JP3722391B2 - Composite magnetic body and electromagnetic interference suppressor using the same - Google Patents

Composite magnetic body and electromagnetic interference suppressor using the same Download PDF

Info

Publication number
JP3722391B2
JP3722391B2 JP23520496A JP23520496A JP3722391B2 JP 3722391 B2 JP3722391 B2 JP 3722391B2 JP 23520496 A JP23520496 A JP 23520496A JP 23520496 A JP23520496 A JP 23520496A JP 3722391 B2 JP3722391 B2 JP 3722391B2
Authority
JP
Japan
Prior art keywords
composition
soft magnetic
alloy powder
magnetic alloy
curie temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23520496A
Other languages
Japanese (ja)
Other versions
JPH1079302A (en
Inventor
栄▲吉▼ ▲吉▼田
光晴 佐藤
英州 菅原
島田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP23520496A priority Critical patent/JP3722391B2/en
Publication of JPH1079302A publication Critical patent/JPH1079302A/en
Application granted granted Critical
Publication of JP3722391B2 publication Critical patent/JP3722391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波領域に於いて優れた複素透磁率特性を有する複合磁性材料およびそれを用いた電磁波吸収体に関し、高周波電子回路や装置に於いて問題となる電磁干渉の抑制に有効な手段を提供するものである。
【0002】
【従来の技術】
近年、デジタル電子機器をはじめ高周波を利用する電子機器類の普及が進み、中でも準マイクロ波帯域を使用する移動通信機器類の普及がめざましい。それに伴い、インダクタンス部品や電波吸収体に用いられる軟磁性体材料にも高周波化への対応が求められている。加えて、その用途が携帯電話機等の小型、軽量な通信機器の場合には、軟磁性体への要求特性に、軽量、肉薄、堅牢等が追加される。
【0003】
軟磁性材料の高周波化を阻む主な要因の一つは、渦電流損失であり、その低減化手段として、表皮深さを考慮した薄膜化及び高電気抵抗化が挙げられ、前者の例としては、磁性体層と誘電体層を交互に積層製膜したもの、また後者の代表としては高電気抵抗のNi−Zn系フェライトを挙げることができる。
【0004】
準マイクロ波帯域における軟磁性体の用途は、前述のインダクタンス部品及び電波吸収体が主であり、インダクタンス部品には実部透磁率μ′が用いられ、電波吸収体には虚数部透磁率μ″が用いられる。
【0005】
しかしながら、インダクタンス部品には高いQ値が要求される場合が多いものの、準マイクロ波帯域では必要なインダクタンスが極めて小さな値となる為に、磁芯材料としての用途は限られている。
【0006】
一方、虚数部透磁率μ″を用いる電波吸収体としての用途は、高周波機器類の普及と共に拡大しつつある。
【0007】
例えば、携帯電話に代表される移動体通信機器には、とりわけ小型化軽量化の要求が顕著であり、電子部品の高密度実装化が最大の技術課題の一つとなっている。従って、過密に実装された電子部品類やプリント配線あるいはモジュール間配線等が互いに極めて接近することになり、更には、信号処理速度の高速化も図られているため、静電及び電磁結合による線間結合の増大化や放射ノイズによる干渉などが生じ、機器の正常な動作を妨げる事態が少なからず生じている。
【0008】
このようないわゆる電磁障害に対して従来は、主に導体シールドを施す事による対策がなされてきた。
【0009】
【発明が解決しようとする課題】
しかしながら、導体シールドは空間とのインピーダンス不整合に起因する電磁波の反射を利用する電磁障害対策であるために、遮蔽効果は得られても不要輻射源からの反射による電磁結合が助長され、その結果二次的な電磁障害を引き起こす場合が少なからず生じている。
【0010】
この二次的な電磁障害対策として、磁性体の磁気損失、即ち虚数部透磁率μ″を利用した不要輻射の抑制が有効である。
【0011】
即ち、前記シールド体と不要輻射源の間に磁気損失の大きい磁性体を配設する事で不要輻射を抑制することが出来る。
【0012】
ここで、磁性体の厚さdは、μ″>μ′なる関係を満足する周波数帯域にてμ″の大きさに反比例するので、前記した電子機器の小型、軽量化要求に迎合する薄い電磁干渉抑制体即ち、シールド体と磁性体からなる複合体を得るためには、虚数部透磁率μ″の大きな磁性体が必要となる。
【0013】
【課題を解決するための手段】
懸る要求に対応すべく透磁率の高周波特性に優れ、磁気損失体として機能する磁性体即ち、低周波数領域にてμ′の値が大きく、更にμ″>μ′なる周波数領域に於いてμ″が大きな値を示す磁性体の検討を行った。
【0014】
本発明者らは、以前に扁平形状を有し、表面に酸化被膜を有する軟磁性合金粉末をマトリックス中に配向配列させた複合磁性体が優れた高周波透磁率特性を有することを示した(日本応用磁気学会誌20,421−424(1996))。ここで用いた扁平状の軟磁性合金粉末は、略球状ないし不定形状の粗粉末を溶媒中で機械的に摩砕処理することにより得られるもので、前記粗粉末は、原料メルトを冷媒中にアトマイズする直接造粒や、原料インゴットを出発原料とし、これを機械粉砕することで得られるものである。このような製法にて代表的な軟磁性材料であるFe−Si−Al合金(センダスト)を扁平状の粉末に加工し、その磁気特性について、粉末化および扁平化プロセスとの関連を調べたところ、粉末の比表面積の増大化と共に前記Fe−Si−Al合金組成中のSiおよびAlの選択的な酸化、即ち合金の組成ずれが進行することが判明した。Fe−Si−Al合金においては、Fe85%、Si9.6%、Al5.4%近傍に透磁率μが極めて大きくなる領域が存在し、このときの結晶異方性定数及び磁歪定数は共に殆どゼロとなっている(この領域のFe−Si−Al合金は一般にセンダストとよばれる)。
【0015】
従って、前述の様に微細化されたFe−Si−Al合金粉末では、特定組成(SiおよびAl)の選択的酸化によって合金組成のずれが生じ、この為に結晶異方性定数及び磁歪定数が共にゼロでは無くなり透磁率μの大幅な劣化が生じることになる。
【0016】
ところで、磁性合金の組成分析は、通常、元素分析により行われるが、この方法では、構成元素がメタル状態で存在するのか或いは酸化物となっているのかの区別が不能である。別の分析手段、例えば原子間の結合エネルギーの違いを利用してメタル状態と酸化物状態を分別する手法もあるが、被分析試料が微細な粉末であるため定量性に高い精度が望めないという問題がある。
【0017】
本発明は、軟磁性合金の粉末化に伴う特定合金組成の選択的欠乏を予め出発原料の段階で補っておき、粉末化された軟磁性合金の有効組成がバルク合金の設計組成と略同一となる様にすることで、優れた透磁率特性を実現するものであり、更には粉末の有効組成をキュリー温度Tcの測定により精度良く検証可能とするものである。バルク軟磁性合金の設計組成は、通常結晶異方性定数が略ゼロの組成または/及び磁歪定数が略ゼロとなる組成であることが多く、本発明の組成基準となる出発原料の合金組成は、通常結晶異方性定数又は/及び磁歪定数が略ゼロの合金組成とした。これらを実現することで高い透磁率と、応力歪みの影響を受けない安定した磁気特性が得られる。
【0018】
また、磁性体のキュリー温度Tcは、合金組成により一義的に定まるものであり、磁気天秤等をもちいて磁化の温度変化を測定することにより粉末状態でも容易に精度良く求めることができるので、本発明の目的である粉末状態での合金組成の最適化を判定する手段として極めて適している。
【0019】
