WO2012074024A1 - Composite magnet and production method therefor, antenna, and communication device - Google Patents

Composite magnet and production method therefor, antenna, and communication device Download PDF

Info

Publication number
WO2012074024A1
WO2012074024A1 PCT/JP2011/077706 JP2011077706W WO2012074024A1 WO 2012074024 A1 WO2012074024 A1 WO 2012074024A1 JP 2011077706 W JP2011077706 W JP 2011077706W WO 2012074024 A1 WO2012074024 A1 WO 2012074024A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite magnetic
resin
magnetic body
mhz
magnetic particles
Prior art date
Application number
PCT/JP2011/077706
Other languages
French (fr)
Japanese (ja)
Inventor
石塚 雅之
良 菊田
亮輔 中村
宣浩 日高
剛 川瀬
竜太 山屋
道生 田野
良樹 吉岡
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011254169A external-priority patent/JP6044064B2/en
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2012074024A1 publication Critical patent/WO2012074024A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the present invention relates to a composite magnetic body, a manufacturing method thereof, an antenna, and a communication device, and more particularly, a high-frequency circuit board, a high-frequency electronic component, a magnetic sheet, and an electromagnetic wave using an electromagnetic wave in a VHF band that is a frequency band from 70 MHz to 500 MHz.
  • a composite magnetic body suitably used for a shielding sheet, a resin-bonded magnet, a magnetic recording medium, an antenna, and the like and having a real part ⁇ r ′ having a high complex permeability, a manufacturing method thereof, and an antenna including the composite magnetic body,
  • the present invention relates to a communication device provided with this antenna.
  • the present invention relates to a monopole antenna loaded with the composite magnetic body that can be used in a portable terminal at 160 MHz to 222 MHz.
  • the present application is filed in Japanese Patent Application No. 2010-266903 filed in Japan on November 30, 2010, Japanese Patent Application No. 2011-064310 filed in Japan on March 23, 2011, and filed in Japan on April 25, 2011.
  • a magnetic material is known to be used as a composite magnetic material mixed and dispersed in an insulating material such as an organic polymer material because of its properties against electromagnetic waves, productivity, and ease of use.
  • This magnetic material is used for electronic components mounted on electronic devices, magnetic sheets, electromagnetic interference suppression sheets, electric products such as motors and transformers, and magnetic recording media such as video tapes and floppy (registered trademark) disks.
  • the wavelength ⁇ g of the electromagnetic wave propagating in the substance is determined by the wavelength ⁇ o of the electromagnetic wave propagating in the vacuum, the real part ⁇ r ′ of the complex permittivity of the substance (hereinafter sometimes abbreviated as ⁇ r ′), and the actual complex permeability.
  • ⁇ r ′ the part ⁇ r ′ (hereinafter sometimes abbreviated as ⁇ r ′)
  • ⁇ g ⁇ o / ( ⁇ r ′ ⁇ ⁇ r ′) 1/2 (1) It can be expressed as.
  • Patent Document 1 a composite magnetic material in which magnetic particles are mixed and dispersed in an insulating material constituting an electronic component or a circuit board has been proposed.
  • the wavelength shortening rate is increased by increasing ⁇ r ′.
  • a composite magnetic material in which tabular magnetic particles are mixed and dispersed in an insulating material is used as an insulating material. It must be oriented in one direction.
  • a method of orienting the flat magnetic particles a method of passing a coating film containing flat magnetic fine particles formed on a substrate between the magnetic poles of a magnet (Patent Document 4), or a molding die incorporating a permanent magnet
  • Patent Document 5 a method using the above
  • the conventional magnetic field application method has a small soft magnetic force.
  • the tabular magnetic particles have a problem that the orientation is poor and the ⁇ r ′ obtained as a whole of the composite magnetic material is small.
  • a composite magnetic body having a thickness of 100 ⁇ m or more is manufactured, there is a problem in that good ⁇ r ′ cannot be obtained.
  • Patent Document 6 is a composite in which spherical or flat magnetic powder is dispersed in an insulating material.
  • the real part ⁇ r ′ of the complex permeability at 1 GHz is larger than 1, and the loss tangent tan ⁇ of the complex permeability.
  • a composite magnetic body having a value of 0.1 or less (hereinafter sometimes abbreviated as tan ⁇ ) has been proposed. According to this composite magnetic body, it is possible to avoid deterioration of magnetic characteristics due to eddy current, and it is possible to reduce loss even in a frequency band of 500 MHz to 1 GHz.
  • high frequency ferrites have been proposed as magnetic materials that can be used in the VHF band.
  • the composite magnetic material proposed in Patent Document 6 can reduce the magnetic characteristics due to eddy currents and reduce the loss in the frequency band of 500 MHz to 1 GHz, the loss tangent increases at a frequency lower than 500 MHz.
  • tan ⁇ at 100 MHz is 0.1 or more. Therefore, even if this composite magnetic material is applied to a VHF band antenna, there is a problem that it is difficult to further downsize the antenna.
  • the high frequency ferrite can be used in the VHF band
  • the VHF band is a frequency band in which the influence of resonance loss is noticeable, so that the frequency dependence of ⁇ r ′ is large and the circuit design is difficult. There was a point.
  • ferrite is a ceramic, there is a problem that shape workability and mechanical reliability are poor, and therefore, when applied to a portable information terminal, various limitations occur, which is not preferable.
  • the characteristic impedance Z g of material with a characteristic impedance Z 0 of the vacuum can be represented by the following formula (2).
  • Z g Z 0 ⁇ ( ⁇ r ′ / ⁇ r ′) 1/2 (2)
  • the smaller the difference between the values of ⁇ r ′ and ⁇ r ′ the smaller the difference between the characteristic impedance Z 0 in vacuum and the characteristic impedance Z g of the composite magnetic material.
  • the characteristic impedance of the space where radio waves fly is almost the same value as the vacuum characteristic impedance Z 0 , so that the smaller the difference between the values of ⁇ r ′ and ⁇ r ′, the lower the power loss for impedance matching.
  • the values of ⁇ r ′ and ⁇ r ′ may be increased, but the frequency at which transmission and reception can be performed when the difference between the value of ⁇ r ′ and the value of ⁇ r ′ is large. It is also known that the bandwidth is narrowed. Therefore, in order to transmit and receive a large amount of information in a wide frequency band, it is necessary that the difference between the value of ⁇ r ′ and the value of ⁇ r ′ is small.
  • the value of ⁇ r ′ of the composite magnetic body also increases. Since the interface with the insulating material has a capacitance, the value of ⁇ r ′ becomes larger than that and there is a problem that power loss due to impedance matching increases. This power loss is, for example, an output loss of electromagnetic waves when the antenna transmits and receives electromagnetic waves, and the radiation efficiency, which is the most important performance of the antenna, is reduced. In addition, since the difference between ⁇ r ′ and ⁇ r ′ is enlarged, the frequency band in which the antenna can transmit and receive is also narrowed.
  • ⁇ r ′ is smaller than ⁇ r ′ ( ⁇ r ′ ⁇ r ′). Therefore, even if ⁇ r ′ of the composite magnetic material itself is increased by improving the magnetic particles, ⁇ r ′ is There is a problem that it becomes larger than that, electronic components and electronic devices cannot be reduced in size, power loss cannot be suppressed, and further, it is not possible to widen the frequency range of antenna transmission and reception. there were.
  • Such a problem is a serious problem in antennas used in portable information devices such as portable telephones, portable information terminals, and multifunctional portable information devices, which have a large demand for downsizing.
  • multi-functional portable information terminals such as smartphones that have recently become widely used generate a strong electric field from a display unit that is approximately the same size as the housing, and therefore this display unit blocks electromagnetic waves.
  • the antenna needs to be provided at a position that does not overlap with the display or at a position spaced from the display.
  • the position where the antenna can be installed is limited within the housing, and is an extremely narrow area.
  • one-segment broadcasting and multimedia broadcasting used in portable information devices require reception of electromagnetic waves in a wide wavelength band because the wavelengths of electromagnetic waves used are long.
  • a small antenna in a housing cannot provide sufficient reception performance. Therefore, for the purpose of receiving these broadcasts, the antenna portion can be extended and extended to be several times longer than the housing size.
  • a portable information device in which a whip antenna capable of being installed is installed outside a casing. However, even when this whip antenna is used, if the portable information device is put in a bag or pocket, the whip antenna cannot be extended. There was a problem that it was difficult.
  • the lowest frequency band of electromagnetic waves used in mobile terminals is 470 MHz to 770 MHz for terrestrial digital broadcasting (one seg) for mobiles.
  • the frequency band of 180 MHz to 210 MHz is about to be used for digital broadcasting.
  • the antenna used for such a mobile terminal needs to be a small antenna that can be mounted on the mobile terminal.
  • an antenna conductor having a length of 1 ⁇ 4 of the wavelength is required, and a band having a low frequency such as the 160 MHz to 222 MHz band and a long wavelength is mounted on the portable terminal. Had the problem that the antenna was too large.
  • Patent Document 9 proposes a method of miniaturizing a magnetic antenna by using a wavelength having a shortening effect by using a ferrite having a high magnetic permeability.
  • the ceramic material such as ferrite has a small magnetic permeability from 160 MHz to 222 MHz, so the wavelength shortening effect is small, and the antenna cannot be sufficiently miniaturized. Furthermore, since the ceramic material is inferior in workability, there is a problem that the shape that can be used is limited.
  • the present invention has been made in view of the above circumstances, and can be applied to a frequency band from 70 MHz to 500 MHz. Further, the real part ⁇ r ′ of the complex permeability in this frequency band is large, and the complex permeability.
  • An object of the present invention is to provide a composite magnetic body having flat magnetic particles such that the loss tangent tan ⁇ of the above becomes 0.1 or less, a manufacturing method thereof, an antenna, and a communication device.
  • the real part ⁇ r ′ of the complex permeability is sufficiently large in accordance with the downsizing, and the value of the real part ⁇ r ′ of the complex permeability and the real value of the complex dielectric constant are used.
  • the difference between the value of the portion ⁇ r ′ is reduced, and as a result, the electronic component and the electronic device can be downsized, and at the same time, the composite magnetic body capable of suppressing the power loss due to impedance matching and widening the band, and the antenna including the same
  • An object of the present invention is to provide a communication device.
  • Another object of the present invention is to provide a composite magnetic body in which the real part ⁇ r ′ of the complex permeability is increased when the flat magnetic particles are well oriented in the resin, a manufacturing method thereof, an antenna, and a communication device. To do.
  • the resulting molding material has a functional group of the epoxy resin adsorbed on the surface of the tabular magnetic particles, and a polymer chain is not present. It surrounds the periphery of the magnetic particles and becomes intertwined for a long time.
  • the polymer chains may be sterically hindered and the orientation of the tabular magnetic particles may be hindered.
  • the influence of the steric hindrance of the polymer chain is still large, and the tabular shape The orientation of the magnetic particles will be hindered.
  • the polymer chain is shortened in order to reduce the influence of steric hindrance of the polymer chain, the condensation or bonding reaction between the polymer chains becomes insufficient, and as a result, the mechanical strength of the resulting composite magnetic material In some cases, the shape may not be maintained, and the shape may not be maintained, and cannot be used for electronic components, circuit boards, and the like.
  • the resin if a resin excellent in flexibility and stretchability is added to the resin having the above-mentioned cyclic structure in the main chain which is not easily entangled with the flat magnetic particles, the resin enters the gap between the flat magnetic particles.
  • the real part ⁇ r ′ of the complex magnetic permeability of the composite magnetic body can be further improved, the peelability of the composite magnetic body from the base material can be further improved, and a composite magnetic body excellent in productivity can be obtained. I found.
  • the magnetic field is applied once or a plurality of times so that the lines of magnetic force are substantially parallel to the surface of the molded body. It has been found that the real part ⁇ r ′ of the complex magnetic permeability of the composite magnetic material is improved by applying it twice.
