entire solid content of the magnetic resin slurry. % Or less. If the content of the magnetic powder is in the above range, the real part ( ⁇ ′) at 100 MHz can be increased, and the flowability of the magnetic resin sheet can be easily controlled.
  • the content of the magnetic powder was calculated from the compounding amounts of the respective materials constituting the solid content of the magnetic resin slurry and the specific gravities of the respective materials.
  • the solid content of the magnetic resin slurry is the amount obtained by removing the solvent from the magnetic resin slurry.
  • the magnetic resin slurry for example, at least one resin selected from the group consisting of a curable resin and a thermoplastic resin is dissolved in a solvent to obtain a resin solution, and the composite magnetic powder is added to the obtained resin solution And kneading, and if necessary, a curing agent, a curing accelerator, a surface treatment agent, an elastomer and the like are finally added and stirred to be uniform.
  • the magnetic resin composition is in the form of a sheet.
  • the magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition.
  • the first magnetic resin composition in the magnetic resin sheet 1, the first magnetic resin composition may be in the form of a sheet, and the semi-cured product of the first magnetic resin composition It may be sheet-like.
  • the size of the magnetic resin sheet 1 may be appropriately adjusted according to the application of the magnetic resin sheet 1.
  • the thickness of the magnetic resin sheet 1 is preferably 10 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • the greenness value which shows the fluidity of the magnetic resin sheet 1 is preferably 60% or more and 95% or less, more preferably 70% or more and less than 90%.
  • the green resin value of the magnetic resin sheet 1 is within the above range, for example, when molding a laminated board in which the magnetic resin sheet 1 is laminated on the main surface of the wiring substrate having the wiring formed on the main surface by lamination or press And the magnetic resin sheet 1 having appropriate fluidity can sufficiently embed the wiring, and the magnetic resin sheet 1 flows too much, and the laminator or the press machine may be contaminated by the magnetic resin sheet 1 protruding. Can be avoided.
  • the Grinis value can be measured in the same manner as the method described in the examples.
  • the amount of volatilization of the magnetic resin sheet 1 is preferably 1% by mass or less, more preferably 0.2% by mass or less.
  • the magnetic resin sheet 1 and the cover film are repeatedly refrigerated or refrigerated storage of the magnetic resin sheet 1 whose surface is covered with a cover film and return to normal temperature. Between the above, it is possible to prevent the occurrence of a spot pattern due to the evaporation of the solvent in the magnetic resin sheet 1 or to prevent the flowability of the magnetic resin sheet 1 from becoming too high.
  • the amount of volatilization can be measured in the same manner as the method described in the examples.
  • the magnetic resin sheet 1 is in the form of a sheet, it is easy to form a large area with a magnetic material having a uniform thickness, and is useful as a material for printed wiring boards which is difficult in the form of powder or paste. Since the magnetic resin sheet 1 is a semi-cured product, it can be used, for example, when embedding and forming a circuit of a printed wiring board by heating and pressurizing while performing vacuum drawing.
  • the magnetic resin sheet 1 As a method of manufacturing the magnetic resin sheet 1, for example, as shown in FIGS. 2A to 2C, a method of applying a magnetic resin slurry on a film 2 to form a magnetic resin slurry layer 3 and drying or heating may be mentioned.
  • the film 2 for example, a polyethylene terephthalate (PET) film, a metal foil or the like can be used.
  • PET polyethylene terephthalate
  • the thickness of the film 2 is not particularly limited. It is preferable that the surface of the film 2 to which the magnetic resin slurry layer 3 is applied be subjected to release treatment in advance. Moreover, you may produce the magnetic resin sheet 1 by apply
  • the magnetic resin sheet 30 with metal foil As shown in FIG. 4, the magnetic resin sheet 30 with metal foil according to the present embodiment (hereinafter, the magnetic resin sheet 30 with metal foil) is laminated on the magnetic resin sheet 1 and at least one surface of the magnetic resin sheet 1. And the metal foil 8 having a thickness of 5 ⁇ m or less.
  • the magnetic resin sheet 30 with metal foil has a two-layer structure including the magnetic resin sheet 1 and the metal foil 8 laminated on one side of the magnetic resin sheet 1.
  • the magnetic resin sheet 30 with metal foil may have a three-layer structure including the magnetic resin sheet 1 and two metal foils 8 laminated on both sides of the magnetic resin sheet 1.
  • the magnetic resin sheet 30 with metal foil may have another layer between the magnetic resin sheet 1 and the metal foil 8.
  • the first magnetic resin composition may be in the form of a sheet, or may be in the form of a sheet of a semi-cured product of the first magnetic resin composition, and the second magnetic The resin composition may be in the form of a sheet.
  • the thickness of the magnetic resin sheet 30 with metal foil is preferably 10 ⁇ m or more and 800 ⁇ m or less.
  • a material of metal foil copper, silver, aluminum, nickel, stainless steel etc. can be used, for example.
  • the thickness of the metal foil is preferably 0.5 ⁇ m or more and 300 ⁇ m or less.
  • the magnetic resin sheet 30 As a method of adjusting the magnetic resin sheet 30 with metal foil, for example, a method of forming the metal foil 8 on one side or both sides of the magnetic resin sheet 1 by physical vapor deposition can be mentioned. As a physical vapor deposition method, a vacuum evaporation method, an ion plating method, sputtering method etc. are mentioned, for example. Alternatively, the magnetic resin sheet 30 may be produced by applying a magnetic resin slurry or magnetic resin paste onto the metal foil 8 using a bar coater or the like, and drying or heating it.
  • the magnetic prepreg 40 (hereinafter, magnetic prepreg 40) according to the present embodiment includes a fibrous base material 42 and a semi-cured product of the magnetic resin composition 41 or the magnetic resin composition 41, as shown in FIG.
  • Examples of the magnetic prepreg 40 include those in which the fibrous base material 42 is present in the magnetic resin composition 41 or the semi-cured product of the magnetic resin composition 41.
  • the magnetic prepreg 40 comprises a semi-cured product of the magnetic resin composition 41 or the magnetic resin composition 41 and a fibrous base material 42 present in the semi-cured product of the magnetic resin composition 41 or the magnetic resin composition 41; Equipped with Since the magnetic prepreg 40 includes the fibrous base material 42, the magnetic prepreg 40 is more excellent in bending strength and the like than the magnetic resin sheet 1.
  • the magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. That is, the magnetic prepreg 40 may include the one before curing the first resin composition and the fibrous base material 42, and the semi-cured product of the first resin composition and the fibrous base material 42 may be provided. The magnetic prepreg 40 may also include the second resin composition and the fibrous base material 42.
  • the thickness of the magnetic prepreg is preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the fibrous base material 42 for example, woven fabric (cross), non-woven fabric, pulp paper, linter paper, etc. can be used.
  • the woven fabric for example, organic fiber cloth such as glass cloth, aramid cloth and polyester cloth, graphite cloth and the like can be used.
  • the non-woven fabric for example, an organic fiber non-woven fabric such as a glass non-woven fabric, an aramid non-woven fabric and a polyester non-woven fabric, a graphite non-woven fabric, an inorganic (for example, magnesium oxide) non-woven fabric can be used.
  • a glass cloth a magnetic prepreg 40 with excellent mechanical strength can be obtained.
  • the fibrous base material 42 it is preferable to use a flattened glass cloth as the fibrous base material 42.
  • Specific examples of the flattening processing include a method of pressing the glass cloth flat by continuously pressing the glass cloth with a press roll under an appropriate pressure.
  • the thickness of the fibrous base material 42 is not particularly limited, and for example, one having a thickness of 0.02 mm or more and 0.3 mm or less can be used.
  • the magnetic resin composition 41 may be prepared in the form of a varnish and used in order to impregnate the fibrous base material 42 which is a base material for forming the magnetic prepreg 40. . That is, you may use the resin varnish in which the magnetic resin composition 41 was prepared in varnish form.
  • Such resin varnish can be prepared, for example, as follows.
  • each component soluble in a solvent which contains at least one resin selected from the group consisting of a curable resin and a thermoplastic resin in the magnetic resin composition 41, is charged into a solvent and dissolved. At this time, heating may be performed as necessary. Thereafter, a component which does not dissolve in the solvent, including the composite magnetic powder, is added and dispersed to a predetermined dispersed state using a ball mill, bead mill, planetary mixer, roll mill or the like to obtain a varnish-like composition. Be prepared.
  • the solvent used here the same solvents as those described above as the solvent which can be contained in the magnetic resin composition can be used.
  • the resin varnish in which the magnetic resin composition 41 is prepared in the form of varnish may be used, and the magnetic resin paste which is the paste-like magnetic resin composition 41 described above, A magnetic resin slurry which is a slurry-like magnetic resin composition 41 may be used.
  • the fibrous base material 42 contains the magnetic resin composition 41 prepared in a varnish form, the magnetic resin paste containing the magnetic resin composition 41, or the magnetic resin composition 41. And a method of impregnating and drying the magnetic resin slurry.
  • the magnetic resin composition 41 can be impregnated into the fibrous base material 42 by immersion, coating, and the like. Immersion, application, etc. may be repeated several times and impregnated as needed. In addition, by repeating impregnation using a magnetic resin paste or magnetic resin slurry containing a plurality of magnetic resin compositions 41 or magnetic resin compositions 41 having different compositions and concentrations, the final desired composition and impregnation amount are obtained. It is also possible to adjust.
  • a first magnetic resin composition containing a thermosetting resin as the magnetic resin composition 41
  • desired heating conditions for example, You may heat at 80 degreeC or more and 180 degrees C or less for 1 minute or more and 10 minutes or less. By heating, the magnetic prepreg 40 provided with the semi-cured product of the first magnetic resin composition can be obtained.
  • the inductor component (hereinafter, inductor component) according to the present embodiment includes a coiled wire and an insulating layer covering the coiled wire, and the insulating layer is a cured product of the first magnetic resin composition or a second
  • the magnetic resin composition of the present invention is molded with a solidified product (hereinafter sometimes referred to as a magnetic material).
  • a solidified product hereinafter sometimes referred to as a magnetic material.
  • the Q value of the magnetic material at 100 MHz of the insulating layer tends to be high. It can be suitably used as a high frequency inductor component.
  • the inductor component of the present embodiment can be particularly suitably used as a high frequency inductor component.
  • high frequency inductor components include coils, inductors, filters, reactors, and transformers.
  • applications of such inductor components include components of noise filters, components of impedance matching circuits, and the like.
  • the noise filter include a low pass filter and a common choke coil.
  • the structure of the inductor component may be appropriately adjusted in accordance with the application of the inductor component, and examples thereof include a wire wound type, a laminated type, and a film type.
  • the size of the inductor component may be appropriately adjusted according to the application of the inductor component, and when used as a substantially cubic high frequency inductor component, preferably 15 mm or less ⁇ 15 mm or less ⁇ 10 mm or less in height is there.
  • the shape of the coiled wiring may be appropriately selected according to the application of the inductor component.
  • the spiral shape may be planarly formed, or the spiral shape may be three-dimensionally formed.
  • the winding structure may be a horizontal winding structure or a vertical winding structure.
  • the beginning and end of the coiled wire are used by being electrically connected to different external electrode terminals.
  • a material of the coiled wiring for example, Ag, Au, Cu, Ag—Pd, Ni or the like can be used.
  • the insulating layer covers the coiled wire except for the beginning and the end of the coiled wire.
  • the raw material of the insulating layer is the first magnetic resin composition or the second magnetic resin composition.
  • the method of manufacturing the inductor component may be appropriately selected according to the configuration of the inductor component according to the application of the inductor component, and for example, the coiled wiring is continuously formed three-dimensionally by the printing method, sheet method, etc. Methods are included.
  • a magnetic resin sheet or a sheet of a second magnetic resin composition hereinafter collectively referred to as a green sheet
  • a conductive paste constituting a coiled wiring are alternately printed and laminated, and the inside of the inductor component is formed.
  • the sheet method is a method of forming through holes in a green sheet, printing and filling a conductive paste, and laminating.
  • Alloy iron powder 1 (“AW2-08 / PF5KG” manufactured by Epson Atomics Co., Ltd., representative composition: Fe-Si-Cr, average particle diameter: 4 ⁇ m, particle shape: all spherical, insulation treatment: available)
  • Alloy iron powder 2 (“AW2-08 / PF3KG” manufactured by Epson Atomics Co., Ltd., representative composition: Fe-Si-Cr, average particle diameter: 3 ⁇ m, particle shape: all spherical, insulation treatment: available)
  • Alloy powder (“AW2-08 / PF8KG” manufactured by Epson Atomics Co., Ltd., representative composition: Fe-Si-Cr, average particle diameter: 5 ⁇ m, particle shape: all spherical, insulation treatment: available)
  • Pure iron powder (“CIP FM” manufactured by BASF Japan Ltd., representative composition: Fe, average particle diameter: 2 ⁇ m, particle shape: all
  • the Grinis value was determined as follows. 1) A magnetic sheet having a thickness of 200 ⁇ m was punched out using a 60 mm ⁇ mold, and a polyethylene terephthalate film was peeled off to prepare a test plate 4. 2) As shown in FIG. 3, a release PET film 5 with a thickness of 75 ⁇ m and a SUS plate 6 with a thickness of 1.8 mm were laminated in this order on both sides of the test plate 4 to obtain a sample set. 3) The sample set was molded by pressing from above and below at an actual pressure of 2.0 Mpa for 10 minutes under atmospheric pressure using a hot plate 7 whose press hot plate temperature was set to 135 ° C.
  • the viscosity of the magnetic resin paste was measured using a rheometer "AR 2000 ex” manufactured by TA Instruments. Specifically, the gap between the upper and lower 25 mm diameter parallel plates is set to 300 ⁇ m, and after filling the magnetic resin paste there, the temperature balance time is set for 2 minutes at room temperature, and the rotation speed is 0.2 rpm. Viscosity measurement was performed. In addition, viscosity measurement at a rotation speed of 2.0 rpm was performed in the same manner.
  • the thixotropic index of the magnetic resin paste was calculated according to the following formula using the values of 0.2 rpm viscosity and 2.0 rpm viscosity measured in the measurement of [2.0 rpm viscosity] described above.
  • Thixo index 0.2 rpm viscosity / 2.0 rpm viscosity
  • DMA-Tg The DMA-Tg of the magnetic resin sheet was measured using a viscoelastic spectrometer "DMS 100" manufactured by Seiko Instruments Inc. Specifically, dynamic viscoelasticity measurement (DMA) is performed with a tension module at a frequency of 10 Hz, and the temperature at which tan ⁇ shows a maximum when the temperature is raised from room temperature to 320 ° C. at a temperature increase rate of 5 ° C./min is DMA -Tg.
  • DMA dynamic viscoelasticity measurement
  • the surface resistance value was measured using "R8340A” manufactured by ADVANTEST in accordance with Standard ASTM D257. Specifically, a test piece (50 mm ⁇ 50 mm ⁇ 1 mm t) is placed between the front electrode (25 mm ⁇ ) and the front electrode consisting of the main electrode and concentric electrodes (inside diameter 38 mm ⁇ , outer diameter 50 mm ⁇ ) and the back electrode (50 mm ⁇ ). It arranges and it measured on the following setting conditions. Setting conditions: Applied voltage 100V, charge time 60 seconds, discharge time 0.1 seconds
  • the real part ( ⁇ ′) and the imaginary part ( ⁇ ′ ′) are obtained from the measured initial magnetization curve, and the obtained real part ( ⁇ ′) and the imaginary part ( ⁇ ′ ′) give the loss factor (Tan ⁇ ) and the Q value of the magnetic material Was calculated.
  • the real part ( ⁇ ′) is preferably 6.0 or more in terms of the design of the high frequency inductor component. In order to function as a high frequency inductor component, it is essential that the Q value of the magnetic material is 20 or more. Furthermore, in order to exhibit good performance as a high frequency inductor component, it is preferable that the Q value of the magnetic material is 33 or more.
  • Examples 1 to 6 In Examples 1 to 6, the content of the magnetic powder is different, and the content of the magnetic powder showing a real part ( ⁇ ') appropriate for functioning as a high frequency inductor component, ie, the real part ( ⁇ ') at 100 MHz is We examined the content of magnetic powder showing 6.0 or more.
  • the resin solution was obtained by mixing bisphenol A epoxy resin, trifunctional epoxy resin, polyfunctional epoxy resin, phenoxy resin, MEK and DMF at the mixing ratio shown in Table 1. Alloy iron 2 (average particle diameter: 3 ⁇ m) and alumina (average particle diameter: 0.7 ⁇ m) are added to the obtained resin solution at the mixing ratio shown in Table 1 and kneaded, and dicyandiamide, imidazole 1, silane cup.
  • the magnetic resin slurry was obtained by adding the ring agent 1 and the dispersing agent and stirring the mixture uniformly.
  • the magnetic resin slurry obtained was applied to the surface of the polyethylene terephthalate film subjected to the releasing treatment and dried to obtain a magnetic resin sheet in a B-stage state having a thickness of 200 ⁇ m.
  • the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 1.
  • the real part ( ⁇ ') and the imaginary part ( ⁇ ") increase, while the Q value and the grin value of the magnetic material tend to decrease.
  • the real part ( ⁇ ') and the glycini value are most well balanced in the example 4 in which the content of the magnetic powder is 53.0% by volume. .
  • Example 7 and 8 and Comparative Examples 1 to 4 In Examples 7 and 8 and Comparative Examples 1 and 2, while maintaining the content (53.0% by volume) of the magnetic powder of Example 4, the particle size ratio of the first powder to the second powder (hereinafter referred to simply as The particle size ratio satisfying the Q value of the magnetic material which is essential to function as a high frequency inductor component is changed by changing the particle size ratio), that is, the particle size ratio of 20 or more of the Q value of the magnetic material at 100 MHz is examined.
  • the Comparative Example 3 and Comparative Example 4 do not contain the first powder.
  • magnetic resin slurries were obtained in the same manner as in [Examples 1 to 6] except that the raw materials were blended at the blending ratio shown in Table 2. Using the obtained magnetic resin sheet, the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 2.
  • the real part ( ⁇ ') and the glycin value tended to decrease as the particle size ratio increased.
  • the imaginary part ( ⁇ ′ ′) decreases as the particle size ratio increases, and tends to be substantially constant when the particle size ratio exceeds 4.3 (Example 4).
  • the Q value of the magnetic material is the particle size As the ratio increases, it increases, and the particle size ratio tends to decrease when it exceeds 4.3 (Example 4)
  • the Q value of the magnetic material does not contain the alloy iron powder. Was less than 20.
  • the Q value of the magnetic material was less than 20 because the average particle size of the alloyed iron powder was not less than 5 ⁇ m.
  • the magnetic material having the highest Q value and the good Grinis value among Example 4 was Example 4 having a particle size ratio of 4.3.
  • Example 9 to 13 While maintaining the content (53.0% by volume) and the particle size ratio (4.3) of the magnetic powder of Example 4, the mass ratio of magnetic powder to nonmagnetic powder (hereinafter referred to as mass ratio)
  • mass ratio The first mass ratio satisfying the Q value of the magnetic material exhibiting good performance as a high frequency inductor component, that is, the mass ratio of the magnetic material at 100 MHz of 33 or more was examined.
  • Comparative Example 5 contains no nonmagnetic powder.
  • a magnetic resin slurry was obtained in the same manner as in [Examples 1 to 6] except that the raw materials were blended at the blending ratio shown in Table 3.
  • the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 3.
  • Examples 14 and 15 In Examples 14 and 15, while maintaining the particle size ratio at 4.3 and the mass ratio at 6.0, ferrite powder is added as another magnetic powder, and the Q value change of the magnetic material by the addition of the ferrite powder is determined. Examined. Specifically, magnetic resin slurries were obtained in the same manner as in [Examples 1 to 6] except that the raw materials were blended at the blending ratio shown in Table 4. Using the obtained magnetic resin sheet, the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 4.
  • Example 16 a magnetic resin paste was obtained without containing a solvent. Specifically, the magnetic resin paste was obtained by mixing the raw materials shown in Table 5 at the mixing ratio shown in Table 5 and kneading so as to be uniform. For mixing and kneading of the raw materials, known mixers and kneaders were used.
  • the thixotropic index of Example 16 produced without containing a solvent was 3.8, and the Q value was 20 or more. From this result, even if the magnetic resin composition is a paste-like magnetic resin paste containing no solvent, it has excellent fluidity and satisfies the Q value of the magnetic material which is essential to function as a high frequency inductor component. all right.
  • the composite magnetic powder of the first aspect according to the present invention contains a magnetic powder containing a first powder and a nonmagnetic powder containing a second powder.
  • the first powder comprises alloyed iron powder and the second powder comprises at least one of alumina powder and silica powder.
  • the average particle size of the first powder is less than 5 ⁇ m and is at least 3 times and not more than 30 times the average particle size of the second powder.
  • the Q value of the magnetic material in the high frequency band can be increased.
  • the mixing ratio of the magnetic powder is 4 parts by mass to 19 parts by mass with respect to 1 part by mass of the nonmagnetic powder.
  • the second aspect it is possible to balance the Q value of the magnetic material at 100 MHz and the flowability of the magnetic material before processing.
  • the magnetic powder of the third aspect according to the present invention in the first or second aspect, the magnetic powder is subjected to an insulation treatment.
  • the Q value of the magnetic material can be made higher.
  • the magnetic resin composition of the fourth aspect according to the present invention is at least one resin selected from the group consisting of the composite magnetic powder of any one of the first to third aspects, a curable resin and a thermoplastic resin. And.
  • a magnetic material having a high Q value in a high frequency band can be obtained.
  • the content of the composite magnetic powder is 70% by mass or more and 99.5% by mass or less of the total solid content of the magnetic resin composition .
  • a magnetic material that can be suitably used for high frequency inductor applications can be obtained.
  • the cured product or solidified product of the magnetic resin composition has a Q value at a frequency of 100 MHz of 20 or more.
  • a magnetic material that can be suitably used for high frequency inductor applications can be obtained.
  • the magnetic resin composition of any one of the fourth to sixth aspects is paste-like.
  • a magnetic material having good fluidity can be obtained.
  • the magnetic resin composition of any one of the fourth to sixth aspects is powdery.
  • a powdery magnetic material can be obtained.
  • the magnetic resin composition according to any one of the fourth to sixth aspects further contains a solvent and is in the form of a slurry.
  • a magnetic material having good flowability can be obtained.
  • the magnetic resin composition according to any one of the fourth to sixth aspects is in the form of a sheet.
  • a magnetic material having a uniform thickness can be obtained.
  • the magnetic resin sheet according to the eleventh aspect of the present invention has a thickness of 10 ⁇ m to 500 ⁇ m in the tenth aspect.
  • a magnetic material having a constant thickness can be obtained.
