JP2002198239A - Method of manufacturing magnetic body, the magnetic body, and cable - Google Patents

Method of manufacturing magnetic body, the magnetic body, and cable

Info

Publication number
JP2002198239A
JP2002198239A JP2000391741A JP2000391741A JP2002198239A JP 2002198239 A JP2002198239 A JP 2002198239A JP 2000391741 A JP2000391741 A JP 2000391741A JP 2000391741 A JP2000391741 A JP 2000391741A JP 2002198239 A JP2002198239 A JP 2002198239A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
flexibility
powder
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000391741A
Other languages
Japanese (ja)
Inventor
Koichi Yanagisawa
浩一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2000391741A priority Critical patent/JP2002198239A/en
Publication of JP2002198239A publication Critical patent/JP2002198239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulated Conductors (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method, by which a soft flexible magnetic body having improved electromagnetic wave shielding ability, can be manufactured. SOLUTION: In this method, the soft flexible magnetic body 1 is manufactured through molding of a raw material prepared, by kneading soft magnetic powder in a macromolecular material. At molding of the raw material, the soft magnetic powder contained in the material is oriented in a prescribed direction B, by impressing a magnetic field A upon the material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子材料に軟磁
性体粉を混練して柔軟性および可撓性を有する磁性体を
製造する製造方法、その製造方法に従って製造された磁
性体、およびその磁性体を被覆として用いたケーブルに
関するものである。
The present invention relates to a method for producing a magnetic material having flexibility and flexibility by kneading a soft magnetic powder with a polymer material, a magnetic material produced according to the production method, and The present invention relates to a cable using the magnetic material as a coating.

【0002】[0002]

【従来の技術】柔軟性および可撓性を備えた磁性体とし
て、ゴムやプラスチック等の高分子材料にフェライト粉
等の軟磁性体粉を混練して成形することによって製造さ
れるものが従来から知られている。この磁性体は、加工
上の自由度が大きく、例えばシート状に成形されて電子
機器が発生する電磁波の漏洩の低減や電子機器に対する
外来ノイズの影響の軽減のため、この電子機器の覆いと
して使用される。また、同様の目的で、電気信号を導通
させる信号ケーブルや電源ケーブル(以下、総称して、
単に「ケーブル」ともいう)の被覆として加工され、使
用される場合もある。
2. Description of the Related Art Conventionally, as a magnetic material having flexibility and flexibility, a magnetic material produced by kneading a soft magnetic material powder such as a ferrite powder with a polymer material such as rubber or plastic and molding the same is conventionally used. Are known. This magnetic material has a high degree of freedom in processing, and is used as a cover for this electronic device, for example, in the form of a sheet to reduce the leakage of electromagnetic waves generated by the electronic device and the effect of external noise on the electronic device. Is done. For the same purpose, a signal cable or a power cable for conducting electric signals (hereinafter collectively referred to as
In some cases, it is processed and used as a coating for a “cable”.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の磁性
体には、以下の問題点がある。すなわち、従来の磁性体
では、軟磁性体粉を高分子材料に単に混練して成形した
にすぎないため、軟磁性体粉の向きがランダムとなって
いる。したがって、磁性体に含まれる軟磁性体粉同士の
間隔がいずれの方向に対しても平均的に広い状態とな
り、結果として、いずれの方向に対する透磁率も小さ
く、電磁波の漏洩やノイズの影響を十分に低減すること
ができないという問題がある。一方、近年では、大部分
の電子機器が電磁波を発生するため、これに伴って電子
機器から漏洩した電磁波による他の電子機器の誤動作
(ノイズによる誤動作)、無線通信への障害、および人
体の健康への影響等が問題視されている。したがって、
このような電磁波の漏洩による各種の障害を防止するた
めに、電磁波に対する遮蔽性能がより高く、しかも各種
形状の電子機器の覆いとして種々の形状に加工可能な柔
軟性および可撓性を備えた磁性体の登場が望まれてい
る。
However, the conventional magnetic material has the following problems. That is, in the conventional magnetic material, the soft magnetic material powder is merely kneaded and molded into a polymer material, and the direction of the soft magnetic material powder is random. Therefore, the interval between the soft magnetic powders contained in the magnetic material is wide on average in any direction, and as a result, the magnetic permeability in any direction is small, and the effect of leakage of electromagnetic waves and noise is sufficiently reduced. There is a problem that it cannot be reduced. On the other hand, in recent years, since most electronic devices generate electromagnetic waves, malfunctions of other electronic devices due to electromagnetic waves leaked from the electronic devices (malfunctions due to noise), obstacles to wireless communication, and human health It is considered that there is a problem with the impact on the environment. Therefore,
In order to prevent various obstacles due to such leakage of electromagnetic waves, a magnetic material with higher shielding performance against electromagnetic waves and with flexibility and flexibility that can be processed into various shapes as a cover for electronic devices of various shapes The appearance of the body is desired.