  • the antenna can be reduced in size by covering the conductor of the monopole antenna with the above composite magnetic material.
  • the present invention relates to the following.
  • a composite magnetic material obtained by dispersing tabular magnetic particles in an insulating material The flat magnetic particles have an average thickness of 0.01 ⁇ m or more and 0.5 ⁇ m or less, an average major axis of 0.05 ⁇ m or more and 10 ⁇ m or less, and an average aspect ratio (major axis / thickness) of 5 or more.
  • Composite magnetic material (2) The real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is greater than 1, and the loss tangent tan ⁇ of the complex permeability is 0.1 or less.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is larger than 7, and the loss tangent tan ⁇ of the complex permeability is 0.1 or less.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is greater than 10, and the loss tangent tan ⁇ of the complex permeability is 0.1 or less.
  • the flat magnetic particles include aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), and molybdenum (Mo).
  • the composite magnetic material according to (1) above which is an iron-nickel alloy containing one or more metal elements selected from the group consisting of indium (In) and tin (Sn).
  • the tabular magnetic particles are formed by deforming and fusing the spherical magnetic particles by applying mechanical stress to the spherical magnetic particles having an average particle diameter of 0.5 ⁇ m or less.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 90 MHz to 220 MHz is greater than 1, and the loss tangent tan ⁇ of the complex permeability is 0.05 or less.
  • Composite magnetic material (8) The composite magnetic body according to (1), wherein the porosity is 20% or less.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more, the real part ⁇ r ′ of the complex permittivity is 15 or more, and ( ⁇ r ′ ⁇ ⁇ r ′) ⁇ 1/2 Is 0.1 or less and ( ⁇ r ′ / ⁇ r ′) 1/2 is 0.5 or more and 1 or less, the composite magnetic body according to (8) above.
  • the loss tangent tan ⁇ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 0.05 or less, and the loss tangent tan ⁇ of the complex permittivity is 0.1 or less.
  • Magnetic material is 0.05 or less, and the loss tangent tan ⁇ of the complex permittivity is 0.1 or less.
  • the resin is a thermosetting resin.
  • the resin is an epoxy resin.
  • the composite magnetic body according to (11), wherein the resin is a dicyclopentadiene type epoxy resin.
  • an angle between the orientation direction of the tabular magnetic particles in the resin and the major axis direction of the tabular magnetic particles is 20 ° or less.
  • the second resin is an epoxy resin having at least one of a bisphenol A skeleton and a bisphenol F skeleton.
  • the second resin is an epoxy resin containing two or more epoxy groups in one molecule and having an ether skeleton.
  • a magnetic field is applied to the obtained formed body to perform an aligning step of aligning the flat magnetic particles in the formed body in one direction, and then The method for producing a composite magnetic body according to (22), wherein a drying / curing step is performed.
  • An antenna comprising the composite magnetic body according to any one of (1) to (21).
  • a communication apparatus comprising the antenna according to (25).
  • a monopole antenna wherein the antenna conductor is covered with the composite magnetic material according to (1).
  • a plate shape having an average thickness of 0.01 ⁇ m or more and 0.5 ⁇ m or less, an average major axis of 0.05 ⁇ m or more and 5 ⁇ m or less, and an average aspect ratio (length / thickness) of 5 or more. Since magnetic particles are used, the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz can be larger than 1 and the loss tangent tan ⁇ of the complex permeability can be 0.1 or less. The wavelength shortening rate can be increased.
  • this composite magnetic body is applied to a VHF band antenna, generation of eddy currents on the surface of the composite magnetic body can be prevented, ⁇ r ′ can be prevented from being lowered, and the antenna can be further reduced in size. Can be achieved. Therefore, if this composite magnetic body is applied to a VHF band antenna or electronic component, the antenna or electronic component can be further reduced in size.
  • the porosity of the composite magnetic body having the above plate-like magnetic particles is set to 20% or less, the value of the real part ⁇ r ′ of the complex permeability increases, but the complex dielectric constant The value of the real part ⁇ r ′ can be made almost unchanged. Therefore, the difference between the value of the real part ⁇ r ′ of the complex magnetic permeability and the value of the real part ⁇ r ′ of the complex dielectric constant can be reduced. As a result, an electronic component or electronic device to which the composite magnetic body is applied can be reduced. The size can be reduced, and power loss due to impedance matching can be suppressed.
  • the plate-like magnetic body particle and the first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit are contained, Since it has a structure that is flat and hardly entangled with the tabular magnetic particles, the influence of steric hindrance by the resin on the tabular magnetic particles can be reduced. Therefore, a composite magnetic body having a good orientation of the tabular magnetic particles and a high real part ⁇ r ′ of complex permeability can be obtained. Furthermore, since a resin having a functional group that is polymerized in monomer units is used, the resin bond becomes strong, and it is possible to have sufficient mechanical strength as a molded body for use in electronic parts and the like.
  • the flat magnetic particles, the first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, and the first resin are flexible.
  • the first resin having a cyclic structure in the main chain and having a functional group that polymerizes in monomer units is a three-dimensional structure formed by the resin with respect to the tabular magnetic particles. The influence of the failure can be reduced. Therefore, the orientation of the tabular magnetic particles in one direction can be improved, and a composite magnetic body having a high real part ⁇ r ′ of complex permeability can be easily obtained.
  • the second resin imparts flexibility to the first resin, it is possible to improve the flexibility and stretchability of the composite magnetic body itself, and as a result, the composite magnetism having excellent productivity. You can get a body.
  • a container capable of sealing a slurry and a dispersion medium in which spherical magnetic particles having an average particle diameter of 0.5 ⁇ m or less are dispersed in a solution containing a surfactant.
  • the total volume of the slurry and the dispersion medium is filled so as to be the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state to deform the spherical magnetic particles.
  • a first step of fusing to form tabular magnetic particles and a second step of dispersing and mixing the tabular magnetic particles in a solution in which an insulating material is dissolved in a solvent to obtain a molding material;
  • the molding material is molded or applied onto a base material to obtain a molded body, and the third process includes a drying / curing process for drying and curing the molded body.
  • the orientation of the tabular magnetic particles is good and the real part of the complex permeability
  • a composite magnetic body having a high ⁇ r ′ can be easily produced.
  • an orientation step is performed in which a magnetic field is applied to the obtained molded body to orient the flat magnetic particles in the molded body in one direction, and then the drying and drying are performed.
  • the composite magnetic body since the composite magnetic body is provided, by using the composite magnetic body having a high real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz, the wavelength is less than 1 ⁇ 4 of the wavelength. Since the antenna conductor can be shortened, the entire antenna can be reduced in size. Therefore, a further miniaturized antenna can be provided.
  • the radiation efficiency can be improved. Therefore, it is possible to provide a small antenna that can suppress power loss due to impedance matching, is small, has high radiation efficiency, and can be used in a wide band from 70 MHz to 500 MHz.
  • the insulating material includes a composite magnetic body including a first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, or as the insulating material, the first resin and
  • a composite magnetic body containing a second resin that imparts flexibility to the first resin is provided, a higher ⁇ r ′ can be obtained, so that a more miniaturized antenna can be provided.
  • the communication device of the present invention since the antenna is provided, the communication device as a whole can be reduced in size by using a miniaturized antenna. Therefore, a further miniaturized communication apparatus can be provided.
  • the communication apparatus as a whole can be obtained by using a small antenna having high radiation efficiency and usable in a wide band. Can be reduced in size and communication performance can be improved. Therefore, it is possible to provide a communication device that is further downsized and can be used in a wide band from 70 MHz to 500 MHz.
  • the antenna conductor since the antenna conductor is coated with the composite magnetic material, the antenna conductor can be made shorter than 1 ⁇ 4 of the wavelength, so that radio waves in a low frequency band of 160 MHz to 222 MHz can be transmitted.
  • a monopole antenna that is small enough to be mounted on a portable terminal while being able to transmit, receive, or transmit / receive can be obtained.
  • FIG. 16A It is a figure which shows the complex magnetic permeability and loss tangent of the composite magnetic body of Example 1 of this invention. It is a scanning electron microscope (SEM) image which shows the structure of the composite magnetic body of Example 1 of this invention.
  • 3 is a scanning electron microscope (SEM) image showing the structure of the composite magnetic body of Comparative Example 1. It is a figure which shows the real part (micro
  • FIG. 18 is a diagram showing the complex permeability real part ⁇ r ′ and the complex permeability loss tangent tan ⁇ in the frequency band of 10 to 1000 MHz of the composite magnetic body of Example 18 of the present invention.
  • FIG. 26 is a diagram showing a real part ⁇ r ′ of complex permeability and a loss tangent tan ⁇ of complex permeability at each frequency of the composite magnetic body of Example 25. It is a figure which shows the relationship between the antenna length which resonates with the coating thickness of a composite magnetic body.
  • the composite magnetic body according to the present invention a manufacturing method thereof, an antenna, and a mode for carrying out a communication device will be described. This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
  • the composite magnetic body of the present embodiment is a composite magnetic body obtained by dispersing tabular magnetic particles in an insulating material, and the average thickness of the tabular magnetic particles is 0.01 ⁇ m or more and 0.5 ⁇ m or less,
  • the composite magnetic body has an average major axis of 0.05 ⁇ m or more and 10 ⁇ m or less, and an average aspect ratio (major axis / thickness) of 5 or more.
  • the average thickness and the average major axis are the thickness and major axis (maximum length in the grain) of each of the plurality of tabular magnetic particles, for example, the thickness of each of the tabular magnetic particles of 100 or more, preferably 500 or more. It can be determined by measuring the major axis and calculating the average value of the thickness and major axis.
  • the average aspect ratio (major axis / thickness) of the tabular magnetic particles is the same as the above in terms of the major axis and thickness of each of the plurality of tabular magnetic particles, for example, 100 or more, preferably 500 or more.
  • the aspect ratio (major axis / thickness) of each tabular magnetic particle is determined, and the average value of these aspect ratios (major axis / thickness) is calculated. Desired.
  • the average thickness of the tabular magnetic particles is 0.01 ⁇ m or more and 0.5 ⁇ m or less, preferably 0.012 ⁇ m or more and 0.3 ⁇ m or less.
  • the average major axis is 0.05 ⁇ m or more and 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the average thickness is less than 0.01 ⁇ m, it is difficult to manufacture, which will be described later, and handling becomes difficult. Therefore, when the average thickness exceeds 0.5 ⁇ m, the particles are fused. This is not preferable because the resulting thickness variation causes the loss tangent tan ⁇ of the complex permeability in the VHF band to increase.
  • the average aspect ratio (major axis / thickness) of the tabular magnetic particles is preferably 5 or more, more preferably 7 or more.
  • the average aspect ratio (major axis / thickness) is smaller than 5, the demagnetizing factor of the tabular magnetic particles is increased, and as a result, the ⁇ r ′ of the composite magnetic material is lowered, which is not preferable.
  • the reason why the shape of the tabular magnetic particles is limited to the above range is as follows.
  • the magnitude of the demagnetizing field in the magnetic particles depends on the shape of the magnetic particles. For example, when the magnetic particles are spherical, since the demagnetizing field is isotropic, the magnetic permeability obtained is isotropic, and it is difficult to obtain excellent magnetic properties in the high frequency region.
  • the shape of the magnetic particles is within the above range, the demagnetizing field in the direction parallel to the flat plate surface is remarkably reduced, and thus the obtained ⁇ r ′ is increased.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is larger than 1, and the loss tangent tan ⁇ of the complex permeability is 0.1 or less.
  • a composite magnetic body can be obtained.
  • the real part ⁇ r ′ of the complex permeability is preferably 5 or more, and more preferably 10 or more.
  • the reason why the real part ⁇ r ′ of the complex permeability and the loss tangent tan ⁇ of the complex permeability are limited to the above range is that this range can reduce the wavelength of the electromagnetic wave and the magnetic loss due to the eddy current. This is because the energy loss is reduced and the energy loss is reduced.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 90 MHz to 220 MHz is larger than 1, and the loss tangent tan ⁇ is 0.05 or less.