  • a magnetic resin sheet with metal foil according to a twelfth aspect of the present invention is a metal foil having a thickness of 5 ⁇ m or less laminated on at least one surface of the magnetic resin sheet according to the tenth or eleventh aspect and the magnetic resin sheet.
  • a magnetic material with a metal foil can be obtained.
  • a magnetic prepreg according to a thirteenth aspect of the present invention comprises a fibrous base material and a semi-cured product of the magnetic resin composition or the magnetic resin composition according to any one of the fourth to sixth aspects.
  • the inductor component according to the fourteenth aspect of the present invention includes a coiled wire and an insulating layer covering the coiled wire, and the insulating layer is the magnetic resin composition according to any one of the fourth to sixth aspects. It is molded with a cured product or solidified product of
  • an inductor component that can be suitably used as a high frequency inductor component can be obtained.

Abstract

The present invention addresses the problem of providing a composite magnetic powder that can increase the Q value of a magnetic material at high frequencies. This composite magnetic powder contains a magnetic powder that includes a first powder and a non-magnetic powder that includes a second powder. The first powder comprises an iron-alloy powder. The second powder comprises at least an alumina powder or a silica powder. The average grain diameter of the first powder is less than 5 µm and is 3–30 times the average grain diameter of the second powder.

Description

複合磁性粉末、磁性樹脂組成物、磁性樹脂ペースト、磁性樹脂粉末、磁性樹脂スラリー、磁性樹脂シート、金属箔付磁性樹脂シート、磁性プリプレグ及びインダクタ部品Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg and inductor parts
 本発明は、複合磁性粉末、磁性樹脂組成物、磁性樹脂ペースト、磁性樹脂粉末、磁性樹脂スラリー、磁性樹脂シート、金属箔付磁性樹脂シート、磁性プリプレグ及びインダクタ部品に関する。 The present invention relates to composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component.
 近年、スマートフォンなどの各種情報通信機器の小型多機能化や演算処理速度の高速化に伴って駆動周波数が高周波化している。このような情報通信機器に用いられる高周波回路には、インダクタ部品が使用されている。 2. Description of the Related Art In recent years, the drive frequency has been increased as the size and multifunctionality of various information communication devices such as smart phones and the speeding up of arithmetic processing speed. An inductor component is used in a high frequency circuit used for such an information communication apparatus.
 インダクタ部品として、特許文献1には、コイル状配線と、このコイル状配線を被覆する、樹脂シートの硬化物(以下、磁性材料)とを備えるインダクタ部品が開示されている。この樹脂シートは、エポキシ樹脂と、フェノキシ樹脂と、線状エラストマーと、硬化剤と、無機フィラーとを含有する。無機フィラーの含有量は、樹脂シート全量に対して80~98質量%である。線状エラストマーの含有量は、線状エラストマーを除いた樹脂シートの構成成分の合計100質量部に対して、0.01~0.5質量部である。 As an inductor component, Patent Document 1 discloses an inductor component including a coiled wiring and a cured product of a resin sheet (hereinafter, magnetic material) that covers the coiled wiring. This resin sheet contains an epoxy resin, a phenoxy resin, a linear elastomer, a curing agent, and an inorganic filler. The content of the inorganic filler is 80 to 98% by mass with respect to the total amount of the resin sheet. The content of the linear elastomer is 0.01 to 0.5 parts by mass with respect to a total of 100 parts by mass of the constituent components of the resin sheet excluding the linear elastomer.
 しかしながら、特許文献1に記載のような、従来の磁性材料は、磁性材料の損失の少なさを示すQ値(quality factor、以下、磁性材料のQ値という)が高周波帯(例えば、100MHz)で低く、高周波帯で高損失である。このような従来の磁性材料を用いたインダクタ部品は、高周波帯でのインダクタの抵抗成分が大きく、高周波帯でのインダクタのQ値(quality factor、Q=2πfL/R、Lはインダクタンス、Rはインダクタの抵抗成分、fは周波数)が低い。そのため、例えば、従来の磁性材料を、高周波帯のノイズを制御するインダクタ部品の材料に使用することができないおそれがあった。 However, the conventional magnetic material as described in Patent Document 1 has a Q value (quality factor, hereinafter referred to as Q value of the magnetic material) indicating a small loss of the magnetic material in a high frequency band (for example, 100 MHz) Low, high loss in high frequency band. In the inductor component using such a conventional magnetic material, the resistance component of the inductor in the high frequency band is large, and the Q value of the inductor in the high frequency band (quality factor, Q = 2πfL / R, L is an inductance, R is an inductor Resistance component, f is a low frequency). Therefore, for example, there is a possibility that the conventional magnetic material can not be used as the material of the inductor component that controls the noise in the high frequency band.
特許第5881027号公報Patent No. 588 1027
 本発明の目的は、高周波帯での磁性材料のQ値を高くすることができる複合磁性粉末、磁性樹脂組成物、磁性樹脂ペースト、磁性樹脂粉末、磁性樹脂スラリー、磁性樹脂シート、金属箔付磁性樹脂シート、磁性プリプレグ及びインダクタ部品を提供することにある。 The object of the present invention is to provide a composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic foil with metal foil, which can increase Q value of magnetic material in high frequency band. It is providing a resin sheet, a magnetic prepreg, and an inductor component.
 本発明に係る一態様の複合磁性粉末は、第一の粉末を含む磁性粉末と、第二の粉末を含む非磁性粉末とを含有し、前記第一の粉末が、合金鉄粉末からなり、前記第二の粉末が、アルミナ粉末及びシリカ粉末の少なくとも1種からなり、前記第一の粉末の平均粒径が、5μm未満であり、かつ前記第二の粉末の平均粒径の3倍以上30倍以下である。 The composite magnetic powder according to one aspect of the present invention contains a magnetic powder containing a first powder and a nonmagnetic powder containing a second powder, and the first powder comprises an alloyed iron powder, The second powder comprises at least one of alumina powder and silica powder, and the average particle diameter of the first powder is less than 5 μm, and at least 3 times and 30 times the average particle diameter of the second powder. It is below.
 本発明に係る一態様の磁性樹脂組成物は、前記複合磁性粉末と、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂と、を含有する。 The magnetic resin composition according to one aspect of the present invention contains the composite magnetic powder, and at least one resin selected from the group consisting of a curable resin and a thermoplastic resin.
 本発明に係る一態様の磁性樹脂ペーストは、前記磁性樹脂組成物が、ペースト状である。 In the magnetic resin paste according to one aspect of the present invention, the magnetic resin composition is paste-like.
 本発明に係る一態様の磁性樹脂粉末は、前記磁性樹脂組成物が、粉状である。 In the magnetic resin powder according to one aspect of the present invention, the magnetic resin composition is powdery.
 本発明に係る一態様の磁性樹脂スラリーは、前記磁性樹脂組成物が、溶剤をさらに含有し、スラリー状である。 In the magnetic resin slurry according to one aspect of the present invention, the magnetic resin composition further contains a solvent and is in the form of a slurry.
 本発明に係る一態様の磁性樹脂シートは、前記磁性樹脂組成物が、シート状である。 In the magnetic resin sheet according to one aspect of the present invention, the magnetic resin composition is in the form of a sheet.
 本発明に係る一態様の金属箔付磁性樹脂シートは、前記磁性樹脂シートと、前記磁性樹脂シートの少なくとも一方の面に積層された、厚みが5μm以下の金属箔とを備える。 The magnetic resin sheet with metal foil according to one aspect of the present invention includes the magnetic resin sheet and a metal foil having a thickness of 5 μm or less laminated on at least one surface of the magnetic resin sheet.
 本発明に係る一態様の磁性プリプレグは、繊維質基材と、前記磁性樹脂組成物又は前記磁性樹脂組成物の半硬化物と、を備える。 The magnetic prepreg according to one aspect of the present invention includes a fibrous base material, and the magnetic resin composition or a semi-cured product of the magnetic resin composition.
 本発明に係る一態様のインダクタ部品は、コイル状配線と、コイル状配線を被覆する絶縁層とを備え、前記絶縁層が、前記磁性樹脂組成物の硬化物又は固化物で成形されている。 The inductor component according to one aspect of the present invention includes a coiled wire and an insulating layer covering the coiled wire, and the insulating layer is formed of a cured product or a solidified product of the magnetic resin composition.
図1Aは、本発明の複合磁性粉末において、第一の粉末を構成する磁性粒子と、第二の粉末を構成する非磁性粒子との配置関係を説明するための概略断面図である。図1Bは、複数の大径磁性粒子同士が近接して形成された見かけ上ひと塊の大きな粒子を示す概略断面図である。図1Cは、第一の粉末の平均粒径が第二の粉末の平均粒径の3倍未満である場合の、磁性粒子と非磁性粒子との配置関係を説明するための概略断面図である。図1Dは、第一の粉末の平均粒径が第二の粉末の平均粒径の30倍超である場合の、磁性粒子と非磁性粒子との配置関係を説明するための概略断面図である。FIG. 1A is a schematic cross-sectional view for explaining the positional relationship between magnetic particles constituting a first powder and nonmagnetic particles constituting a second powder in the composite magnetic powder of the present invention. FIG. 1B is a schematic cross-sectional view showing a seemingly large lump of large particles in which a plurality of large diameter magnetic particles are formed close to each other. FIG. 1C is a schematic cross-sectional view for explaining the positional relationship between the magnetic particles and the nonmagnetic particles when the average particle diameter of the first powder is less than three times the average particle diameter of the second powder. . FIG. 1D is a schematic cross-sectional view for explaining the positional relationship between the magnetic particles and the nonmagnetic particles when the average particle diameter of the first powder is more than 30 times the average particle diameter of the second powder. . 図2Aは、本発明の実施形態に係る磁性樹脂シートの製造方法の一部を説明するための概略断面図である。図2Bは、本発明の実施形態に係る磁性樹脂シートの製造方法の一部を説明するための概略断面図である。図2Cは、本発明の実施形態に係る磁性樹脂シートの製造方法の一部を説明するための概略断面図である。FIG. 2A is a schematic cross-sectional view for describing a part of the method for manufacturing a magnetic resin sheet according to the embodiment of the present invention. FIG. 2B is a schematic cross-sectional view for describing a part of the method of manufacturing a magnetic resin sheet according to the embodiment of the present invention. FIG. 2C is a schematic cross-sectional view for describing a part of the method for manufacturing a magnetic resin sheet according to the embodiment of the present invention. 図3は、グリニス値の測定方法を説明するための概略図である。FIG. 3 is a schematic view for explaining the method of measuring the glycin value. 図4は、本発明の一実施形態に係る金属箔付磁性樹脂シートの概略断面図である。FIG. 4 is a schematic cross-sectional view of a magnetic resin sheet with a metal foil according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る磁性プリプレグの概略断面図である。FIG. 5 is a schematic cross-sectional view of a magnetic prepreg according to an embodiment of the present invention.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本実施形態は、複合磁性粉末に関し、特に磁性材料として好適に用いられる複合磁性粉末に関する。 The present embodiment relates to a composite magnetic powder, and in particular to a composite magnetic powder suitably used as a magnetic material.
 [複合磁性粉末]
 本実施形態に係る複合磁性粉末(以下、複合磁性粉末)は、磁性粉末と、非磁性粉末とを含有する。磁性粉末は、第一の粉末を含む。第一の粉末は、合金鉄粉末からなる。非磁性粉末は、第二の粉末を含む。第二の粉末は、アルミナ粉末及びシリカ粉末の少なくとも1種からなる。第一の粉末の平均粒径は、5μm未満であり、かつ第二の粉末の平均粒径の3倍以上30倍以下である。
[Compound magnetic powder]
The composite magnetic powder (hereinafter, composite magnetic powder) according to the present embodiment contains a magnetic powder and a nonmagnetic powder. The magnetic powder comprises a first powder. The first powder comprises an alloyed iron powder. The nonmagnetic powder comprises a second powder. The second powder comprises at least one of alumina powder and silica powder. The average particle size of the first powder is less than 5 μm and at least 3 times and not more than 30 times the average particle size of the second powder.
 磁性粉末とは、磁性粒子の集合体である。非磁性粉末とは、非磁性粒子の集合体である。以下、磁性粒子のうち、第一の粉末を構成する磁性粒子を大径磁性粒子10といい、非磁性粒子のうち、第二の粉末を構成する非磁性粒子を小径非磁性粒子20という。磁性粒子とは、外部磁場により磁性を帯びることが可能な物質(磁性体)で構成される粒子であり、代表的な物質としては、酸化鉄、酸化クロム、コバルト、フェライト等がある。非磁性粒子とは、前記磁性体に含まれない物質(外部磁場を印加しても磁性を帯びない)の粒子である。本明細書において「平均粒径」とは、原則、レーザ散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布における積算値50%での粒径、すなわち50%体積平均粒子径(D50)を意味する。なお、平均粒径が50nmなどの微粒である場合、本明細書において「平均粒径」とは、走査型電子顕微鏡(SEM)観察によって測定した粒径の平均値を意味する。 Magnetic powder is an aggregate of magnetic particles. Nonmagnetic powder is an aggregate of nonmagnetic particles. Hereinafter, among the magnetic particles, magnetic particles constituting the first powder are referred to as large-diameter magnetic particles 10, and nonmagnetic particles constituting the second powder among the nonmagnetic particles are referred to as small-diameter nonmagnetic particles 20. The magnetic particles are particles composed of a substance (magnetic material) that can be made magnetic by an external magnetic field, and representative substances include iron oxide, chromium oxide, cobalt, ferrite and the like. The nonmagnetic particles are particles of a substance which is not contained in the magnetic substance (it is not magnetic even when an external magnetic field is applied). In the present specification, “average particle diameter” means, in principle, the particle diameter at an integrated value of 50% in a particle size distribution measured based on a particle size distribution measuring device based on a laser scattering / diffraction method, ie 50% volume average particle diameter ( It means D 50 ). In addition, when an average particle diameter is fine particles, such as 50 nm, in this specification, an "average particle diameter" means the average value of the particle diameter measured by scanning electron microscope (SEM) observation.
 複合磁性粉末は、高周波帯のノイズを制御するインダクタ部品(以下、高周波インダクタ部品)の磁性材料の原料として好適に用いられる。高周波インダクタ部品は、磁性材料のQ値によって、その性能が評価され得る。磁性材料のQ値が高いほど磁性材料の損失が少なく、インダクタの抵抗成分Rが小さくなるため、インダクタのQ値は高くなり、高周波インダクタ部品の性能が高い。高周波インダクタ部品として機能するには、100MHzでの磁性材料のQ値が20以上である必要があり、高周波インダクタ部品の高性能化の点で33以上であることが好ましい。高周波帯とは、数10MHz以上数GHz以下をいう。磁性材料とは、後述する第一の磁性樹脂組成物の硬化物、又は後述する第二の磁性樹脂組成物の固化物を指す。磁性材料のQ値は、実施例に記載の方法(RFインピーダンスアナライザ)と同様にして求めることができる。 The composite magnetic powder is suitably used as a raw material of a magnetic material of an inductor component (hereinafter, high frequency inductor component) for controlling noise in a high frequency band. The performance of high frequency inductor components can be evaluated by the Q value of the magnetic material. As the Q value of the magnetic material is higher, the loss of the magnetic material is smaller and the resistance component R of the inductor is smaller, so the Q value of the inductor is higher and the performance of the high frequency inductor component is higher. In order to function as a high frequency inductor component, the Q value of the magnetic material at 100 MHz needs to be 20 or more, and preferably 33 or more from the viewpoint of enhancing the performance of the high frequency inductor component. The high frequency band means several tens of MHz or more and several GHz or less. The magnetic material refers to a cured product of a first magnetic resin composition described later or a solidified product of a second magnetic resin composition described later. The Q value of the magnetic material can be determined in the same manner as the method (RF impedance analyzer) described in the examples.
 磁性材料のQ値は、複素透磁率(μ=μ’-i×μ”、iは虚数単位)の実数部(μ’)及び虚数部(μ”)で表される損失係数(tanδ=μ”/μ’)の逆数(1/tanδ=μ’/μ”)である。実数部(μ’)及び虚数部(μ”)は、周波数に依存するため、磁性材料のQ値も周波数に依存する。具体的に、ある周波数以上になると、虚数部(μ”)が急激に増大する一方で、実数部(μ’)が減少する傾向にある。100MHzでの磁性材料のQ値を高くするには、磁性材料のQ値=μ’/μ”の式から明らかなように、100MHzにおいて、実数部(μ’)が高く、虚数部(μ”)が低いことが好ましい。100MHzでの実数部(μ’)は、高周波インダクタ部品を設計する上で6.0以上であることが好ましい。 The Q value of the magnetic material is the loss coefficient (tan δ = μ) represented by the real part (μ ′) and the imaginary part (μ ′ ′) of the complex permeability (μ = μ′−i × μ ′ ′, i is an imaginary unit) It is the reciprocal of "/ μ ')" (1 / tan δ = μ' / μ "). Since the real part (μ ′) and the imaginary part (μ ′ ′) depend on the frequency, the Q value of the magnetic material also depends on the frequency. Specifically, the imaginary part (μ ′ ′) becomes abrupt above a certain frequency While the real part (μ ′) tends to decrease. In order to increase the Q value of the magnetic material at 100 MHz, the real part (μ ') is high at 100 MHz and the imaginary part (μ "is apparent from the formula of Q value of the magnetic material = μ' / μ". Is preferably low. The real part (μ ') at 100 MHz is preferably 6.0 or more in designing a high frequency inductor component.
 本実施形態では、第一の粉末の平均粒径は、第二の粉末の平均粒径の3倍以上30倍以下である。これにより、100MHzにおいて、虚数部(μ”)が低く、磁性材料のQ値を20以上とすることができる。これは、隣接する大径磁性粒子10,10同士が凝集しにくいこと、隣接する大径磁性粒子10,10同士の電気的絶縁性が確保されていることが主要因であると推測される。具体的には、処理前の磁性材料において、図1Aに示すように、大径磁性粒子10の1粒子1粒子の周囲に複数の小径非磁性粒子20が均一に配置されて、大径磁性粒子10の表面に小径非磁性粒子20からなる層21が形成されやすい。これにより、各大径磁性粒子10はそれぞれ独立した粒子として振る舞いやすくなり、隣接する大径磁性粒子10,10同士の間隔Iを適正化することができる。言い換えると、図1Bに示すように、接近する複数の大径磁性粒子10,10同士が見かけ上ひと塊の大きな粒子11として振る舞いにくくなる。さらに、第二の粉末はアルミナ粉末及びシリカ粉末の少なくとも1種からなるため、層21は絶縁性を有する。そのため、隣接する大径磁性粒子10同士にまたがって流れる粒子間渦電流が発生しにくく、渦電流損をより低減することができる。これらにより、100MHzでの虚数部(μ”)は低くなると推測される。処理前の磁性材料とは、磁性材料が硬化又は固化する前の状態であって、硬化前の第一の磁性樹脂組成物、後述する磁性樹脂ペースト、後述する磁性樹脂粉末、後述する樹脂磁性スラリー、後述する磁性樹脂シート、固化前の第二の磁性樹脂組成物などを含む。 In the present embodiment, the average particle size of the first powder is at least 3 times and not more than 30 times the average particle size of the second powder. As a result, the imaginary part (μ ′ ′) is low at 100 MHz, and the Q value of the magnetic material can be made 20 or more. This is because adjacent large-diameter magnetic particles 10, 10 are less likely to aggregate, adjacent to each other It is assumed that the main reason is that the electrical insulation of the large-diameter magnetic particles 10 is secured to each other Specifically, in the magnetic material before treatment, as shown in FIG. A plurality of small-diameter nonmagnetic particles 20 are uniformly disposed around one particle and one particle of the magnetic particle 10, and a layer 21 composed of the small-diameter nonmagnetic particles 20 is easily formed on the surface of the large-diameter magnetic particle 10. Each large diameter magnetic particle 10 tends to behave as an independent particle, and the spacing I between adjacent large diameter magnetic particles 10 can be optimized. In other words, as shown in FIG. of The magnetic particles 10, 10 do not seem to behave as a single large particle 11. In addition, the second powder is made of at least one of alumina powder and silica powder, so the layer 21 has insulation properties. The inter-particle eddy current flowing across adjacent large-diameter magnetic particles 10 is less likely to occur, and eddy current loss can be further reduced, and it is presumed that the imaginary part (μ ′ ′) at 100 MHz will be low. Ru. The magnetic material before treatment is the state before the magnetic material is cured or solidified, and the first magnetic resin composition before curing, the magnetic resin paste described later, the magnetic resin powder described later, the resin magnetic slurry described later And a magnetic resin sheet described later, a second magnetic resin composition before solidification, and the like.
 複合磁性粉末は、第一の粉末及び第二の粉末を含有する混合粉末であれば、第一の粉末及び第二の粉末とは異なる粉末をさらに含有してもよい。すなわち、複合磁性粉末の体積換算で計測した粒径分布において、その存在頻度を表すピークが少なくとも2つ存在すればよく、ピークが3つ以上あってもよい。 The composite magnetic powder may further contain a powder different from the first powder and the second powder, as long as it is a mixed powder containing the first powder and the second powder. That is, in the particle size distribution measured in terms of volume of the composite magnetic powder, at least two peaks representing the frequency of presence may be present, and three or more peaks may be present.
 複合磁性粉末を構成する磁性粒子及び非磁性粒子の形状は、特に限定されず、例えば、球状、楕円体状、扁平状、破砕状などが挙げられる。各磁性粒子及び非磁性粒子の形状は、すべて同一であっても、各々異なっていてもよい。なかでも、各磁性粒子及び非磁性粒子の形状は、すべて球状であることが好ましい。各磁性粒子及び非磁性粒子の形状がすべて球状であれば、磁性材料に対する複合磁性粉末の充填量を高くすることができる。また、各磁性粒子及び非磁性粒子の形状がすべて球状である処理前の磁性材料と、各磁性粒子及び非磁性粒子の形状がすべて球状でない処理前の磁性材料とで、処理前の磁性材料に対する複合磁性粉末の充填量が同じである場合、前者の方が処理前の磁性材料の流動性に優れる。さらに、100MHzでの磁性材料のQ値をより高めることができる。 The shapes of the magnetic particles and nonmagnetic particles constituting the composite magnetic powder are not particularly limited, and examples thereof include spheres, ellipsoids, flats, and fractures. The shapes of the magnetic particles and the nonmagnetic particles may be all the same or different. Among them, the shapes of the magnetic particles and the nonmagnetic particles are preferably all spherical. If the shapes of the magnetic particles and the nonmagnetic particles are all spherical, the filling amount of the composite magnetic powder to the magnetic material can be increased. Further, with respect to the magnetic material before treatment, the magnetic material before treatment in which the shape of each magnetic particle and nonmagnetic particle is all spherical and the magnetic material before treatment in which the shape of each magnetic particle and nonmagnetic particle is not all spherical. When the loading amount of the composite magnetic powder is the same, the former is more excellent in the fluidity of the magnetic material before the treatment. Furthermore, the Q value of the magnetic material at 100 MHz can be further enhanced.