即ち、本発明によれば、少なくとも表面が酸化されている扁平状の軟磁性合金粉末と結合剤からなる複合磁性体であって、前記軟磁性合金粉末は表面の酸化物部分と粉末内部の非酸化物部分からなり、前記軟磁性合金粉末の非酸化物部分が、結晶異方性定数または磁歪定数がゼロであるような挙動を示していることを特徴とする複合磁性体が得られる。
【0020】
また、本発明によれば、少なくとも表面が酸化されている扁平状の軟磁性合金粉末と結合剤からなる複合磁性体であって、前記軟磁性合金粉末の非酸化物組成が、そのキュリー温度Tcと結晶異方性定数または磁歪定数がゼロである軟磁性合金バルク材のキュリー温度とで管理され、前記軟磁性合金粉末が結晶異方性定数または磁歪定数がゼロであるような挙動を示していることを特徴とする複合磁性体が得られる。
【0022】
また、本発明によれば、前記軟磁性合金粉末は、前記複合磁性体中において配向配列されていることを特徴とする複合磁性体が得られる。
【0023】
また、本発明によれば、前記複合磁性体と導電性材料とから実質的になる電磁干渉抑制体が得られる。
【0024】
また、本発明によれば、酸化性の組成を含む軟磁性合金粉末の製造方法であって、結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度を測定し、前記バルク材の組成からあらかじめズレた組成を有する出発原料バルク材を粉末化してなる軟磁性合金粉末のキュリー温度Tcを測定し、前記キュリー温度Tcを前記結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度と共に用いて、前記軟磁性体合金粉末の非酸化物の組成を管理することを特徴とする軟磁性合金粉末の製造方法の製造方法が得られる。
【0025】
また、本発明によれば、酸化性の組成を含む軟磁性合金粉末及び結合剤から実質的になる複合磁性体の製造方法であって、結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度を測定し、前記バルク材の組成からあらかじめズレた組成を有する出発原料バルク材を粉末化してなる軟磁性合金粉末のキュリー温度Tcを測定し、前記キュリー温度Tcを前記結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度と共に用いて、前記軟磁性体合金粉末の非酸化物の組成を管理することを特徴とする複合磁性体の製造方法が得られる。
【0026】
【発明の実施の形態】
本発明に於いては、高周波透磁率の大きなFe−Si−Al合金(センダスト)、Fe−Si合金或いは各種アモルファス合金等の金属軟磁性材料を原料素材として用いることが出来る。
【0027】
本発明では、これらの粗原料を摩砕、延伸〜引裂加工等により扁平化し、そのアスペクト比を概ね10以上とする。所望のアスペクト比を得るには、例えば溶媒中で摩砕処理する方法が挙げられ、具体的には、ボールミル、アトライタ、ピンミル等を用いることができ、前記した条件を満足するアスペクト比が得られれば扁平化手段に制限はない。また、原料メルトを、回転する冷却コーン上に噴霧し直接扁平粒子を得る方法を用いても良い。
【0028】
また、本発明に於いては、個々の磁性粉末同士の電気的な隔離、即ち複合磁性体の非良導性を磁性粉の高充填状態においても確保出来る様、軟磁性粉末は、その表面に誘電体層が形成されている必要がある。この誘電体層は、金属磁性粉末の表面を酸化させることにより得られる構成元素と酸素からなる金属酸化物層であり、例えばFe−Si−Al合金(センダスト)の場合には、主にAlOx 及びSiOx であると推察される。金属粉末の表面を酸化させる手段の一例として、特に粉末の大きさが比較的小さく、活性度の高いものについては、炭化水素系有機溶媒中あるいは不活性ガス雰囲気中にて酸素分圧の制御された窒素−酸素混合ガスを導入する液相徐酸法或いは気相徐酸法により酸化処理する事が酸化反応制御の容易性、安定性及び安全性の点で好ましい。
【0029】
本発明の副材料として用いる有機結合剤としては、ポリエステル系樹脂、ポリエチレン樹脂、ポリ塩化ビニル系樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、セルロース系樹脂、ABS樹脂、ニトリル−ブダジエン系ゴム、スチレン−ブタジエン系ゴム、エポキシ樹脂、フェノール樹脂、アミド系樹脂、イミド系樹脂或いはそれらの共重合体を挙げることが出来る。
【0030】
以上述べた本発明の構成要素を混練・分散し複合磁性体を得る手段には特に制限はなく、用いる結合剤の性質や工程の容易さを基準に好ましい方法を選択すればよい。
【0031】
この混練・分散された磁性体混合物中の磁性粒子を配向・配列させる手段としては、せん断応力による方法と磁場配向による方法があり、いずれの方法を用いても良い。
【0032】
【実施例】
次に本発明を、以下の実施例に基づき詳細に説明する。
【0033】
はじめに、結晶異方性定数及び磁歪定数が共にほぼゼロであるセンダスト中心組成(Fe85%、Si9.4%、Al5.6%)を有する原料インゴット(バルク合金材)を用意し、これを溶解して水アトマイズ法によりFe−Si−Al合金の粗粉末を作製した。次にアトライタを用いて摩砕加工を行い、摩砕処理時間の異なる複数の試料を作製した。ここで得られた各試料に関し、炭化水素系有機溶媒中で酸素分圧35%の窒素−酸素混合ガスを導入しながら8時間撹拌し液相徐酸処理した後、表面に酸化被膜を有する粉末の試料を得た。得られた粉末を表面分析した結果、金属酸化物の生成が明確に確認され、試料粉末の表面に於ける酸化被膜の存在が認められた。
【0034】
ここで得られたアトライタ摩砕処理時間の異なる扁平形状で表面に酸化被膜を有する粉末試料について、外部磁界5kエルステッドにて磁気天秤により飽和磁化の温度変化を測定し、得られた飽和磁化の温度特性より各粉末試料のキュリー温度Tcを求めた。図1に各粉末試料のキュリー温度Tcのアトライタ摩砕処理時間依存性を示す。
【0035】
図1より、試料粉末のキュリー温度Tcが、アトライタ摩砕処理時間の進行と共に単調に上昇していることが分かる。
【0036】
この結果に加えて、更に試料粉末の出発原料である原料インゴット(バルク合金材)のキュリー温度が約450℃であること、及び純鉄のキュリー温度が約770℃であることから、アトライタによる摩砕処理の進行により、試料粉末の合金組成がFe過剰となる、言い換えればSi及び/又はAlの選択的欠落が生じると推定できる。その理由は、Si及び/又はAlの金属→酸化物変化における標準生成Gibbsエネルギー値、および合金中での移動度がFeに比べて大きいことにより、Si及び/又はAlが選択的に粉末表面にて酸化される為と考えられる。従って、粉末の表面積が大きい程、Si及び/又はAlの酸化が促進され、その結果としてキュリー温度Tcの変化も大きくなると予想される。図2は、アトライタ摩砕時間の異なる各試料について、キュリー温度TcをBET比表面積の関数として示した図であり、キュリー温度TcがBET比表面積に略比例すること、即ち、Fe−Si−Al合金においては、Si及び/又はAlの選択的な酸化が粉末の表面積の大きさに応じて生じ、その結果合金組成が変化し、キュリー温度の上昇がおこることが分かる。
【0037】
本発明の効果を検証するにあたり、合金組成の異なる出発バルク原料から作製した各種の粉末試料を用いて以下に述べる複合磁性体を作製し、μ−f特性及び電磁干渉抑制効果を調べた。
【0038】
μ−f特性の測定には、トロイダル形状に加工された複合磁性体試料を用いた。これを1ターンコイルを形成するテストフィクスチャに挿入し、インピーダンスを計測することによりμ′及びμ″を求めた。
【0039】
一方、電磁干渉抑制効果の検証は、図3に示される評価系により行い、試料となる電磁干渉抑制体10としては、複合磁性体1に銅板2を裏打ちしてなる厚さ2mmで一辺の長さが20cmのものを用いた。ここで波源用素子及び受信用素子としては、ループ径1.5mmの電磁界送信用微小ループアンテナ3及び電磁界受信用微小ループアンテナ4を用い、結合レベルの測定にはネットワークアナライザを使用した。なお5は電磁界波源用発信器、6は電磁界強度測定器である。
【0040】
(検証用試料1)
センダスト中心組成(Fe85%、Si9.6%、Al5.4%)よりもSi及びAl過剰の組成(Fe84%、Si10%、Al6%)からなる原料インゴットを作製し、これを粗粉砕後、扁平状に加工し粉末試料を得た。この粉末試料を用いて、表1に示した配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い検証用試料1を得た。
【0041】
【表1】