  • the magnitude of the energy loss can be expressed by an imaginary part ⁇ r ′′ (hereinafter sometimes abbreviated as ⁇ r ′′) of the complex permeability shown in the following formula (3).
  • ⁇ r ′′ ⁇ r ′ ⁇ tan ⁇ (3)
  • the imaginary part ⁇ r ′′ of the complex permeability is preferably 0.5 or less, from the above equation (3), when ⁇ r ′ is 10, tan ⁇ is 0.05 or less. Further, when ⁇ r ′ is 15, tan ⁇ is preferably 1/30 or less.
  • the composition of the tabular magnetic particles is Fe-Ni alloy such as Permalloy (trade name), Fe-Ni-Mo alloy such as Supermalloy (trade name), and Fe-Si-Al alloy such as Sendust (trade name).
  • Fe—Si alloy, Fe—Co alloy, Fe—Cr alloy, Fe—Cr—Si alloy and other high magnetic permeability alloys such as aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co),
  • An alloy to which a metal element such as copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo), indium (In), tin (Sn) is added is preferable.
  • the addition amount of the metal element in the tabular magnetic particles is preferably 0.1% by mass to 90% by mass, more preferably 1% by mass to 12% by mass, and more preferably 1% by mass to 5% by mass. % Or less is more preferable.
  • the reason why the amount of the metal element added is limited to the above range is that if the amount of the metal element added is less than 0.1% by mass, sufficient plastic deformation ability cannot be imparted to the magnetic particles, On the other hand, when the addition amount exceeds 90% by mass, the magnetic moment of the metal element itself is small, so that the saturation magnetization of the entire magnetic particle is small, and as a result, the obtained ⁇ r ′ is also small.
  • aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo) in that high ⁇ r ′ can be obtained.
  • An iron-nickel alloy containing 1% by mass to 5% by mass of one or more metal elements selected from the group consisting of indium (In) and tin (Sn) is preferable.
  • the insulating material is not particularly limited as long as it is an insulating material.
  • the mechanical strength is high and the hygroscopic property is high. It is preferable that it is low and it is excellent in shape workability.
  • examples of such an insulating material include polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycyclohexane.
  • thermosetting resins or thermoplastic resins such as olefin resins, cyanate resins, polyphenylene ether resins, norbornene resins, ABS resins, and polystyrene resins are preferably used. These resins may be used alone or in combination of two or more.
  • thermosetting resin the epoxy resin excellent in mechanical strength and shape workability is preferable, and a polyphenylene resin and an ABS resin are preferable as a thermoplastic resin.
  • Method for producing first composite magnetic body In the method for producing a composite magnetic body of the present embodiment, a slurry and a dispersion medium obtained by dispersing spherical magnetic particles having an average particle diameter of 0.5 ⁇ m or less in a solution containing a surfactant are placed in a sealable container. The slurry is filled so that the total volume of the slurry and the dispersion medium is the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state to deform and melt the spherical magnetic particles.
  • spherical magnetic particles having an average particle size of 0.5 ⁇ m or less are dispersed in a solution containing a surfactant to obtain a slurry.
  • the composition of the magnetic particles is exactly the same as the composition of the tabular magnetic particles described above.
  • a surfactant containing an element such as nitrogen, phosphorus or sulfur that is compatible with the surface of the magnetic particles is preferable, and examples thereof include a nitrogen-containing block copolymer, a phosphate, and polyvinylpyrrolidone.
  • an organic solvent is preferable because it is necessary to prevent oxidation of the metal element contained in the magnetic particles, and in particular, nonpolar organic materials such as xylene, toluene, cyclopentanone, and cyclohexanone.
  • a solvent is preferred.
  • the slurry and the dispersion medium are filled in a sealable container so that the total volume of the slurry and the dispersion medium is the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state. Then, spherical magnetic particles are deformed and fused together to form flat magnetic particles.
  • the dispersion medium must be harder than spherical magnetic particles, for example, metal spheres such as aluminum, steel (steel), stainless steel, and lead, and metal oxides such as alumina, zirconia, silicon dioxide, and titania.
  • Spherical sintered body made of an inorganic oxide such as silicon nitride
  • spherical sintered body made of inorganic nitride such as silicon nitride
  • spherical sintered body made of inorganic carbide such as silicon carbide, soda glass, lead glass, high specific gravity glass, etc.
  • zirconia, steel (steel), stainless steel and the like having a specific gravity of 6 or more are preferable from the viewpoint of efficiency.
  • the deformation and fusion properties of the spherical magnetic particles improve as the number of collisions of the dispersion medium increases. .
  • the average particle size of the dispersion medium the more the number existing per unit volume, the greater the number of collisions, and the better the deformation and fusion properties. If it is too small, it will be difficult to separate the dispersion medium from the slurry. Therefore, the average particle size of the dispersion medium needs to be at least 0.03 mm or more, preferably 0.04 mm or more.
  • the upper limit of the average particle diameter of the dispersion medium is 3.0 mm.
  • a sealed container that rotates the uniaxial rotating body such as a disk, a screw, and a blade at a high speed together with the slurry by rotating at high speed is preferable. Since this hermetic container is a simple uniaxial rotation system, it is easy to increase the size and is advantageous for industrial production. Note that the above-described sealable container may be provided with an inlet and an outlet for introducing and discharging the slurry into and from the container, and the slurry may be circulated in the sealed container.
  • the dispersion medium is previously stored in a sealed container, and a slurry in which spherical magnetic particles, a surfactant, and a solvent are mixed is introduced from the inlet and filled so that there is no space in the container.
  • the slurry discharged from the outlet may be charged again into the sealed container.
  • the filling amount of the slurry and the dispersion medium into the above-mentioned closed container is the same as the volume in the closed container.
  • the slurry and the dispersion medium are filled in the sealed container without gaps.
  • the reason why the slurry and the dispersion medium are filled in the sealed container without any gap is as follows.
  • FIG. 1 is a diagram showing a state in which a slurry 153 containing spherical magnetic particles 152 and a dispersion medium 154 charged into an open container 151 having an open top are stirred at high speed by being rotated at high speed by a uniaxial rotating body 155. is there.
  • the liquid surfaces of the slurry 153 and the dispersion medium 154 have a mortar shape in which the vicinity of the central axis is low and the peripheral edge is high due to centrifugal force.
  • FIG. 2 is a diagram showing that the slurry 153 containing the spherical magnetic particles 152 and the dispersion medium 154 charged in the sealed container 1511 are stirred at high speed by being rotated at high speed by the uniaxial rotating body 155.
  • the inside of the sealed container 1511 is filled with the slurry 153 including the spherical magnetic particles 152 and the dispersion medium 154, so that it can be seen in the open container 151. There is no risk of creating a mortar-shaped space.
  • the mechanical stress applied to the slurry 153 including the spherical magnetic particles 152 and the dispersion medium 154 by the uniaxial rotating body 155 is uniformly applied to the spherical magnetic particles 152 via the dispersion medium 154 in the entire closed container 1511.
  • the thickness of the propagating and obtained tabular magnetic particles varies.
  • the magnetic particles having a flat plate shape are not subjected to an irregular impact, and there is no possibility that cracks, chips or the like are generated.
  • the number of rotations of the uniaxial rotating body 155 is determined by the size of the sealed container 1511.
  • the flow rate of the slurry 153 containing the spherical magnetic particles 152 and the dispersion medium 154 near the inner wall of the sealed container 1511 is preferably 5 m / second or more, more preferably 8 m / second or more. is there. If the internal volume of the sealed container 1511 is small, the spherical magnetic particles 152 may remain in the obtained flat magnetic particles.
  • the remaining spherical magnetic particles 152 increase the magnetic loss or the orientation of the tabular magnetic particles due to contact between the spherical magnetic particles 152 or contact between the spherical magnetic particles 152 and the tabular magnetic particles. There is a risk of obstruction. Therefore, the tabular magnetic particles are preferably 90% by mass or more of the total amount of magnetic particles, more preferably 95% by mass or more, and still more preferably 99% by mass or more, and are substantially free of spherical magnetic particles 152. It is desirable.
  • the reason why the spherical magnetic particles 152 remain is that the mechanical stress such as the corner of the sealed container 1511 and the joint between the rotating body 5 and the sealed container 1511 is not sufficiently transmitted. This is probably because the dead space becomes relatively large. Therefore, when the internal volume of the sealed container 1511 is increased, the dead space is relatively reduced, and therefore, the mechanical stress is sufficiently transmitted to the spherical particles 2 to improve the deformation and fusion between spherical magnetic particles, As a result, the residual spherical magnetic particles 152 are reduced, and the substantially spherical magnetic particles 152 are eliminated.
  • the volume of the sealed container 1511 in which substantially spherical magnetic particles 152 do not remain is preferably 1 L or more, more preferably 5 L or more.
  • the spherical magnetic particles are deformed and fused by the mechanical stress applied by the uniaxial rotating body 155 to become flat magnetic particles.
  • the tabular magnetic particles are separated from the dispersion medium and the solvent.
  • a slurry drying step may be appropriately performed in consideration of the compatibility between the solvent used for producing the tabular magnetic particles and an insulating material to be mixed later. Specifically, when the compatibility of the insulating material and the solvent used to produce the tabular magnetic particles is poor, the solvent is 4% by mass or less, preferably 2% by mass or less, more preferably It is preferable to dry-process until it becomes 1 mass% or less. On the other hand, when the compatibility of the insulating material and the solvent used to produce the tabular magnetic particles is good, the slurry state in which the tabular magnetic particles are dispersed in the solvent without performing the slurry drying step You may transfer to a 2nd process as it is.
  • the drying method is not particularly limited as long as the solvent can be removed from the slurry after preparing the flat magnetic particles, and examples thereof include heat drying, vacuum drying, freeze drying, and the like, but vacuum drying is preferable in terms of drying efficiency.
  • some solvent may be removed by a method such as solid-liquid separation before the drying step.
  • a solid-liquid separation method a normal method such as a filtration operation such as a filter press or suction filtration, or a centrifugal separation operation using a decanter or a centrifuge may be used.
  • ⁇ Second step> The flat magnetic particles described above are dispersed and mixed in a solution obtained by dissolving an insulating material in a solvent to obtain a molding material.
  • the insulating material the same insulating material as described above can be used, and thus the description thereof is omitted.
  • the solvent is not particularly limited as long as it can dissolve the above insulating material.
  • alcohols such as methanol, ethanol, 2-propanol, butanol, octanol, ethyl acetate, butyl acetate , Ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as ⁇ -butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol mono Ethers such as butyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone, methyl ethyl Preferred are ketones such as ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, aromatic
  • the dispersion mixing method is not particularly limited, but it is preferable to use a stirring device such as a planetary mill, a sand mill, or a ball mill. What is necessary is just to adjust mixing conditions suitably so that tabular magnetic body particles may not aggregate.
  • ⁇ Third step> The molding material is molded or applied onto a substrate to produce a molded body, and then the obtained molded body is dried and cured.
  • a known molding method for example, a press method, a doctor blade method, an injection molding method or the like is suitable.
  • a dry film can be produced by forming a sheet or film of any shape using this forming method.
  • the composite magnetic body is a laminate, it is preferably formed into a sheet or film by the doctor blade method.
  • the molding material is molded after the solvent is volatilized and concentrated.
  • an orientation treatment for orienting the tabular magnetic particles in a direction parallel to the sheet or film by orientation of the magnetic field may be performed before drying.
  • heat treatment or hot pressing is preferable in a reducing atmosphere or in a vacuum.
  • the composite magnetic body of the present embodiment can also be obtained by molding a mixture of flat magnetic particles and thermosetting resin or thermoplastic resin by heat kneading.
  • a heat-kneading method a kneaded material mixed and dispersed by a known method such as a pressure kneader, a biaxial kneader, or a blast mill can be prepared.