【0004】本発明は、かかる問題点に鑑みてなされた
ものであり、電磁波に対する遮蔽性能がより高い柔軟性
および可撓性を備えた磁性体の製造方法を提供すること
を主目的とする。また、電磁波に対する遮蔽性能がより
高い柔軟性および可撓性を備えた磁性体を提供すること
を他の目的とする。また、電磁波の漏洩を低減し、かつ
外来ノイズの混入を低減し得るケーブルを提供すること
を他の目的とする。
The present invention has been made in view of the above problems, and has as its main object to provide a method for manufacturing a magnetic material having higher flexibility and flexibility with higher shielding performance against electromagnetic waves. Another object of the present invention is to provide a magnetic body having higher flexibility and flexibility in shielding performance against electromagnetic waves. Another object of the present invention is to provide a cable that can reduce leakage of electromagnetic waves and reduce mixing of external noise.

【0005】[0005]

【課題を解決するための手段】上記目的を達成すべく請
求項1記載の磁性体の製造方法は、高分子材料に軟磁性
体粉を混練して磁性体原料を作製した後、当該磁性体原
料を成形して柔軟性および可撓性を有する磁性体を製造
する磁性体の製造方法であって、前記磁性体原料を成形
する際に磁場を加えることにより、当該磁性体原料に含
まれている前記軟磁性体粉を所定の方向に配向させるこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a magnetic material, the method comprising: kneading a soft magnetic powder with a polymer material to prepare a magnetic material; A method for producing a magnetic material having a flexibility and flexibility by molding a raw material, the method comprising: applying a magnetic field when molding the magnetic material raw material; Characterized in that the soft magnetic powder is oriented in a predetermined direction.

【0006】請求項2記載の磁性体は、高分子材料に軟
磁性体粉を混練した磁性体原料を成形して製造された柔
軟性および可撓性を有する磁性体であって、前記軟磁性
体粉が所定の方向に沿って配向されていることを特徴と
する。
A magnetic material according to a second aspect of the present invention is a magnetic material having flexibility and flexibility manufactured by molding a magnetic material obtained by kneading a soft magnetic material powder into a polymer material. It is characterized in that the body powder is oriented along a predetermined direction.

【0007】請求項3記載の磁性体は、請求項2記載の
磁性体において、シート状に形成されていることを特徴
とする。
According to a third aspect of the present invention, there is provided the magnetic body according to the second aspect, wherein the magnetic body is formed in a sheet shape.

【0008】請求項4記載のケーブルは、心線と、当該
心線を覆う被覆とを備えたケーブルであって、前記被覆
は、高分子材料に軟磁性体粉を混練した磁性体原料を成
形して形成されると共に当該軟磁性体粉が当該被覆の周
方向に沿って配向された柔軟性および可撓性を有する磁
性体で構成されていることを特徴とする。
According to a fourth aspect of the present invention, there is provided a cable including a core wire and a coating covering the core wire, wherein the coating is formed by shaping a magnetic material obtained by kneading a soft magnetic material powder into a polymer material. The soft magnetic material powder is made of a magnetic material having flexibility and flexibility oriented along the circumferential direction of the coating.

【0009】[0009]

【発明の実施の形態】以下、添付図面を参照して、本発
明に係る磁性体の製造方法、およびその製造方法に従っ
て製造された磁性体、この磁性体を被覆として使用した
ケーブルの好適な発明の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings, in which: a method of manufacturing a magnetic body according to the present invention, a magnetic body manufactured according to the manufacturing method, and a cable using the magnetic body as a coating; An embodiment will be described.

【0010】最初に、本発明に係る磁性体の製造方法に
ついて、図1を参照して説明する。
First, a method for manufacturing a magnetic body according to the present invention will be described with reference to FIG.

【0011】まず、高分子材料(天然ゴム、またはクロ
ロブチレンやシリコンゴム等の各種合成ゴム)に軟磁性
体粉(焼結フェライト粉、鉄粉、ニッケル粉、若しくは
コバルト粉、またはこれらの混合物や、この種の金属に
よる合金粉)を混練して磁性体原料を作製する。この場
合、例えば、高分子材料と軟磁性体粉とを所定の割合で
それぞれタンクに投入し、攪拌羽根によって攪拌するこ
とにより均一に混練する。
First, a polymer material (natural rubber or various synthetic rubbers such as chlorobutylene or silicon rubber) is mixed with a soft magnetic powder (sintered ferrite powder, iron powder, nickel powder, cobalt powder, or a mixture thereof). , An alloy powder of this kind of metal is kneaded to produce a magnetic material. In this case, for example, the polymer material and the soft magnetic material powder are respectively charged into the tank at a predetermined ratio, and are uniformly kneaded by stirring with stirring blades.