Figure 0003722391
【0042】
なお、得られた試料1を走査型電子顕微鏡を用いて解析したところ、扁平磁性粒子は試料膜面内方向に配向配列されていた。
【0043】
(比較用試料2)
センダスト中心組成(Fe85%、Si9.6%、Al5.4%)からなる原料インゴットを作製し、これを粗粉砕後、扁平状に加工し粉末試料を得た。この粉末試料を用いて、表2に示した配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い比較用試料2を得た。
【0044】
【表2】
Figure 0003722391
【0045】
なお、得られた試料2を走査型電子顕微鏡を用いて解析したところ、扁平磁性粒子は試料膜面内方向に配向配列されていた。
【0046】
(比較用試料3)
センダスト中心組成(Fe85%、Si9.6%、Al5.4%)からなる原料インゴットを作製し、これを粗粉砕後、扁平状に加工し粉末試料を得た。この粉末試料を用いて、表3に示した配合からなる軟磁性体ペーストを調合し、これをドクターブレード法により製膜し、熱プレスを施した後に85℃にて24時間キュアリングを行い比較用試料3を得た。
【0047】
【表3】
Figure 0003722391
【0048】
なお、得られた試料3を走査型電子顕微鏡を用いて解析したところ、扁平磁性粒子は試料膜面内方向に配向配列されていた。
【0049】
得られた各試料の実部透磁率μ′及び磁気共鳴周波数fr を表4に示す。
【0050】
【表4】
Figure 0003722391
【0051】
図4は、本発明の検証例である試料1及び比較例である試料2のμ−f特性であり、磁気共鳴周波数fr は、試料2が高く、実部透磁率μ′の値は試料1が大きな値を示している。また、表4から明らかな様に試料3の磁気共鳴周波数fr 、及び実部透磁率μ′の値は、共に試料1と試料2の中間に位置している。
【0052】
これらの結果より、本発明の実施例である粉末化による特定組成の選択的欠落を予め補った合金組成からなる粉末を用いた検証用試料1は、ほぼセンダスト中心組成を有する出発原料からなる原料磁性粉末を用いた比較用試料である試料2乃至試料3に比べて実部透磁率μ′および虚数部透磁率μ″が共に大きく、その差は歴然である。
【0053】
以上より、磁性粉末の組成を、粉末のキュリー温度Tcが粉末の出発原料となるバルク合金材の結晶異方性定数又は/及び磁歪定数が略ゼロになる組成のキュリー温度と略等しくなるようにすることで、高周波域にて高い透磁率が得られることが明白である。
【0054】
また軟磁性合金粉末と結合剤とからなる複合磁性体に於いて、軟磁性合金の粉末化に伴って生じる特定合金組成の選択的欠乏を予め出発原料の段階で補っておき、粉末化された軟磁性合金の有効組成がバルク合金の設計組成と略同一となる様にする。これと共に、粉末化された状態でのキュリー温度Tcを測定することで軟磁性合金粉末のメタル組成をモニターし、これを出発原料組成配合にフィードバックさせる。具体的には、軟磁性合金粉末の非酸化物組成を、キュリー温度Tcの測定を伴って管理する。これにより、優れた透磁率特性を実現することが出来る。
【0055】
また、本発明の一効果として、粉末での磁歪定数をほぼ0とすることが出来るので、第1表中に示した粉末のアニール処理によるμ′の変化率が小さいことから推察出来るように、粉末に加工時の応力歪みが残留している場合でも磁気特性の劣化は殆ど生じず、粉末の焼鈍処理が不要となる。
【0056】
更には、本発明の複合磁性体をインダクタンス素子用磁芯として用いる場合でも、巻線、樹脂モールド等による歪みの影響を受けないので、温度特性の良好なインダクタンス素子を実現することも可能となる。
【0057】
次に、検証用試料1及び比較用試料2の表面抵抗、及び電磁干渉抑制効果を表5に示す。
【0058】
【表5】
Figure 0003722391
【0059】
ここで、表面抵抗はASTM−D−257法による測定値であり、電磁干渉抑制効果の値は、銅板を基準(0dB)としたときの信号減衰量である。
【0060】
図4及び表5より以下に述べる効果が明白である。
【0061】
即ち、本発明による複合磁性体は、磁気損失項μ″の値が大きいことにより、信号減衰量が磁気損失項μ″の小さな比較用試料に比べて大きな値を示しており、高周波不要輻射の抑制を目的とする電磁干渉抑制体として好適である。
【0062】
なお、本発明の試料及び比較試料共、表面抵抗の値が107 〜108 Ωとなっており、少なくとも表面が酸化された磁性粉末を用いる事によって、複合磁性体を非良導性とする事が出来、導体やバルクの金属磁性体等にてみられるようなインピーダンス不整合による電磁波の表面反射を抑制出来る。
【0063】
また、本実施例では、軟磁性合金としてFe−Si−Al合金を例に取り上げたが、本発明の効果は無論これに限定されるものではなく、例えば鉄珪素合金や、各種アモルファス合金にも適応することが可能であり、磁性体の種類に限定されない。
【0064】
【発明の効果】
以上述べたように、本発明によれば、移動体通信機器をはじめとする高周波電子機器類内部での電磁波の干渉抑制に有効な複合磁性体および電磁干渉抑制体を得ることが出来る。この複合磁性体及び電磁干渉抑制体によると、優れた透磁率特性を実現することが出来、高周波領域にて大きな磁気損失が得られるので、優れた電磁干渉抑制効果が実現される。
【0065】
また、本発明による複合磁性体および電磁干渉抑制体は、その構成要素から判るように容易に可撓性を付与することが可能であり、複雑な形状への対応や厳しい耐振動、衝撃要求への対応が可能である。
【図面の簡単な説明】
【図1】水アトマイズ法により作製したFe−Si−Al合金粉末試料のキュリー温度Tcのアトライタ摩砕処理時間依存性を示した図。
【図2】アトライタ摩砕時間の異なるFe−Si−Al合金粉末試料におけるキュリー温度TcのBET比表面積依存性を示した図。
【図3】電磁干渉抑制体の特性評価に用いた評価系を示す概略図。
【図4】検証例1及び比較例2の条件にて作製した各試料のμ−f特性図。
【符号の説明】
1 複合磁性体
2 銅板
3 電磁界送信用微小ループアンテナ
4 電磁界受信用微小ループアンテナ
5 電磁界波源用発振器
6 電磁界強度測定器
10 電磁干渉抑制体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite magnetic material having excellent complex permeability characteristics in a high frequency region and an electromagnetic wave absorber using the same, and an effective means for suppressing electromagnetic interference which is a problem in high frequency electronic circuits and devices. It is to provide.
[0002]
[Prior art]
In recent years, digital electronic devices and other electronic devices that use high frequencies have spread, and in particular, mobile communication devices that use a quasi-microwave band are remarkable. Accordingly, soft magnetic materials used for inductance components and radio wave absorbers are also required to cope with higher frequencies. In addition, when the application is a small and light communication device such as a mobile phone, lightness, thinness, and robustness are added to the required characteristics of the soft magnetic material.
[0003]
One of the main factors hindering the increase in the frequency of soft magnetic materials is eddy current loss. As a means for reducing the loss, thinning and high electrical resistance considering the skin depth can be mentioned. In addition, a magnetic material layer and a dielectric layer that are alternately laminated and formed, and a typical example of the latter is a Ni-Zn ferrite having a high electrical resistance.
[0004]
The applications of the soft magnetic material in the quasi-microwave band are mainly the above-described inductance component and radio wave absorber, and the real part permeability μ ′ is used for the inductance component, and the imaginary part permeability μ ″ is used for the radio wave absorber. Is used.
[0005]
However, in many cases, a high Q value is required for the inductance component, but since the required inductance is extremely small in the quasi-microwave band, the use as a magnetic core material is limited.
[0006]
On the other hand, the use as a radio wave absorber using the imaginary part permeability μ ″ is expanding with the spread of high frequency devices.
[0007]
For example, mobile communication devices typified by mobile phones are particularly demanded for miniaturization and weight reduction, and high density mounting of electronic components is one of the biggest technical issues. Accordingly, electronic components mounted overly densely, printed wiring, inter-module wiring, and the like are extremely close to each other, and further, the signal processing speed is also increased. Interference caused by increased coupling and radiation noise has occurred, and there are not a few situations that hinder the normal operation of equipment.
[0008]
Conventionally, countermeasures have been made mainly by applying a conductor shield to such so-called electromagnetic interference.
[0009]
[Problems to be solved by the invention]
However, since the conductor shield is a countermeasure against electromagnetic interference that uses reflection of electromagnetic waves due to impedance mismatch with the space, even if the shielding effect is obtained, electromagnetic coupling due to reflection from unwanted radiation sources is promoted, and as a result There are many cases that cause secondary electromagnetic interference.
[0010]
As a countermeasure against this secondary electromagnetic interference, it is effective to suppress unnecessary radiation using the magnetic loss of the magnetic material, that is, the imaginary part permeability μ ″.
[0011]
That is, unnecessary radiation can be suppressed by disposing a magnetic body having a large magnetic loss between the shield body and the unnecessary radiation source.
[0012]
Here, since the thickness d of the magnetic material is inversely proportional to the size of μ ″ in a frequency band satisfying the relationship of μ ″> μ ′, it is a thin electromagnetic material that meets the above-described requirements for downsizing and weight reduction of electronic devices. In order to obtain an interference suppressor, that is, a composite composed of a shield body and a magnetic body, a magnetic body having a large imaginary part permeability μ ″ is required.
[0013]
[Means for Solving the Problems]
In order to meet the demands, the magnetic material has excellent high frequency characteristics of magnetic permeability and functions as a magnetic loss body, that is, the value of μ ′ is large in the low frequency region, and μ ″ in the frequency region of μ ″> μ ′. A magnetic material exhibiting a large value was investigated.
[0014]