  • a molding method of the kneaded product a molded body can be produced by a known method such as hot press molding, extrusion molding, injection molding or the like. Among these methods, in order to orient the flat magnetic particles in the resin, hot press molding that extends in a planar shape is preferable.
  • a plasticizer In order to adjust the viscosity at the time of stretching, it is also preferable to add a plasticizer and perform surface treatment of the tabular magnetic particles. If necessary, it is preferable to perform a treatment for orienting the tabular magnetic particles by the orientation of the magnetic field in a state where the fluidity is maintained by heating.
  • the composite magnetic body of the present embodiment is a composite magnetic body obtained by dispersing the flat magnetic particles in an insulating material, and the porosity of the composite magnetic body is 20% or less.
  • the porosity of the composite magnetic body can be obtained by the following equation (4).
  • Porosity (1 ⁇ Measured density / Theoretical density) ⁇ 100 (4)
  • the theoretical density of this composite magnetic body is calculated in consideration of the mixing ratio of the tabular magnetic particles and the insulating material based on the theoretical density of the tabular magnetic particles and the theoretical density of the insulating material ( ⁇ actually measured density).
  • the Further, as a method of calculating the theoretical density of the tabular magnetic particles a method of calculating a lattice constant from an X-ray diffraction pattern of the tabular magnetic particles and calculating a theoretical density value based on the lattice constant and the crystal structure. There is.
  • the measured density of the insulating material for example, when the insulating material is resin, only the resin is cured and the outer dimensions and mass are measured, and the measured density is calculated from these measured values.
  • a method for calculating the actual density of the composite magnetic body for example, there are a method of measuring the external dimensions and mass, a method of calculating the actual density from these measured values, and a method of using a value measured by the pycnometer method.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more
  • the real part ⁇ r ′ of the complex permittivity is 15 or more
  • ( ⁇ r ′ ⁇ ⁇ r ′) ⁇ 1/2 is 0.1 or less and ( ⁇ r ′ / ⁇ r ′) 1/2 are preferably 0.5 or more and 1 or less.
  • the electronic component or electronic device including the composite magnetic body of the present embodiment can be reduced in size. The power loss due to impedance matching can be suppressed.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is preferably 7 or more, more preferably 9 or more.
  • the reason why ⁇ r ′ is set to 7 or more is that the real part ⁇ r ′ of the complex dielectric constant usually shows a large value of 15 or more. Therefore, when ⁇ r ′ is set to less than 7, ⁇ r ′ is smaller than ⁇ r ′. This is because the power loss due to the mismatch of the characteristic impedance is increased.
  • the upper limit of this ⁇ r ′ is not particularly limited, but is preferably 20 or less, more preferably 15 or less, from the aspect ratio, content, etc. of the tabular magnetic particles that can actually be produced.
  • the real part ⁇ r ′ of the complex dielectric constant is preferably 15 or more, more preferably 20 or more.
  • the reason why ⁇ r ′ is set to 15 or more is that it is an effective value for achieving miniaturization of the antenna according to the above equation (1).
  • ( ⁇ r ′ ⁇ ⁇ r ′) ⁇ 1/2 is 0.1 or less when the values of ⁇ r ′ and ⁇ r ′ are in the above ranges.
  • the reason is as follows.
  • the value of ( ⁇ r ′ ⁇ ⁇ r ′) ⁇ 1/2 is the shortening rate of the high frequency wavelength in the composite magnetic material with respect to the wavelength in vacuum, as shown in the equation (1).
  • the wavelength in vacuum and the wavelength in normal air show a substantially equal value.
  • an antenna is usually composed of an antenna conductor made of a conducting wire having a length of 1/2 or 1/4 of a wavelength.
  • the wavelength is 60 cm or more
  • the length of the antenna conductor is 30 cm or more or 15 cm or more, and the antenna itself becomes large. Therefore, a matching circuit is used to transmit and receive signals with a long wavelength in alignment with the electronic circuit.
  • the antenna length is shortened, the amount of current on the antenna conductor is reduced, so that the antenna can transmit and receive. Problems such as a narrow frequency band and a decrease in antenna radiation efficiency occur.
  • the length of the antenna is set to 1/10 or less of the wavelength, transmission / reception of radio waves becomes difficult, which is a practical problem.
  • the high-frequency wavelength is theoretically reduced to about 1/10 or less on the composite magnetic body. Is done. For this reason, the size of the antenna can be reduced without narrowing the frequency band in which the antenna can transmit and receive or reducing the radiation efficiency of the antenna, as in the case of using a matching circuit.
  • the above ( ⁇ r ′ / ⁇ r ′) 1/2 is preferably 0.5 or more and 1 or less.
  • the reason is as follows.
  • the value of ( ⁇ r ′ / ⁇ r ′) 1/2 is the ratio (Z g / Z 0 ) between the characteristic impedance Z g of the composite magnetic material and the characteristic impedance Z 0 of the vacuum as shown in the above formula (2). Therefore, the characteristic impedance Z g of the composite magnetic material is ( ⁇ r ′ / ⁇ r ′) 1 ⁇ 2 times the vacuum characteristic impedance Z 0 . .
  • ⁇ r ′ of the composite magnetic body is smaller than ⁇ r ′, and therefore the characteristic impedance Z g of the composite magnetic body is smaller than the value of the atmospheric characteristic impedance Z A ( ⁇ vacuum characteristic impedance Z 0 ). It is known that a high-frequency signal is attenuated by reflection or absorption when propagating from a region having a large characteristic impedance to a region having a small characteristic impedance.
  • the value of ( ⁇ r ′ / ⁇ r ′) 1/2 is 0.5 or more, the change in characteristic impedance can be suppressed to 50% or less when electromagnetic waves propagate from the atmosphere to the composite magnetic body. Therefore, the attenuation of the high frequency signal can be suppressed.
  • the characteristic impedance Z g of the composite magnetic body if greater than the impedance Z A of the atmosphere, the electromagnetic wave difference even slight these characteristic impedances is greatly attenuated. Therefore, the value of ( ⁇ r ′ / ⁇ r ′) 1/2 is preferably 1 or less.
  • the complex magnetic substance has a complex magnetic permeability loss tangent tan ⁇ of preferably 0.05 or less, and more preferably 0.04 or less. Further, the loss tangent tan ⁇ (hereinafter sometimes simply referred to as tan ⁇ ) of the complex dielectric constant of the composite magnetic material is preferably 0.1 or less, and more preferably 0.07 or less.
  • the high frequency corresponds to the imaginary part ⁇ r ′′ of the complex permeability or the imaginary part ⁇ r ′′ of the complex permittivity in the composite magnetic body. Since only the portion is absorbed and changed to heat, the energy of the high-frequency signal is attenuated, and there is a possibility that problems such as a decrease in S / N ratio and heat generation may occur.
  • the composite magnetic body of this embodiment if various characteristics such as the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz satisfy the above range, 70 MHz to 500 MHz, preferably 90 MHz to 220 MHz.
  • 70 MHz to 500 MHz Even in electronic devices and electronic devices used in frequency bands up to, for example, antennas for communication devices such as portable telephones, portable information terminals, and multifunctional portable information devices, both miniaturization and reduction of power loss are achieved. be able to.
  • tan ⁇ and tan ⁇ are lower than in the case of a frequency band exceeding 500 MHz, which is preferable because the gain of the antenna is increased.
  • the flat magnetic particles are dispersed in an insulating material, thereby reducing the porosity of the obtained composite magnetic body to 20% or less, thereby reducing the ⁇ r ′ of the composite magnetic body.
  • ⁇ r ′ is hardly changed.
  • the antenna of a communication device such as an electronic component or an electronic device to which the composite magnetic material is applied, for example, a portable telephone, a portable information terminal, or a multifunctional portable information device can be reduced in size, and impedance matching can be performed.
  • the power loss due to can be suppressed.
  • the mechanism for obtaining such an effect is considered as follows.
  • the porosity in the composite magnetic body decreases, the amount of magnetic particles per unit volume of the composite magnetic body increases, so ⁇ r ′ increases.
  • the value of ⁇ r ′ is almost the same value. That is, by decreasing the porosity in the composite magnetic material, the value of ⁇ r ′ increases, but the value of ⁇ r ′ hardly changes, so the difference between the value of ⁇ r ′ and the value of ⁇ r ′ decreases.
  • the method for reducing the porosity of the composite magnetic material is not particularly limited as long as it can reduce the porosity of the composite magnetic material to 20% or less.
  • the curability of the insulating material is improved by optimizing the type and amount of the curing agent and the method for preventing aggregation of the tabular magnetic particles.
  • the insulating material only needs to be an insulating material, and the same insulating material as that described in the item of the first composite magnetic body can be used. That is, when the composite magnetic body of this embodiment is used as an antenna for a mobile phone or an antenna for a portable information terminal, it is preferable that the mechanical strength is high, the hygroscopic property is low, and the shape workability is excellent.
  • Examples of such an insulating material include polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycyclohexane.
  • thermoplastic resins such as olefin resins, cyanate resins, polyphenylene ether resins, norbornene resins, ABS resins, and polystyrene resins are preferably used. These resins may be used alone or in combination of two or more.
  • a resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit is unlikely to be entangled with the tabular magnetic particles, and thus there is no risk of inhibiting the orientation of the tabular magnetic particles.
  • High ⁇ r ′ is preferable because it is easy to obtain.
  • An example of such a resin is a dicyclopentadiene type resin.
  • an insulating resin that imparts stretchability and flexibility may be mixed with such a hard resin.
  • the insulating resin that imparts stretchability and flexibility may be appropriately selected from the above-described resins, and liquid epoxy resins and bisphenol type epoxy resins are particularly preferable.
  • the content of the dicyclopentadiene type resin with respect to the total amount of the resin is 50% by mass or more and 90% by mass or less. It is preferable.
  • the orientation of the tabular magnetic particles can be improved and high ⁇ r ′ can be obtained.
  • the insulating resin imparting stretchability and flexibility is contained in an amount of 10% by mass or more and 50% by mass or less, the resin can easily enter the gap between the flat magnetic particles, and the pores of the composite magnetic material can be reduced. Since generation
  • This method of manufacturing a composite magnetic body includes a step of mixing and dispersing the flat magnetic particles in an insulating material to produce a molding material, and a molding step of molding the obtained molding material into a predetermined shape. And a drying / curing step for drying / curing the molded body.
  • ⁇ Molding material production process> the step of producing a molding material in which the flat magnetic particles are dispersed in the insulating material by mixing the flat magnetic particles, the insulating material, the solvent, and a curing agent as necessary. It is.
  • thermosetting resin used as the insulating material
  • the type and amount of the curing agent may be appropriately adjusted according to the type and amount of the thermosetting resin to be used.
  • an epoxy resin used as the thermosetting resin
  • a tertiary amine is preferable in that the condensation reaction between the epoxy groups is promoted to prevent generation of pores due to poor curing in the molded body of the composite magnetic body.
  • tertiary amine examples include 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. It is done. In consideration of the point of promoting the condensation reaction of the functional group, the addition amount of the curing agent is 0.5% by mass or more and 3% by mass or less based on the total mass of the thermosetting resin and the curing agent. That's fine.
  • the solvent is not particularly limited as long as it can dissolve the above-described insulating material.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, cyclohexanone, benzene, toluene, xylene
  • Aromatic hydrocarbons such as ethylbenzene, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl Ethers such as ether, dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.
  • Amides are preferably used. These solvents may be used alone or in combination of two or more.
  • a solvent having a high boiling point such as cyclohexanone or xylene is preferable because it can suppress the thickening of the molding material due to the volatilization of the solvent.
  • the solvent is preferably mixed in an amount of 30% by mass or more in the molding material, and more preferably 35% by mass or more.