【0012】続いて、磁場を加えつつ磁性体原料を金型
等を用いて所望の形状に成形することにより、柔軟性お
よび可撓性を備えたゴム状の磁性体1を作製する。この
場合、軟磁性体粉は、通常は完全な球形ではなく、歪な
形状であって、高分子材料が未固化の状態では、高分子
材料の中で姿勢や位置を自由に変えられる状態を維持し
ている。次いで、磁性体原料を通過する磁力線の方向
(磁場の印加方向)Aと、作製する磁性体1において透
磁率を高める方向Bとが一致するように、永久磁石、電
磁石または電磁コイル等の磁場生成手段2を用いて磁場
を形成する。この場合、未固化状態の高分子材料に対し
て外部から磁場を加えることにより、軟磁性体粉には、
長手方向に沿った両端部に互いに異なる極性の磁極がそ
れぞれ発生し、同時に、その各磁極に対して、磁場から
の力が磁場の方向と平行にそれぞれ作用する。この結
果、その際の磁気モーメントに応じて各軟磁性体粉が磁
場の方向に沿うように姿勢や位置を変えることにより、
各軟磁性体粉の向きが磁場の方向Bに揃った状態(いわ
ゆる配向された状態)となる。その後、各軟磁性体粉が
配向された状態のままで高分子材料を固化させる。これ
により、この特定の方向B(配向方向)に対する透磁率
が他の方向に対する透磁率よりも高い異方性を有し、か
つ柔軟性および可撓性を備えたゴム状の磁性体1が製造
される。なお、磁性体1を所定の形状(例えば柱状やシ
ート状)に成形する場合、金型による成形に代えて、射
出押し出し成形やローラによる圧延成形を採用すること
ができる等、種々の成形方法が採用できる。
Subsequently, the magnetic material is molded into a desired shape using a mold or the like while applying a magnetic field, thereby producing a rubber-like magnetic material 1 having flexibility and flexibility. In this case, the soft magnetic powder is usually not a perfect spherical shape but a distorted shape, and in a state where the polymer material is not solidified, a state in which the posture and position can be freely changed in the polymer material. Have maintained. Next, a magnetic field generation by a permanent magnet, an electromagnet, an electromagnetic coil, or the like is performed so that the direction A of the line of magnetic force passing through the magnetic material (the direction of application of the magnetic field) A and the direction B of increasing the magnetic permeability in the magnetic material 1 to be manufactured match. A magnetic field is formed using the means 2. In this case, by applying an external magnetic field to the unsolidified polymer material,
Magnetic poles of different polarities are generated at both ends along the longitudinal direction, and at the same time, a force from the magnetic field acts on each magnetic pole in parallel with the direction of the magnetic field. As a result, by changing the posture and position so that each soft magnetic material powder follows the direction of the magnetic field according to the magnetic moment at that time,
The direction of each soft magnetic material powder is aligned with the direction B of the magnetic field (so-called oriented state). Thereafter, the polymer material is solidified while each soft magnetic material powder remains oriented. Thereby, a rubber-like magnetic body 1 having anisotropy in which the magnetic permeability in the specific direction B (orientation direction) is higher than the magnetic permeability in other directions, and having flexibility and flexibility is manufactured. Is done. When the magnetic body 1 is formed into a predetermined shape (for example, a column shape or a sheet shape), there are various forming methods such as injection extrusion molding and rolling molding using rollers instead of molding using a mold. Can be adopted.