The present inventors have previously shown that a composite magnetic material having a soft magnetic alloy powder having a flat shape and an oxide film on the surface oriented in a matrix has excellent high-frequency permeability characteristics (Japan) Applied Magnetics Society Journal 20, 421-424 (1996)). The flat soft magnetic alloy powder used here is obtained by mechanically grinding roughly spherical or irregularly shaped coarse powder in a solvent. It can be obtained by direct granulation to be atomized or by starting from raw material ingots and mechanically pulverizing them. Fe-Si-Al alloy (Sendust), which is a typical soft magnetic material, is processed into a flat powder by such a manufacturing method, and its magnetic properties are examined for its relationship with powdering and flattening processes. It has been found that the selective oxidation of Si and Al in the Fe—Si—Al alloy composition, that is, the alloy composition shift proceeds with the increase in the specific surface area of the powder. In the Fe—Si—Al alloy, there is a region where the magnetic permeability μ is extremely large in the vicinity of Fe 85%, Si 9.6%, and Al 5.4%, and the crystal anisotropy constant and magnetostriction constant at this time are almost zero. (A Fe—Si—Al alloy in this region is generally called sendust).
[0015]
Therefore, in the Fe-Si-Al alloy powder refined as described above, deviation of the alloy composition occurs due to selective oxidation of the specific composition (Si and Al), and therefore, the crystal anisotropy constant and magnetostriction constant are reduced. Both are not zero, and the magnetic permeability μ is greatly deteriorated.
[0016]
By the way, composition analysis of a magnetic alloy is usually performed by elemental analysis, but with this method it is impossible to distinguish whether a constituent element exists in a metal state or an oxide. There is another analysis means, for example, a method of separating the metal state and the oxide state using the difference in bond energy between atoms, but because the sample to be analyzed is a fine powder, high accuracy cannot be expected in the quantitative property There's a problem.
[0017]
The present invention compensates for the selective deficiency of the specific alloy composition accompanying the powdering of the soft magnetic alloy in advance at the starting material stage, and the effective composition of the powdered soft magnetic alloy is substantially the same as the design composition of the bulk alloy. By doing so, excellent magnetic permeability characteristics are realized, and furthermore, the effective composition of the powder can be verified with high accuracy by measuring the Curie temperature Tc. The design composition of a bulk soft magnetic alloy is usually a composition having a substantially zero crystal anisotropy constant or / and a composition having a substantially zero magnetostriction constant. In general, the alloy composition has substantially zero crystal anisotropy constant and / or magnetostriction constant. By realizing these, high magnetic permeability and stable magnetic characteristics that are not affected by stress strain can be obtained.
[0018]
Further, the Curie temperature Tc of the magnetic material is uniquely determined by the alloy composition, and can be easily and accurately obtained even in a powder state by measuring the temperature change of magnetization using a magnetic balance or the like. The present invention is extremely suitable as a means for determining the optimization of the alloy composition in the powder state.
[0019]
That is, according to the present invention, there is provided a composite magnetic body comprising at least a flat soft magnetic alloy powder having an oxidized surface and a binder, wherein the soft magnetic alloy powder has a surface oxide portion and a non-internal portion of the powder. A composite magnetic body comprising an oxide portion, wherein the non-oxide portion of the soft magnetic alloy powder exhibits a behavior such that the crystal anisotropy constant or magnetostriction constant is zero is obtained.
[0020]
According to the present invention, there is provided a composite magnetic body comprising at least a flat soft magnetic alloy powder whose surface is oxidized and a binder, wherein the non-oxide composition of the soft magnetic alloy powder has a Curie temperature Tc. And the Curie temperature of the soft magnetic alloy bulk material whose crystal anisotropy constant or magnetostriction constant is zero, and the soft magnetic alloy powder exhibits a behavior such that the crystal anisotropy constant or magnetostriction constant is zero. Thus , a composite magnetic body characterized by the above is obtained.
[0022]
Further, according to the present invention, the soft magnetic alloy powder, the composite magnetic body is obtained, characterized in that it is oriented arranged before Symbol composite magnetic body.
[0023]
In addition, according to the present invention, an electromagnetic interference suppressing body substantially comprising the composite magnetic body and a conductive material can be obtained.
[0024]
Further, according to the present invention, there is provided a method for producing a soft magnetic alloy powder containing a composition of acid-resistant, measuring the Curie temperature of the bulk material in the composition of the crystal anisotropy constant or magnetostriction constant zero, the bulk material The Curie temperature Tc of a soft magnetic alloy powder obtained by pulverizing a starting material bulk material having a composition shifted in advance from the composition of the above is measured, and the Curie temperature Tc is a bulk material having a composition with zero crystal anisotropy constant or magnetostriction constant In this way, a non-oxide composition of the soft magnetic alloy powder is controlled using the Curie temperature, and a method for producing a soft magnetic alloy powder is obtained.
[0025]
Further, according to the present invention, there is provided a method for producing a composite magnetic body consisting essentially of soft magnetic alloy powder and a binder comprising a composition of acid-resistant, the composition of the crystal anisotropy constant or magnetostriction constant zero bulk The Curie temperature of the material is measured, the Curie temperature Tc of the soft magnetic alloy powder obtained by pulverizing the starting raw material bulk material having a composition deviated in advance from the composition of the bulk material is measured, and the Curie temperature Tc is measured by the anisotropic crystal A method for producing a composite magnetic body characterized by controlling the composition of the non-oxide of the soft magnetic alloy powder by using it together with the Curie temperature of a bulk material having a composition having a sex constant or a magnetostriction constant of zero .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a metal soft magnetic material such as Fe-Si-Al alloy (Sendust), Fe-Si alloy or various amorphous alloys having a high high-frequency magnetic permeability can be used as a raw material.
[0027]
In the present invention, these raw materials are flattened by grinding, stretching to tearing, or the like, and the aspect ratio thereof is approximately 10 or more. In order to obtain a desired aspect ratio, for example, a method of grinding in a solvent can be used. Specifically, a ball mill, an attritor, a pin mill, or the like can be used, and an aspect ratio satisfying the above-described conditions can be obtained. There is no limitation on the flattening means. Alternatively, the raw material melt may be sprayed on a rotating cooling cone to directly obtain flat particles.
[0028]