  • 30% by mass or more of the solvent By mixing 30% by mass or more of the solvent, the viscosity of the obtained molding material is reduced. Therefore, even when the flat magnetic particles are aggregated during mixing, the aggregation is loosened and the dispersibility in the insulating material is reduced. Will improve. Thereby, the porosity of a composite magnetic body can be reduced.
  • the quantity of a solvent is 50 mass% or less.
  • the content of the tabular magnetic particles in the molding material is preferably 10% by volume or more and 60% by volume or less, more preferably 30% by volume with respect to the total amount of the insulating material, the curing agent, and the tabular magnetic particles. % To 50% by volume.
  • the content of the tabular magnetic particles is less than 10% by volume, the amount of the tabular magnetic particles is too small, and the magnetic properties as a composite magnetic body are deteriorated.
  • the content of the tabular magnetic particles exceeds 60% by volume, there are too many tabular magnetic particles, and a molding material containing the tabular magnetic particles, an insulating material, a curing agent, and a solvent is included. Since fluidity
  • the mixing device is not particularly limited as long as the flat magnetic particles, the insulating material, the curing agent, and the solvent can be uniformly mixed and dispersed to form a slurry-like molding material.
  • a revolving mixer, a homogenizer, an ultrasonic homogenizer, a stirrer and the like can be mentioned.
  • the mixing conditions may be appropriately adjusted so that the tabular magnetic particles do not aggregate too much and are uniformly dispersed in the insulating material.
  • the molding method is not particularly limited as long as the molding material can be molded into a certain shape and the shape after molding can be maintained.
  • the shape and size of the molded body are not particularly limited, and for example, it may be molded into a sheet shape or a film shape, or may be molded into a shape having a thickness such as a rectangular parallelepiped shape, for example, a bulk shape.
  • the method for forming the sheet or film include a doctor blade method, a bar coating method, a die coating method, and a pressing method.
  • molding in the shape with thickness such as a thin plate shape, the method etc. which pour molding material into the type
  • stacking a composite magnetic body and it is set as a laminated structure it is preferable to laminate
  • ⁇ Orientation process> This is a step of orienting flat magnetic particles having an average aspect ratio (major axis / thickness) of 5 or more in the molded body obtained in the molding step in one direction.
  • this orientation step is unnecessary, but in order to obtain a composite magnetic body having a higher ⁇ r ′, it can be obtained. It is preferable to apply an orientation process in which a magnetic field is applied to the compact and the tabular magnetic particles in the compact are oriented in one direction.
  • the method for orienting the tabular magnetic particles in the molded body is not particularly limited as long as a magnetic field is applied so that the tabular magnetic particles in the molded body can be oriented in one direction.
  • a magnetic field is applied to the flat magnetic particles in the compact, if the magnetic field lines are bent in the compact, the flat magnetic particles cannot be oriented in one direction. Therefore, it is preferable to apply the magnetic field so that the generated magnetic field lines are substantially parallel to the surface of the molded body.
  • the magnitude of the applied magnetic field is preferably 100 gauss or more and 3000 gauss or less. If the magnitude of the magnetic field is less than 100 gauss, the magnetic field is too small, and the flat magnetic particles in the compact may not be sufficiently oriented in one direction. On the other hand, if it exceeds 3000 gauss, the magnetic field becomes too large, and the magnetic field may cause the tabular magnetic particles to aggregate and separate from the insulating material, which is inadequate for the magnetic properties of the obtained composite magnetic material. This is not preferred because there is a risk of uniformity.
  • the molded body in which the flat magnetic particles are oriented is dried, and then the insulating material is cured by heating or ultraviolet irradiation.
  • the drying / curing conditions may be appropriately adjusted according to the type of insulating material and solvent used.
  • the composite magnetic body of the present embodiment can be obtained.
  • the composite magnetic body of the present embodiment is a composite magnetic body including the first composite magnetic body including a first resin in which the insulating material has a cyclic structure in a main chain and has a functional group that is polymerized in a monomer unit. is there.
  • the first resin is a resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units.
  • the resin is not particularly limited as long as it is a resin capable of obtaining a molding material having low viscosity and fluidity when mixed with flat magnetic particles, and is not particularly limited, but is a thermosetting resin, a thermoplastic resin, or an ultraviolet curable resin. Can be used.
  • Such resins include epoxy resins, silicone resins, phenol resins, polyimide resins, polybenzoxazole resins, polyphenylene resins, polybenzocyclobutene resins, polyarylene ether resins, polycyclohexane resins, polyester resins, fluororesins, polyolefin resins.
  • These resins may be used alone or in combination of two or more.
  • a thermosetting resin is preferable because it has solubility in many solvents and the viscosity can be easily adjusted, and among the thermosetting resins, an epoxy resin and a polycycloolefin resin are preferable.
  • an epoxy resin as a resin having a cyclic structure in the main chain, a dicyclopentadiene type epoxy resin (formula (1)) having only a cyclic structure in the main chain or a naphthalene type epoxy resin (formula ( 2)) is preferably used.
  • R 1 is hydrogen or a methyl group.
  • R 2 is hydrogen, an alkyl group having a molecular weight in the range of 15 to 180, or an aryl group.
  • Examples of X include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, benzyl group and tolyl group.
  • the content of the tabular magnetic particles in the total amount of the composite magnetic material is preferably 10% by mass to 60% by mass, and more preferably 30% by mass to 50% by mass.
  • the content of the tabular magnetic particles is less than 10% by mass, the ratio of the tabular magnetic particles is too small, and the ⁇ r ′ of the obtained composite magnetic body becomes too low, and as a result. This is not preferable because a desired ⁇ r ′ cannot be secured.
  • the content of the tabular magnetic particles exceeds 60% by mass, the amount of the tabular magnetic particles is too large, so the amount of the resin is relatively small, and the tabular magnetic particles and the resin Is not preferable because a molding material having low viscosity and fluidity cannot be obtained, and the orientation of the tabular magnetic particles in the subsequent process becomes insufficient.
  • the angle formed by the orientation direction of the tabular magnetic particles in the composite magnetic body and the major axis direction of the tabular magnetic particles is preferably 20 ° or less, more preferably 0 ° or more and 15 ° or less, and still more preferably. It is 0 degree or more and 10 degrees or less.
  • the major axis direction of the tabular magnetic particles is inclined within the above range with respect to the orientation direction of the tabular magnetic particles, a composite magnetic body having a high ⁇ r ′ can be obtained.
  • the “orientation direction” is the direction in which the long axes of the tabular magnetic particles are oriented, that is, the long axis direction of a plurality of tabular magnetic particles when the cross section of the composite magnetic body is observed. The direction in which the standard deviation of the angle is the smallest.
  • ⁇ r ′ of this composite magnetic body is preferably 7 or more, and more preferably 10 or more.
  • the reason why ⁇ r ′ is set to 7 or more is that as ⁇ r ′ increases, the wavelength shortening rate increases, and therefore, electronic components and circuit boards to which this composite magnetic material is applied can be further miniaturized. is there.
  • the third composite magnetic body manufacturing method includes a first functional group that has a cyclic structure in the main chain and polymerizes in monomer units as an insulating material. This is exactly the same as the manufacturing method of the first composite magnetic body except that the molding material is included.
  • a magnetic field is applied to the obtained compact after the molding step, It is preferable to perform an orientation process for orienting the flat magnetic particles in the molded body in one direction, and then perform the drying and curing processes.
  • a molding material is prepared by mixing a resin having a cyclic structure in the main chain and having a functional group that is polymerized in monomer units, tabular magnetic particles, a solvent, and a curing agent as necessary.
  • the resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units may be any resin as long as it can obtain a molding material having low viscosity and fluidity when mixed with flat magnetic particles.
  • a thermosetting resin, a thermoplastic resin, or an ultraviolet curable resin can be used.
  • Such resins include epoxy resins, silicone resins, phenol resins, polyimide resins, polybenzoxazole resins, polyphenylene resins, polybenzocyclobutene resins, polyarylene ether resins, polycyclohexane resins, polyester resins, fluororesins, polyolefin resins.
  • These resins may be used alone or in combination of two or more.
  • a thermosetting resin is preferable because it has solubility in many solvents and the viscosity can be easily adjusted, and among the thermosetting resins, an epoxy resin and a polycycloolefin resin are preferable.
  • an epoxy resin having a cyclic structure in the main chain a dicyclopentadiene type epoxy resin having only a cyclic structure in the main chain represented by the above formula (1), and a naphthalene type epoxy represented by the formula (2) Resin.
  • a cresol novolac type epoxy resin having a short straight chain of C 1 to 3 represented by the above formula (3), represented by the formula (4)
  • a tertiary amine is preferable in that the condensation reaction between epoxy groups is promoted to improve the mechanical strength of the composite magnetic body.
  • the tertiary amine include 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. It is done.
  • the addition amount of the curing agent may be 0.5 mass% or more and 3 mass% or less with respect to the total mass of the resin and the curing agent.
  • a curing agent having a cyclic structure is preferable in the same manner as the above-described resin in that the influence of steric hindrance on the tabular magnetic particles is reduced and the ⁇ r ′ of the composite magnetic material is improved.
  • the curing agent having a cyclic structure include a phenol novolac type curing agent, a zylock type curing agent, a dicyclopentadiene type curing agent, and the like. These curing agents are preferably added in the same amount as the resin because the driving force for polymerizing the resin is weak compared to tertiary amines and the like.
  • the solvent is not particularly limited as long as it can dissolve the above-mentioned resin.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, cyclohexanone, benzene, toluene, xylene, ethyl benzene, etc.
  • Aromatic hydrocarbons diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, etc.
  • Ethers such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like S is preferably used.
  • These solvents may be used alone or in combination of two or more.
  • a solvent having a high boiling point such as cyclohexanone or xylene is preferable because it can suppress the thickening of the molding material due to the volatilization of the solvent.
  • the content of the tabular magnetic particles in the molding material is based on the volume (resin + curing agent + tabular magnetic particles) when the volatile components in the molding material are cured and become solid. 10 volume% or more and 60 volume% or less are preferable, More preferably, they are 30 volume% or more and 50 volume% or less.
  • the content of the tabular magnetic particles is less than 10% by volume, the tabular magnetic particles are too small and the magnetic properties as the composite magnetic material are deteriorated.
  • the tabular magnetic particles are contained. If the rate exceeds 60% by volume, there are too many tabular magnetic particles, the fluidity of the molding material containing the tabular magnetic particles, the resin, the curing agent, and the solvent decreases, and the moldability decreases. This is not preferable.
  • the mixing device is not particularly limited as long as the flat magnetic particles, the resin, the curing agent, and the solvent can be mixed uniformly to form a slurry-like molding material.
  • a roll mill, a self-revolving mixer examples thereof include a homogenizer, an ultrasonic homogenizer, and a stirrer.
  • the viscosity of the molding material is preferably 0.1 Pa ⁇ S or more and 10 6 Pa ⁇ S or less, more preferably 0.3 Pa ⁇ S or more and 10 4 Pa ⁇ S or less.
  • the viscosity is less than 0.1 Pa ⁇ S, the fluidity becomes too high and the productivity in the drying process is deteriorated.
  • the viscosity exceeds 10 6 Pa ⁇ S, the viscosity is too high. Therefore, the orientation of the tabular magnetic particles is difficult to occur, and as a result, the orientation of the tabular magnetic particles in the composite magnetic material is lowered, which is not preferable.
  • the molding method is not particularly limited as long as a certain shape can be maintained during the step of applying a magnetic field to the molding material.
  • the shape and size of the molded body are not particularly limited, and for example, it may be molded into a sheet shape or a film shape, or may be molded into a shape having a thickness such as a rectangular parallelepiped shape.
  • a sheet or film molded is preferable because it can be easily obtained by applying the molding material to a sheet or film substrate and is excellent in mass productivity.
  • the tabular magnetic particles may be oriented in random directions and the orientation may not be sufficient. Therefore, a magnetic field is applied to the molded body formed into a sheet shape, a film shape, a rectangular parallelepiped shape, or the like, and the flat magnetic particles in the molded body are oriented.