【0013】次に、磁心に磁性体1を用いたコイル3
と、磁心に未配向の磁性体を用いたコイル3Aとの性能
比較について説明する。図2に示すように、コイル3
は、巻線4と、磁性体1を用いた磁心5とから構成さ
れ、コイル3Aは、巻線4と、磁性体1の材料と同じ材
料(高分子材料と軟磁性体)を同じ割合で使用しつつも
配向を行わないで成形した磁心5Aとから構成されてい
る。この両者の性能比較試験では、磁心5,5Aを同一
の巻線4にそれぞれ使用して、巻線4に導通させる交流
電流の周波数を変化させた際のコイル3,3Aのインピ
ーダンス特性をそれぞれ測定した。また、比較例とし
て、磁心を使用しないで巻線4のみで構成した空芯コイ
ルのインピーダンス特性も測定した。この場合、巻線4
は、直径0.7mmの錫めっき銅線を5ターン巻いて直
径9mmに形成し、各磁心5,5Aは、22×6×5.
5mmの直方体に成形している。また、磁心5の配向方
向をコイル3に発生する磁場の方向Aと一致させた。こ
の測定結果を図3に示すが、同図に示すように、配向処
理を行った磁心5を使用したコイル3は、未配向の磁心
5Aを使用したコイル4や、空芯コイルと比較して、広
い周波数帯域に亘って明らかに高いインピーダンスを有
している。したがって、配向を行うことによって配向方
向に対する透磁率が確実に高まることを確認できた。こ
のコイル3によれば、磁性体1を用いて磁心5を作製す
ることにより、磁心が小型でありながら高いインピーダ
ンスを有するコイルを実現することができる。
Next, the coil 3 using the magnetic material 1 for the magnetic core
A description will be given of a performance comparison with the coil 3A using an unoriented magnetic material for the magnetic core. As shown in FIG.
Is composed of a winding 4 and a magnetic core 5 using the magnetic body 1, and the coil 3A is made of the same material (polymer material and soft magnetic material) as the winding 4 and the material of the magnetic body 1 at the same ratio. And a magnetic core 5A that is formed without being oriented while being used. In the performance comparison test between the two, the impedance characteristics of the coils 3 and 3A when the frequency of the alternating current conducted through the winding 4 was changed by using the magnetic cores 5 and 5A for the same winding 4 respectively were measured. did. In addition, as a comparative example, the impedance characteristics of an air-core coil composed of only the winding 4 without using a magnetic core were also measured. In this case, the winding 4
Is formed to a diameter of 9 mm by winding a tin-plated copper wire having a diameter of 0.7 mm for 5 turns, and each of the magnetic cores 5 and 5A is 22 × 6 × 5.
It is formed into a 5 mm rectangular parallelepiped. Further, the orientation direction of the magnetic core 5 was made to coincide with the direction A of the magnetic field generated in the coil 3. The measurement results are shown in FIG. 3. As shown in FIG. 3, the coil 3 using the oriented core 5 is compared with the coil 4 using the unoriented core 5 </ b> A and the air-core coil. Has a clearly high impedance over a wide frequency band. Therefore, it was confirmed that the magnetic permeability in the alignment direction was surely increased by the alignment. According to the coil 3, by manufacturing the magnetic core 5 using the magnetic body 1, a coil having a small impedance and a high impedance can be realized.

【0014】次に、磁性体1を遮蔽シート11に応用し
た例について、図4を参照して説明する。同図に示すよ
うに、磁性体1をシート状に成形することによって遮蔽
シート11を作製した。この場合、一例として、遮蔽シ
ート11は、軟磁性体粉を同図中のB方向に沿って配向
して形成されている。この遮蔽シート11によれば、磁
性体1が柔軟性と可撓性を有しているため、種々の形状
の物体を簡単に被覆することができる。したがって、例
えば、電磁波を輻射する電子機器に遮蔽シート11を被
覆することにより、電磁波の外部への漏洩を低減した
り、外来ノイズを低減させて電子機器の誤動作を防止し
たりすることができる。
Next, an example in which the magnetic body 1 is applied to the shielding sheet 11 will be described with reference to FIG. As shown in the figure, the shielding sheet 11 was produced by molding the magnetic body 1 into a sheet shape. In this case, as an example, the shielding sheet 11 is formed by orienting the soft magnetic material powder along the direction B in FIG. According to this shielding sheet 11, since the magnetic body 1 has flexibility and flexibility, objects of various shapes can be easily covered. Therefore, for example, by covering the electronic device that radiates electromagnetic waves with the shielding sheet 11, leakage of electromagnetic waves to the outside can be reduced, and external noise can be reduced to prevent malfunction of the electronic device.