Further, in the present invention, the soft magnetic powder is formed on the surface so that the individual magnetic powders can be electrically isolated from each other, that is, the non-conductivity of the composite magnetic material can be ensured even in a highly filled state of the magnetic powder. A dielectric layer needs to be formed. This dielectric layer is a metal oxide layer composed of oxygen and a constituent element obtained by oxidizing the surface of the metal magnetic powder. For example, in the case of an Fe—Si—Al alloy (Sendust), mainly AlO x. And SiO x . As an example of means for oxidizing the surface of the metal powder, the oxygen partial pressure is controlled in a hydrocarbon-based organic solvent or in an inert gas atmosphere especially for a powder having a relatively small size and high activity. It is preferable from the viewpoint of easy control of oxidation reaction, stability, and safety to carry out an oxidation treatment by a liquid phase slow acid method or a gas phase slow acid method in which a nitrogen-oxygen mixed gas is introduced.
[0029]
Examples of the organic binder used as an auxiliary material of the present invention include polyester resins, polyethylene resins, polyvinyl chloride resins, polyvinyl butyral resins, polyurethane resins, cellulose resins, ABS resins, nitrile-butadiene polymers, styrene-butadiene resins. Examples thereof include rubber, epoxy resin, phenol resin, amide resin, imide resin, and copolymers thereof.
[0030]
The means for kneading and dispersing the constituent elements of the present invention described above to obtain a composite magnetic material is not particularly limited, and a preferred method may be selected based on the properties of the binder used and the ease of the process.
[0031]
Means for orienting and arranging the magnetic particles in the kneaded and dispersed magnetic substance mixture include a method using shear stress and a method using magnetic field orientation, and either method may be used.
[0032]
【Example】
Next, the present invention will be described in detail based on the following examples.
[0033]
First, a raw material ingot (bulk alloy material) having a sendust center composition (Fe 85%, Si 9.4%, Al 5.6%) in which both the crystal anisotropy constant and the magnetostriction constant are almost zero is prepared and melted. A coarse powder of Fe-Si-Al alloy was prepared by water atomization. Next, grinding was performed using an attritor to produce a plurality of samples having different grinding times. Each sample obtained here was stirred for 8 hours while introducing a nitrogen-oxygen mixed gas having an oxygen partial pressure of 35% in a hydrocarbon-based organic solvent, and then subjected to liquid phase gradual acid treatment, and then a powder having an oxide film on the surface Samples were obtained. As a result of surface analysis of the obtained powder, the formation of metal oxide was clearly confirmed, and the presence of an oxide film on the surface of the sample powder was confirmed.
[0034]
With respect to the obtained powder samples having flat shapes with different attritor grinding times and having an oxide film on the surface, the temperature change of the saturation magnetization was measured with a magnetic balance at an external magnetic field of 5 k Oersted, and the temperature of the saturation magnetization obtained The Curie temperature Tc of each powder sample was determined from the characteristics. FIG. 1 shows the dependence of the Curie temperature Tc of each powder sample on the attritor grinding time.
[0035]
From FIG. 1, it can be seen that the Curie temperature Tc of the sample powder increases monotonously with the progress of the attritor grinding time.
[0036]
In addition to this result, the Curie temperature of the raw material ingot (bulk alloy material), which is the starting material of the sample powder, is about 450 ° C, and the Curie temperature of pure iron is about 770 ° C. With the progress of the crushing process, it can be estimated that the alloy composition of the sample powder becomes excessive in Fe, in other words, selective loss of Si and / or Al occurs. The reason for this is that Si and / or Al is selectively deposited on the powder surface due to the standard generation Gibbs energy value in the change of metal and oxide of Si and / or Al and the mobility in the alloy is larger than that of Fe. This is thought to be due to oxidation. Therefore, it is expected that the larger the surface area of the powder, the more the oxidation of Si and / or Al is promoted, and as a result, the change in the Curie temperature Tc is also increased. FIG. 2 is a graph showing the Curie temperature Tc as a function of the BET specific surface area for each sample having different attritor milling times. The Curie temperature Tc is approximately proportional to the BET specific surface area, that is, Fe—Si—Al. In the alloy, selective oxidation of Si and / or Al occurs according to the size of the surface area of the powder, and as a result, the alloy composition changes and the Curie temperature rises.
[0037]
In verifying the effect of the present invention, composite magnetic materials described below were prepared using various powder samples prepared from starting bulk materials having different alloy compositions, and the μ-f characteristics and the electromagnetic interference suppression effect were examined.
[0038]
For measuring the μ-f characteristic, a composite magnetic material sample processed into a toroidal shape was used. This was inserted into a test fixture forming a one-turn coil, and μ ′ and μ ″ were obtained by measuring impedance.
[0039]
On the other hand, the electromagnetic interference suppression effect is verified by the evaluation system shown in FIG. 3. As the electromagnetic interference suppression body 10 as a sample, the composite magnetic body 1 has a thickness of 2 mm and a length of one side formed by lining the copper plate 2. A length of 20 cm was used. Here, as a wave source element and a receiving element, an electromagnetic field transmitting minute loop antenna 3 and an electromagnetic field receiving minute loop antenna 4 having a loop diameter of 1.5 mm were used, and a network analyzer was used for measuring the coupling level. Reference numeral 5 denotes an electromagnetic wave source transmitter, and reference numeral 6 denotes an electromagnetic field intensity measuring device.
[0040]
(Verification sample 1)
A raw material ingot composed of a composition containing more Si and Al (Fe84%, Si10%, Al6%) than the center composition of Sendust (Fe85%, Si9.6%, Al5.4%) was prepared, and this was roughly crushed and then flattened. To obtain a powder sample. Using this powder sample, a soft magnetic paste having the composition shown in Table 1 was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours for verification. Sample 1 was obtained.
[0041]
[Table 1]
Figure 0003722391
[0042]
When the obtained sample 1 was analyzed using a scanning electron microscope, the flat magnetic particles were aligned in the in-plane direction of the sample film.
[0043]
(Comparative sample 2)
A raw material ingot having a sendust center composition (Fe 85%, Si 9.6%, Al 5.4%) was produced, and this was roughly crushed and then processed into a flat shape to obtain a powder sample. Using this powder sample, a soft magnetic paste having the composition shown in Table 2 was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours for comparison. Sample 2 was obtained.
[0044]
[Table 2]