  • the method for orienting the tabular magnetic particles in the compact is not particularly limited as long as a magnetic field is applied so that the tabular magnetic particles in the compact can be oriented in one direction. If the magnetic field lines are bent, the tabular magnetic particles cannot be oriented in one direction. Therefore, it is necessary to apply the magnetic field so that the generated magnetic field lines are substantially parallel to the surface of the molded body.
  • an alignment method there are the following four alignment methods.
  • FIG. 3 is a schematic configuration diagram showing an orientation apparatus for carrying out the orientation method A in the method for producing a composite magnetic body of the present invention.
  • the molding material (not shown) is applied to the base 1 in the form of a sheet or film.
  • This is an example of an apparatus for orienting flat magnetic particles in the coating film 2 by magnetic lines of force H generated by applying a magnetic field to the coating film 2 coated on the upper surface.
  • the aligning device 11 includes a coating means 12 including a dispenser that forms the coating film 2 by coating the molding material (not shown) on the upper surface of the substrate 1 that proceeds in the direction of the arrow in the drawing, and the coating film 2.
  • a coating means 12 including a dispenser that forms the coating film 2 by coating the molding material (not shown) on the upper surface of the substrate 1 that proceeds in the direction of the arrow in the drawing, and the coating film 2.
  • a pair of magnets 13a and 13b that are respectively provided on both sides in the width direction and orient the flat magnetic particles in the coating film 2 by magnetic lines H generated by applying a magnetic field to the coating film 2 along the width direction; , And drying means 14 for drying the coating film 2 in which the flat magnetic particles are oriented by the magnetic lines of force H.
  • the magnets 13a and 13b are arranged so that the opposing poles are different from each other.
  • the coating film 2 passing between the magnets 13a and 13b is applied to the S of the magnet 13b from the N pole of the magnet 13a.
  • Magnetic field lines H parallel to the direction toward the pole are generated. Due to the magnetic force lines H, the tabular magnetic particles in the coating film 2 are oriented parallel to the magnetic force lines H. As described above, the tabular magnetic particles in the coating film 2 can be oriented parallel to the magnetic field lines H.
  • FIG. 4 is a schematic configuration diagram showing an orientation device for carrying out the orientation method B in the method for producing a composite magnetic body of the present invention.
  • the orientation device 21 is different from the orientation device 11 in FIG. This is in that the opposing poles of a pair of magnets 22a and 22b provided on the upper side and the lower side of the film 2 are arranged so as to have the same polarity.
  • FIG. 5 is a schematic configuration diagram showing an orientation device for carrying out the orientation method C in the method for producing a composite magnetic body of the present invention.
  • the orientation device 31 is different from the orientation device 21 in FIG. A fixed interval, for example, so that the opposing poles of each of the pair of magnets 32a and 32b, the magnets 33a and 33b, and the magnets 34a and 34b provided on the upper side and the lower side of the film 2 are the same, respectively. It is the point arrange
  • the magnetic lines H1 and H2 generated from the N poles of the magnets 22a and 22b return to the S pole, the magnetic lines of force are applied near the both ends in the horizontal direction of the magnets 22a and 22b. Magnetic field lines that are perpendicular to the surface 2 and not parallel to the coating film 2 are also generated, and as a result, the orientation of the tabular magnetic particles may be lowered.
  • the plate-like magnetic particles 41 in the coating film 2 have an orientation direction. Although it is in a disordered state, the tabular magnetic particles 41 in the coating film 2 are caused by the lines of magnetic force H1 and H2 generated parallel to the surface of the coating film 2 by passing between the magnets 32a and 32b. The tabular magnetic particles 41 are aligned along the magnetic field lines H1 and H2.
  • the orientation of the tabular magnetic particles 41 may be insufficient only by passing between the first magnets 32a and 32b. Therefore, by passing between the magnets 33a and 33b, the insufficient orientation of the tabular magnetic particles 41 is corrected and the orientation is improved. After passing between the last magnets 34a and 34b, the insufficient orientation of the tabular magnetic particles 41 is corrected and becomes highly oriented. Thus, the orientation of the tabular magnetic particles 41 in the coating film 2 can be improved by applying the magnetic field to the coating film 2 a plurality of times.
  • FIG. 7 is a schematic configuration diagram showing an orientation device for performing the orientation method D in the method for producing a composite magnetic body of the present invention.
  • the orientation device 51 is different from the orientation device 21 in FIG.
  • a drying means 52 for pre-drying the coating film 2 is provided at a position where H1 and H2 are parallel to the tabular magnetic particles 41 in the coating film 2.
  • the drying means 52 is not particularly limited as long as it has a drying function capable of solidifying the coating film 2, and examples thereof include a hot air blowing nozzle connected to a hot air supply source.
  • the orientation device 51 when a magnetic field is applied to the coating film 2 by the pair of magnets 22a and 22b, magnetic lines H1 and H2 for applying a magnetic field parallel to the surface of the coating film 2 are generated, and the magnetic lines H1 and H2 are generated.
  • the tabular magnetic particles in the coating film 2 are oriented parallel to the magnetic field lines H1 and H2.
  • the coating film 2 is pre-dried by the drying means 52, the coating film 2 is solidified, so that the orientation state of the flat magnetic particles that are oriented in parallel to the magnetic lines of force H 1 and H 2 can be fixed.
  • the plate-like magnetic particles in the coating film 2 can be oriented parallel to the magnetic field lines H1 and H2.
  • the orientation of the tabular magnetic particles in the coating film 2 can be improved by performing only one of the orientation methods A to D alone or in combination of two or more. it can. Even when the coating film 2 is replaced with a molded body having a predetermined shape, the orientation of the tabular magnetic particles in the molded body can be improved by appropriately applying one or more of the orientation methods A to D. it can.
  • the magnets 13a, 13b,... include electromagnets and permanent magnets.
  • the arrangement of the magnets and the number of pairs are not particularly limited, and may be appropriately adjusted according to the shape of the coating film and the molded body and the required magnetic characteristics.
  • the magnitude of the magnetic field to be applied is preferably 100 gauss or more and 1000 gauss or less when different polarities such as those of the alignment apparatus shown in FIG. If the magnitude of the magnetic field is less than 100 gauss, the magnetic field is too small, and the flat magnetic particles in the compact may not be sufficiently oriented. On the other hand, if it exceeds 1000 gauss, the magnetic field is too large and the flat magnetic particles and the resin may be separated, resulting in non-uniformity in the magnetic properties of the obtained composite magnetic material. Further, when the same poles as in the orientation device shown in FIG. 4 are faced to each other, separation between the tabular magnetic particles and the resin is difficult to occur, and therefore it is preferably 100 gauss or more and 3000 gauss or less.
  • the molded body in which the flat magnetic particles are oriented is dried, and then the resin is cured by heating or ultraviolet irradiation.
  • the drying / curing conditions may be appropriately adjusted according to the type of resin and solvent used.
  • the third composite magnetic body can be obtained.
  • the composite magnetic body of the present embodiment includes a first resin in the first composite magnetic body, wherein the insulating material has a cyclic structure in the main chain and has a functional group that is polymerized in a monomer unit.
  • the composite magnetic body further includes a second resin that imparts flexibility to one resin.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz of this composite magnetic body is preferably 7 or more, more preferably 10 or more.
  • the reason why the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz of this composite magnetic material is set to 7 or more is that the larger the ⁇ r ′, the greater the wavelength shortening rate. This is because further downsizing of electronic parts and circuit boards to which the body is applied becomes possible.
  • the loss tangent tan ⁇ of the complex magnetic permeability of this composite magnetic body is preferably 0.05 or less, more preferably 0.04 or less.
  • tan ⁇ exceeds 0.05, only the portion corresponding to the imaginary part ⁇ r ′′ of the complex magnetic permeability is absorbed in the composite magnetic body and changed to heat, whereby the energy of the high frequency signal is changed.
  • problems such as a decrease in S / N ratio and heat generation may occur, which may reduce the gain.
  • the second resin is a resin that imparts flexibility to the first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit.
  • the second resin may be a resin that can impart flexibility and stretchability to the resulting cured body when mixed and molded and cured with the first resin and flat magnetic particles.
  • a resin having excellent flexibility such as an epoxy resin, a silicone resin, a urethane resin, or a polyamide resin is suitable.
  • a modified epoxy resin modified with urethane, polyethylene, ethylene propylene, or the like as the epoxy resin, or a propylene oxide-added epoxy resin obtained by adding propylene oxide to the epoxy resin can be used.
  • an epoxy resin is preferable, and for example, an epoxy resin having a bisphenol skeleton such as bisphenol A type, bisphenol B type, and bisphenol F type is more preferable.
  • the epoxy resin having a bisphenol A type skeleton include isopropylidene bisphenol, isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4 -Hydroxycumylbenzene) and the like.
  • Examples of the epoxy resin having a bisphenol B type skeleton include 2,2-bis (4-hydroxyphenyl) butane.
  • Examples of the epoxy resin having a bisphenol F-type skeleton include methylene bisphenol and methylene bis (orthocresol).
  • an epoxy resin having at least one of a bisphenol A skeleton and a bisphenol F skeleton is preferable.
  • an epoxy resin having a bisphenol A skeleton is preferable from the viewpoints of stretchability and shear strength.
  • an epoxy resin having two or more epoxy groups in one molecule and having an ether skeleton is preferable.
  • Examples of the structure containing two or more epoxy groups in one molecule include diglycidyl ether, diglycidyl ester, diglycidyl amine and the like.
  • the ether skeleton is not particularly limited as long as it is a compound containing one or more ether partial structures.
  • Examples of such an ether skeleton include alkylene glycol.
  • the alkylene glycol preferably has 2 to 6 carbon atoms of alkylene, more preferably 2 to 5, and still more preferably 2 to 4.
  • the ether skeleton may be linear or may have a branched chain, but an ether skeleton derived from ethylene glycol or propylene glycol is preferable.
  • an ether skeleton made of propylene glycol is added to a bisphenol A type skeleton.
  • a propylene glycol-added bisphenol A type structure (chemical formula (5)) in which glycidyl ether is introduced at the terminal of the bisphenol A type skeleton.
  • the value of p + q is 1 to 5, but a more preferable value of p + q is 2 to 4, and a more preferable value is 2 to 3.
  • an ether skeleton made of ethylene glycol is introduced into a bisphenol A skeleton instead of an ether skeleton made of propylene glycol, and glycidyl ether is introduced at the end of the bisphenol A skeleton.
  • the ethylene glycol addition bisphenol A type structure represented by Chemical formula (6) is also mentioned.
  • n + m is 1 to 10, but a more preferable value of n + m is 4 to 8, and a more preferable value is 6.
  • Resins having a bisphenol A skeleton and containing two or more epoxy groups in one molecule and having a polyether skeleton include bisphenol A bis (propylene glycol glycidyl ether) ether and bisphenol A bis (triethylene glycol). Glycidyl ether) ether and the like.
  • the second resin is contained in an amount of 5% by mass to 30% by mass with respect to the total mass of the first resin and the second resin. Is preferred.
  • the manufacturing method of the 4th composite magnetic body includes a first functional group that has a cyclic structure in the main chain and polymerizes in monomer units as an insulating material in the second step of the third composite magnetic body manufacturing method.
  • the molding material further includes a second resin that is a resin that imparts flexibility to the first resin.
  • a first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, a second resin that imparts flexibility to the first resin, and a plate-like magnetic property This is a step of preparing a molding material by mixing body particles, a solvent, and, if necessary, a curing agent. Since the composition, shape, characteristics, manufacturing method, and the like of each of the first resin, the second resin, and the tabular magnetic particles have already been described, description thereof will be omitted.
  • 1st resin and 2nd resin may be synthesize
  • tertiary amine examples include 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. It is done. In consideration of the point of promoting the condensation reaction of the functional group, the addition amount of the curing agent may be 0.5% by mass to 3% by mass with respect to the total mass of the resin and the curing agent.