【0015】次に、遮蔽シート11をケーブルの被覆に
応用した例について、図5を参照して説明する。同図に
示すように、遮蔽シート11を心線22に巻き付けてケ
ーブル21を作製した。このケーブル21によれば、心
線22から漏洩する電磁波を低減することができると共
に、心線22を導通する電気信号への外来ノイズの混入
を低減することができる。この場合、心線22に電流が
導通した際に、その電流の導通に起因して、心線22を
中心とした同心円上に磁場が発生する。このため、遮蔽
シート11を心線22に巻き付ける際には、電流の導通
に起因して発生する磁場の方向と、遮蔽シート11の配
向の方向Bとを一致させる。これにより、遮蔽シート1
1における心線22を中心とした同心円方向の透磁率が
高くなるため、導通する電流に対する心線22のインピ
ーダンスが大きくなる。この結果、心線22から輻射さ
れる電磁波を抑制することができる。また、同様の理由
により、外来ノイズに対するインピーダンスも大きくな
るため、心線22を導通する電気信号に混入する外来ノ
イズの混入量も低減することができる。
Next, an example in which the shielding sheet 11 is applied to cover a cable will be described with reference to FIG. As shown in the figure, the cable 21 was produced by winding the shielding sheet 11 around the core wire 22. According to the cable 21, it is possible to reduce the electromagnetic waves leaking from the core wire 22 and to reduce the mixing of external noise into the electric signal passing through the core wire 22. In this case, when a current is conducted to the core wire 22, a magnetic field is generated on a concentric circle centered on the core wire 22 due to the conduction of the current. For this reason, when winding the shielding sheet 11 around the core wire 22, the direction of the magnetic field generated due to the conduction of the current is made to coincide with the direction B of the orientation of the shielding sheet 11. Thereby, the shielding sheet 1
Since the magnetic permeability in the concentric direction centered on the core wire 22 in 1 increases, the impedance of the core wire 22 with respect to the conducting current increases. As a result, electromagnetic waves radiated from the core wire 22 can be suppressed. In addition, for the same reason, the impedance with respect to the external noise increases, so that the amount of the external noise mixed into the electric signal passing through the core wire 22 can be reduced.

【0016】次いで、磁性体1をケーブルの被覆に応用
した例について、図6を参照して説明する。同図に示す
ように、心線22を被覆する被覆32に磁性体1を使用
したケーブル31を作製した。この場合、被覆32内の
軟磁性体粉の配向の方向Bと、ケーブル31の周方向と
が一致するように、心線22と一体化させた状態で被覆
32を成形した。このケーブル31によれば、被覆32
の周方向に対する透磁率が、周方向を除く他の方向に対
する透磁率よりも高くなる。したがって、ケーブル21
と同様の理由により、心線22を導通する電気信号から
輻射される電磁波を低減することができると共に、心線
22を導通する電気信号に混入する外来ノイズの混入量
も低減することができる。
Next, an example in which the magnetic material 1 is applied to a cable coating will be described with reference to FIG. As shown in the figure, a cable 31 using the magnetic body 1 for a coating 32 covering the core wire 22 was produced. In this case, the coating 32 was formed integrally with the core wire 22 such that the direction B of the orientation of the soft magnetic material powder in the coating 32 and the circumferential direction of the cable 31 coincided with each other. According to the cable 31, the sheath 32
Has a higher magnetic permeability in the circumferential direction than in other directions except the circumferential direction. Therefore, the cable 21
For the same reason as described above, it is possible to reduce electromagnetic waves radiated from the electric signal passing through the core wire 22 and also reduce the amount of external noise mixed into the electric signal passing through the core wire 22.

【0017】なお、本発明は、上記した本発明の実施の
形態に示した構成に限定されない。例えば、本発明の実
施の形態では、その配向の方向Bと遮蔽シート11の広
がり方向(平面方向)とが一致する磁性体1で遮蔽シー
ト11を構成したが、軟磁性体粉の配向方向を遮蔽シー
ト11の厚み方向に一致させることで、この厚み方向に
対する透磁率を高くすることもできる。また、上記した
ケーブル21,31については、絶縁体を介して遮蔽シ
ート11または被覆32で心線22を被覆するように構
成してもよい。
The present invention is not limited to the configuration shown in the embodiment of the present invention. For example, in the embodiment of the present invention, the shielding sheet 11 is made of the magnetic material 1 in which the orientation direction B of the shielding sheet 11 and the spreading direction (planar direction) of the shielding sheet 11 coincide with each other. By matching the thickness in the thickness direction of the shielding sheet 11, the magnetic permeability in the thickness direction can be increased. Further, the above-described cables 21 and 31 may be configured such that the core wire 22 is covered with the shielding sheet 11 or the covering 32 via an insulator.

【0018】[0018]

【発明の効果】以上のように、請求項1記載の磁性体の
製造方法によれば、磁性体原料を成形する際に磁場を加
えて磁性体原料に含まれている軟磁性体粉を所定の方向
に配向させることにより、その所定方向に対する透磁率
が他の方向に対する透磁率よりも高い磁性体を製造する
ことができる。
As described above, according to the method for manufacturing a magnetic material according to the first aspect, a magnetic field is applied during molding of the magnetic material to reduce the soft magnetic material powder contained in the magnetic material. A magnetic body having a higher magnetic permeability in a predetermined direction than the magnetic permeability in another direction can be manufactured.