Figure 0003722391
[0045]
When the obtained sample 2 was analyzed using a scanning electron microscope, the flat magnetic particles were aligned in the in-plane direction of the sample film.
[0046]
(Comparative sample 3)
A raw material ingot having a sendust center composition (Fe 85%, Si 9.6%, Al 5.4%) was produced, and this was roughly crushed and then processed into a flat shape to obtain a powder sample. Using this powder sample, a soft magnetic paste having the composition shown in Table 3 was prepared, formed into a film by the doctor blade method, subjected to hot pressing, and then cured at 85 ° C. for 24 hours for comparison. Sample 3 was obtained.
[0047]
[Table 3]
Figure 0003722391
[0048]
When the obtained sample 3 was analyzed using a scanning electron microscope, the flat magnetic particles were aligned in the in-plane direction of the sample film.
[0049]
Table 4 shows the real permeability μ ′ and the magnetic resonance frequency fr of each of the obtained samples.
[0050]
[Table 4]
Figure 0003722391
[0051]
FIG. 4 shows the μ-f characteristics of the sample 1 as a verification example of the present invention and the sample 2 as a comparative example. The magnetic resonance frequency fr is higher in the sample 2 and the value of the real part permeability μ ′ is the sample 1. Indicates a large value. Further, as apparent from Table 4, the magnetic resonance frequency fr and the real part permeability μ ′ of the sample 3 are both located between the sample 1 and the sample 2.
[0052]
From these results, the verification sample 1 using the powder composed of the alloy composition that compensated for the selective lack of the specific composition by pulverization, which is an example of the present invention, is a raw material composed of a starting material having a sendust center composition. Both the real part permeability μ ′ and the imaginary part permeability μ ″ are larger than those of Samples 2 to 3, which are comparative samples using magnetic powder, and the difference is clear.
[0053]
From the above, the composition of the magnetic powder is set so that the Curie temperature Tc of the powder is substantially equal to the Curie temperature of the composition in which the crystal anisotropy constant and / or magnetostriction constant of the bulk alloy material that is the starting material of the powder is substantially zero. By doing so, it is clear that a high magnetic permeability can be obtained in a high frequency range.
[0054]
Moreover, in the composite magnetic body composed of the soft magnetic alloy powder and the binder, the selective lack of the specific alloy composition caused by pulverization of the soft magnetic alloy was compensated in advance at the starting material stage, and the powder was pulverized. The effective composition of the soft magnetic alloy is made substantially the same as the design composition of the bulk alloy. At the same time, the metal composition of the soft magnetic alloy powder is monitored by measuring the Curie temperature Tc in the powdered state, and this is fed back to the starting material composition. Specifically, the non-oxide composition of the soft magnetic alloy powder is managed with the measurement of the Curie temperature Tc. Thereby, the outstanding magnetic permeability characteristic is realizable.
[0055]
Further, as one effect of the present invention, since the magnetostriction constant in the powder can be almost zero, it can be inferred from the small change rate of μ ′ due to the annealing treatment of the powder shown in Table 1. Even when the stress strain at the time of processing remains in the powder, the magnetic characteristics hardly deteriorate, and the powder annealing process becomes unnecessary.
[0056]
Furthermore, even when the composite magnetic body of the present invention is used as a magnetic core for an inductance element, it is not affected by distortion due to winding, resin mold, etc., so that it is possible to realize an inductance element with good temperature characteristics. .
[0057]
Next, Table 5 shows the surface resistance and the electromagnetic interference suppressing effect of the sample 1 for verification and the sample 2 for comparison.
[0058]
[Table 5]
Figure 0003722391
[0059]
Here, the surface resistance is a value measured by the ASTM-D-257 method, and the value of the electromagnetic interference suppression effect is a signal attenuation when the copper plate is used as a reference (0 dB).
[0060]
The effects described below are clear from FIG. 4 and Table 5.
[0061]
That is, the composite magnetic body according to the present invention has a large value of the magnetic loss term μ ″, so that the signal attenuation is larger than that of the comparative sample having a small magnetic loss term μ ″, and the high frequency unnecessary radiation is reduced. It is suitable as an electromagnetic interference suppressor for the purpose of suppression.
[0062]
Note that, in both the sample of the present invention and the comparative sample, the value of the surface resistance is 10 7 to 10 8 Ω, and at least the surface is oxidized to make the composite magnetic body non-conducting. It is possible to suppress electromagnetic wave surface reflection due to impedance mismatching as seen in conductors and bulk metallic magnetic materials.
[0063]
In this embodiment, the Fe-Si-Al alloy is taken as an example of the soft magnetic alloy, but the effect of the present invention is not limited to this. For example, the present invention is applicable to iron silicon alloys and various amorphous alloys. It can be adapted and is not limited to the type of magnetic material.
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a composite magnetic body and an electromagnetic interference suppressor effective for suppressing interference of electromagnetic waves inside high-frequency electronic devices such as mobile communication devices. According to this composite magnetic body and electromagnetic interference suppressor, excellent magnetic permeability characteristics can be realized, and a large magnetic loss can be obtained in a high frequency region, so that an excellent electromagnetic interference suppression effect is realized.
[0065]
In addition, the composite magnetic body and electromagnetic interference suppressor according to the present invention can be easily provided with flexibility as can be seen from its constituent elements, to cope with complicated shapes, severe vibration resistance, and impact requirements. Is possible.
[Brief description of the drawings]
FIG. 1 is a graph showing the dependence of the Curie temperature Tc on the attritor grinding time of an Fe—Si—Al alloy powder sample produced by a water atomization method.
FIG. 2 is a graph showing the BET specific surface area dependence of the Curie temperature Tc in Fe—Si—Al alloy powder samples having different attritor milling times.
FIG. 3 is a schematic diagram showing an evaluation system used for evaluating the characteristics of an electromagnetic interference suppressor.
4 is a μ-f characteristic diagram of each sample manufactured under the conditions of Verification Example 1 and Comparative Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite magnetic body 2 Copper plate 3 Micro loop antenna for electromagnetic field transmission 4 Micro loop antenna for electromagnetic field reception 5 Oscillator for electromagnetic wave source 6 Electromagnetic field strength measuring instrument 10 Electromagnetic interference suppression body