  • the hardening agent which has a cyclic structure in a principal chain similarly to said resin in the point that the influence of the steric hindrance with respect to a flat magnetic particle is made small and micror 'of a composite magnetic body is improved Is preferred.
  • the curing agent having a cyclic structure include a phenol novolac type curing agent, a zylock type curing agent, a dicyclopentadiene type curing agent, and the like. These hardeners are preferably added in the same amount as the resin because the driving force for polymerizing the resin is weaker than tertiary amines.
  • Examples of the solvent are the same as those mentioned in the third composite magnetic body.
  • the content rate of the flat magnetic particles in the molding material is determined by the volume V1 of the first resin and the volume V2 of the second resin when the components other than the volatile components in the molding material are cured and become solid. It is preferably 10% by volume to 60% by volume, more preferably 30% by volume to 50% by volume, based on the sum of the volume V3 of the agent and the volume V4 of the tabular magnetic particles (V1 + V2 + V3 + V4).
  • the content of the tabular magnetic particles is less than 10% by volume, the tabular magnetic particles are too small and the magnetic properties as a composite magnetic body are deteriorated.
  • These flat magnetic particles, first resin, second resin, curing agent and solvent are mixed to produce a molding material.
  • the viscosity of the molding material can be adjusted by appropriately adjusting the amount of the solvent added.
  • Examples of the mixing apparatus include the same ones as those mentioned in the first composite magnetic body.
  • the viscosity of the obtained molding material is preferably 0.1 Pa ⁇ S or more and 10 6 Pa ⁇ S or less, more preferably 0.3 Pa ⁇ S or more and 10 4 Pa ⁇ S or less.
  • the viscosity is less than 0.1 Pa ⁇ S, it is not preferable because the fluidity becomes too high and the productivity in the drying process is deteriorated.
  • the viscosity exceeds 10 6 Pa ⁇ S, the viscosity is Is too high, and the orientation of the tabular magnetic particles is difficult to occur. As a result, the orientation of the tabular magnetic particles in the composite magnetic material is lowered, which is not preferable.
  • the content of the tabular magnetic particles in the molding material is 10 volume% or more and 60 volume% or less, and the viscosity of the molding material is 0.1 Pa ⁇ S or more and 10 6 Pa ⁇ S or less.
  • the molding method is not particularly limited as long as the molding material can be molded into a constant shape and can maintain a constant shape when a magnetic field is applied after molding.
  • the shape and size of the molded body are not particularly limited, and for example, it may be molded into a sheet shape or a film shape, or may be molded into a shape having a thickness such as a rectangular parallelepiped shape, for example, a bulk shape.
  • a doctor blade method, a bar coating method, or the like can be used.
  • a die coating method or the like can be used.
  • molding to a shape with thickness the method of pouring a molding material into the type
  • the tabular magnetic particles may be oriented in random directions and the orientation may not be sufficient. Therefore, a magnetic field is applied to the molded body formed into a sheet shape, a film shape, a rectangular parallelepiped shape or the like, and the flat magnetic particles in the molded body are oriented in one direction.
  • the alignment step of the fourth composite magnetic body is the same as the alignment step described in the third composite magnetic body.
  • This drying / curing process is the same as the drying / curing process of the third composite magnetic body.
  • the composite magnetic body of the present embodiment can be obtained.
  • the antenna of this embodiment includes any one of the first to fourth composite magnetic bodies.
  • As one form of this antenna there is an antenna loaded with the above composite magnetic material.
  • the method for loading the antenna with the composite magnetic body is not particularly limited, and the conductor such as a copper wire constituting the antenna (hereinafter referred to as “antenna conductor”) is covered with the composite magnetic body. What is necessary is just to load by a well-known method.
  • the type and shape of the antenna are not particularly limited, and a monopole antenna, a loop antenna, a helical antenna, a patch antenna, an F-type antenna, an L-type antenna, or the like is preferably used. Further, a matching circuit may be used in combination in order to reduce the size of the antenna.
  • a monopole antenna or an L-shaped antenna can be obtained by sandwiching the above composite magnetic body into a rod-like or long plate-like shape around the antenna conductor.
  • the helical antenna can be obtained by winding a long and extremely thin antenna conductor made of copper wire or the like in a coil shape around a rod-shaped composite magnetic material obtained by processing the above-described composite magnetic material into a rod shape. With these antennas, it is possible to obtain a small antenna having a length shorter than 1 ⁇ 4 of the desired wavelength due to the wavelength shortening effect.
  • FIG. 8 is a schematic diagram showing a method of feeding a monopole antenna which is an example of the antenna of the present embodiment.
  • the monopole antenna 61 has a rod-shaped antenna conductor 62 and a surface of the antenna conductor 62 embedded by embedding the antenna conductor 62. And a plate-like composite magnetic body 63 covered with The monopole antenna 61 is connected to a ground plane 64 made of a conductor having a predetermined shape via a coaxial connector or the like, and an AC signal transmitter 66 is used so that the connection portion 65 that is an inner conductor of the coaxial connector or the like serves as a feeding point. It is connected.
  • the antenna is connected to the ground plane 64 via a connector or the like, and the AC signal transmitter 66 is connected so that the connecting portion 65 serves as a feeding point.
  • the connection portion 65 and the ground plane 64 serving as a feeding point are electrically insulated.
  • the communication device of this embodiment includes the antenna described above.
  • the communication device is not particularly limited as long as it is a device that transmits, receives, or transmits / receives various information via electromagnetic waves.
  • personal computers portable telephones, portable information terminals, multifunctional portable information terminals such as smartphones, communication devices such as PDAs (Personal Digital Assistants), various electronic devices such as audio devices, video devices, camera devices, etc. It is done.
  • PDAs Personal Digital Assistants
  • various electronic devices such as audio devices, video devices, camera devices, etc. It is done.
  • the communication device includes a communication device in which an auxiliary antenna provided with the antenna is mounted on various accessories (auxiliary tools) such as a protective cover attached to the various devices.
  • the antenna may be provided outside the communication device, or may be built in either.
  • FIG. 9 is a perspective view showing an example of a kind of mobile phone of the communication apparatus according to the present embodiment.
  • the mobile phone 71 has a display function including a liquid crystal display, an organic EL display, or the like on the front surface of the casing 72.
  • the display unit 73 is provided, and a ground plate (not shown) is provided on the back side of the display unit 73, and an antenna conductor 75 disposed in the rod-shaped monopole antenna 74 via a connector or the like is provided on the ground plate.
  • the electronic circuit (not shown) of the portable telephone 71 is connected through this connection portion.
  • the antenna conductor 75 of the monopole antenna 74 is covered with a composite magnetic body 76.
  • the monopole antenna 74 can be taken out from the casing 72 and can be stored in the casing 72. When communicating, the monopole antenna 74 is pulled out from the casing 72 as necessary to perform communication. When not communicating, the casing 72 It is designed to be pushed into the storage.
  • the monopole antenna 74 does not have to be rod-shaped and may be telescopic.
  • the monopole antenna 74 is preferably provided at a position that does not overlap the display unit 73 or the like in consideration of improving the antenna gain. In the case where the monopole antenna 74 is provided at a position overlapping with the display unit 73 and the like, it is preferable that the monopole antenna 74 and the display unit 73 are spaced from each other.
  • FIG. 10 is a perspective view showing another example of a kind of mobile phone of the communication apparatus of the present embodiment.
  • the mobile phone 81 is a display comprising a liquid crystal display, an organic EL display, or the like on the front surface of the housing 82.
  • a display portion 83 having a function is provided, and an external antenna terminal 84 is provided on the side surface.
  • a connection terminal 86 provided on the side surface of the rod-shaped monopole antenna 85 is fitted into the external antenna terminal 84.
  • the antenna conductor 87 disposed in the monopole antenna 85 is connected to a ground plate (not shown) provided on the back side of the display unit 83 via a connection terminal 86 and an external antenna terminal 84, and this connection
  • the electronic circuit (not shown) of the portable telephone 81 is connected through the unit.
  • an antenna conductor 87 is covered with a composite magnetic body 88.
  • the portable telephone 81 can be attached and detached by inserting / removing the connection terminal 86 of the monopole antenna 85 to / from the external antenna terminal 84.
  • FIG. 11 is a partial perspective view showing a part of still another example of a mobile phone of a kind of the communication apparatus according to the present embodiment.
  • the mobile phone 91 includes a liquid crystal display or an organic EL on the front surface of a housing 92.
  • a ground plate 93 is provided on the back side of a display unit (not shown) having a display function such as a display, and an L-shaped antenna 94 is provided at a position that does not overlap with the ground plate 93 (in FIG. 22, above the ground plate 93).
  • An antenna conductor 95 made of a conductor such as a copper wire disposed in the L-shaped antenna 94 is connected to the ground plane 93 via a connector or the like, and an electronic circuit (not shown) of the portable telephone 91 is connected via this connection portion. Is connected.
  • an antenna conductor 95 is covered with a composite magnetic body 96.
  • FIG. 12 is a partial perspective view showing a part of still another example of a mobile phone of a kind of the communication apparatus according to the present embodiment.
  • the mobile phone 101 includes a liquid crystal display or an organic EL on the front surface of the housing 102.
  • a ground plate 103 is provided on the back side of a display unit (not shown) having a display function such as a display, and a helical antenna 104 is provided at a position that does not overlap with the ground plate 103 (above the ground plate 103 in FIG. 23).
  • a helical antenna conductor 106 wound around a rod-shaped composite magnetic body 105 of the helical antenna 104 is connected to the ground plate 103 via a connector or the like, and an electronic circuit (not shown) of the portable telephone 101 is connected via this connection portion. ) Is connected.
  • an antenna conductor 106 made of a conductor such as a copper wire is spirally wound so as to surround a rod-shaped composite magnetic body 105.
  • FIG. 13 is a perspective view showing an example of a mobile phone with a protective cover of a kind of the communication device of the present embodiment.
  • the mobile phone 111 with a protective cover includes a mobile phone 112 and the mobile phone 112.
  • the portable telephone 112 is provided with a display unit 115 having a display function including a liquid crystal display, an organic EL display, and the like on the front surface of the casing 114.
  • the protective cover 113 is a kind of attached accessory.
  • An external antenna terminal 116 connected to a ground plate (not shown) provided on the back side of the display unit 115 is provided on one side surface of the body 114.
  • the protective cover 113 is a deformable one made of a flexible resin or the like, and is provided so as to cover the peripheral edge and the back surface of the housing 114 excluding the display portion 113, and one side portion of the protective cover 113.
  • the dipole antenna 121 is provided with a connection terminal 124 for connecting the dipole antenna 121 to the external antenna terminal 116.
  • the dipole antenna 121 includes two monopole antennas as a pair, and is preferably provided at a position that does not overlap with the display unit 115 when the protective cover 113 is attached to the portable telephone 112.
  • the protective cover 113 is provided at a position overlapping with the display portion 115, it is desirable that the thickness of the protective cover 113 is increased and the dipole antenna 121 and the display portion 115 are appropriately spaced inside the protective cover 113.
  • a dipole antenna 121 is connected to a ground plate (not shown) provided on the back side of the display unit 115 via a connection terminal 124 and an external antenna terminal 116, An electronic circuit (not shown) of the portable telephone is connected.
  • the connection terminal 124 of the protective cover 113 is inserted into the external antenna terminal 116 of the portable telephone 112, and the protective cover 113 is put on the portable telephone 112 while maintaining this state.
  • the dipole antenna 121 can be connected to the mobile phone 112. Further, the dipole antenna 121 can be detached from the portable telephone 112 by removing the protective cover 113 from the portable telephone 112.
  • FIG. 14 is a plan view showing another example of a portable telephone with a protective cover of the communication apparatus of this embodiment
  • FIG. 15 is a cross-sectional view taken along the line AA in FIG.