【0019】また、請求項2記載の磁性体によれば、軟
磁性体粉を所定の方向に沿って配向したことにより、無
配向の磁性体と比較して、その所定方向に対する透磁率
を高めることができる。したがって、例えば、この磁性
体を用いてコイルの磁心を形成した場合、コイル内に発
生する磁場の方向と、磁心に含まれている軟磁性体粉の
配向方向とを一致させることにより、無配向の磁性体を
磁心に使用したコイルと比較して、より高いインピーダ
ンスを有するコイルを製造することができる。
According to the second aspect of the present invention, since the soft magnetic powder is oriented along a predetermined direction, the magnetic permeability in the predetermined direction is increased as compared with a non-oriented magnetic substance. be able to. Therefore, for example, when a magnetic core of a coil is formed using this magnetic material, the direction of the magnetic field generated in the coil is aligned with the orientation direction of the soft magnetic material powder contained in the magnetic core, so that non-oriented A coil having higher impedance can be manufactured as compared with a coil using the magnetic material of (1) for the magnetic core.

【0020】さらに、請求項3記載の磁性体によれば、
柔軟性および可撓性を有してシート状に形成されている
ため、電磁波を漏洩する各種形状の電子機器やケーブル
を容易に覆うことができる結果、電磁波の漏洩量を簡単
かつ確実に低減させることができる。これにより、各種
EMC対策部品に好適な磁性体を提供することができ
る。
Further, according to the magnetic material of the third aspect,
Since it is formed in a sheet shape having flexibility and flexibility, it is possible to easily cover electronic devices and cables of various shapes that leak electromagnetic waves. As a result, the amount of leakage of electromagnetic waves can be easily and reliably reduced. be able to. This makes it possible to provide a magnetic material suitable for various EMC components.

【0021】また、請求項4記載のケーブルによれば、
ケーブルを電流が導通することに起因してケーブルの周
囲に形成される磁場の方向と、ケーブルを構成する被覆
に使用されている磁性体の配向方向とが一致するため、
ケーブルから輻射される電磁波を抑制することができる
と共に心線を導通する電気信号に混入する外来ノイズの
混入量も低減することができる。
According to the cable of the fourth aspect,
Since the direction of the magnetic field formed around the cable due to the conduction of electric current in the cable matches the orientation direction of the magnetic material used for the coating constituting the cable,
Electromagnetic waves radiated from the cable can be suppressed, and the amount of extraneous noise mixed into the electric signal passing through the cord can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る磁性体1の製造方法
を説明するための説明図である。
FIG. 1 is an explanatory diagram for explaining a method for manufacturing a magnetic body 1 according to an embodiment of the present invention.

【図2】軟磁性体粉を配向させた磁性体1で構成された
磁心5を使用したコイル3、無配向の磁性体で構成され
た磁心5Aを使用したコイル3A、および空芯コイルの
それぞれのインピーダンス変化を測定するための測定系
の構成図である。
FIG. 2 shows a coil 3 using a magnetic core 5 made of a magnetic material 1 in which soft magnetic material powder is oriented, a coil 3A using a magnetic core 5A made of a non-oriented magnetic material, and an air-core coil. FIG. 2 is a configuration diagram of a measurement system for measuring a change in impedance of the measurement system.

【図3】図2に示す測定系によって測定された各コイル
毎の周波数に対するインピーダンスの特性を示す特性図
である。
FIG. 3 is a characteristic diagram showing impedance characteristics with respect to frequency for each coil measured by the measurement system shown in FIG. 2;

【図4】本発明の実施の形態に係る磁性体1をシート状
に成形して構成された遮蔽シート11の外観図である。
FIG. 4 is an external view of a shielding sheet 11 formed by molding the magnetic body 1 according to an embodiment of the present invention into a sheet shape.

【図5】図4に示す遮蔽シート11を心線22に巻き付
けて構成したケーブル21の外観図である。
FIG. 5 is an external view of a cable 21 formed by winding the shielding sheet 11 shown in FIG.