Claims (6)

少なくとも表面が酸化されている扁平状の軟磁性合金粉末と結合剤からなる複合磁性体であって、前記軟磁性合金粉末は表面の酸化物部分と粉末内部の非酸化物部分からなり、前記軟磁性合金粉末の非酸化物部分が、結晶異方性定数または磁歪定数がゼロであるような挙動を示していることを特徴とする複合磁性体。 A composite magnetic body comprising at least a flat soft magnetic alloy powder having an oxidized surface and a binder, the soft magnetic alloy powder comprising an oxide portion on the surface and a non-oxide portion inside the powder, A composite magnetic body characterized in that the non-oxide portion of the magnetic alloy powder exhibits a behavior such that the crystal anisotropy constant or magnetostriction constant is zero . 少なくとも表面が酸化されている扁平状の軟磁性合金粉末と結合剤からなる複合磁性体であって、前記軟磁性合金粉末の非酸化物組成が、そのキュリー温度Tcと結晶異方性定数または磁歪定数がゼロである軟磁性合金バルク材のキュリー温度とで管理され、前記軟磁性合金粉末が結晶異方性定数または磁歪定数がゼロであるような挙動を示していることを特徴とする複合磁性体。 A composite magnetic body comprising at least a flat soft magnetic alloy powder having an oxidized surface and a binder, wherein the non-oxide composition of the soft magnetic alloy powder has a Curie temperature Tc and a crystal anisotropy constant or magnetostriction. The composite magnetism is controlled by the Curie temperature of a soft magnetic alloy bulk material having a constant of zero, and the soft magnetic alloy powder exhibits a behavior such that the crystal anisotropy constant or magnetostriction constant is zero. body. 前記軟磁性合金粉末は、前記複合磁性体中において配向配列されていることを特徴とする請求項1又は2記載の複合磁性体。  The composite magnetic body according to claim 1, wherein the soft magnetic alloy powder is oriented and aligned in the composite magnetic body. 請求項1乃至のいずれかに記載の複合磁性体と導電性材料とから実質的になる電磁干渉抑制体。An electromagnetic interference suppressor substantially comprising the composite magnetic body according to any one of claims 1 to 3 and a conductive material. 化性の組成を含む軟磁性合金粉末の製造方法であって、結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度を測定し、前記バルク材の組成からあらかじめズレた組成を有する出発原料バルク材を粉末化してなる軟磁性合金粉末のキュリー温度Tcを測定し、前記キュリー温度Tcを前記結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度と共に用いて、前記軟磁性体合金粉末の非酸化物の組成を管理することを特徴とする軟磁性合金粉末の製造方法。A method of manufacturing a soft magnetic alloy powder containing a composition of acid-resistant, the Curie temperature of the bulk material in the composition of the crystal anisotropy constant or magnetostriction constant zero is measured, the pre-shift was the composition from the composition of the bulk material Measuring the Curie temperature Tc of the soft magnetic alloy powder obtained by pulverizing the starting raw material bulk material, and using the Curie temperature Tc together with the Curie temperature of the bulk material having a composition of zero crystal anisotropy constant or magnetostriction constant, A method for producing a soft magnetic alloy powder, wherein the composition of the non-oxide of the soft magnetic alloy powder is controlled. 化性の組成を含む軟磁性合金粉末及び結合剤から実質的になる複合磁性体の製造方法であって、結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度を測定し、前記バルク材の組成からあらかじめズレた組成を有する出発原料バルク材を粉末化してなる軟磁性合金粉末のキュリー温度Tcを測定し、前記キュリー温度Tcを前記結晶異方性定数または磁歪定数ゼロの組成のバルク材のキュリー温度と共に用いて、前記軟磁性体合金粉末の非酸化物の組成を管理することを特徴とする複合磁性体の製造方法。A method of manufacturing a composite magnetic body consisting essentially of soft magnetic alloy powder and a binder comprising a composition of acid-resistant, measuring the Curie temperature of the bulk material in the composition of the crystal anisotropy constant or magnetostriction constant zero, The Curie temperature Tc of a soft magnetic alloy powder obtained by pulverizing a starting material bulk material having a composition deviated in advance from the composition of the bulk material is measured, and the Curie temperature Tc is a composition having zero crystal anisotropy constant or magnetostriction constant And a Curie temperature of the bulk material, and the composition of the non-oxide of the soft magnetic alloy powder is managed.
JP23520496A 1996-09-05 1996-09-05 Composite magnetic body and electromagnetic interference suppressor using the same Expired - Lifetime JP3722391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23520496A JP3722391B2 (en) 1996-09-05 1996-09-05 Composite magnetic body and electromagnetic interference suppressor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23520496A JP3722391B2 (en) 1996-09-05 1996-09-05 Composite magnetic body and electromagnetic interference suppressor using the same