 球状には、平均球形度が0.7以上であるものが含まれる。平均球形度は、次のようにして求めることができる。各磁性粒子のそれぞれの粒子像を走査型電子顕微鏡などで撮影し、各粒子像を画像解析装置などに取り込み、写真から各々の磁性粒子の投影面積(S)及び周囲長(L)を計測する。そして、計測結果を以下の式に代入して球形度を算出する。
球形度=4πS/L
Spheres include those having an average sphericity of 0.7 or more. The average sphericity can be determined as follows. Each particle image of each magnetic particle is photographed with a scanning electron microscope or the like, each particle image is taken into an image analysis device or the like, and the projected area (S) and circumferential length (L) of each magnetic particle are measured from the photograph. . Then, the measurement result is substituted into the following equation to calculate the sphericity.
Sphericity = 4πS / L 2
 このようにして、磁性粒子のそれぞれについて、ある一定個数(好ましくは200個以上)の粒子の球形度を求め、この平均値を平均球形度とする。 Thus, for each of the magnetic particles, the sphericity of a certain number (preferably 200 or more) of particles is determined, and this average value is taken as the average sphericity.
 {磁性粉末}
 複合磁性粉末は磁性粉末を含有する。磁性粉末は、第一の粉末を含み、他の磁性粉末をさらに含んでもよい。
{Magnetic powder}
The composite magnetic powder contains magnetic powder. The magnetic powder comprises a first powder and may further comprise other magnetic powders.
 磁性粉末は絶縁処理されていることが好ましい。すなわち、各磁性粒子はその表面が電気絶縁性皮膜で覆われていることが好ましい。これにより、100MHzにおいて、虚数部(μ”)をより低く、磁性材料のQ値をより高くすることができる。さらに、磁性材料自体の電気絶縁信頼性を向上させることができる。100MHzでの虚数部(μ”)をより低くできるのは、主に、絶縁被膜によって、隣接する磁性粒子同士にまたがって流れる粒子間渦電流が発生しにくく、渦電流損をより低減することができるためと推測される。 The magnetic powder is preferably insulated. That is, the surface of each magnetic particle is preferably covered with an electrically insulating film. This makes it possible to lower the imaginary part (μ ′ ′) at 100 MHz and further increase the Q value of the magnetic material. Further, it is possible to improve the electrical insulation reliability of the magnetic material itself. The imaginary number at 100 MHz The reason why the portion (μ ′ ′) can be made lower is estimated to be mainly because the insulating coating hardly generates interparticle eddy current flowing between adjacent magnetic particles, and eddy current loss can be further reduced. Be done.
 絶縁処理の方法としては、例えば、磁性粉末と電気絶縁性フィラーを含む水溶液とを混合して乾燥させる方法などが挙げられる。電気絶縁性フィラーの材質としては、例えば、リン酸、ホウ酸、酸化マグネシウムなどを用いることできる。この電気絶縁性皮膜は、小径非磁性粒子20からなる層21とは異なるものである。磁性粒子自体が電気絶縁性を有する場合、電気絶縁性皮膜で覆われていなくともよい。 As a method of the insulation process, for example, a method of mixing and drying a magnetic powder and an aqueous solution containing an electrically insulating filler may be mentioned. As a material of the electrically insulating filler, for example, phosphoric acid, boric acid, magnesium oxide and the like can be used. This electrically insulating film is different from the layer 21 made of the small-diameter nonmagnetic particles 20. When the magnetic particles themselves have electrical insulation, they may not be covered with the electrically insulating film.
 磁性粉末の混合割合は、非磁性粉末1質量部に対して、好ましくは4.0質量部以上19.0質量部以下、より好ましくは4.0質量部以上5.7質量部以下であり、さらに好ましくは4.3質量部以上5.2質量部以下である。磁性粉末の混合割合が上記範囲内であれば、100MHzでの磁性材料のQ値と、処理前の磁性材料の流動性とのバランスをとることができる。これは、図1Aに示すように、大径磁性粒子10の周囲に配置される非磁性粒子20からなる層21の厚みをより薄くでき、間隔Iがより適正化しやすくなるためと推測される。 The mixing ratio of the magnetic powder is preferably 4.0 parts by mass or more and 19.0 parts by mass or less, more preferably 4.0 parts by mass or more and 5.7 parts by mass or less with respect to 1 part by mass of the nonmagnetic powder. More preferably, it is 4.3 parts by mass or more and 5.2 parts by mass or less. If the mixing ratio of the magnetic powder is within the above range, the Q value of the magnetic material at 100 MHz and the flowability of the magnetic material before the treatment can be balanced. This is presumed to be because, as shown in FIG. 1A, the thickness of the layer 21 composed of the nonmagnetic particles 20 disposed around the large diameter magnetic particles 10 can be made thinner, and the spacing I can be made more appropriate.
 (第一の粉末)
 第一の粉末は、合金鉄粉末からなる。合金鉄粉末は、合金鉄粒子の集合体である。合金鉄粒子の材質は、鉄を主体とした合金である。合金鉄粒子の材質としては、例えば、センダスト(Sendust)、パーメンジュール(permendur)、ケイ素鋼(silicon steel)、パーマロイ(permalloy)、Fe-Si-Cr合金などが挙げられる。これらは高透磁率の合金鉄である。
(First powder)
The first powder comprises an alloyed iron powder. The alloyed iron powder is an aggregate of alloyed iron particles. The material of the alloy iron particles is an alloy mainly composed of iron. Examples of the material of the alloy iron particles include Sendust, permendur, silicon steel, permalloy, Fe-Si-Cr alloy and the like. These are high permeability alloy irons.
 センダストは、鉄・ケイ素・アルミニウムからなる合金(Fe-Si-Al合金)である。センダストは、飽和磁束密度、透磁率が高く、鉄損が小さく、耐摩耗性に優れている。センダストの組成の一例はFe-9.5Si-5.5Alである(数値は質量%、残りFe)。この組成領域の近傍で、磁歪定数、磁気異方性定数がともにほぼ0となる。そのため、高い透磁率と低い保磁力が得られる。パーメンジュールは、鉄及びコバルトを主成分とする合金である。パーメンジュールは、実用化された軟磁性材料の中で最大の飽和磁束密度を持っている。パーメンジュールの組成の一例はFe-49Co-2Vである(数値は質量%、残りFe)。ケイ素鋼は、鉄に少量のケイ素を加えた合金である。ケイ素鋼は、炭素を含まないため、ケイ素鉄とも呼ばれる。パーマロイは、Ni-Feの合金である。パーマロイには、パーマロイA、パーマロイB、パーマロイC、パーマロイDとJIS規格で呼ばれるものが含まれる。 Sendust is an alloy of iron, silicon and aluminum (Fe-Si-Al alloy). Sendust has high saturation magnetic flux density, high permeability, small core loss, and excellent wear resistance. An example of the composition of Sendust is Fe-9.5Si-5.5Al (numerical values are mass%, balance Fe). In the vicinity of this composition region, both of the magnetostriction constant and the magnetic anisotropy constant become approximately zero. Therefore, high permeability and low coercivity can be obtained. Permendur is an alloy based on iron and cobalt. Permendur has the largest saturation flux density among the soft magnetic materials put into practical use. An example of the composition of permendur is Fe-49Co-2V (values are mass%, balance Fe). Silicon steel is an alloy of iron and a small amount of silicon. Silicon steel is also called silicon iron because it does not contain carbon. Permalloy is an alloy of Ni-Fe. Permalloy includes permalloy A, permalloy B, permalloy C, and permalloy D, which are referred to as JIS standards.
 第一の粉末の平均粒径は、第二の粉末の平均粒径の3倍以上30倍以下であり、好ましくは3.5倍以上20倍以下、より好ましくは4倍以上15倍以下である。第一の粉末の平均粒径が、第二の粉末の平均粒径の3倍未満であると、100MHzにおいて、虚数部(μ’’)が高く、磁性材料のQ値が20未満となるおそれがある。100MHzでの虚数部(μ'')が高くなるのは、図1Cに示すように、大径磁性粒子10の表面に小径非磁性粒子20からなる層21が形成されにくくなるためと推測される。第一の粉末の平均粒径が、第二の粉末の平均粒径の30倍超であると、100MHzにおいて、実数部(μ’)が低く、磁性材料のQ値が20未満となるおそれがある。100MHzでの実数部(μ’)が低くなるのは、図1Dに示すように、大径磁性粒子10の表面に小径非磁性粒子20からなる層21が形成されやすくなり、隣接する大径磁性粒子10,10同士の間隔Iが広くなりすぎるためと推測される。なお、第一の粉末が平均粒径の異なる粉末を2種以上混合した混合粉末である場合、第一の粉末の平均粒径は混合粉末の平均粒径を指す。また、第二の粉末が平均粒径の異なる粉末を2種以上混合した混合粉末である場合も同様に、第二の粉末の平均粒径は混合粉末の平均粒径を指す。 The average particle size of the first powder is 3 to 30 times the average particle size of the second powder, preferably 3.5 to 20 times, more preferably 4 to 15 times. . If the average particle size of the first powder is less than 3 times the average particle size of the second powder, the imaginary part (μ ′ ′) may be high at 100 MHz and the Q value of the magnetic material may be less than 20. There is. The reason why the imaginary part (μ ′ ′) at 100 MHz is high is presumed to be that the layer 21 composed of the small nonmagnetic particles 20 is not easily formed on the surface of the large diameter magnetic particles 10 as shown in FIG. 1C. . If the average particle size of the first powder is more than 30 times the average particle size of the second powder, the real part (μ ') may be low at 100 MHz and the Q value of the magnetic material may be less than 20. is there. As shown in FIG. 1D, the fact that the real part (μ ′) at 100 MHz is lowered is that the layer 21 composed of the small-diameter nonmagnetic particles 20 is easily formed on the surface of the large-diameter magnetic particles 10. It is presumed that the distance I between the particles 10 is too wide. When the first powder is a mixed powder obtained by mixing two or more powders having different average particle sizes, the average particle size of the first powder indicates the average particle size of the mixed powder. Moreover, also in the case where the second powder is a mixed powder in which two or more powders having different average particle sizes are mixed, the average particle size of the second powder indicates the average particle size of the mixed powder.
 第一の粉末の平均粒径は、5μm未満であり、好ましくは0.05μm以上5μm未満、より好ましくは0.5μm以上5μm未満である。第一の粉末の平均粒径が5μm以上であると、100MHzでの虚数部(μ”)が高く、磁性材料のQ値が20未満となるおそれがある。 The average particle size of the first powder is less than 5 μm, preferably 0.05 μm or more and less than 5 μm, more preferably 0.5 μm or more and less than 5 μm. When the average particle diameter of the first powder is 5 μm or more, the imaginary part (μ ′ ′) at 100 MHz is high, and the Q value of the magnetic material may be less than 20.
 第一の粉末の含有量は、他の磁性粉末の材質、平均粒径などに応じて適宜調整すればよく、磁性粉末の総質量に対して、好ましくは20質量%以上100質量%以下、より好ましくは40質量%以上100質量%以下である。第一の粉末の含有量が上記範囲内であれば、100MHzにおいて、高い磁性材料のQ値を維持したまま、実数部(μ’)をさらに向上させることができる。 The content of the first powder may be appropriately adjusted according to the material of the other magnetic powder, the average particle diameter, etc., and is preferably 20% by mass or more and 100% by mass or less with respect to the total mass of the magnetic powder. Preferably it is 40 mass% or more and 100 mass% or less. If the content of the first powder is within the above range, the real part (μ ′) can be further improved while maintaining the Q value of the high magnetic material at 100 MHz.
 (他の磁性粉末)
 磁性粉末は、第一の粉末とは異なる他の磁性粉末を含有してもよい。他の磁性粉末は、大径磁性粒子10とは異なる他の磁性粒子の集合体である。
(Other magnetic powder)
The magnetic powder may contain other magnetic powder different from the first powder. The other magnetic powder is an aggregate of other magnetic particles different from the large-diameter magnetic particles 10.
 他の磁性粒子の材質としては、例えば、純鉄、金属酸化物、合金、樹脂などを用いることができる。純鉄は、99.90質量%以上99.95質量%以下の高純度の鉄である。具体的に、純鉄としては、カーボニル鉄、アームコ鉄、海綿鉄、電解鉄などが挙げられる。カーボニル鉄は、鉄カーボニルFe(CO)を熱分解して得られる。金属酸化物としては、例えば、フェライト、マグネタイトなどを用いることができる。フェライトは、酸化鉄を主成分とするセラミックスの総称であり、絶縁性を有する。合金としては、例えば、ニッケル、コバルト基合金などを用いることができる。なかでも、他の磁性粒子の材質としてフェライトを用いることが好ましい。磁性材料がフェライトを含有することで、100MHzでの実数部(μ’)をさらに向上させることができる。 As a material of another magnetic particle, pure iron, a metal oxide, an alloy, resin, etc. can be used, for example. Pure iron is high purity iron of 99.90% by mass or more and 99.95% by mass or less. Specifically, examples of pure iron include carbonyl iron, armco iron, sponge iron, electrolytic iron and the like. Carbonyl iron is obtained by thermal decomposition of iron carbonyl Fe (CO) 5 . As the metal oxide, for example, ferrite, magnetite or the like can be used. Ferrite is a general term for ceramics mainly composed of iron oxide, and has insulating properties. As an alloy, nickel, a cobalt base alloy, etc. can be used, for example. Among them, it is preferable to use ferrite as the material of the other magnetic particles. When the magnetic material contains ferrite, the real part (μ ′) at 100 MHz can be further improved.
 フェライトは、軟磁性を示すソフトフェライトでも強磁性を示すハードフェライトでもよい。フェライトの結晶構造としては、例えば、スピネルフェライト、六方晶フェライト、ガーネットフェライトなどが挙げられる。 The ferrite may be soft ferrite exhibiting soft magnetism or hard ferrite exhibiting ferromagnetism. Examples of the crystal structure of ferrite include spinel ferrite, hexagonal ferrite, garnet ferrite and the like.
 スピネルフェライトは、スピネル型結晶構造を持ち、組成式はMeO・Fe又はMeFe(Me:Zn、Ni、Cu、Mn、Mg、Coなどの遷移金属)で示される。スピネルフェライトのほとんどはソフトフェライトである。具体例として、マンガンマグネシウムフェライト、マンガン亜鉛フェライト、ニッケル亜鉛フェライト、銅亜鉛フェライトが挙げられる。スピネルフェライトは、透磁率が高く、また電気抵抗が高いことから高周波数領域での渦電流損失が小さいため、高周波回路用のインダクタ部品として有効である。 Spinel ferrite has a spinel type crystal structure, composition formula MeO · Fe 2 O 3 or MeFe 2 O 4: represented by (Me Zn, Ni, Cu, Mn, Mg, transition metals such as Co). Most of the spinel ferrite is soft ferrite. Specific examples thereof include manganese magnesium ferrite, manganese zinc ferrite, nickel zinc ferrite and copper zinc ferrite. Spinel ferrite is effective as an inductor component for a high frequency circuit because it has a high permeability and a high electrical resistance, so that the eddy current loss in a high frequency region is small.
 六方晶フェライトは、マグネトプランバイト型の六方晶型結晶構造を持ち、組成式はMO・6Fe又はMFe1219(M:Ba、Sr、Pbなどのアルカリ土類金属)で示される。六方晶フェライトは、マグネトプランバイト型フェライト、M型フェライトとも呼ばれる。六方晶フェライトは、スピネルフェライトと比べて磁気異方性が大きいため大きな保磁力を示す代表的なハードフェライトである。具体例として、バリウムフェライト、ストロンチウムフェライトが挙げられる。 The hexagonal ferrite has a magnetoplumbite type hexagonal crystal structure, and the composition formula is represented by MO · 6Fe 2 O 3 or MFe 12 O 19 (M: alkaline earth metal such as Ba, Sr, Pb, etc.) . The hexagonal ferrite is also called magnetoplumbite ferrite or M-type ferrite. Hexagonal ferrite is a typical hard ferrite exhibiting a large coercive force because of its large magnetic anisotropy compared to spinel ferrite. Specific examples thereof include barium ferrite and strontium ferrite.
 ガーネットフェライトは、ガーネット型結晶構造を持ち、組成式は3R・5Fe又はRFe12(R:Y、Sm、Gdなどの希土類元素)で示される。ガーネットフェライトは、RIG(Rare-earth Iron Garnet、希土類鉄ガーネット)とも呼ばれる。代表的なものはYIG(Yttrium Iron Garnet、イットリウム鉄ガーネット)である。ガーネットフェライトは、高周波領域での磁気損失が小さいため、マイクロ波用のインダクタ部品として有効である。 The garnet ferrite has a garnet-type crystal structure, and the composition formula is represented by 3R 2 O 3. 5 Fe 2 O 3 or R 3 Fe 5 O 12 (R: rare earth elements such as Y, Sm, Gd, etc.). Garnet ferrite is also called RIG (Rare-earth Iron Garnet, rare earth iron garnet). A typical example is YIG (Yttrium Iron Garnet). Garnet ferrite is effective as an inductor component for microwaves because the magnetic loss in a high frequency region is small.
 他の磁性粉末の平均粒径は、特に限定されず、好ましくは0.05μm以上5μm以下、より好ましくは0.5μm以上5μm以下である。他の磁性粒径の平均粒径が上記範囲内であれば、100MHzでの虚数部(μ”)をより低くすることができる。 The average particle size of the other magnetic powder is not particularly limited, and is preferably 0.05 μm or more and 5 μm or less, more preferably 0.5 μm or more and 5 μm or less. If the average particle size of the other magnetic particle sizes is within the above range, the imaginary part (μ ′ ′) at 100 MHz can be made lower.
 他の磁性粉末の混合割合は、他の磁性粉末の平均粒径等に応じて、適宜調整すればよい。他の磁性粉末の平均粒径が0.02μm以上0.1μm以下の場合、他の磁性粉末の混合割合は、第一の粉末に対して、好ましくは12質量%未満、より好ましくは0.5質量%以上10質量%以下である。他の磁性粉末の平均粒径が上記範囲内であって、その混合割合が上記範囲内であれば、100MHzでの磁性材料のQ値を20以上とすることができるとともに、得られる磁性樹脂シートは流動性に優れる。 The mixing ratio of the other magnetic powder may be appropriately adjusted according to the average particle diameter of the other magnetic powder and the like. When the average particle size of the other magnetic powder is 0.02 μm or more and 0.1 μm or less, the mixing ratio of the other magnetic powder is preferably less than 12% by mass, more preferably 0.5, with respect to the first powder. It is mass% or more and 10 mass% or less. When the average particle diameter of the other magnetic powder is in the above range and the mixing ratio is in the above range, the Q value of the magnetic material at 100 MHz can be made 20 or more, and the magnetic resin sheet obtained Is excellent in fluidity.
 {非磁性粉末}
 複合磁性粉末は非磁性粉末を含有する。非磁性粉末は、第二の粉末を含み、他の非磁性粉末をさらに含んでもよい。
{Non-magnetic powder}
The composite magnetic powder contains nonmagnetic powder. The nonmagnetic powder includes the second powder and may further include other nonmagnetic powder.
 (第二の粉末)
 第二の粉末は、シリカ粉末及びアルミナ粉末の少なくとも1種である。すなわち、第二の粉末の構成は、シリカ粉末のみからなる構成、アルミナ粉末のみからなる構成、又はシリカ粉末及びアルミナ粉末からなる構成である。シリカ粉末及びアルミナ粉末は、ともに高い電気的絶縁性を有するので、第二の粉末によって渦電流の流れを抑制し得る。
(Second powder)
The second powder is at least one of silica powder and alumina powder. That is, the composition of the second powder is a composition consisting only of silica powder, a composition consisting only of alumina powder, or a composition consisting of silica powder and alumina powder. Since the silica powder and the alumina powder both have high electrical insulation, the second powder can suppress the flow of eddy current.
 シリカ粉末はシリカ粒子の集合体である。シリカ粒子としては、例えば、結晶性シリカ粒子、非結晶シリカ粒子などを用いることができる。シリカ粒子は多孔質性であってもよい。 Silica powder is an aggregate of silica particles. As a silica particle, a crystalline silica particle, a non-crystalline silica particle, etc. can be used, for example. The silica particles may be porous.
 アルミナ粉末はアルミナ粒子の集合体である。アルミナ粒子の材質としては、例えば、α-アルミナ、γ-アルミナ、δ-アルミナ、θ-アルミナ、η-アルミナ、κ-アルミナなどを用いることができる。 Alumina powder is an aggregate of alumina particles. As a material of the alumina particles, for example, α-alumina, γ-alumina, δ-alumina, θ-alumina, η-alumina, κ-alumina and the like can be used.
 第二の粉末の平均粒径は、第一の粉末の平均粒径が第二の粉末の平均粒径の3倍以上30倍以下となるように第一の粉末の平均粒径などに応じて調整され、好ましくは0.05μm以上5μm以下、より好ましくは0.5μm以上2μm以下である。第二の粉末の平均粒径が上記範囲内であれば、処理前の磁性材料の流動性を確保しやすくなる。 The average particle diameter of the second powder is in accordance with the average particle diameter of the first powder, etc. so that the average particle diameter of the first powder is 3 times to 30 times the average particle diameter of the second powder It is adjusted, preferably 0.05 μm or more and 5 μm or less, more preferably 0.5 μm or more and 2 μm or less. If the average particle diameter of the second powder is within the above range, the flowability of the magnetic material before the treatment can be easily secured.
 第二の粉末の含有量は、他の非磁性粉末の材質、平均粒径などに応じて適宜調整すればよく、非磁性粉末の総質量に対して、好ましくは50質量%以上100質量%以下、より好ましくは70質量%以上100質量%以下である。 The content of the second powder may be appropriately adjusted according to the material, average particle diameter, and the like of the other nonmagnetic powder, and is preferably 50% by mass to 100% by mass with respect to the total mass of the nonmagnetic powder. More preferably, they are 70 mass% or more and 100 mass% or less.
 (他の非磁性粉末)
 非磁性粉末は、他の非磁性粉末をさらに含有してもよい。他の非磁性粉末は、小径非磁性粒子20とは異なる他の非磁性粒子の集合体である。
(Other nonmagnetic powder)
The nonmagnetic powder may further contain other nonmagnetic powder. The other nonmagnetic powder is an aggregate of other nonmagnetic particles different from the small diameter nonmagnetic particles 20.