【図6】本発明の実施の形態に係るケーブル31の外観
図である。
FIG. 6 is an external view of a cable 31 according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 磁性体 2 磁場生成手段 3 コイル 5 磁心 11 遮蔽シート 21,31 ケーブル 22 心線 32 被覆 A,B 方向 DESCRIPTION OF SYMBOLS 1 Magnetic body 2 Magnetic field generation means 3 Coil 5 Magnetic core 11 Shielding sheet 21, 31 Cable 22 Core wire 32 Coating A, B direction

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E041 AA11 AA14 AA17 BB03 CA01 HB17 5E062 CC04 CD05 CF01 CG02 5E321 AA21 AA23 BB31 BB33 BB44 CC16 GG05 GG07 GG09 5G313 AA10 AB05 AC07 AD03 AE08 AE09 AE10  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 5E041 AA11 AA14 AA17 BB03 CA01 HB17 5E062 CC04 CD05 CF01 CG02 5E321 AA21 AA23 BB31 BB33 BB44 CC16 GG05 GG07 GG09 5G313 AA10 AB05 AC07 AD03 AE08 AE09 AE10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料に軟磁性体粉を混練して磁性
体原料を作製した後、当該磁性体原料を成形して柔軟性
および可撓性を有する磁性体を製造する磁性体の製造方
法であって、 前記磁性体原料を成形する際に磁場を加えることによ
り、当該磁性体原料に含まれている前記軟磁性体粉を所
定の方向に配向させることを特徴とする磁性体の製造方
法。
1. A method for manufacturing a magnetic material, comprising: kneading a soft magnetic material powder into a polymer material to produce a magnetic material, and then molding the magnetic material to produce a magnetic material having flexibility and flexibility. A method for producing a magnetic material, comprising applying a magnetic field when molding the magnetic material to orient the soft magnetic powder contained in the magnetic material in a predetermined direction. Method.
【請求項2】 高分子材料に軟磁性体粉を混練した磁性
体原料を成形して製造された柔軟性および可撓性を有す
る磁性体であって、 前記軟磁性体粉が所定の方向に沿って配向されているこ
とを特徴とする磁性体。
2. A magnetic material having flexibility and flexibility manufactured by molding a magnetic material obtained by kneading a soft magnetic material powder into a polymer material, wherein the soft magnetic material powder is oriented in a predetermined direction. A magnetic body characterized by being oriented along.
【請求項3】 シート状に形成されていることを特徴と
する請求項2記載の磁性体。
3. The magnetic body according to claim 2, wherein the magnetic body is formed in a sheet shape.
【請求項4】 心線と、当該心線を覆う被覆とを備えた
ケーブルであって、 前記被覆は、高分子材料に軟磁性体粉を混練した磁性体
原料を成形して形成されると共に当該軟磁性体粉が当該
被覆の周方向に沿って配向された柔軟性および可撓性を
有する磁性体で構成されていることを特徴とするケーブ
ル。
4. A cable having a core wire and a coating covering the core wire, wherein the coating is formed by molding a magnetic material obtained by kneading a soft magnetic material powder into a polymer material. A cable, wherein the soft magnetic powder is composed of a magnetic material having flexibility and flexibility oriented along a circumferential direction of the coating.
JP2000391741A 2000-12-25 2000-12-25 Method of manufacturing magnetic body, the magnetic body, and cable Pending JP2002198239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391741A JP2002198239A (en) 2000-12-25 2000-12-25 Method of manufacturing magnetic body, the magnetic body, and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391741A JP2002198239A (en) 2000-12-25 2000-12-25 Method of manufacturing magnetic body, the magnetic body, and cable

Publications (1)

Publication Number Publication Date
JP2002198239A true JP2002198239A (en) 2002-07-12

Family

ID=18857839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391741A Pending JP2002198239A (en) 2000-12-25 2000-12-25 Method of manufacturing magnetic body, the magnetic body, and cable

Country Status (1)

Country Link
JP (1) JP2002198239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151979A1 (en) * 2014-04-02 2015-10-08 日立金属株式会社 Noise suppression cable
FR3032829A1 (en) * 2015-02-17 2016-08-19 Labinal Power Systems MAGNETIC SHIELD OF MULTIFILAR CABLE END