Publications (2)

Publication Number Publication Date
JPH1079302A JPH1079302A (en) 1998-03-24
JP3722391B2 true JP3722391B2 (en) 2005-11-30

Family

ID=16982629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23520496A Expired - Lifetime JP3722391B2 (en) 1996-09-05 1996-09-05 Composite magnetic body and electromagnetic interference suppressor using the same

Country Status (1)

Country Link
JP (1) JP3722391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210139416A (en) 2020-01-11 2021-11-22 가부시키가이샤 메이트 Soft magnetic metal flat powder and resin composite sheet using same and resin composite compound for molding processing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201042A (en) * 1999-01-08 2000-07-18 Kankyo Denji Gijutsu Kenkyusho:Kk Through-type emi filter
JP2002198239A (en) * 2000-12-25 2002-07-12 Hioki Ee Corp Method of manufacturing magnetic body, the magnetic body, and cable
CN100360001C (en) 2001-11-09 2008-01-02 Tdk株式会社 Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
US20060099454A1 (en) 2004-11-08 2006-05-11 Tdk Corporation Method for producing electromagnetic wave absorbing sheet, method for classifying powder, and electromagnetic wave absorbing sheet
JP5453036B2 (en) * 2009-10-06 2014-03-26 Necトーキン株式会社 Composite magnetic material
US8999075B2 (en) 2010-06-30 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material and process for production
JP6493428B2 (en) 2016-07-25 2019-04-03 Tdk株式会社 High permeability magnetic sheet
US10593453B2 (en) 2016-07-25 2020-03-17 Tdk Corporation High permeability magnetic sheet
KR20210010175A (en) * 2019-07-19 2021-01-27 현대자동차주식회사 Magneto-Rheological Elastomer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210139416A (en) 2020-01-11 2021-11-22 가부시키가이샤 메이트 Soft magnetic metal flat powder and resin composite sheet using same and resin composite compound for molding processing

Also Published As

Publication number Publication date
JPH1079302A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
JP3812977B2 (en) Electromagnetic interference suppressor
KR100247444B1 (en) Composite magnetic article for electromagnetic interference suppressor
JP5085471B2 (en) Core-shell magnetic material, method for manufacturing core-shell magnetic material, device device, and antenna device.
EP0112577A1 (en) Magnetic core and method of producing the same
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
KR20090103951A (en) Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
JP3722391B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
KR20130096187A (en) Soft magnetic powder, method of manufacturing the same, noise suppression sheet using the same, and method of manufacturing the same
JP2014192327A (en) Radio wave absorbing sheet for neighborhood field and method of manufacturing the same
JP2011249628A (en) Method for producing electromagnetic interference suppression body
KR20020034989A (en) Soft magnetic powder and composite magnetic material using the same
JP2002158486A (en) Electromagnetic wave absorbing film
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
US20120256118A1 (en) Magnetic material for high-frequency use, high-frequency device and magnetic particles
JP2008223080A (en) Method for manufacturing core-shell type magnetic nanoparticle
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
JP4097160B2 (en) Method for manufacturing electromagnetic interference suppressor
JP2013207234A (en) Green compact for high frequency use and electronic component manufactured using the same
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
KR102155542B1 (en) Noise suppression sheet for near field
KR101948025B1 (en) Noise suppression sheet for near-field
JP2011082278A (en) Composite magnetic material
JP2010062484A (en) Core shell type magnetic material, device apparatus, and antenna assembly
JP3979541B2 (en) Composite magnetic body and electromagnetic interference suppressor using the same
JP2010010237A (en) Magnetic material, artificial medium and magnetic material manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 9

EXPY Cancellation because of completion of term