 他の非磁性粒子の材質としては、例えば、カーボンブラック、チタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO、SiO、Crなどを用いることができる。 As materials of other nonmagnetic particles, for example, carbon black, titanium oxide, cerium oxide, tin oxide, tungsten oxide, ZnO, ZrO 2 , SiO 2 , Cr 2 O 3 or the like can be used.
 他の非磁性粉末は電気的絶縁性を有することが好ましい。すなわち、他の非磁性粒子はその表面が電気絶縁性皮膜で覆われていることが好ましい。絶縁処理の方法としては、例えば、非磁性粉末と電気絶縁性フィラーを含む水溶液とを混合して乾燥させる方法などが挙げられる。電気絶縁性フィラーの材質としては、例えば、リン酸、ホウ酸、酸化マグネシウムなどを用いることできる。他の非磁性粒子自体が電気絶縁性を有する場合、電気絶縁性皮膜で覆われていなくともよい。他の非磁性粉末の平均粒径は、特に限定されず、第二の粉末の平均粒径と同程度であればよい。 The other nonmagnetic powder preferably has electrical insulation. That is, the surface of the other nonmagnetic particles is preferably covered with an electrically insulating film. As a method of the insulation treatment, for example, a method of mixing and drying a nonmagnetic powder and an aqueous solution containing an electrically insulating filler may be mentioned. As a material of the electrically insulating filler, for example, phosphoric acid, boric acid, magnesium oxide and the like can be used. When the other nonmagnetic particles themselves have electrical insulation, they may not be covered with the electrical insulation film. The average particle size of the other nonmagnetic powder is not particularly limited, and may be about the same as the average particle size of the second powder.
 [磁性樹脂組成物]
 本実施形態に係る磁性樹脂組成物は、複合磁性粉末と、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂と、を含有する。磁性樹脂組成物は、硬化性樹脂を含有する樹脂組成物(以下、第一の磁性樹脂組成物という)であってもよく、熱可塑性樹脂を含有する樹脂組成物(以下、第二の磁性樹脂組成物という)であってもよい。
[Magnetic resin composition]
The magnetic resin composition according to the present embodiment contains a composite magnetic powder, and at least one resin selected from the group consisting of a curable resin and a thermoplastic resin. The magnetic resin composition may be a resin composition containing a curable resin (hereinafter referred to as a first magnetic resin composition), and a resin composition containing a thermoplastic resin (hereinafter referred to as a second magnetic resin) It may be called a composition).
 磁性樹脂組成物の硬化物又は固化物は、周波数100MHzでのQ値が20以上であることが好ましい。すなわち、第一の磁性樹脂組成物の硬化物は、周波数100MHzでのQ値が20以上であることが好ましく、第二の磁性樹脂組成物の固化物は、周波数100MHzでのQ値が20以上であることが好ましい。この場合、磁性樹脂組成物を、高周波インダクタ部品の磁性材料として好適に用いることができる。磁性樹脂組成物の硬化物又は固化物は、周波数100MHzでのQ値が33以上であることがより好ましい。 The cured product or solidified product of the magnetic resin composition preferably has a Q value of 20 or more at a frequency of 100 MHz. That is, the cured product of the first magnetic resin composition preferably has a Q value of 20 or more at a frequency of 100 MHz, and the solidified product of the second magnetic resin composition has a Q value of 20 or more at a frequency of 100 MHz. Is preferred. In this case, the magnetic resin composition can be suitably used as the magnetic material of the high frequency inductor component. The cured product or solidified product of the magnetic resin composition more preferably has a Q value of 33 or more at a frequency of 100 MHz.
 {第一の磁性樹脂組成物}
 第一の磁性樹脂組成物は、複合磁性粉末と、硬化性樹脂とを含有する。
{First magnetic resin composition}
The first magnetic resin composition contains a composite magnetic powder and a curable resin.
 第一の磁性樹脂組成物は、硬化性樹脂を含有する。硬化性樹脂の例は、熱硬化性樹脂及び光硬化性樹脂を含む。第一の磁性樹脂組成物は、熱硬化性樹脂のみを含有してもよく、光硬化性樹脂のみを含有してもよく、熱硬化性樹脂と光硬化性樹脂との両方を含有してもよい。 The first magnetic resin composition contains a curable resin. Examples of curable resins include thermosetting resins and photocurable resins. The first magnetic resin composition may contain only a thermosetting resin, may contain only a photocurable resin, or may contain both a thermosetting resin and a photocurable resin. Good.
 光硬化性樹脂は、光を吸収して架橋反応を起こし得る反応性化合物である。光硬化性樹脂は特に限定されず、光硬化性を有する樹脂であればよい。光硬化性樹脂として、例えば、重合性不飽和基を有する樹脂を用いてもよい。光硬化性樹脂の例は、メタクリル樹脂、アクリル樹脂、エポキシ樹脂、及びオキセタン樹脂を含む。第一の磁性樹脂組成物に含有される光硬化性樹脂は、1種のみでも2種以上でもよい。光硬化性樹脂は、常温において液状でも、粉末状などの固形でもよい。 The photocurable resin is a reactive compound capable of absorbing light and causing a crosslinking reaction. The photocurable resin is not particularly limited as long as it is a photocurable resin. As the photocurable resin, for example, a resin having a polymerizable unsaturated group may be used. Examples of photocurable resins include methacrylic resins, acrylic resins, epoxy resins, and oxetane resins. The photocurable resin contained in the first magnetic resin composition may be used alone or in combination of two or more. The photocurable resin may be liquid at room temperature or solid such as powder.
 メタクリル樹脂の例は、メタクリル酸エステル、ポリメタクリル酸エステル、及びエチレン-メタクリル酸共重合体を含む。 Examples of methacrylic resins include methacrylic acid esters, polymethacrylic acid esters, and ethylene-methacrylic acid copolymers.
 アクリル樹脂の例は、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、アクリル酸エステル、及びポリアクリル酸エステルを含む。 Examples of acrylic resins include ethylene-acrylic acid copolymers, ethylene-methyl acrylic acid copolymers, acrylic acid esters, and polyacrylic acid esters.
 エポキシ樹脂は、1分子中に1個のエポキシ基を有する単官能エポキシ樹脂でもよく、1分子中に2個以上のエポキシ基を有する多官能エポキシ樹脂でもよい。多官能エポキシ樹脂の例は、ポリブタジエンエポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、脂肪族エポキシ化合物、ビフェニル型エポキシ、グリシジルアミン型エポキシ化合物、水添ビスフェノールA型エポキシ化合物などのアルコール型エポキシ化合物、エポキシ変性シリコーン、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物等のノボラック型エポキシ化合物、脂環式エポキシ化合物、異節環状型エポキシ化合物、多官能性エポキシ化合物、グリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、臭素化エポキシ化合物等のハロゲン化エポキシ化合物、ゴム変成エポキシ化合物、ウレタン変成エポキシ化合物、エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン-スチレンブロック共重合体、エポキシ基含有ポリエステル化合物、エポキシ基含有ポリウレタン化合物、エポキシ基含有アクリル化合物を含む。これらのエポキシ樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。 The epoxy resin may be a monofunctional epoxy resin having one epoxy group in one molecule, or a polyfunctional epoxy resin having two or more epoxy groups in one molecule. Examples of polyfunctional epoxy resins include polybutadiene epoxy resins, bisphenol A epoxy resins, bisphenol type epoxy compounds such as bisphenol F epoxy resins, naphthalene type epoxy compounds, aliphatic epoxy compounds, biphenyl type epoxy, glycidyl amine type epoxy compounds, Alcohol type epoxy compounds such as hydrogenated bisphenol A type epoxy compounds, epoxy modified silicones, phenol novolac type epoxy compounds, novolac type epoxy compounds such as cresol novolac type epoxy compounds, alicyclic epoxy compounds, heterocyclic epoxy type compounds, many Halogenated epoxy compounds such as functional epoxy compounds, glycidyl ether type epoxy compounds, glycidyl ester type epoxy compounds, brominated epoxy compounds, rubber modified epoxy compounds Including styrene block copolymer, epoxy group-containing polyester compounds, epoxy group-containing polyurethane compound, an epoxy group-containing acrylic compound - shea compounds, urethane modified epoxy compounds, epoxidized polybutadiene, epoxidized styrene - butadiene. These epoxy resins may be used alone or in combination of two or more.
 オキセタン樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。 The oxetane resins may be used alone or in combination of two or more.
 第一の磁性樹脂組成物が光硬化性樹脂を含有する場合、第一の磁性樹脂組成物は、必要に応じて光重合開始剤を含有してもよい。光重合開始剤の例は、光ラジカル発生開始剤及び光酸発生開始剤を含む。第一の磁性樹脂組成物がメタクリル樹脂及びアクリル樹脂のうちの少なくとも一方を含有する場合、第一の磁性樹脂組成物は、光ラジカル発生開始剤を含有することが好ましい。光ラジカル発生開始剤は特に限定されず、ラジカルを発生させて光重合反応を開始させるものであればよい。また、第一の磁性樹脂組成物がエポキシ樹脂及びオキセタン樹脂のうちの少なくとも一方を含有する場合、第一の磁性樹脂組成物は、光酸発生開始剤を含有することが好ましい。光酸発生開始剤は特に限定されず、イオン性光酸発生開始剤であってもよく、非イオン性光酸発生開始剤であってもよい。 When the first magnetic resin composition contains a photocurable resin, the first magnetic resin composition may contain a photopolymerization initiator as needed. Examples of photopolymerization initiators include photo radical generation initiators and photo acid generation initiators. When the first magnetic resin composition contains at least one of a methacrylic resin and an acrylic resin, the first magnetic resin composition preferably contains a photoradical generation initiator. The photo radical generation initiator is not particularly limited as long as it generates radicals to initiate the photopolymerization reaction. When the first magnetic resin composition contains at least one of epoxy resin and oxetane resin, the first magnetic resin composition preferably contains a photoacid generation initiator. The photoacid generation initiator is not particularly limited, and may be an ionic photoacid generation initiator or a non-ionic photoacid generation initiator.
 第一の磁性樹脂組成物は熱硬化性樹脂を含有することが好ましい。熱硬化性樹脂は、熱により架橋反応を起こしうる反応性化合物である。熱硬化性樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、イミド樹脂などを用いることができる。多官能エポキシ樹脂は、1分子中に3個以上のエポキシ基を有する樹脂である。第一の磁性樹脂組成物に含有される熱硬化性樹脂は1種のみでも2種以上でもよい。熱硬化性樹脂は、常温において液状でも、粉末状などの固形でもよい。熱硬化性樹脂の含有量は、第一の磁性樹脂組成物中の樹脂成分の総質量に対して、好ましく75質量%以上100質量%以下である。 The first magnetic resin composition preferably contains a thermosetting resin. A thermosetting resin is a reactive compound which can cause a crosslinking reaction by heat. As the thermosetting resin, for example, bisphenol A epoxy resin, bisphenol F epoxy resin, polyfunctional epoxy resin, biphenyl epoxy resin, cresol novolac epoxy resin, phenol novolac epoxy resin, imide resin can be used. . The polyfunctional epoxy resin is a resin having three or more epoxy groups in one molecule. The thermosetting resin contained in the first magnetic resin composition may be used alone or in combination of two or more. The thermosetting resin may be liquid at room temperature or solid such as powder. The content of the thermosetting resin is preferably 75% by mass or more and 100% by mass or less based on the total mass of the resin component in the first magnetic resin composition.
 第一の磁性樹脂組成物が熱硬化性樹脂を含有する場合、第一の磁性樹脂組成物は、硬化剤をさらに含有していてもよい。硬化剤は、熱硬化性樹脂を硬化させる添加剤である。硬化剤として、ジシアンジアミド、フェノール系硬化剤、シクロペンタジエン、アミン系硬化剤、酸無水物などを用いることができる。フェノール系硬化剤は、1分子中に2個以上のフェノール性水酸基を有する。フェノール系硬化剤として、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ナフタレン型フェノール樹脂、ビスフェノール樹脂などを用いることができる。ビスフェノール樹脂として、例えば、ビスフェノールA樹脂、ビスフェノールF樹脂などを用いることができる。硬化剤は、常温において、液状でもあっても、固形状であってもよい。硬化剤の含有量は、第一の磁性樹脂組成物の樹脂成分の総質量に対して、好ましくは20質量%以下である。 When the first magnetic resin composition contains a thermosetting resin, the first magnetic resin composition may further contain a curing agent. The curing agent is an additive that cures the thermosetting resin. As a curing agent, dicyandiamide, a phenol based curing agent, cyclopentadiene, an amine based curing agent, an acid anhydride or the like can be used. The phenolic curing agent has two or more phenolic hydroxyl groups in one molecule. As the phenol-based curing agent, for example, phenol novolak resin, phenol aralkyl resin, naphthalene type phenol resin, bisphenol resin and the like can be used. As a bisphenol resin, bisphenol A resin, bisphenol F resin etc. can be used, for example. The curing agent may be liquid or solid at normal temperature. The content of the curing agent is preferably 20% by mass or less based on the total mass of the resin component of the first magnetic resin composition.
 第一の磁性樹脂組成物が熱硬化性樹脂を含有する場合、第一の磁性樹脂組成物は、硬化促進剤をさらに含有していてもよい。硬化促進剤として、例えば、三級アミン、三級アミン塩、イミダゾール、ホスフィン、ホスホニウム塩などを用いることができる。イミダゾールとして、2-エチル-4-メチルイミダゾールなどを用いることができる。硬化促進剤の含有量は、熱硬化性樹脂及び硬化剤の材質に応じて適宜調整すればよい。 When the first magnetic resin composition contains a thermosetting resin, the first magnetic resin composition may further contain a curing accelerator. As a curing accelerator, for example, tertiary amines, tertiary amine salts, imidazoles, phosphines, phosphonium salts and the like can be used. As the imidazole, 2-ethyl-4-methylimidazole can be used. The content of the curing accelerator may be appropriately adjusted according to the materials of the thermosetting resin and the curing agent.
 第一の磁性樹脂組成物は、熱可塑性樹脂をさらに含有していてもよい。これにより、後述する磁性樹脂シート1に折り曲げ追従性、弾力性などを付与することができる。熱可塑性樹脂としては、フェノキシ樹脂などを用いることができる。熱可塑性樹脂の含有量は、第一の磁性樹脂組成物の樹脂成分の総質量に対して、好ましくは2質量%以上50質量%以下である。 The first magnetic resin composition may further contain a thermoplastic resin. Thereby, bending followability, elasticity etc. can be provided to the magnetic resin sheet 1 mentioned later. A phenoxy resin etc. can be used as a thermoplastic resin. The content of the thermoplastic resin is preferably 2% by mass or more and 50% by mass or less based on the total mass of the resin component of the first magnetic resin composition.
 第一の磁性樹脂組成物は、表面処理剤をさらに含有していてもよい。表面処理剤としては、例えば、シランカップリング剤、分散剤などを用いることができる。シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリエトキシシランなどを用いることができる。分散剤としては、例えば、高級脂肪酸リン酸エステル、高級脂肪酸リン酸エステルのアミン塩、高級脂肪酸リン酸エステルのアルキレンオキサイドなどを用いることができる。高級脂肪酸リン酸エステルとしては、オクチルリン酸エステル、デシルリン酸エステル、ラウリルリン酸エステルなどを用いることができる。表面処理剤の含有量は、第一の磁性樹脂組成物の樹脂成分の総質量に対して、好ましくは0質量%以上30質量%以下である。 The first magnetic resin composition may further contain a surface treatment agent. As a surface treatment agent, a silane coupling agent, a dispersing agent, etc. can be used, for example. As the silane coupling agent, for example, 3-glycidyloxypropyltriethoxysilane can be used. As the dispersant, for example, higher fatty acid phosphates, amine salts of higher fatty acid phosphates, alkylene oxides of higher fatty acid phosphates, and the like can be used. As the higher fatty acid phosphate, octyl phosphate, decyl phosphate, lauryl phosphate and the like can be used. The content of the surface treatment agent is preferably 0% by mass or more and 30% by mass or less based on the total mass of the resin component of the first magnetic resin composition.
 第一の磁性樹脂組成物は、エラストマーをさらに含有していてもよい。これにより、第一の磁性樹脂組成物にエラストマーが含有されていると、第一の磁性樹脂組成物の硬化物にゴム弾性を付与することができる。エラストマーとして、例えば、熱硬化性エラストマー、熱可塑性エラストマーを用いることができる。 The first magnetic resin composition may further contain an elastomer. Thus, when the first magnetic resin composition contains an elastomer, rubber elasticity can be imparted to the cured product of the first magnetic resin composition. As an elastomer, for example, a thermosetting elastomer or a thermoplastic elastomer can be used.
 第一の磁性樹脂組成物は、溶剤をさらに含有していてもよい。メチルエチルケトン(MEK)、N,N-ジメチルホルムアミド(DMF)、アセトン、メチルイソブチルケトン(MIBK)などを用いることができる。溶剤を1種のみ使用してもよく、2種以上混合して使用してもよい。溶剤を2種以上混合する場合、混合比(質量比及び体積比)は特に限定されない。 The first magnetic resin composition may further contain a solvent. Methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF), acetone, methyl isobutyl ketone (MIBK) and the like can be used. The solvents may be used alone or in combination of two or more. When two or more solvents are mixed, the mixing ratio (mass ratio and volume ratio) is not particularly limited.
 複合磁性粉末の含有量は、第一の磁性樹脂組成物の固形分全体の70質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。複合磁性粉末の含有量が、磁性樹脂組成物の固形分全体の70質量%以上であると、100MHzでの実数部(μ’)が6.0以上となりやすく、高周波インダクタを良好に設計することができる。また、複合磁性粉末の含有量は、第一の磁性樹脂組成物の固形分全体の99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98.5質量%以下であることが特に好ましい。複合磁性粉末の含有量が、磁性樹脂組成物の固形分全体の99.5質量%以下であると、磁性材料のQ値が高くなりやすい。ここで、磁性樹脂組成物の固形分とは、磁性樹脂組成物から溶剤を除いた分である。 The content of the composite magnetic powder is preferably 70% by mass or more of the total solid content of the first magnetic resin composition, more preferably 75% by mass or more, particularly preferably 80% by mass or more preferable. If the content of the composite magnetic powder is 70% by mass or more of the total solid content of the magnetic resin composition, the real part (μ ′) at 100 MHz tends to be 6.0 or more, and the high frequency inductor should be designed well Can. In addition, the content of the composite magnetic powder is preferably 99.5% by mass or less, more preferably 99% by mass or less, of the total solid content of the first magnetic resin composition, and 98.5% by mass It is particularly preferred that When the content of the composite magnetic powder is 99.5% by mass or less of the total solid content of the magnetic resin composition, the Q value of the magnetic material tends to be high. Here, the solid content of the magnetic resin composition is the amount obtained by removing the solvent from the magnetic resin composition.
 第一の磁性樹脂組成物の調製方法としては、例えば、複合磁性粉末と、硬化性樹脂と、必要に応じて硬化剤、硬化促進剤、熱可塑性樹脂、表面処理剤、エラストマーなどを混合する方法などが挙げられる。 As a method of preparing the first magnetic resin composition, for example, a method of mixing a composite magnetic powder, a curable resin, and as necessary, a curing agent, a curing accelerator, a thermoplastic resin, a surface treatment agent, an elastomer, etc. Etc.
 後述するように、第一の磁性樹脂組成物は、ペースト状、スラリー状、粉状、シート状のいずれの形態もとり得るので、その後の工程に応じて、適切な形態の第一の磁性樹脂組成物を使用することができる。その後の工程としては、例えば、金型を使用したトランスファー成形の工程や、加熱加圧して埋め込み成形する工程などが挙げられる。 As described later, since the first magnetic resin composition can be in the form of paste, slurry, powder, or sheet, the first magnetic resin composition in an appropriate form according to the subsequent steps. Can be used. The subsequent steps include, for example, a transfer molding step using a mold, and a heating and pressurizing embedded molding step.
 {第二の磁性樹脂組成物}
 第二の磁性樹脂組成物(以下、第二の磁性樹脂組成物)は、複合磁性粉末と、熱可塑性樹脂とを含有する。
{Second magnetic resin composition}
The second magnetic resin composition (hereinafter, the second magnetic resin composition) contains a composite magnetic powder and a thermoplastic resin.
 熱可塑性樹脂は、ガラス転移温度又は融点まで加熱することによって軟化し、ガラス転移温度又は融点より低い温度に冷却することによって固化する化合物である。熱可塑性樹脂として、例えば、ナイロンなどを用いることができる。ナイロンとしては、例えば、ナイロン6などを用いることができる。 Thermoplastic resins are compounds that soften by heating to the glass transition temperature or melting point and solidify by cooling to a temperature below the glass transition temperature or melting point. As a thermoplastic resin, nylon etc. can be used, for example. As nylon, nylon 6 etc. can be used, for example.
 第二の磁性樹脂組成物は、硬化性樹脂をさらに含有していてもよい。これにより、後述する磁性樹脂シート1に良好な強度を付与することができる。硬化性樹脂としては、上記の第一磁性樹脂組成物が含有しうる硬化性樹脂を用いることができる。硬化性樹脂の含有量は、第二の磁性樹脂組成物の樹脂成分の総質量に対して、好ましくは2質量%以上50質量%以下である。 The second magnetic resin composition may further contain a curable resin. Thereby, favorable intensity | strength can be provided to the magnetic resin sheet 1 mentioned later. As a curable resin, curable resin which the said 1st magnetic resin composition may contain can be used. The content of the curable resin is preferably 2% by mass or more and 50% by mass or less based on the total mass of the resin component of the second magnetic resin composition.
 第二の磁性樹脂組成物は、表面処理剤をさらに含有していてもよい。表面処理剤としては、例えば、シランカップリング剤、分散剤などを用いることができる。シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリエトキシシランなどを用いることができる。分散剤としては、例えば、高級脂肪酸リン酸エステル、高級脂肪酸リン酸エステルのアミン塩、高級脂肪酸リン酸エステルのアルキレンオキサイドなどを用いることができる。高級脂肪酸リン酸エステルとしては、オクチルリン酸エステル、デシルリン酸エステル、ラウリルリン酸エステルなどを用いることができる。表面処理剤の含有量は、第二の磁性樹脂組成物の樹脂成分の総質量に対して、好ましくは0質量%以上30質量%以下である。 The second magnetic resin composition may further contain a surface treatment agent. As a surface treatment agent, a silane coupling agent, a dispersing agent, etc. can be used, for example. As the silane coupling agent, for example, 3-glycidyloxypropyltriethoxysilane can be used. As the dispersant, for example, higher fatty acid phosphates, amine salts of higher fatty acid phosphates, alkylene oxides of higher fatty acid phosphates, and the like can be used. As the higher fatty acid phosphate, octyl phosphate, decyl phosphate, lauryl phosphate and the like can be used. The content of the surface treatment agent is preferably 0% by mass or more and 30% by mass or less based on the total mass of the resin component of the second magnetic resin composition.