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192799A (en) * 1989-01-20 1990-07-30 Tdk Corp Magnetic shielding material, soft-magnetic powder and manufacture thereof, and water atomized powder
JPH07183110A (en) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp Electromagnetic wave shielding powder piece
JPH08264311A (en) * 1995-03-28 1996-10-11 Sony Corp Mold resin and its manufacture
JPH0927693A (en) * 1995-07-12 1997-01-28 Tdk Corp Magnetic shielding soft magnetic powder and magnetic shielding material
JPH1056292A (en) * 1996-06-03 1998-02-24 Daido Steel Co Ltd Shield sheet and its manufacturing method and cable using it
JPH1079302A (en) * 1996-09-05 1998-03-24 Tokin Corp Composite magnetic body and electromagnetic interference supressor provided therhwith
JPH1140981A (en) * 1997-07-22 1999-02-12 Tokin Corp Composite magnetic tape and noise suppression method using the same
JPH11147247A (en) * 1997-11-19 1999-06-02 Tokin Corp Manufacture of composite magnetic material
JPH11329818A (en) * 1998-05-19 1999-11-30 Furukawa Electric Co Ltd:The Grinding minute foil band of high permeability metal or alloy and compact body thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192799A (en) * 1989-01-20 1990-07-30 Tdk Corp Magnetic shielding material, soft-magnetic powder and manufacture thereof, and water atomized powder
JPH07183110A (en) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp Electromagnetic wave shielding powder piece
JPH08264311A (en) * 1995-03-28 1996-10-11 Sony Corp Mold resin and its manufacture
JPH0927693A (en) * 1995-07-12 1997-01-28 Tdk Corp Magnetic shielding soft magnetic powder and magnetic shielding material
JPH1056292A (en) * 1996-06-03 1998-02-24 Daido Steel Co Ltd Shield sheet and its manufacturing method and cable using it
JPH1079302A (en) * 1996-09-05 1998-03-24 Tokin Corp Composite magnetic body and electromagnetic interference supressor provided therhwith
JPH1140981A (en) * 1997-07-22 1999-02-12 Tokin Corp Composite magnetic tape and noise suppression method using the same
JPH11147247A (en) * 1997-11-19 1999-06-02 Tokin Corp Manufacture of composite magnetic material
JPH11329818A (en) * 1998-05-19 1999-11-30 Furukawa Electric Co Ltd:The Grinding minute foil band of high permeability metal or alloy and compact body thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151979A1 (en) * 2014-04-02 2015-10-08 日立金属株式会社 Noise suppression cable
JP2015198040A (en) * 2014-04-02 2015-11-09 日立金属株式会社 noise suppression cable
CN106463211A (en) * 2014-04-02 2017-02-22 日立金属株式会社 Noise suppression cable
CN106463211B (en) * 2014-04-02 2018-05-18 日立金属株式会社 Noise suppression cable
US10225967B2 (en) 2014-04-02 2019-03-05 Hitachi Metals, Ltd. Noise suppression cable
FR3032829A1 (en) * 2015-02-17 2016-08-19 Labinal Power Systems MAGNETIC SHIELD OF MULTIFILAR CABLE END
WO2016132065A1 (en) * 2015-02-17 2016-08-25 Labinal Power Systems Magnetic shield for the end of a multiwire cable
CN107210095A (en) * 2015-02-17 2017-09-26 赛峰电气与电源公司 Magnetic screen for the end of multiple conductor cable
US9949415B2 (en) 2015-02-17 2018-04-17 Safran Electrical & Power Magnetic shield for the end of a multiwire cable
EP3259969B1 (en) * 2015-02-17 2022-02-09 Safran Electrical & Power Magnetic shield for the end of a multiwire cable

Similar Documents

Publication Publication Date Title
US10424969B2 (en) Substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
JP4194019B2 (en) Signal transmission cable with connector
US10062492B2 (en) Induction coil having a conductive winding formed on a surface of a molded substrate
US4429314A (en) Magnetostatic electrical devices
JP2002325013A (en) Antenna coil
WO2005078746A1 (en) High-frequency magnetic core material, its manufacturing method, and antenna with the magnetic core material
JPWO2011010471A1 (en) Coil antenna and electronic equipment using it
Lu et al. Design and analysis of an omnidirectional dual-band wireless power transfer system
JP2007180007A (en) Electromagnetic wave shielding cable
JP2958807B2 (en) Inductor and manufacturing method thereof
JP4069480B2 (en) Electromagnetic wave and magnetic shielding soft magnetic powder and shielding sheet
ATE269632T1 (en) ELECTROMAGNETIC SHIELDING ELEMENT AND METHOD FOR PRODUCING IT
JP2002198239A (en) Method of manufacturing magnetic body, the magnetic body, and cable
CN206864624U (en) The near-field communication aerial and electronic equipment of individual pen form
CN204408438U (en) Mobile phone demagnetization loudspeaker
CN109003790A (en) A kind of wireless charging transmitting coil and preparation method thereof
JPH1056292A (en) Shield sheet and its manufacturing method and cable using it
Kammersgaard et al. In-the-ear circular-shaped balanced inverted-a antenna for hearing instruments
JP2015103722A (en) Non-contact transmission device
JPH1097913A (en) Compound magnetic body, its manufacture and electromagnetic interference restraint
JP4167555B2 (en) Insulated coated electric wire and method and apparatus for manufacturing the same
WO2011046125A1 (en) Magnetic material for high frequency applications and high frequency device
KR102075669B1 (en) Data signal transmission connector and manufacturing method for the same
JPS6349889B2 (en)
JP5568944B2 (en) High frequency magnetic material and high frequency device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100908