 第二の磁性樹脂組成物は、エラストマーをさらに含有していてもよい。これにより、第二の磁性樹脂組成物の固化物にゴム弾性を付与することができる。エラストマーとしては、例えば、熱硬化性エラストマー、熱可塑性エラストマーなどを用いることができる。エラストマーの含有量は、第二の磁性樹脂組成物の使用用途などによって、適宜調整すればよい。 The second magnetic resin composition may further contain an elastomer. Thus, rubber elasticity can be imparted to the solidified product of the second magnetic resin composition. As an elastomer, a thermosetting elastomer, a thermoplastic elastomer, etc. can be used, for example. The content of the elastomer may be appropriately adjusted depending on the application of the second magnetic resin composition and the like.
 第二の磁性樹脂組成物は、溶剤をさらに含有していてもよい。溶剤として、メチルエチルケトン(MEK)、N,N-ジメチルホルムアミド(DMF)、アセトン、メチルイソブチルケトン(MIBK)などを用いることができる。溶剤を1種のみ使用してもよく、2種以上混合して使用してもよい。溶剤を2種以上混合する場合、混合比(質量比及び体積比)は特に限定されない。 The second magnetic resin composition may further contain a solvent. As a solvent, methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF), acetone, methyl isobutyl ketone (MIBK) or the like can be used. The solvents may be used alone or in combination of two or more. When two or more solvents are mixed, the mixing ratio (mass ratio and volume ratio) is not particularly limited.
 複合磁性粉末の含有量は、第二の磁性樹脂組成物の固形分全体の70質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。複合磁性粉末の含有量が、磁性樹脂組成物の固形分全体の70質量%以上であると、第二の磁性樹脂組成物に占める複合磁性粉末の割合が高くなり、複素透磁率の高い固化物を得ることができる。また、複合磁性粉末の含有量は、第二の磁性樹脂組成物の固形分全体の99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98.5質量%以下であることが特に好ましい。複合磁性粉末の含有量が、磁性樹脂組成物の固形分全体の99.5質量%以下であると、成形時における第二の磁性樹脂組成物の流動性を確保することができ、しかも複素透磁率の高い固化物を得ることができる。ここで、磁性樹脂組成物の固形分とは、磁性樹脂組成物から溶剤を除いた分である。 The content of the composite magnetic powder is preferably 70% by mass or more of the total solid content of the second magnetic resin composition, more preferably 75% by mass or more, particularly preferably 80% by mass or more preferable. When the content of the composite magnetic powder is 70% by mass or more of the total solid content of the magnetic resin composition, the ratio of the composite magnetic powder to the second magnetic resin composition becomes high, and the solidified product with high complex magnetic permeability You can get Further, the content of the composite magnetic powder is preferably 99.5% by mass or less, more preferably 99% by mass or less, of the total solid content of the second magnetic resin composition, and 98.5% by mass It is particularly preferred that When the content of the composite magnetic powder is 99.5% by mass or less of the total solid content of the magnetic resin composition, the flowability of the second magnetic resin composition at the time of molding can be secured, and the complex permeability It is possible to obtain a solidified product with high magnetic permeability. Here, the solid content of the magnetic resin composition is the amount obtained by removing the solvent from the magnetic resin composition.
 第二の磁性樹脂組成物の調整方法としては、例えば、複合磁性粉末及び熱可塑性樹脂、必要に応じてエラストマーを混練機に投入し、溶融混練する方法などが挙げられる。混練機として、例えば、スクリュー押出機、ニーダ、バンバリーミキサー、2軸混練押出機などを用いることができる。さらに、得られる第二の磁性樹脂組成物を所望の形状に成形してもよい。第二の磁性樹脂組成物の成形方法としては、押出成形、射出成形などが挙げられる。 As a method of preparing the second magnetic resin composition, for example, a method of charging the composite magnetic powder and the thermoplastic resin, and, if necessary, an elastomer into a kneader, and melt-kneading may be mentioned. As a kneader, for example, a screw extruder, a kneader, a Banbury mixer, a twin-screw kneader, or the like can be used. Furthermore, the second magnetic resin composition obtained may be molded into a desired shape. The second magnetic resin composition may be formed by extrusion molding, injection molding, or the like.
 後述するように、第二の磁性樹脂組成物は、ペースト状、スラリー状、粉状、シート状のいずれの形態もとり得るので、その後の工程に応じて、適切な形態の第二の磁性樹脂組成物を使用することができる。その後の工程としては、例えば、金型を使用したトランスファー成形の工程や、加熱加圧して埋め込み成形する工程などが挙げられる。 As described later, since the second magnetic resin composition can be in the form of paste, slurry, powder, or sheet, the second magnetic resin composition of an appropriate form according to the subsequent steps. Can be used. The subsequent steps include, for example, a transfer molding step using a mold, and a heating and pressurizing embedded molding step.
 [磁性樹脂ペースト]
 本実施形態に係る磁性樹脂ペースト(以下、磁性樹脂ペースト)は、磁性樹脂組成物が、ペースト状である。ペースト状とは、磁性樹脂組成物が室温において流動性を有することをいう。磁性樹脂組成物は、第一の磁性樹脂組成物であってもよく、第二の磁性樹脂組成物であってもよい。すなわち、磁性樹脂ペーストは、第一の磁性樹脂組成物がペースト状であってもよく、第二の磁性樹脂組成物がペースト状であってもよい。
[Magnetic resin paste]
In the magnetic resin paste (hereinafter, magnetic resin paste) according to the present embodiment, the magnetic resin composition is paste-like. The pasty state means that the magnetic resin composition has fluidity at room temperature. The magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. That is, in the magnetic resin paste, the first magnetic resin composition may be in the form of paste, and the second magnetic resin composition may be in the form of paste.
 磁性樹脂ペーストにおける磁性粉末の充填率(以下、磁性粉末のコンテント)は、磁性樹脂ペーストの固形分全体に対して、好ましくは20体積%以上99体積%以下、より好ましくは53体積%以上95体積%以下である。磁性粉末のコンテントが上記範囲内であれば、100MHzでの実数部(μ’)を高くすることができるとともに、磁性樹脂ペーストの流動性を、制御しやすくなる。磁性粉末のコンテントの算出方法は、磁性樹脂ペーストの固形分を構成する各材質の配合量と、各材質の比重とから算出した。なお、磁性樹脂ペーストにおいて、磁性樹脂組成物が溶剤を含有する場合、磁性樹脂ペーストの固形分とは、磁性樹脂組成物から溶剤を除いた分である。 The filling ratio of the magnetic powder in the magnetic resin paste (hereinafter referred to as the content of the magnetic powder) is preferably from 20% by volume to 99% by volume, more preferably from 53% by volume to 95% by volume with respect to the entire solid content of the magnetic resin paste. % Or less. If the content of the magnetic powder is within the above range, the real part (μ ′) at 100 MHz can be increased, and the flowability of the magnetic resin paste can be easily controlled. The content of the magnetic powder was calculated from the compounding amounts of the respective materials constituting the solid content of the magnetic resin paste and the specific gravities of the respective materials. In the magnetic resin paste, when the magnetic resin composition contains a solvent, the solid content of the magnetic resin paste is the amount obtained by removing the solvent from the magnetic resin composition.
 磁性樹脂ペーストの調製方法としては、例えば、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の液状型の樹脂を用い、複合磁性粉末と、液状型の樹脂と、必要に応じて硬化剤、硬化促進剤、表面処理剤、エラストマーなどを混合する方法などが挙げられる。また、磁性樹脂ペーストにおいて、磁性樹脂組成物が溶剤を含有する場合には、例えば、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂を溶剤に溶解させて樹脂溶液を得、得られる樹脂溶液に、複合磁性粉末と、必要に応じて硬化剤、硬化促進剤、表面処理剤、エラストマーなどを混合することによって磁性樹脂ペーストを得ることができる。 As a method of preparing a magnetic resin paste, for example, at least one liquid type resin selected from the group consisting of a curable resin and a thermoplastic resin is used, and a composite magnetic powder, a liquid type resin, and, if necessary, Examples thereof include methods of mixing a curing agent, a curing accelerator, a surface treatment agent, an elastomer, and the like. Moreover, in the magnetic resin paste, when the magnetic resin composition contains a solvent, for example, at least one resin selected from the group consisting of a curable resin and a thermoplastic resin is dissolved in the solvent to obtain a resin solution. A magnetic resin paste can be obtained by mixing the composite magnetic powder and, if necessary, a curing agent, a curing accelerator, a surface treatment agent, an elastomer and the like with the resulting resin solution.
 磁性樹脂ペーストは、磁性樹脂組成物が溶剤を含有するペースト状であってもよく、溶剤を含有しないペースト状であってもよい。すなわち、第一の磁性樹脂組成物が溶剤を含有するペースト状であってもよく、溶剤を含有しないペースト状であってもよい。また、第二の磁性樹脂組成物が溶剤を含有するペースト状であってもよく、溶剤を含有しないペースト状であってもよい。 The magnetic resin paste may be in the form of a paste in which the magnetic resin composition contains a solvent, or may be in the form of a paste containing no solvent. That is, the first magnetic resin composition may be in the form of a paste containing a solvent, or may be in the form of a paste containing no solvent. The second magnetic resin composition may be in the form of a paste containing a solvent, or may be in the form of a paste containing no solvent.
 磁性樹脂ペーストは、磁性樹脂組成物が溶剤を含有しないペースト状であることが好ましい。この場合、溶剤を用いないことで、環境に配慮した磁性樹脂ペーストを得ることができる。また、磁性樹脂ペーストが溶剤を含有しないことで、磁性樹脂ペーストを保存する場合や熱する場合にボイドが発生することを防ぐことができる。さらに、磁性樹脂ペーストを用いる際に、磁性樹脂ペーストに含有される溶剤によって磁性樹脂ペーストと共に用いる部材や機器が汚染されるリスクを低下させることができる。また、磁性樹脂ペーストに溶剤を含有させる場合、製造過程において専用の工程や使用装置の防爆対応化が必要となる場合がある。しかし、磁性樹脂ペーストが溶剤を含有しないことで、製造工程を簡素化することができる。 The magnetic resin paste is preferably in the form of a paste in which the magnetic resin composition does not contain a solvent. In this case, by not using a solvent, it is possible to obtain a magnetic resin paste in consideration of the environment. In addition, since the magnetic resin paste does not contain a solvent, generation of voids can be prevented when the magnetic resin paste is stored or when it is heated. Furthermore, when using a magnetic resin paste, it is possible to reduce the risk of contamination of members and equipment used with the magnetic resin paste by the solvent contained in the magnetic resin paste. In addition, when a solvent is contained in the magnetic resin paste, it may be necessary to deal with explosion-proofing of a dedicated process or apparatus used in the manufacturing process. However, since the magnetic resin paste does not contain a solvent, the manufacturing process can be simplified.
 磁性樹脂ペーストにおいて、磁性樹脂組成物が溶剤を含有するペースト状である場合、磁性樹脂組成物に含有される溶剤の含有量は、磁性樹脂組成物の固形分全体の5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが特に好ましい。 In the magnetic resin paste, when the magnetic resin composition is in the form of a paste containing a solvent, the content of the solvent contained in the magnetic resin composition is 5% by mass or less of the total solid content of the magnetic resin composition Is preferable, and 1% by mass or less is more preferable, and 0.5% by mass or less is particularly preferable.
 溶剤として、メチルエチルケトン(MEK)、N,N-ジメチルホルムアミド(DMF)、アセトン、メチルイソブチルケトン(MIBK)などを用いることができる。溶剤を1種のみ使用してもよく、2種以上混合して使用してもよい。溶剤を2種以上混合する場合、混合比(質量比及び体積比)は特に限定されない。 As a solvent, methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF), acetone, methyl isobutyl ketone (MIBK) or the like can be used. The solvents may be used alone or in combination of two or more. When two or more solvents are mixed, the mixing ratio (mass ratio and volume ratio) is not particularly limited.
 [磁性樹脂粉末]
 本実施形態に係る磁性樹脂粉末(以下、磁性樹脂粉末)は、磁性樹脂組成物が、粉状である。磁性樹脂組成物は、第一の磁性樹脂組成物であってもよく、第二の磁性樹脂組成物であってもよい。磁性樹脂組成物が第一の磁性樹脂組成物である場合、磁性樹脂粉末は、第一の磁性樹脂組成物が粉状であってもよく、第一の磁性樹脂組成物の半硬化物の粉状であってもよい。半硬化物とは、樹脂組成物が、さらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物とは、Bステージ状態を指し、硬化反応の中間段階の状態をいう。中間段階とは、ワニス状態(Aステージ状態)と完全に硬化した状態(Cステージ状態)との間の段階をいう。例えば、熱硬化性樹脂組成物を加熱すると、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。この場合、半硬化状態とは、粘度が上昇し始めてから、完全に硬化する前の間の状態である。磁性樹脂粉末を構成する粒子の平均粒径は特に限定されない。
[Magnetic resin powder]
In the magnetic resin powder according to the present embodiment (hereinafter, magnetic resin powder), the magnetic resin composition is powdery. The magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. When the magnetic resin composition is the first magnetic resin composition, the magnetic resin powder may be powdery of the first magnetic resin composition, and the powder of the semi-cured product of the first magnetic resin composition It may be a letter. A semi-cured product is one in which the resin composition is partially cured to such an extent that it can be cured further. That is, a semi-cured product refers to the B-stage state, and refers to the state of the intermediate stage of the curing reaction. The intermediate stage refers to the stage between the varnish state (A stage state) and the completely cured state (C stage state). For example, when the thermosetting resin composition is heated, the viscosity gradually decreases, and then curing starts and the viscosity gradually increases. In this case, the semi-cured state is a state in which the viscosity starts to increase and before it is completely cured. The average particle diameter of the particles constituting the magnetic resin powder is not particularly limited.
 磁性樹脂粉末を調製する方法としては、例えば、後述する磁性樹脂スラリーを用いてアトマイズ法を使用する方法、複合磁性粉末と硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂の粉末とを3本ロールミルなどで混ぜ合わせる方法、後述する磁性樹脂シートを破砕する方法などが挙げられる。磁性樹脂粉末を構成する個々の粒子をほぼ球形とすることができる点で、特にアトマイズ法が好ましい。磁性樹脂粉を構成する個々の粒子がほぼ球形であると、その後の成形加工時の流動性が良好となる。アトマイズ法では、磁性樹脂スラリーを高温(例えば140℃)の環境下で噴霧して霧状の粒にするとともに、急速に乾燥して溶剤を揮発させることによって、磁性樹脂粉を調製する。第一の磁性樹脂組成物は、複合磁性粉末の含有量が多めであるため、粘度が高くなるおそれがある。しかし、上記のように溶剤を使用して一旦、磁性樹脂スラリーとした後、これを噴霧しながら高温の環境下にさらすと急激に揮発成分である溶剤が放散し、粉状となるので、その後の取扱いが良好となる。 As a method of preparing a magnetic resin powder, for example, a method using an atomizing method using a magnetic resin slurry described later, and at least one resin selected from the group consisting of a composite magnetic powder, a curable resin and a thermoplastic resin The method of mixing powder and a 3-roll mill etc., the method of crushing the magnetic resin sheet mentioned later, etc. are mentioned. The atomizing method is particularly preferred in that individual particles constituting the magnetic resin powder can be made approximately spherical. When the individual particles that make up the magnetic resin powder are substantially spherical, the flowability during the subsequent molding process will be good. In the atomizing method, the magnetic resin slurry is sprayed in a high temperature (for example, 140 ° C.) environment to form atomized particles, and the magnetic resin powder is prepared by rapidly drying to volatilize the solvent. The first magnetic resin composition has a possibility that the viscosity becomes high because the content of the composite magnetic powder is relatively large. However, once a magnetic resin slurry is prepared using a solvent as described above and then exposed to a high temperature environment while spraying it, the solvent which is a volatile component is rapidly dissipated and becomes powdery, Good handling of
 [磁性樹脂スラリー]
 本実施形態に係る磁性樹脂スラリー(以下、磁性樹脂スラリー)は、磁性樹脂組成物が、溶剤をさらに含有し、スラリー状である。スラリー状とは、磁性樹脂組成物が溶剤を含有し、室温において流動性を有することをいう。磁性樹脂組成物は、第一の磁性樹脂組成物であってもよく、第二の磁性樹脂組成物であってもよい。すなわち、磁性樹脂スラリーは、第一の磁性樹脂組成物が溶剤を含有するスラリー状であってもよく、第二の磁性樹脂組成物が溶剤を含有するスラリー状であってもよい。
Magnetic resin slurry
In the magnetic resin slurry (hereinafter, magnetic resin slurry) according to the present embodiment, the magnetic resin composition further contains a solvent and is in a slurry form. The slurry state means that the magnetic resin composition contains a solvent and has fluidity at room temperature. The magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. That is, the magnetic resin slurry may be in the form of a slurry in which the first magnetic resin composition contains a solvent, and may be in the form of a slurry in which the second magnetic resin composition contains a solvent.
 溶剤として、メチルエチルケトン(MEK)、N,N-ジメチルホルムアミド(DMF)、アセトン、メチルイソブチルケトン(MIBK)などを用いることができる。溶剤を1種のみ使用してもよく、2種以上混合して使用してもよい。溶剤を2種以上混合する場合、混合比(質量比及び体積比)は特に限定されない。磁性樹脂スラリーにおける溶剤の含有量は、特に限定されない。 As a solvent, methyl ethyl ketone (MEK), N, N-dimethylformamide (DMF), acetone, methyl isobutyl ketone (MIBK) or the like can be used. The solvents may be used alone or in combination of two or more. When two or more solvents are mixed, the mixing ratio (mass ratio and volume ratio) is not particularly limited. The content of the solvent in the magnetic resin slurry is not particularly limited.
 磁性樹脂スラリーにおける磁性粉末の充填率(以下、磁性粉末のコンテント)は、磁性樹脂スラリーの固形分全体に対して、好ましくは20体積%以上99体積%以下、より好ましくは53体積%以上95体積%以下である。磁性粉末のコンテントが上記範囲内であれば、100MHzでの実数部(μ’)を高くすることができるとともに、磁性樹脂シートの流動性を、制御しやすくなる。磁性粉末のコンテントの算出方法は、磁性樹脂スラリーの固形分を構成する各材質の配合量と、各材質の比重とから算出した。ここで、磁性樹脂スラリーの固形分とは、磁性樹脂スラリーから溶剤を除いた分である。 The filling ratio of the magnetic powder in the magnetic resin slurry (hereinafter referred to as the content of the magnetic powder) is preferably from 20% by volume to 99% by volume, more preferably from 53% by volume to 95% by volume with respect to the entire solid content of the magnetic resin slurry. % Or less. If the content of the magnetic powder is in the above range, the real part (μ ′) at 100 MHz can be increased, and the flowability of the magnetic resin sheet can be easily controlled. The content of the magnetic powder was calculated from the compounding amounts of the respective materials constituting the solid content of the magnetic resin slurry and the specific gravities of the respective materials. Here, the solid content of the magnetic resin slurry is the amount obtained by removing the solvent from the magnetic resin slurry.
 磁性樹脂スラリーの調製方法としては、例えば、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂を溶剤に溶解させて樹脂溶液を得、得られる樹脂溶液に複合磁性粉末を添加して混練し、必要に応じて最後に硬化剤、硬化促進剤、表面処理剤、エラストマーなどを添加して均一になるように攪拌する方法などが挙げられる。 As a method of preparing the magnetic resin slurry, for example, at least one resin selected from the group consisting of a curable resin and a thermoplastic resin is dissolved in a solvent to obtain a resin solution, and the composite magnetic powder is added to the obtained resin solution And kneading, and if necessary, a curing agent, a curing accelerator, a surface treatment agent, an elastomer and the like are finally added and stirred to be uniform.
 [磁性樹脂シート]
 本実施形態に係る磁性樹脂シート1(以下、磁性樹脂シート1)は、磁性樹脂組成物が、シート状である。磁性樹脂組成物は、第一の磁性樹脂組成物であってもよく、第二の磁性樹脂組成物であってもよい。磁性樹脂組成物が第一の磁性樹脂組成物である場合、磁性樹脂シート1は、第一の磁性樹脂組成物がシート状であってもよく、第一の磁性樹脂組成物の半硬化物のシート状であってもよい。
[Magnetic resin sheet]
In the magnetic resin sheet 1 (hereinafter, the magnetic resin sheet 1) according to the present embodiment, the magnetic resin composition is in the form of a sheet. The magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. When the magnetic resin composition is the first magnetic resin composition, in the magnetic resin sheet 1, the first magnetic resin composition may be in the form of a sheet, and the semi-cured product of the first magnetic resin composition It may be sheet-like.
 磁性樹脂シート1のサイズは、磁性樹脂シート1の使用用途に応じて適宜調整すればよい。磁性樹脂シート1の厚みは、好ましくは10μm以上500μm以下、より好ましくは50μm以上300μm以下である。磁性樹脂シート1の流動性を示すグリニス値は、好ましくは60%以上95%以下、より好ましくは70%以上90%未満である。磁性樹脂シート1のグリニス値が上記範囲内であれば、例えば、主面に配線が形成された配線基板の主面上に磁性樹脂シート1が積層された積層板をラミネートまたはプレスにより成型する際、適度な流動性を有する磁性樹脂シート1は配線を十分に埋め込むことができると共に、磁性樹脂シート1が流動しすぎて、磁性樹脂シート1のはみ出しによってラミネータまたはプレス機が汚損されるなどの問題を避けることができる。グリニス値は、実施例に記載の方法と同様にして測定することができる。 The size of the magnetic resin sheet 1 may be appropriately adjusted according to the application of the magnetic resin sheet 1. The thickness of the magnetic resin sheet 1 is preferably 10 μm or more and 500 μm or less, more preferably 50 μm or more and 300 μm or less. The greenness value which shows the fluidity of the magnetic resin sheet 1 is preferably 60% or more and 95% or less, more preferably 70% or more and less than 90%. When the green resin value of the magnetic resin sheet 1 is within the above range, for example, when molding a laminated board in which the magnetic resin sheet 1 is laminated on the main surface of the wiring substrate having the wiring formed on the main surface by lamination or press And the magnetic resin sheet 1 having appropriate fluidity can sufficiently embed the wiring, and the magnetic resin sheet 1 flows too much, and the laminator or the press machine may be contaminated by the magnetic resin sheet 1 protruding. Can be avoided. The Grinis value can be measured in the same manner as the method described in the examples.
 磁性樹脂シート1のボラタイル量は、好ましくは1質量%以下、より好ましくは0.2質量%以下である。磁性樹脂シート1のボラタイル量が上記範囲内であれば、表面をカバーフィルムで覆った磁性樹脂シート1の冷凍保管または冷蔵保管と、常温戻しとを繰り返した際に、磁性樹脂シート1とカバーフィルムとの間に、磁性樹脂シート1中の溶剤が揮発することに起因する斑点模様が発生することを防止したり、磁性樹脂シート1の流動性が高くなりすぎることを防ぐことができる。ボラタイル量は、実施例に記載の方法と同様にして測定することができる。 The amount of volatilization of the magnetic resin sheet 1 is preferably 1% by mass or less, more preferably 0.2% by mass or less. When the amount of volatilization of the magnetic resin sheet 1 is within the above range, the magnetic resin sheet 1 and the cover film are repeatedly refrigerated or refrigerated storage of the magnetic resin sheet 1 whose surface is covered with a cover film and return to normal temperature. Between the above, it is possible to prevent the occurrence of a spot pattern due to the evaporation of the solvent in the magnetic resin sheet 1 or to prevent the flowability of the magnetic resin sheet 1 from becoming too high. The amount of volatilization can be measured in the same manner as the method described in the examples.
 磁性樹脂シート1は、シート状であるので大面積を均一な厚みの磁性材料で形成することが容易で、粉状やペースト状では困難なプリント配線板の材料などに有用である。磁性樹脂シート1は半硬化物であるので、例えば、真空引きを行いながら加熱加圧して、プリント配線板の回路などを埋め込み成形する際に使用することができる。 Since the magnetic resin sheet 1 is in the form of a sheet, it is easy to form a large area with a magnetic material having a uniform thickness, and is useful as a material for printed wiring boards which is difficult in the form of powder or paste. Since the magnetic resin sheet 1 is a semi-cured product, it can be used, for example, when embedding and forming a circuit of a printed wiring board by heating and pressurizing while performing vacuum drawing.
 磁性樹脂シート1の製造方法として、例えば、図2A~図2Cに示すように、フィルム2上に磁性樹脂スラリーを塗布して磁性樹脂スラリー層3を形成し、乾燥又は加熱する方法などが挙げられる。フィルム2として、例えば、ポリエチレンテレフタレート(PET)フィルム、金属箔などを用いることができる。フィルム2の厚みは特に限定されない。磁性樹脂スラリー層3が塗布されるフィルム2の表面はあらかじめ離型処理が施されていることが好ましい。また、磁性樹脂ペーストをフィルム2上に塗布し、乾燥又は加熱することによって磁性樹脂シート1を作製してもよい。 As a method of manufacturing the magnetic resin sheet 1, for example, as shown in FIGS. 2A to 2C, a method of applying a magnetic resin slurry on a film 2 to form a magnetic resin slurry layer 3 and drying or heating may be mentioned. . As the film 2, for example, a polyethylene terephthalate (PET) film, a metal foil or the like can be used. The thickness of the film 2 is not particularly limited. It is preferable that the surface of the film 2 to which the magnetic resin slurry layer 3 is applied be subjected to release treatment in advance. Moreover, you may produce the magnetic resin sheet 1 by apply | coating a magnetic resin paste on the film 2, and drying or heating.
 [金属箔付磁性樹脂シート]
 本実施形態に係る金属箔付磁性樹脂シート30(以下、金属箔付磁性樹脂シート30)は、図4に示すように、磁性樹脂シート1と、この磁性樹脂シート1の少なくとも一方の面に積層された、厚みが5μm以下の金属箔8とを備える。図4では、金属箔付磁性樹脂シート30は、磁性樹脂シート1と、この磁性樹脂シート1の片面に積層された金属箔8とからなる2層構成である。金属箔付磁性樹脂シート30は、磁性樹脂シート1と、この磁性樹脂シート1の両面に積層された2つの金属箔8とからなる3層構成であってもよい。金属箔付磁性樹脂シート30は、磁性樹脂シート1と金属箔8との間に他の層を備えていてもよい。
[Magnetic resin sheet with metal foil]
As shown in FIG. 4, the magnetic resin sheet 30 with metal foil according to the present embodiment (hereinafter, the magnetic resin sheet 30 with metal foil) is laminated on the magnetic resin sheet 1 and at least one surface of the magnetic resin sheet 1. And the metal foil 8 having a thickness of 5 μm or less. In FIG. 4, the magnetic resin sheet 30 with metal foil has a two-layer structure including the magnetic resin sheet 1 and the metal foil 8 laminated on one side of the magnetic resin sheet 1. The magnetic resin sheet 30 with metal foil may have a three-layer structure including the magnetic resin sheet 1 and two metal foils 8 laminated on both sides of the magnetic resin sheet 1. The magnetic resin sheet 30 with metal foil may have another layer between the magnetic resin sheet 1 and the metal foil 8.
 上述のように、磁性樹脂シート1は、第一の磁性樹脂組成物がシート状であってもよく、第一の磁性樹脂組成物の半硬化物のシート状であってもよく、第二磁性樹脂組成物がシート状であってもよい。 As described above, in the magnetic resin sheet 1, the first magnetic resin composition may be in the form of a sheet, or may be in the form of a sheet of a semi-cured product of the first magnetic resin composition, and the second magnetic The resin composition may be in the form of a sheet.
 金属箔付磁性樹脂シート30の厚みは、好ましくは10μm以上800μm以下である。金属箔の材質としては、例えば、銅、銀、アルミニウム、ニッケル、ステンレスなどを用いることができる。金属箔の厚みは、0.5μm以上300μm以下であることが好ましい。 The thickness of the magnetic resin sheet 30 with metal foil is preferably 10 μm or more and 800 μm or less. As a material of metal foil, copper, silver, aluminum, nickel, stainless steel etc. can be used, for example. The thickness of the metal foil is preferably 0.5 μm or more and 300 μm or less.
 金属箔付磁性樹脂シート30の調整方法として、例えば、磁性樹脂シート1の片面又は両面に物理的蒸着法により金属箔8を形成する方法が挙げられる。物理蒸着法としては、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法などが挙げられる。また、金属箔8上に磁性樹脂スラリー又は磁性樹脂ペーストをバーコータなどを用いて塗布して乾燥又は加熱することによって金属箔付磁性樹脂シート30を作製してもよい。 As a method of adjusting the magnetic resin sheet 30 with metal foil, for example, a method of forming the metal foil 8 on one side or both sides of the magnetic resin sheet 1 by physical vapor deposition can be mentioned. As a physical vapor deposition method, a vacuum evaporation method, an ion plating method, sputtering method etc. are mentioned, for example. Alternatively, the magnetic resin sheet 30 may be produced by applying a magnetic resin slurry or magnetic resin paste onto the metal foil 8 using a bar coater or the like, and drying or heating it.
 [磁性プリプレグ]
 本実施形態に係る磁性プリプレグ40(以下、磁性プリプレグ40)は、図5に示すように、繊維質基材42と、磁性樹脂組成物41又は磁性樹脂組成物41の半硬化物とを備える。磁性プリプレグ40としては、磁性樹脂組成物41又は磁性樹脂組成物41の半硬化物の中に繊維質基材42が存在するものが挙げられる。すなわち、磁性プリプレグ40は、磁性樹脂組成物41又は磁性樹脂組成物41の半硬化物と、磁性樹脂組成物41又は磁性樹脂組成物41の半硬化物中に存在する繊維質基材42と、を備える。磁性プリプレグ40は、繊維質基材42を備えるので、磁性樹脂シート1よりも曲げ強度などに優れる。
[Magnetic prepreg]
The magnetic prepreg 40 (hereinafter, magnetic prepreg 40) according to the present embodiment includes a fibrous base material 42 and a semi-cured product of the magnetic resin composition 41 or the magnetic resin composition 41, as shown in FIG. Examples of the magnetic prepreg 40 include those in which the fibrous base material 42 is present in the magnetic resin composition 41 or the semi-cured product of the magnetic resin composition 41. That is, the magnetic prepreg 40 comprises a semi-cured product of the magnetic resin composition 41 or the magnetic resin composition 41 and a fibrous base material 42 present in the semi-cured product of the magnetic resin composition 41 or the magnetic resin composition 41; Equipped with Since the magnetic prepreg 40 includes the fibrous base material 42, the magnetic prepreg 40 is more excellent in bending strength and the like than the magnetic resin sheet 1.
 磁性樹脂組成物は、第一の磁性樹脂組成物であってもよく、第二の磁性樹脂組成物であってもよい。すなわち、磁性プリプレグ40は、第一の樹脂組成物を硬化させる前のものと、繊維質基材42とを備えていてもよく、第一の樹脂組成物の半硬化物と、繊維質基材42とを備えていてもよい。また、磁性プリプレグ40は、第二の樹脂組成物と繊維質基材42とを備えていてもよい。 The magnetic resin composition may be a first magnetic resin composition or a second magnetic resin composition. That is, the magnetic prepreg 40 may include the one before curing the first resin composition and the fibrous base material 42, and the semi-cured product of the first resin composition and the fibrous base material 42 may be provided. The magnetic prepreg 40 may also include the second resin composition and the fibrous base material 42.
 磁性プリプレグの厚みは、好ましくは10μm以上500μm以下である。繊維質基材42としては、例えば、織布(クロス)、不織布、パルプ紙、及びリンター紙などを用いることができる。織布としては、例えば、ガラスクロス、アラミドクロス及びポリエステルクロスなどの有機繊維クロス、グラファイトクロスなどを用いることができる。不織布としては、例えば、ガラス不織布、アラミド不織布及びポリエステル不織布などの有機繊維不織布、グラファイト製不織布、無機物(例えば酸化マグネシウム)の不織布などを用いることができる。ガラスクロスを用いると、機械強度が優れた磁性プリプレグ40を得ることができる。特に偏平処理加工したガラスクロスを繊維質基材42として用いることが好ましい。偏平処理加工として、具体的に、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮する方法が挙げられる。繊維質基材42の厚みは特に限定されず、例えば、0.02mm以上0.3mm以下のものを用いることができる。 The thickness of the magnetic prepreg is preferably 10 μm or more and 500 μm or less. As the fibrous base material 42, for example, woven fabric (cross), non-woven fabric, pulp paper, linter paper, etc. can be used. As the woven fabric, for example, organic fiber cloth such as glass cloth, aramid cloth and polyester cloth, graphite cloth and the like can be used. As the non-woven fabric, for example, an organic fiber non-woven fabric such as a glass non-woven fabric, an aramid non-woven fabric and a polyester non-woven fabric, a graphite non-woven fabric, an inorganic (for example, magnesium oxide) non-woven fabric can be used. By using a glass cloth, a magnetic prepreg 40 with excellent mechanical strength can be obtained. In particular, it is preferable to use a flattened glass cloth as the fibrous base material 42. Specific examples of the flattening processing include a method of pressing the glass cloth flat by continuously pressing the glass cloth with a press roll under an appropriate pressure. The thickness of the fibrous base material 42 is not particularly limited, and for example, one having a thickness of 0.02 mm or more and 0.3 mm or less can be used.
 磁性プリプレグ40を製造する際には、磁性プリプレグ40を形成するための基材である繊維質基材42に含浸するために、磁性樹脂組成物41は、ワニス状に調製されて用いてもよい。すなわち、磁性樹脂組成物41がワニス状に調製された樹脂ワニスを用いてもよい。このような樹脂ワニスは、例えば、以下のようにして調製することができる。 When manufacturing the magnetic prepreg 40, the magnetic resin composition 41 may be prepared in the form of a varnish and used in order to impregnate the fibrous base material 42 which is a base material for forming the magnetic prepreg 40. . That is, you may use the resin varnish in which the magnetic resin composition 41 was prepared in varnish form. Such resin varnish can be prepared, for example, as follows.
 まず、磁性樹脂組成物41における、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂を含む、溶媒に溶解可能な各成分を、溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、複合磁性粉末を含む、溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の組成物が調製される。ここで用いられる溶媒としては、磁性樹脂組成物が含有することのできる溶媒として上述されたのと同様の溶媒を用いることができる。 First, each component soluble in a solvent, which contains at least one resin selected from the group consisting of a curable resin and a thermoplastic resin in the magnetic resin composition 41, is charged into a solvent and dissolved. At this time, heating may be performed as necessary. Thereafter, a component which does not dissolve in the solvent, including the composite magnetic powder, is added and dispersed to a predetermined dispersed state using a ball mill, bead mill, planetary mixer, roll mill or the like to obtain a varnish-like composition. Be prepared. As the solvent used here, the same solvents as those described above as the solvent which can be contained in the magnetic resin composition can be used.
 磁性プリプレグ40を製造する際には、磁性樹脂組成物41がワニス状に調製された樹脂ワニスを用いてもよく、上記で説明した、ペースト状の磁性樹脂組成物41である磁性樹脂ペーストや、スラリー状の磁性樹脂組成物41である磁性樹脂スラリーを用いてもよい。 When producing the magnetic prepreg 40, the resin varnish in which the magnetic resin composition 41 is prepared in the form of varnish may be used, and the magnetic resin paste which is the paste-like magnetic resin composition 41 described above, A magnetic resin slurry which is a slurry-like magnetic resin composition 41 may be used.
 磁性プリプレグ40の製造方法としては、例えば、繊維質基材42に、ワニス状に調製された磁性樹脂組成物41、磁性樹脂組成物41を含有する磁性樹脂ペースト、又は磁性樹脂組成物41を含有する磁性樹脂スラリーを含浸させて、乾燥させる方法などが挙げられる。 As a method for producing the magnetic prepreg 40, for example, the fibrous base material 42 contains the magnetic resin composition 41 prepared in a varnish form, the magnetic resin paste containing the magnetic resin composition 41, or the magnetic resin composition 41. And a method of impregnating and drying the magnetic resin slurry.
 磁性樹脂組成物41は、繊維質基材42へ、浸漬及び塗布等によって含浸されうる。必要に応じて浸漬及び塗布等を複数回繰り返して含浸させてもよい。また、組成や濃度の異なる複数の磁性樹脂組成物41又は磁性樹脂組成物41を含有する磁性樹脂ペーストや磁性樹脂スラリーを用いて含浸を繰り返すことにより、最終的に希望とする組成及び含浸量に調整することも可能である。 The magnetic resin composition 41 can be impregnated into the fibrous base material 42 by immersion, coating, and the like. Immersion, application, etc. may be repeated several times and impregnated as needed. In addition, by repeating impregnation using a magnetic resin paste or magnetic resin slurry containing a plurality of magnetic resin compositions 41 or magnetic resin compositions 41 having different compositions and concentrations, the final desired composition and impregnation amount are obtained. It is also possible to adjust.
 磁性樹脂組成物41として熱硬化性樹脂を含有する第一の磁性樹脂組成物を用いる場合、第一の磁性樹脂組成物を繊維質基材42へ含浸させた後、所望の加熱条件、例えば、80℃以上180℃以下で1分以上10分以下加熱してもよい。加熱によって、第一の磁性樹脂組成物の半硬化物を備える磁性プリプレグ40を得ることができる。 When using a first magnetic resin composition containing a thermosetting resin as the magnetic resin composition 41, after the first magnetic resin composition is impregnated into the fibrous base material 42, desired heating conditions, for example, You may heat at 80 degreeC or more and 180 degrees C or less for 1 minute or more and 10 minutes or less. By heating, the magnetic prepreg 40 provided with the semi-cured product of the first magnetic resin composition can be obtained.
 [インダクタ部品]
 本実施形態に係るインダクタ部品(以下、インダクタ部品)は、コイル状配線と、コイル状配線を被覆する絶縁層とを備え、絶縁層が、第一の磁性樹脂組成物の硬化物、又は第二の磁性樹脂組成物の固化物(以下、磁性材料という場合がある)で成形されている。本実施形態では、第一の磁性樹脂組成物の硬化物、又は第二の磁性樹脂組成物の固化物で成形されているので、絶縁層の100MHzでの磁性材料のQ値が高くなりやすく、高周波インダクタ部品として好適に用いることができる。特に、第一の磁性樹脂組成物の硬化物及び第二の磁性樹脂組成物の固化物の100MHzでのQ値が20以上である場合、絶縁層の100MHzでの磁性材料のQ値が20以上となるため、本実施形態のインダクタ部品は、高周波インダクタ部品として特に好適に用いることができる。高周波インダクタ部品の例は、コイル、インダクタ、フィルタ、リアクトル、及びトランスを含む。このようなインダクタ部品の用途としては、例えば、ノイズフィルタの部品、インピーダンスマッチング回路の部品などが挙げられる。ノイズフィルタとしては、ローパスフィルタ、コモンチョークコイルなどが挙げられる。
[Inductor parts]
The inductor component (hereinafter, inductor component) according to the present embodiment includes a coiled wire and an insulating layer covering the coiled wire, and the insulating layer is a cured product of the first magnetic resin composition or a second The magnetic resin composition of the present invention is molded with a solidified product (hereinafter sometimes referred to as a magnetic material). In this embodiment, since the molded product is a cured product of the first magnetic resin composition or a solidified product of the second magnetic resin composition, the Q value of the magnetic material at 100 MHz of the insulating layer tends to be high. It can be suitably used as a high frequency inductor component. In particular, when the Q value at 100 MHz of the cured product of the first magnetic resin composition and the solidified product of the second magnetic resin composition is 20 or more, the Q value of the magnetic material at 100 MHz of the insulating layer is 20 or more Therefore, the inductor component of the present embodiment can be particularly suitably used as a high frequency inductor component. Examples of high frequency inductor components include coils, inductors, filters, reactors, and transformers. Examples of applications of such inductor components include components of noise filters, components of impedance matching circuits, and the like. Examples of the noise filter include a low pass filter and a common choke coil.
 インダクタ部品の構造は、インダクタ部品の用途に応じて適宜調整すればよく、例えば、巻線型、積層型、フィルム型などが挙げられる。 The structure of the inductor component may be appropriately adjusted in accordance with the application of the inductor component, and examples thereof include a wire wound type, a laminated type, and a film type.
 インダクタ部品のサイズは、インダクタ部品の使用用途に応じて適宜調整すればよく、略立方形状の高周波インダクタ部品として使用する場合には、好ましくは、縦15mm以下×横15mm以下×高さ10mm以下である。 The size of the inductor component may be appropriately adjusted according to the application of the inductor component, and when used as a substantially cubic high frequency inductor component, preferably 15 mm or less × 15 mm or less × 10 mm or less in height is there.
 コイル状配線の形状は、インダクタ部品の使用用途に応じて適宜選択すればよく、例えば、渦巻き状が平面的に形成されてもよいし、渦巻き状が三次元的に形成されていてもよい。渦巻き状が三次元的に形成されている場合、その巻構造は、横巻構造であっても、縦巻構造であってもよい。コイル状配線の始端及び終端は、それぞれ別の外部電極端子に電気的に接続されて使用される。コイル状配線の材質としては、例えば、Ag、Au、Cu、Ag-Pd、Niなどを用いることができる。 The shape of the coiled wiring may be appropriately selected according to the application of the inductor component. For example, the spiral shape may be planarly formed, or the spiral shape may be three-dimensionally formed. When the spiral shape is formed three-dimensionally, the winding structure may be a horizontal winding structure or a vertical winding structure. The beginning and end of the coiled wire are used by being electrically connected to different external electrode terminals. As a material of the coiled wiring, for example, Ag, Au, Cu, Ag—Pd, Ni or the like can be used.
 絶縁層は、コイル状配線の始端及び終端を除き、コイル状配線を被覆している。絶縁層の原料は、第1の磁性樹脂組成物又は第2の磁性樹脂組成物である。 The insulating layer covers the coiled wire except for the beginning and the end of the coiled wire. The raw material of the insulating layer is the first magnetic resin composition or the second magnetic resin composition.
 インダクタ部品の製造方法としては、インダクタ部品の使用用途に応じたインダクタ部品の構成に応じて適宜選択すればよく、例えば、印刷方法、シート工法などによりコイル状配線を三次元的に連続して形成する方法が挙げられる。印刷方法は、磁性樹脂シート又は第2の磁性樹脂組成物のシート状物(以下、まとめてグリーンシートという)と、コイル状配線を構成する導体ペーストとを交互に印刷積層し、インダクタ部品の内部に立体的な巻き線を形成する方法である。シート工法は、グリーンシートにスルーホールを形成し、導体ペーストを印刷充填して積層する方法である。 The method of manufacturing the inductor component may be appropriately selected according to the configuration of the inductor component according to the application of the inductor component, and for example, the coiled wiring is continuously formed three-dimensionally by the printing method, sheet method, etc. Methods are included. In the printing method, a magnetic resin sheet or a sheet of a second magnetic resin composition (hereinafter collectively referred to as a green sheet) and a conductive paste constituting a coiled wiring are alternately printed and laminated, and the inside of the inductor component is formed. Is a method of forming a three-dimensional winding. The sheet method is a method of forming through holes in a green sheet, printing and filling a conductive paste, and laminating.
 以下、本発明を実施例によって具体的に説明するが、本発明は実施例に限定されない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the examples.
 磁性樹脂スラリーの原料を以下に示す。
[磁性粉末]
 (第一の粉末)
・合金鉄粉末1(エプソンアトミックス株式会社製の「AW2-08/PF5KG」、代表組成:Fe-Si-Cr、平均粒径:4μm、粒子形状:すべて球状、絶縁処理:有り)
・合金鉄粉末2(エプソンアトミックス株式会社製の「AW2-08/PF3KG」、代表組成:Fe-Si-Cr、平均粒径:3μm、粒子形状:すべて球状、絶縁処理:有り)
 (他の磁性粉末)
・合金粉末(エプソンアトミックス株式会社製の「AW2-08/PF8KG」、代表組成:Fe-Si-Cr、平均粒径:5μm、粒子形状:すべて球状、絶縁処理:有り)
・純鉄粉末(BASFジャパン株式会社製の「CIP FM」、代表組成:Fe、平均粒径:2μm、粒子形状:すべて球状、絶縁処理:無し)
・フェライト粉末1(パウダーテック株式会社製の「E001」、組成:Mn-Mg-Sr系フェライト、平均粒径:50nm、粒子形状:すべて球状、絶縁処理:無し)
・フェライト粉末2(パウダーテック株式会社製の「M001」、組成:Mn系フェライト、平均粒径:50nm、粒子形状:すべて球状、絶縁処理:無し)
[非磁性粉末]
 (第二の粉末)
・シリカ粉末1(株式会社トクヤマ製の「SSP-10M」、平均粒径:1μm、粒子形状:すべて球状)
・アルミナ粉末(株式会社アドマテックス製の「AO502」、平均粒径:0.7μm、粒子形状:すべて球状)
・シリカ粉末2(株式会社トクヤマ製の「SSP-01M」、平均粒径:0.1μm、粒子形状:すべて球状)
[熱硬化性樹脂]
・ビスフェノールA型エポキシ樹脂(DIC株式会社製の「850S」)
・ビスフェノールF型エポキシ樹脂(新日鉄住金化学株式会社製の「YDF8170」)
・3官能エポキシ樹脂(株式会社プリンテック製の「VG3101」)
・多官能エポキシ樹脂(日本化薬株式会社製の「NC3000」)
[熱可塑性樹脂]
・フェノキシ樹脂(新日鉄住金化学株式会社製の「YP50EK35」)
[添加剤]
 (硬化剤)
・ジシアンジアミド(日本カーバイド工業株式会社製の「ジシアンジアミド」)
 (硬化促進剤)
・イミダゾール1(四国化成工業株式会社製の「2E4MZ」)
・イミダゾール2(四国化成工業株式会社製の「2MAOK-PW」)
 (表面処理剤)
・シランカップリング剤1(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製の「A1871」)
・シランカップリング剤2(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製の「A186」)
・分散剤(ビックケミー・ジャパン株式会社BYKJapan KK製の「BYK-W903」)
 (溶剤)
・MEK(メチルエチルケトン)
・DMF(N,N-ジメチルホルムアミド)
The raw materials of the magnetic resin slurry are shown below.
[Magnetic powder]
(First powder)
Alloy iron powder 1 (“AW2-08 / PF5KG” manufactured by Epson Atomics Co., Ltd., representative composition: Fe-Si-Cr, average particle diameter: 4 μm, particle shape: all spherical, insulation treatment: available)
Alloy iron powder 2 (“AW2-08 / PF3KG” manufactured by Epson Atomics Co., Ltd., representative composition: Fe-Si-Cr, average particle diameter: 3 μm, particle shape: all spherical, insulation treatment: available)
(Other magnetic powder)
Alloy powder (“AW2-08 / PF8KG” manufactured by Epson Atomics Co., Ltd., representative composition: Fe-Si-Cr, average particle diameter: 5 μm, particle shape: all spherical, insulation treatment: available)
Pure iron powder ("CIP FM" manufactured by BASF Japan Ltd., representative composition: Fe, average particle diameter: 2 μm, particle shape: all spherical, insulation treatment: none)
Ferrite powder 1 ("E001" manufactured by Powdertech Co., Ltd., composition: Mn-Mg-Sr ferrite, average particle diameter: 50 nm, particle shape: all spherical, insulation treatment: none)
Ferrite powder 2 (“M001” manufactured by Powdertech Co., Ltd., composition: Mn ferrite, average particle diameter: 50 nm, particle shape: all spherical, insulation treatment: none)
[Non-magnetic powder]
(Second powder)
Silica powder 1 (“SSP-10M” manufactured by Tokuyama Co., Ltd., average particle size: 1 μm, particle shape: all spherical)
Alumina powder ("AO 502" manufactured by Admatex Co., Ltd., average particle size: 0.7 μm, particle shape: all spherical)
Silica powder 2 (“SSP-01M” manufactured by Tokuyama Co., Ltd., average particle size: 0.1 μm, particle shape: all spherical)
[Thermosetting resin]
-Bisphenol A epoxy resin ("850S" manufactured by DIC Corporation)
-Bisphenol F type epoxy resin ("YDF 8170" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
-Trifunctional epoxy resin ("VG 3101" manufactured by PRINTEC, Inc.)
-Multifunctional epoxy resin ("NC 3000" manufactured by Nippon Kayaku Co., Ltd.)
[Thermoplastic resin]
・ Phenoxy resin ("YP50EK35" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
[Additive]
(Hardening agent)
-Dicyandiamide ("Dicyandiamide" manufactured by Nippon Carbide Industries Co., Ltd.)
(Hardening accelerator)
・ Imidazole 1 ("2E4MZ" made by Shikoku Kasei Kogyo Co., Ltd.)
・ Imidazole 2 ("2 MAOK-PW" made by Shikoku Kasei Kogyo Co., Ltd.)
(Surface treatment agent)
・ Silane coupling agent 1 ("A1871" manufactured by Momentive Performance Materials Japan, Ltd.)
-Silane coupling agent 2 ("A 186" manufactured by Momentive Performance Materials Japan LLC)
Dispersant ("BYK-W903" manufactured by BYK Japan KK BYK Japan KK)
(solvent)
・ MEK (methyl ethyl ketone)
・ DMF (N, N-dimethylformamide)
 グリニス値、ボラタイル量、2.0rpm粘度、チクソ指数、DMA-Tg、表面抵抗値、及び磁性特性の測定方法を以下に示す。 The measurement methods of the Grinis value, the amount of volatile, 2.0 rpm viscosity, thixo index, DMA-Tg, surface resistance value, and magnetic property are shown below.
[グリニス値の測定]
 グリニス値は、次のようにして求めた。
1)厚み200μmの磁性シートを60mmφの金型で打ち抜き加工し、ポリエチレンテレフタレートフィルムを剥がした状態のものを試験板4として準備した。
2)図3に示すように、試験板4の両面に、厚み75μmの離型PETフィルム5、及び厚み1.8mmのSUS板6をこの順で積層して、サンプルセットを得た。
3)サンプルセットを、プレス熱盤温度を135℃に設定した熱盤7により、大気圧下で、実圧2.0Mpa、10分間上下からプレスして成型を行った。
4)成型後の試験板の面積を画像処理により計算して算出した。
5)下記式により2回の測定値を算出して、その平均値をグリニス値とした。なお、成型前の6cmφの試験片面積を28.26cm(30m×30mm×3.14)とした。
 グリニス値(%)={1-28.26/成型後の試験片の面積}×100
 グリニス値が60以上:成型に必須
 グリニス値が70以上90未満:配線埋め込みに好ましい 
 グリニス値が90以上:成型時に、はみ出し量が多く、好ましくない
[Measurement of Glynis value]
The Grinis value was determined as follows.
1) A magnetic sheet having a thickness of 200 μm was punched out using a 60 mmφ mold, and a polyethylene terephthalate film was peeled off to prepare a test plate 4.
2) As shown in FIG. 3, a release PET film 5 with a thickness of 75 μm and a SUS plate 6 with a thickness of 1.8 mm were laminated in this order on both sides of the test plate 4 to obtain a sample set.
3) The sample set was molded by pressing from above and below at an actual pressure of 2.0 Mpa for 10 minutes under atmospheric pressure using a hot plate 7 whose press hot plate temperature was set to 135 ° C.
4) The area of the test plate after molding was calculated by image processing.
5) Two measured values were calculated by the following formula, and the average value was defined as the glycinis value. In addition, the test piece area of 6 cmφ before molding was 28.26 cm 2 (30 m × 30 mm × 3. 14).
Grinis value (%) = {1-28.26 / area of test piece after molding} × 100
Glynis value 60 or more: Required for molding Glynis value 70 or more and less than 90: Preferred for wiring embedding
Glynis value of 90 or more: At the time of molding, the amount of protrusion is large, which is not preferable
[ボラタイル量の測定]
 厚み200μmの磁性シートを80mmφの金型で打ち抜き加工し、デシケータ内で30分間静置後に、初期重量を測定した。その後、163℃のオーブンへ15分間投入して、取り出してすぐにデシケータ内で30分以上静置・冷却した。デシケータから取り出し後すぐ重量を測定し、下記計算式によりボラタイル量を算出した。
ボラタイル(%)={シートの減少重量/シートの初期重量}×100
[Measurement of volatilization amount]
A magnetic sheet having a thickness of 200 μm was punched out using a mold of 80 mmφ, and after standing for 30 minutes in a desiccator, the initial weight was measured. Then, it was put into an oven at 163 ° C. for 15 minutes, and immediately after taking it out, it was allowed to stand still for 30 minutes or more in a desiccator. Immediately after taking out from the desiccator, the weight was measured, and the amount of volatile was calculated by the following formula.
Volatile (%) = {weight reduction of sheet / initial weight of sheet} × 100
[2.0rpm粘度]
 磁性樹脂ペーストの粘度は、TAインスツルメント社製のレオメータ「AR2000ex」を用いて測定した。具体的には、上下の直径25mmパラレルプレート間のギャップを300μmに設定し、ここへ磁性樹脂ペーストを充填した後、室温下で2分間の温度均衡時間をおいて、回転数0.2rpmにて粘度測定を行った。また、同様にして回転数2.0rpmでの粘度測定を行った。
[2.0 rpm viscosity]
The viscosity of the magnetic resin paste was measured using a rheometer "AR 2000 ex" manufactured by TA Instruments. Specifically, the gap between the upper and lower 25 mm diameter parallel plates is set to 300 μm, and after filling the magnetic resin paste there, the temperature balance time is set for 2 minutes at room temperature, and the rotation speed is 0.2 rpm. Viscosity measurement was performed. In addition, viscosity measurement at a rotation speed of 2.0 rpm was performed in the same manner.
[チクソ指数]
 磁性樹脂ペーストのチクソ指数は、上記の[2.0rpm粘度]の測定において測定した0.2rpm粘度及び2.0rpm粘度の値を用いて、下記計算式により算出した。
チクソ指数=0.2rpm粘度/2.0rpm粘度
[Thixo Index]
The thixotropic index of the magnetic resin paste was calculated according to the following formula using the values of 0.2 rpm viscosity and 2.0 rpm viscosity measured in the measurement of [2.0 rpm viscosity] described above.
Thixo index = 0.2 rpm viscosity / 2.0 rpm viscosity
[DMA-Tgの測定]
 磁性樹脂シートのDMA-Tgは、セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS100」を用いて測定した。具体的に、引張モジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から320℃まで昇温した際のtanδが極大を示す温度をDMA-Tgとした。
[Measurement of DMA-Tg]
The DMA-Tg of the magnetic resin sheet was measured using a viscoelastic spectrometer "DMS 100" manufactured by Seiko Instruments Inc. Specifically, dynamic viscoelasticity measurement (DMA) is performed with a tension module at a frequency of 10 Hz, and the temperature at which tan δ shows a maximum when the temperature is raised from room temperature to 320 ° C. at a temperature increase rate of 5 ° C./min is DMA -Tg.
[表面抵抗値の測定]
 表面抵抗値は、規格ASTM D257に則って、ADVANTEST社製の「R8340A」を用いて測定した。具体的には、主電極(25mmφ)及び主電極と同心円の電極(内径38mmφ、外径50mmφ)からなる表面電極と、裏面電極(50mmφ)との間に試験片(50mm×50mm×1mmt)を配置し、下記の設定条件で測定した。
設定条件:印加電圧100V、チャージ時間60秒、ディスチャージ時間0.1秒
[Measurement of surface resistance]
The surface resistance value was measured using "R8340A" manufactured by ADVANTEST in accordance with Standard ASTM D257. Specifically, a test piece (50 mm × 50 mm × 1 mm t) is placed between the front electrode (25 mmφ) and the front electrode consisting of the main electrode and concentric electrodes (inside diameter 38 mmφ, outer diameter 50 mmφ) and the back electrode (50 mmφ). It arranges and it measured on the following setting conditions.
Setting conditions: Applied voltage 100V, charge time 60 seconds, discharge time 0.1 seconds
[複素透磁率の測定]
 磁性樹脂シートを10枚重ね、これを加熱加圧して硬化させ、リング状に切り抜いて評価用リングコア(厚み:1.0mmt、外径:7.0mm、内径:3.2mm)(以下、磁性材料)を得た。加熱加圧条件は、180℃、4.5MPa(50kgf/cm)、1時間であった。得られた100MHzでの磁性材料の複素透磁率は、ヒューレット・パッカード社製の「4291A RFインピーダンス/マテリアル・アナライザ」を用いて測定した。測定条件は、電流の周波数は1MHz以上1.8GHz以下の範囲内、常温であった。測定した初磁化曲線から実数部(μ’)、虚数部(μ”)を得、得られた実数部(μ’)及び虚数部(μ”)から損失係数(Tanδ)及び磁性材料のQ値を算出した。高周波インダクタ部品の設計上、実数部(μ’)は6.0以上であることが好ましい。高周波インダクタ部品として機能するためには、磁性材料のQ値が20以上であることが必須である。さらに、高周波インダクタ部品として良好な性能を発揮には、磁性材料のQ値が33以上であることが好ましい。
[Measurement of complex permeability]
Ten magnetic resin sheets are stacked, heated and pressed to cure them, and cut out in a ring shape for evaluation ring core (thickness: 1.0 mm, outer diameter: 7.0 mm, inner diameter: 3.2 mm) (hereinafter, magnetic material Got). The heating and pressing conditions were 180 ° C., 4.5 MPa (50 kgf / cm 2 ), and 1 hour. The complex permeability of the resulting magnetic material at 100 MHz was measured using Hewlett Packard "4291A RF impedance / material analyzer". The measurement conditions were that the frequency of the current was in the range of 1 MHz to 1.8 GHz, and normal temperature. The real part (μ ′) and the imaginary part (μ ′ ′) are obtained from the measured initial magnetization curve, and the obtained real part (μ ′) and the imaginary part (μ ′ ′) give the loss factor (Tan δ) and the Q value of the magnetic material Was calculated. The real part (μ ′) is preferably 6.0 or more in terms of the design of the high frequency inductor component. In order to function as a high frequency inductor component, it is essential that the Q value of the magnetic material is 20 or more. Furthermore, in order to exhibit good performance as a high frequency inductor component, it is preferable that the Q value of the magnetic material is 33 or more.
 [実施例1~6]
 実施例1~6では、磁性粉末のコンテントをそれぞれ変えて、高周波インダクタ部品として機能するのに適正な実数部(μ’)を示す磁性粉末のコンテント、すなわち100MHzでの実数部(μ’)が6.0以上を示す磁性粉末のコンテントの検討を行った。
[Examples 1 to 6]
In Examples 1 to 6, the content of the magnetic powder is different, and the content of the magnetic powder showing a real part (μ ') appropriate for functioning as a high frequency inductor component, ie, the real part (μ') at 100 MHz is We examined the content of magnetic powder showing 6.0 or more.
 表1に示す配合割合で、ビスフェノールA型エポキシ樹脂、3官能エポキシ樹脂、多官能エポキシ樹脂、フェノキシ樹脂、MEK及びDMFを混合して、樹脂溶液を得た。得られた樹脂溶液に、表1に示す配合割合で、合金鉄2(平均粒径:3μm)及びアルミナ(平均粒径:0.7μm)を添加して混練し、ジシアンジアミド、イミダゾール1、シランカップリング剤1、分散剤を添加して均一になるように撹拌することによって、磁性樹脂スラリーを得た。 The resin solution was obtained by mixing bisphenol A epoxy resin, trifunctional epoxy resin, polyfunctional epoxy resin, phenoxy resin, MEK and DMF at the mixing ratio shown in Table 1. Alloy iron 2 (average particle diameter: 3 μm) and alumina (average particle diameter: 0.7 μm) are added to the obtained resin solution at the mixing ratio shown in Table 1 and kneaded, and dicyandiamide, imidazole 1, silane cup The magnetic resin slurry was obtained by adding the ring agent 1 and the dispersing agent and stirring the mixture uniformly.
 離形処理が施されたポリエチレンテレフタレートフィルムの表面に得られた磁性樹脂スラリーを塗布して乾燥させることによって、厚み200μmのBステージ状態の磁性樹脂シートを得た。得られた磁性樹脂シートを用いてグリニス値、ボラタイル量、DMA-Tg、表面抵抗値及び磁性特性を測定した。その結果を表1に示す。 The magnetic resin slurry obtained was applied to the surface of the polyethylene terephthalate film subjected to the releasing treatment and dried to obtain a magnetic resin sheet in a B-stage state having a thickness of 200 μm. Using the obtained magnetic resin sheet, the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、磁性粉末のコンテントが高くなるにつれて、実数部(μ’)及び虚数部(μ”)は高くなる一方で、磁性材料のQ値及びグリニス値は低下する傾向にあることがわかった。実施例1~6の中で、実数部(μ’)及びグリニス値のバランスが最もとれているのは、磁性粉末のコンテントが53.0体積%の実施例4であった。 As apparent from Table 1, as the content of the magnetic powder increases, the real part (μ ') and the imaginary part (μ ") increase, while the Q value and the grin value of the magnetic material tend to decrease. Among the examples 1 to 6, the real part (μ ') and the glycini value are most well balanced in the example 4 in which the content of the magnetic powder is 53.0% by volume. .
 [実施例7,8、比較例1~4]
 実施例7,8、比較例1,2では、実施例4の磁性粉末のコンテント(53.0体積%)を維持しながら、第二の粉末に対する第一の粉末の粒径比(以下、単に粒径比)を変えて、高周波インダクタ部品として機能するために必須である磁性材料のQ値を満たす粒径比、すなわち100MHzでの磁性材料のQ値が20以上の粒径比の検討を行った。比較例3及び比較例4では、第一の粉末を含まない。具体的に、表2に示す配合割合で、原料を配合した他は、[実施例1~6]と同様にして、磁性樹脂スラリーを得た。得られた磁性樹脂シートを用いてグリニス値、ボラタイル量、DMA-Tg、表面抵抗値及び磁性特性を測定した。その結果を表2に示す。
[Examples 7, 8 and Comparative Examples 1 to 4]
In Examples 7 and 8 and Comparative Examples 1 and 2, while maintaining the content (53.0% by volume) of the magnetic powder of Example 4, the particle size ratio of the first powder to the second powder (hereinafter referred to simply as The particle size ratio satisfying the Q value of the magnetic material which is essential to function as a high frequency inductor component is changed by changing the particle size ratio), that is, the particle size ratio of 20 or more of the Q value of the magnetic material at 100 MHz is examined. The Comparative Example 3 and Comparative Example 4 do not contain the first powder. Specifically, magnetic resin slurries were obtained in the same manner as in [Examples 1 to 6] except that the raw materials were blended at the blending ratio shown in Table 2. Using the obtained magnetic resin sheet, the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実数部(μ’)及びグリニス値は、粒径比が大きくなるにつれて、低下する傾向にあった。虚数部(μ”)は、粒径比が大きくなると低下し、粒径比が4.3(実施例4)を超えるとほぼ一定となる傾向にあった。磁性材料のQ値は、粒径比が大きくなると、高くなり、粒径比が4.3(実施例4)を超えると低下する傾向であった。また、比較例3では、合金鉄粉末を含まないので、磁性材料のQ値は20未満であった。比較例4では、合金鉄粉末の平均粒径が5μm未満でなかったので、磁性材料のQ値は20未満であった。実施例4,7,8、比較例1~4の中で、磁性材料のQ値が最も高く、グリニス値が良好であるのは、粒径比が4.3の実施例4であった。 As apparent from Table 2, the real part (μ ') and the glycin value tended to decrease as the particle size ratio increased. The imaginary part (μ ′ ′) decreases as the particle size ratio increases, and tends to be substantially constant when the particle size ratio exceeds 4.3 (Example 4). The Q value of the magnetic material is the particle size As the ratio increases, it increases, and the particle size ratio tends to decrease when it exceeds 4.3 (Example 4) In addition, in Comparative Example 3, the Q value of the magnetic material does not contain the alloy iron powder. Was less than 20. In Comparative Example 4, the Q value of the magnetic material was less than 20 because the average particle size of the alloyed iron powder was not less than 5 μm. Among the above, the magnetic material having the highest Q value and the good Grinis value among Example 4 was Example 4 having a particle size ratio of 4.3.
 [実施例9~13、比較例5]
 実施例9~13では、実施例4の磁性粉末のコンテント(53.0体積%)及び粒径比(4.3)を維持しながら、非磁性粉末に対する磁性粉末の質量比(以下、質量比)を変えて、高周波インダクタ部品としての良好な性能を発揮する磁性材料のQ値を満たす第一の質量比、すなわち100MHzでの磁性材料のQ値が33以上の質量比の検討を行った。比較例5では、非磁性粉末を含まない。具体的に、表3に示す配合割合で、原料を配合した他は、[実施例1~6]と同様にして、磁性樹脂スラリーを得た。得られた磁性樹脂シートを用いてグリニス値、ボラタイル量、DMA-Tg、表面抵抗値及び磁性特性を測定した。その結果を表3に示す。
[Examples 9 to 13, Comparative Example 5]
In Examples 9 to 13, while maintaining the content (53.0% by volume) and the particle size ratio (4.3) of the magnetic powder of Example 4, the mass ratio of magnetic powder to nonmagnetic powder (hereinafter referred to as mass ratio) The first mass ratio satisfying the Q value of the magnetic material exhibiting good performance as a high frequency inductor component, that is, the mass ratio of the magnetic material at 100 MHz of 33 or more was examined. Comparative Example 5 contains no nonmagnetic powder. Specifically, a magnetic resin slurry was obtained in the same manner as in [Examples 1 to 6] except that the raw materials were blended at the blending ratio shown in Table 3. Using the obtained magnetic resin sheet, the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、質量比が小さくなるにつれて、グリニス値は低下し、磁性材料のQ値は高くなる傾向であった。一方、比較例5は、非磁性粉末を含まないので、磁性材料のQ値は20未満であった。実施例4,9~13、比較例5の中で、磁性材料のQ値が33以上であるのは、質量比が4.0~5.7の範囲内である実施例11~13であった。この実施例11~13の中で、磁性材料のQ値及びグリニス値のバランスが最もとれているのは、質量比が4.7の実施例12であった。 As apparent from Table 3, as the mass ratio decreased, the glycinish value decreased, and the Q value of the magnetic material tended to increase. On the other hand, Comparative Example 5 contained no nonmagnetic powder, so the Q value of the magnetic material was less than 20. In Examples 4 and 9 to 13 and Comparative Example 5, Q value of the magnetic material is 33 or more in Examples 11 to 13 in which the mass ratio is in the range of 4.0 to 5.7. The Among the examples 11 to 13, the magnetic material with the Q value and the grinnis value most balanced was the example 12 with a mass ratio of 4.7.
 [実施例14,15]
 実施例14,15では、粒径比を4.3、質量比を6.0に維持しながら、他の磁性粉末としてフェライト粉末を添加し、フェライト粉末の添加による磁性材料のQ値の変化を調べた。具体的に、表4に示す配合割合で、原料を配合した他は、[実施例1~6]と同様にして、磁性樹脂スラリーを得た。得られた磁性樹脂シートを用いてグリニス値、ボラタイル量、DMA-Tg、表面抵抗値及び磁性特性を測定した。その結果を表4に示す。
[Examples 14 and 15]
In Examples 14 and 15, while maintaining the particle size ratio at 4.3 and the mass ratio at 6.0, ferrite powder is added as another magnetic powder, and the Q value change of the magnetic material by the addition of the ferrite powder is determined. Examined. Specifically, magnetic resin slurries were obtained in the same manner as in [Examples 1 to 6] except that the raw materials were blended at the blending ratio shown in Table 4. Using the obtained magnetic resin sheet, the grin value, the amount of volatile, DMA-Tg, the surface resistance value and the magnetic property were measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、第一の粉末全体に対するフェライト粉末の混合割合が約6質量%である実施例14,15では実施例11よりも磁性材料のQ値が下がったが、20以上であった。これらの結果から、フェライト粉末を含む磁性材料のQ値は、フェライト粉末を含まない磁性材料よりも低くなることがわかった。さらに磁性樹脂スラリーは、微粒のフェライト粉末の混合割合を少量含んでいても、高周波インダクタ部品として機能するために必須である磁性材料のQ値を満たすことがわかった。 As apparent from Table 4, in Examples 14 and 15 in which the mixing ratio of ferrite powder to the entire first powder is about 6% by mass, the Q value of the magnetic material is lower than that in Example 11, but there were. From these results, it was found that the Q value of the magnetic material containing ferrite powder is lower than that of the magnetic material not containing ferrite powder. Furthermore, it has been found that the magnetic resin slurry satisfies the Q value of the magnetic material, which is essential for functioning as a high frequency inductor component, even if the magnetic resin slurry contains a small amount of the mixture ratio of fine particle ferrite powder.
 [実施例16]
 実施例16では、溶剤を含有させずに、磁性樹脂ペーストを得た。具体的には、表5に示す原料を、表5に示す配合割合で混合し、均一になるよう混練することによって、磁性樹脂ペーストを得た。原料の混合及び混練には、公知の混合機及び混練機を用いた。
[Example 16]
In Example 16, a magnetic resin paste was obtained without containing a solvent. Specifically, the magnetic resin paste was obtained by mixing the raw materials shown in Table 5 at the mixing ratio shown in Table 5 and kneading so as to be uniform. For mixing and kneading of the raw materials, known mixers and kneaders were used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、溶剤を含有させずに作製された実施例16のチクソ指数は3.8であり、Q値は20以上であった。この結果から、磁性樹脂組成物が溶剤を含有しないペースト状の磁性樹脂ペーストであっても、流動性に優れ、かつ高周波インダクタ部品として機能するために必須である磁性材料のQ値を満たすことがわかった。 As apparent from Table 5, the thixotropic index of Example 16 produced without containing a solvent was 3.8, and the Q value was 20 or more. From this result, even if the magnetic resin composition is a paste-like magnetic resin paste containing no solvent, it has excellent fluidity and satisfies the Q value of the magnetic material which is essential to function as a high frequency inductor component. all right.
 以上述べた実施形態から明らかなように、本発明に係る第1の態様の複合磁性粉末は、 第一の粉末を含む磁性粉末と、第二の粉末を含む非磁性粉末とを含有する。第一の粉末が、合金鉄粉末からなり、第二の粉末が、アルミナ粉末及びシリカ粉末の少なくとも1種からなる。第一の粉末の平均粒径が、5μm未満であり、かつ第二の粉末の平均粒径の3倍以上30倍以下である。 As apparent from the embodiment described above, the composite magnetic powder of the first aspect according to the present invention contains a magnetic powder containing a first powder and a nonmagnetic powder containing a second powder. The first powder comprises alloyed iron powder and the second powder comprises at least one of alumina powder and silica powder. The average particle size of the first powder is less than 5 μm and is at least 3 times and not more than 30 times the average particle size of the second powder.
 第1の態様によれば、高周波帯での磁性材料のQ値を高くすることができる。 According to the first aspect, the Q value of the magnetic material in the high frequency band can be increased.
 本発明に係る第2の態様の複合磁性粉末では、第1の態様において、磁性粉末の混合割合が、非磁性粉末1質量部に対して、4質量部以上19質量部以下である。 In the composite magnetic powder according to the second aspect of the present invention, in the first aspect, the mixing ratio of the magnetic powder is 4 parts by mass to 19 parts by mass with respect to 1 part by mass of the nonmagnetic powder.
 第2の態様によれば、100MHzでの磁性材料のQ値と、処理前の磁性材料の流動性とのバランスをとることができる。 According to the second aspect, it is possible to balance the Q value of the magnetic material at 100 MHz and the flowability of the magnetic material before processing.
 本発明に係る第3の態様の複合磁性粉末では、第1又は第2の態様において、磁性粉末が絶縁処理されている。 In the composite magnetic powder of the third aspect according to the present invention, in the first or second aspect, the magnetic powder is subjected to an insulation treatment.
 第3の態様によれば、磁性材料のQ値をより高くすることができる。 According to the third aspect, the Q value of the magnetic material can be made higher.
 本発明に係る第4の態様の磁性樹脂組成物は、第1乃至第3のいずれか1つの態様の複合磁性粉末と、硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂と、を含有する。 The magnetic resin composition of the fourth aspect according to the present invention is at least one resin selected from the group consisting of the composite magnetic powder of any one of the first to third aspects, a curable resin and a thermoplastic resin. And.
 第4の態様によれば、高周波帯での高いQ値を有する磁性材料を得ることができる。 According to the fourth aspect, a magnetic material having a high Q value in a high frequency band can be obtained.
 本発明に係る第5の態様の磁性樹脂組成物では、第4の態様において、複合磁性粉末の含有量が、磁性樹脂組成物の固形分全体の70質量%以上99.5質量%以下である。 In the magnetic resin composition according to the fifth aspect of the present invention, in the fourth aspect, the content of the composite magnetic powder is 70% by mass or more and 99.5% by mass or less of the total solid content of the magnetic resin composition .
 第5の態様によれば、高周波インダクタ用途に好適に用いることのできる磁性材料を得ることができる。 According to the fifth aspect, a magnetic material that can be suitably used for high frequency inductor applications can be obtained.
 本発明に係る第6の態様の磁性樹脂組成物では、第4又は第5の態様において、磁性樹脂組成物の硬化物又は固化物は、周波数100MHzでのQ値が20以上である。 In the magnetic resin composition according to the sixth aspect of the present invention, in the fourth or fifth aspect, the cured product or solidified product of the magnetic resin composition has a Q value at a frequency of 100 MHz of 20 or more.
 第6の態様によれば、高周波インダクタ用途に好適に用いることのできる磁性材料を得ることができる。 According to the sixth aspect, a magnetic material that can be suitably used for high frequency inductor applications can be obtained.
 本発明に係る第7の態様の磁性樹脂ペーストでは、第4乃至第6のいずれか1つの態様の磁性樹脂組成物が、ペースト状である。 In the magnetic resin paste of the seventh aspect according to the present invention, the magnetic resin composition of any one of the fourth to sixth aspects is paste-like.
 第7の態様によれば、良好な流動性を有する磁性材料を得ることができる。 According to the seventh aspect, a magnetic material having good fluidity can be obtained.
 本発明に係る第8の態様の磁性樹脂粉末では、第4乃至第6のいずれか1つの態様の磁性樹脂組成物が、粉状である。 In the magnetic resin powder of the eighth aspect according to the present invention, the magnetic resin composition of any one of the fourth to sixth aspects is powdery.
 第8の態様によれば、粉状の磁性材料を得ることができる。 According to the eighth aspect, a powdery magnetic material can be obtained.
 本発明に係る第9の態様の磁性樹脂スラリーでは、第4乃至第6のいずれか1つの態様の磁性樹脂組成物が、溶剤をさらに含有し、スラリー状である。 In the magnetic resin slurry according to the ninth aspect of the present invention, the magnetic resin composition according to any one of the fourth to sixth aspects further contains a solvent and is in the form of a slurry.
 第9の態様によれば、良好な流動性を有する磁性材料を得ることができる。 According to the ninth aspect, a magnetic material having good flowability can be obtained.
 本発明に係る第10の態様の磁性樹脂シートでは、第4乃至第6のいずれか1つの態様の磁性樹脂組成物が、シート状である。 In the magnetic resin sheet according to the tenth aspect of the present invention, the magnetic resin composition according to any one of the fourth to sixth aspects is in the form of a sheet.
 第10の態様によれば、均一な厚みを有する磁性材料を得ることができる。 According to the tenth aspect, a magnetic material having a uniform thickness can be obtained.
 本発明に係る第11の態様の磁性樹脂シートでは、第10の態様において、厚みが10μm以上500μm以下である。 The magnetic resin sheet according to the eleventh aspect of the present invention has a thickness of 10 μm to 500 μm in the tenth aspect.
 第11の態様によれば、一定の厚みを有する磁性材料を得ることができる。 According to the eleventh aspect, a magnetic material having a constant thickness can be obtained.
 本発明に係る第12の態様の金属箔付磁性樹脂シートは、第10又は第11の態様の磁性樹脂シートと、磁性樹脂シートの少なくとも一方の面に積層された、厚みが5μm以下の金属箔とを備える。 A magnetic resin sheet with metal foil according to a twelfth aspect of the present invention is a metal foil having a thickness of 5 μm or less laminated on at least one surface of the magnetic resin sheet according to the tenth or eleventh aspect and the magnetic resin sheet. And
 第12の態様によれば、金属箔付きの磁性材料を得ることができる。 According to the twelfth aspect, a magnetic material with a metal foil can be obtained.
 本発明に係る第13の態様の磁性プリプレグは、繊維質基材と、第4乃至第6のいずれか1つの態様の磁性樹脂組成物又は磁性樹脂組成物の半硬化物と、を備える。 A magnetic prepreg according to a thirteenth aspect of the present invention comprises a fibrous base material and a semi-cured product of the magnetic resin composition or the magnetic resin composition according to any one of the fourth to sixth aspects.
 第13の態様によれば、曲げ強度に優れた磁性材料を得ることができる。 According to the thirteenth aspect, it is possible to obtain a magnetic material excellent in bending strength.
 本発明に係る第14の態様のインダクタ部品は、コイル状配線と、コイル状配線を被覆する絶縁層とを備え、絶縁層が、第4乃至第6のいずれか1つの態様の磁性樹脂組成物の硬化物又は固化物で成形されている。 The inductor component according to the fourteenth aspect of the present invention includes a coiled wire and an insulating layer covering the coiled wire, and the insulating layer is the magnetic resin composition according to any one of the fourth to sixth aspects. It is molded with a cured product or solidified product of
 第14の態様によれば、高周波インダクタ部品として好適に用いることができるインダクタ部品を得ることができる。 According to the fourteenth aspect, an inductor component that can be suitably used as a high frequency inductor component can be obtained.
 1  磁性樹脂シート
 2  フィルム
 3  磁性樹脂スラリー層
 8  金属箔
 10 大径磁性粒子
 11 複数の大径磁性粒子同士が近接して形成された見かけ上ひと塊の大きな粒子
 20 小径非磁性粒子
 21 小径非磁性粒子からなる層
 30 金属箔付磁性樹脂シート
 40 磁性プリプレグ
 41 磁性樹脂組成物
 42 繊維質基材
DESCRIPTION OF SYMBOLS 1 Magnetic resin sheet 2 Film 3 Magnetic resin slurry layer 8 Metal foil 10 Large diameter magnetic particles 11 Several large diameter magnetic particles formed in proximity to each other apparently large lumps of large particles 20 Small diameter nonmagnetic particles 21 Small diameter nonmagnetic particles Particle layer 30 Magnetic resin sheet with metal foil 40 Magnetic prepreg 41 Magnetic resin composition 42 Fibrous base material

Claims (14)

  1.  第一の粉末を含む磁性粉末と、
     第二の粉末を含む非磁性粉末とを含有し、
     前記第一の粉末が、合金鉄粉末からなり、
     前記第二の粉末が、アルミナ粉末及びシリカ粉末の少なくとも1種からなり、
     前記第一の粉末の平均粒径が、5μm未満であり、かつ前記第二の粉末の平均粒径の3倍以上30倍以下である
     複合磁性粉末。
    Magnetic powder containing the first powder,
    And a nonmagnetic powder containing a second powder;
    The first powder comprises an alloy iron powder,
    The second powder comprises at least one of alumina powder and silica powder,
    Composite magnetic powder, wherein the average particle size of the first powder is less than 5 μm and is at least 3 times and not more than 30 times the average particle size of the second powder.
  2.  前記磁性粉末の混合割合が、前記非磁性粉末1質量部に対して、4質量部以上19質量部以下である
     請求項1に記載の複合磁性粉末。
    The composite magnetic powder according to claim 1, wherein a mixing ratio of the magnetic powder is 4 parts by mass or more and 19 parts by mass or less with respect to 1 part by mass of the nonmagnetic powder.
  3.  前記磁性粉末が絶縁処理されている
     請求項1又は2に記載の複合磁性粉末。
    The composite magnetic powder according to claim 1, wherein the magnetic powder is subjected to an insulation treatment.
  4.  請求項1乃至3のいずれか1項に記載の複合磁性粉末と、
     硬化性樹脂及び熱可塑性樹脂からなる群から選択される少なくとも一種の樹脂と、を含有する
     磁性樹脂組成物。
    The composite magnetic powder according to any one of claims 1 to 3.
    A magnetic resin composition comprising at least one resin selected from the group consisting of a curable resin and a thermoplastic resin.
  5.  前記複合磁性粉末の含有量が、前記磁性樹脂組成物の固形分全体の70質量%以上99.5質量%以下である
     請求項4に記載の磁性樹脂組成物。
    The magnetic resin composition according to claim 4, wherein a content of the composite magnetic powder is 70% by mass or more and 99.5% by mass or less of the total solid content of the magnetic resin composition.
  6.  前記磁性樹脂組成物の硬化物又は固化物は、周波数100MHzでのQ値が20以上である
     請求項4又は5に記載の磁性樹脂組成物。
    The magnetic resin composition according to claim 4 or 5, wherein a cured product or a solidified product of the magnetic resin composition has a Q value at a frequency of 100 MHz of 20 or more.
  7.  請求項4乃至6のいずれか1項に記載の磁性樹脂組成物が、ペースト状である
     磁性樹脂ペースト。
    The magnetic resin composition according to any one of claims 4 to 6, which is in the form of a paste.
  8.  請求項4乃至6のいずれか1項に記載の磁性樹脂組成物が、粉状である
     磁性樹脂粉末。
    A magnetic resin powder, wherein the magnetic resin composition according to any one of claims 4 to 6 is powdery.
  9.  請求項4乃至6のいずれか1項に記載の磁性樹脂組成物が、溶剤をさらに含有し、スラリー状である
     磁性樹脂スラリー。
    The magnetic resin composition according to any one of claims 4 to 6, which further contains a solvent and is in the form of a slurry.
  10.  請求項4乃至6のいずれか1項に記載の磁性樹脂組成物が、シート状である
     磁性樹脂シート。
    A magnetic resin sheet according to any one of claims 4 to 6, wherein the magnetic resin composition is in the form of a sheet.
  11.  厚みが10μm以上500μm以下である
     請求項10に記載の磁性樹脂シート。
    The magnetic resin sheet according to claim 10, wherein the thickness is 10 μm or more and 500 μm or less.
  12.  請求項10又は11に記載の磁性樹脂シートと、
     前記磁性樹脂シートの少なくとも一方の面に積層された、厚みが5μm以下の金属箔とを備える
     金属箔付磁性樹脂シート。
    A magnetic resin sheet according to claim 10 or 11,
    A magnetic resin sheet with metal foil, comprising: a metal foil having a thickness of 5 μm or less laminated on at least one surface of the magnetic resin sheet.
  13.  繊維質基材と、
     請求項4乃至6のいずれか1項に記載の磁性樹脂組成物又は前記磁性樹脂組成物の半硬化物と、を備える
     磁性プリプレグ。
    A fibrous base material,
    A magnetic prepreg comprising the magnetic resin composition according to any one of claims 4 to 6 or a semi-cured product of the magnetic resin composition.
  14.  コイル状配線と、
     コイル状配線を被覆する絶縁層とを備え、
     前記絶縁層が、請求項4乃至6のいずれか1項に記載の磁性樹脂組成物の硬化物又は固化物で成形されている
     インダクタ部品。
    Coiled wire,
    And an insulating layer covering the coiled wiring,
    An inductor component, wherein the insulating layer is formed of a cured product or a solidified product of the magnetic resin composition according to any one of claims 4 to 6.
PCT/JP2018/044903 2017-12-08 2018-12-06 Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component WO2019112002A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019558274A JP7194909B2 (en) 2017-12-08 2018-12-06 Magnetic resin powder, magnetic prepreg and magnetic resin paste
CN201880078778.0A CN111466001A (en) 2017-12-08 2018-12-06 Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin paste, magnetic resin sheet with metal foil, magnetic prepreg, and inductance component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017236508 2017-12-08
JP2017-236508 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019112002A1 true WO2019112002A1 (en) 2019-06-13

Family

ID=66749961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044903 WO2019112002A1 (en) 2017-12-08 2018-12-06 Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component

Country Status (4)

Country Link
JP (1) JP7194909B2 (en)
CN (1) CN111466001A (en)
TW (1) TW201929002A (en)
WO (1) WO2019112002A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235246A1 (en) * 2019-05-17 2020-11-26 住友ベークライト株式会社 Resin composition for magnetic member formation and method for producing magnetic member
US20200391287A1 (en) * 2018-02-28 2020-12-17 Hitachi Chemical Company, Ltd. Compound powder
JP2021187894A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
WO2023068032A1 (en) * 2021-10-19 2023-04-27 味の素株式会社 Resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718628B (en) * 2019-08-19 2021-02-11 肥特補科技股份有限公司 Insulating soft magnetic ink and insulating soft magnetic film
JPWO2022075191A1 (en) * 2020-10-05 2022-04-14

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313208A (en) * 2000-04-27 2001-11-09 Tdk Corp Composite magnetic material, magnetic molding material using the same, compact magnetic powder molding material, magnetic paint, prepreg, and magnetic board
JP2004221603A (en) * 2004-01-30 2004-08-05 Tdk Corp Coupler
JP2009007534A (en) * 2007-06-29 2009-01-15 Nippon Zeon Co Ltd Polymerizable composition and its application
JP2013161939A (en) * 2012-02-03 2013-08-19 Ibiden Co Ltd Sheet material, manufacturing method of sheet material, inductor component, wiring board, and magnetic material
JP2015187260A (en) * 2014-03-11 2015-10-29 味の素株式会社 adhesive film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684461B2 (en) * 2000-04-28 2011-05-18 パナソニック株式会社 Method for manufacturing magnetic element
JP2005340759A (en) * 2004-04-27 2005-12-08 Sony Corp Magnetic core member for antenna module, antenna module, and personal digital assistant equipped with this
JP6226047B2 (en) * 2011-03-24 2017-11-08 住友電気工業株式会社 Composite material, reactor core, and reactor
JP2014086624A (en) 2012-10-25 2014-05-12 Kyocera Corp Method of producing magnetic composite material
CN107077939B (en) * 2014-09-17 2019-08-06 株式会社自动网络技术研究所 Composite material, magnet assembly and reactor
JP6330692B2 (en) * 2015-02-25 2018-05-30 株式会社村田製作所 Electronic components
JP6754999B2 (en) * 2015-03-05 2020-09-16 パナソニックIpマネジメント株式会社 Resin composition, low dielectric constant resin sheet, prepreg, metal foil laminated board, high frequency circuit board and multilayer wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313208A (en) * 2000-04-27 2001-11-09 Tdk Corp Composite magnetic material, magnetic molding material using the same, compact magnetic powder molding material, magnetic paint, prepreg, and magnetic board
JP2004221603A (en) * 2004-01-30 2004-08-05 Tdk Corp Coupler
JP2009007534A (en) * 2007-06-29 2009-01-15 Nippon Zeon Co Ltd Polymerizable composition and its application
JP2013161939A (en) * 2012-02-03 2013-08-19 Ibiden Co Ltd Sheet material, manufacturing method of sheet material, inductor component, wiring board, and magnetic material
JP2015187260A (en) * 2014-03-11 2015-10-29 味の素株式会社 adhesive film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200391287A1 (en) * 2018-02-28 2020-12-17 Hitachi Chemical Company, Ltd. Compound powder
WO2020235246A1 (en) * 2019-05-17 2020-11-26 住友ベークライト株式会社 Resin composition for magnetic member formation and method for producing magnetic member
JP2021187894A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
JP7338560B2 (en) 2020-05-26 2023-09-05 味の素株式会社 resin composition
WO2023068032A1 (en) * 2021-10-19 2023-04-27 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
CN111466001A (en) 2020-07-28
TW201929002A (en) 2019-07-16
JPWO2019112002A1 (en) 2020-12-03
JP7194909B2 (en) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2019112002A1 (en) Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, magnetic resin sheet with metal foil, magnetic prepreg, and inductor component
JP5548234B2 (en) Magnetic component, metal powder used therefor, and manufacturing method thereof
CN101375353B (en) Composite magnetic sheet and process for producing the same
EP2980811B1 (en) Composite magnetic powder for noise suppressing
JP5974803B2 (en) Soft magnetic alloy powder, green compact, dust core and magnetic element
KR101893672B1 (en) Magnetic metal powder-containing sheet, method for manufacturing inductor, and inductor
JP2013236021A5 (en)
JP5373127B2 (en) Magnetic component, soft magnetic metal powder used therefor, and method for producing the same
JP2013212642A (en) Soft magnetic material manufacturing member, soft magnetic material, copper-clad laminated plate, print wiring plate, and inductor
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
KR20110056504A (en) Magnetic sheet composition, magnetic sheet, and method for producing magnetic sheet
KR20160061106A (en) A manufacturing method of magnetic powder paste for a molded inductor by molding under a room temperature condition and magnetic powder paste manufactured thereby.
EP3354684B1 (en) Composition for 3d printing
US8343375B2 (en) Ferrite powder and its production method
JP2021111766A (en) Soft magnetic metal flat powder, resin composite sheet using the same, and resin composite compound for molding processing
US20120256118A1 (en) Magnetic material for high-frequency use, high-frequency device and magnetic particles
JP6662065B2 (en) Insulated soft magnetic material, dust core containing soft magnetic material
JP6167560B2 (en) Insulating flat magnetic powder, composite magnetic body including the same, antenna and communication device including the same, and method for manufacturing composite magnetic body
JP2001313208A (en) Composite magnetic material, magnetic molding material using the same, compact magnetic powder molding material, magnetic paint, prepreg, and magnetic board
CN107207277B (en) Plate-like ferrite particles for pigments having metallic luster
CN111755200A (en) Composite magnetic particles comprising metal magnetic particles
JP2013253123A (en) Composite magnetic material, antenna equipped with the same, communication device, and method for manufacturing the composite magnetic material
JP2006339528A (en) Radio wave absorber and its manufacturing method
JP2024040258A (en) Compounds, molded bodies, and cured products of compounds
JP2024021845A (en) Magnetic resin compositions, magnetic pastes, magnetic slurries, magnetic sheets, and processed products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885022

Country of ref document: EP

Kind code of ref document: A1