  • the mobile phone 131 includes a mobile phone 132 and a protective cover 133, and the mobile phone 132 is provided with a display unit 135 having a display function including a liquid crystal display or an organic EL display on the front surface of the housing 134.
  • An external antenna terminal 136 is provided on the upper surface of the housing 134 for connection to a ground plate (not shown) provided on the back side of the display unit 135.
  • the protective cover 133 is made of a flexible resin or the like and is deformable, and is provided so as to cover the peripheral portion and the back surface of the casing 134.
  • a spiral antenna 141 is provided on the back surface of the protective cover 133. Is provided.
  • the spiral antenna 141 is obtained by coating a spiral antenna conductor 142 with a composite magnetic body 143, and the spiral antenna 141 is provided with a connection terminal 144 for connection to an external antenna terminal 136.
  • the spiral antenna 141 is preferably provided at a position that does not overlap the display unit 135 when the protective cover 133 is attached to the portable telephone 132. Note that in the case where the protective cover 133 is provided so as to overlap with the display portion 135, it is desirable that the thickness of the protective cover 133 is increased and the space between the spiral antenna 141 and the display portion 135 is appropriately set inside the protective cover 133.
  • a spiral antenna 141 is connected to a ground plate (not shown) provided on the back side of the display unit 135 via a connection terminal 144 and an external antenna terminal 136.
  • An electronic circuit (not shown) of the portable telephone is connected through the cable.
  • the connection terminal 144 of the protective cover 133 is inserted into the external antenna terminal 136 of the portable telephone 132, and the protective cover 133 is put on the portable telephone 132 while maintaining this state.
  • the spiral antenna 141 can be connected to the mobile phone 132. Further, the spiral antenna 141 can be detached from the portable telephone 132 by removing the protective cover 133 from the portable telephone 132.
  • the antenna is narrow in the portable telephone.
  • a portable telephone with a high antenna gain can be obtained without being blocked by components other than the antenna, and can be placed in a space.
  • the dipole antenna 61 and the spiral antenna 141 can be installed in accessories such as the protective covers 113 and 133, the auxiliary antenna is provided in the portable telephone without occupying the area in the portable telephone casing. And the performance of the antenna can be improved.
  • the average thickness of the tabular magnetic particles is 0.01 ⁇ m or more and 0.5 ⁇ m or less
  • the average major axis is 0.05 ⁇ m or more and 10 ⁇ m or less
  • the average aspect ratio (major axis / thickness) Therefore, the real part ⁇ r ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz can be larger than 1 and the loss tangent tan ⁇ can be 0.1 or less.
  • the reduction rate can be greatly increased. Therefore, if this composite magnetic body is applied to a VHF band antenna, generation of eddy currents on the surface of the composite magnetic body can be prevented, and a reduction in the real part ⁇ r ′ of the complex permeability can be prevented. Further antenna miniaturization can be achieved.
  • a slurry in which spherical magnetic particles having an average particle diameter of 0.5 ⁇ m or less are dispersed in a solution containing a surfactant and a dispersion medium can be sealed.
  • the total volume of the slurry and the dispersion medium is filled so as to be the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state to deform the spherical magnetic particles.
  • a first step of fusing to form flat magnetic particles and a second step of dispersing and mixing the flat magnetic particles in a solution in which an insulating material is dissolved in a solvent to obtain a molding material.
  • a molding step of molding or applying the molding material on a substrate to obtain a molded body and a third step including a drying / curing step of drying / curing the molded body.
  • the value of the real part ⁇ r ′ of the complex permeability is improved and the real part ⁇ r ′ of the complex permittivity is improved.
  • the value of can be kept almost unchanged. Therefore, electronic parts and electronic devices to which this composite magnetic body is applied can be reduced in size, and power loss due to impedance matching can be suppressed.
  • the loss tangent tan ⁇ of the complex dielectric constant from 70 MHz to 500 MHz is 0.05 or less and the loss tangent tan ⁇ of the complex dielectric constant is 0.1 or less, the gain of the electronic component or electronic device can be improved. it can.
  • the composite magnetic body including the first resin having the cyclic structure in the main chain and the functional group that is polymerized in the monomer unit as the insulating material, the influence of the steric hindrance by the resin on the flat magnetic particles is reduced. can do. Therefore, it is possible to provide a composite magnetic body having a high real part ⁇ r ′ of complex permeability and excellent mechanical strength.
  • a resin having a functional group that is polymerized by monomer units is used, the bonding of the resin becomes strong, and it is possible to have mechanical strength as a molded body sufficient for use in electronic parts and the like.
  • a resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units, tabular magnetic particles, a solvent, and curing as necessary A step of mixing the agent to obtain a molding material, a step of applying a magnetic field to the molding material to orient the tabular magnetic particles, and a step of drying and curing the molded body in which the tabular magnetic particles are oriented. Therefore, a composite magnetic body having a high real part ⁇ r ′ of complex permeability and excellent mechanical strength can be easily produced. Furthermore, the orientation of the flat magnetic particles in the coating film can be improved by applying a magnetic field to the coating film once or a plurality of times.
  • the composite magnetic material includes a first resin having a cyclic structure in the main chain as an insulating material and having a functional group that is polymerized in a monomer unit, and a second resin that imparts flexibility to the first resin.
  • the influence of the steric hindrance by the resin on the tabular magnetic particles can be reduced, the orientation of the tabular magnetic particles in one direction can be improved, and ⁇ r ′ can be increased.
  • the second resin imparts flexibility to the first resin, the flexibility and stretchability of the composite magnetic body itself can be improved. Therefore, it is possible to provide a composite magnetic body having a high ⁇ r ′, excellent mechanical strength, soft enough to be wound on a roll, and excellent in productivity.
  • the resin bond becomes strong, and it has sufficient mechanical strength as a molded body for use in electronic parts and the like. it can.
  • a second resin, flat magnetic particles, and a solvent are mixed to produce a molding material, a molding step of molding the molding material into a predetermined shape, and a magnetic field is applied to the obtained molding. Since it has an orientation step of applying and orienting the flat magnetic particles in the compact in one direction and a drying / curing step of drying / curing the oriented compact, the ⁇ r ′ is high and the mechanical strength is high. It is easy to produce a composite magnetic body that is excellent in flexibility, productivity, and productivity. Furthermore, the orientation of the flat magnetic particles in the coating film can be improved by applying a magnetic field to the coating film once or a plurality of times. Therefore, a composite magnetic body having a high ⁇ r ′ can be produced.
  • the composite magnetic body of this embodiment is loaded and electromagnetic waves in the frequency band from 70 MHz to 500 MHz are transmitted, received, or transmitted / received, further miniaturization of the antenna is achieved. be able to. That is, it is possible to obtain a small antenna having a length shorter than 1 ⁇ 4 of the desired wavelength due to the wavelength shortening effect.
  • the real part ⁇ r ′ of the complex permeability is 7 or more and the real part ⁇ r of the complex dielectric constant in the frequency band from 70 MHz to 500 MHz. It is possible to obtain performances in which 'is 15 or more, ( ⁇ r ′ ⁇ ⁇ r ′) ⁇ 1/2 is 0.1 or less, and ( ⁇ r ′ / ⁇ r ′) 1/2 is 0.5 or more and 1 or less. Therefore, it is possible to provide an antenna having a small radiation length shorter than 1 ⁇ 4 of the desired wavelength due to the wavelength shortening effect, power loss due to impedance matching, and high radiation efficiency. Therefore, even with an electromagnetic wave having a long wavelength such as a VHF band such as multimedia broadcasting, a small antenna that can be received with the casing size of a portable telephone can be provided due to the wavelength shortening effect.
  • the small antenna of the present embodiment since the small antenna of the present embodiment is provided, there is a high degree of freedom in arranging the antenna in a place that is not easily affected by other electronic devices that block radio waves, and good transmission and reception are possible. A possible small communication device can be obtained.
  • FIG. 16A is a schematic diagram (perspective view) showing a monopole antenna according to one embodiment of the present invention
  • FIG. 16B is a cross-sectional view taken along the line AA in FIG. 16A.
  • the monopole antenna 1620 of this embodiment includes a rod-shaped antenna conductor 1622 and a composite magnetic body 1621 of this embodiment that is coated on the surface of the antenna conductor 1622.
  • a composite magnetic body 1621 having a square cross section is formed on the peripheral surface of a cylindrical antenna conductor 1622, and the monopole antenna has a quadrangular prism shape as a whole.
  • the monopole antenna 1620 is typically connected to the center of a conductor ground plate 1624 having a predetermined size via a connector or the like, and an AC signal transmitter so that the connection portion 1626 serves as a feeding point. 1625 is connected.
  • the shape of the antenna conductor 1622 used for the monopole antenna 1620 is not particularly limited, and a known shape such as a linear rod antenna, a whip antenna, a curved helical antenna, or a meander antenna can be used. Among these, a linear antenna is preferable in that electrostatic capacitance is hardly generated between antenna conductors and a high antenna gain can be obtained.
  • linear in the present embodiment means that the resonance part of the antenna is a straight rod or plate. Therefore, the shape of the linear monopole antenna 1620 may be not only a normal columnar shape but also a prismatic shape or an elongated flat plate shape. Similarly, the antenna conductor 1622 serving as the core material may be any one of a cylindrical shape, a prismatic shape, and a flat plate shape.
  • a conductive metal or alloy as the antenna conductor 1622.
  • a conductive metal or alloy include copper (Cu), silver (Ag), nickel (Ni), platinum (Pt), and gold (Au), and the alloy includes two or more selected from these. Metal alloys are preferred.
  • the cross-sectional shape of the antenna conductor 1622 is not particularly limited as long as it is of a size that can be mounted on a mobile terminal, and can be a square or round cross-sectional shape with a diameter D of about 0.5 mm to 2 mm, for example. . Furthermore, since radio waves of 160 MHz to 222 MHz flow on the surface of the conductor, it is also effective to make the antenna conductor 1622 into a tape shape with a large surface area.
  • the tape-shaped antenna conductor 1622 preferably has a width of 0.5 mm to 2 mm and a thickness of 0.05 to 0.2 mm.
  • the length L of the antenna conductor 1622 is not particularly limited as long as it can be easily mounted on a mobile terminal, and is preferably 40 mm or more and 200 mm or less, more preferably 50 mm or more and 100 mm or less. By setting the length L within the above range, the monopole antenna 1620 that can be easily mounted on a portable terminal and can be used in the frequency band of 160 MHz to 222 MHz can be obtained.
  • the real part ⁇ r ′ of the complex permeability in the frequency band from 160 MHz to 222 MHz is preferably 3 or more, and more preferably 6 or more. If the real part ⁇ r ′ of the complex permeability of the composite magnetic body 1621 is 3 or more, the coating thickness is 2.4 mm or more, so that even when the antenna conductor 1622 having a length of 200 mm is used, resonance occurs at a frequency of 200 MHz.
  • a monopole antenna 1620 that can cause If the complex magnetic permeability 16r ′ of the composite magnetic body 1621 is 6 or more, a further wavelength shortening effect can be obtained. Therefore, even if the coating thickness of the antenna conductor 1622 is reduced to 1.2 mm, the antenna having a length of 200 mm A monopole antenna 1620 that can resonate at a frequency of 200 MHz using the conductor 1622 can be obtained.
  • the coating thickness d of the composite magnetic body 1621 is in the range of 10 mm or less.
  • the composite magnetic body 1621 and the antenna conductor 1622 do not need to be in close contact with each other.
  • the antenna conductor 1622 may be disposed inside the cylindrical composite magnetic body 1621 and covered in appearance.
  • the loss tangent tan ⁇ of the complex permeability in the frequency band from 160 MHz to 222 MHz is preferably 0.05 or less.
  • the manufacturing method of the monopole antenna 1620 of the present embodiment includes a first step of producing the above-mentioned flat magnetic particles by processing spherical magnetic particles into a flat plate shape, and the flat magnetic particles as an insulating material. A second step of mixing to form a molding material and a third step of coating the antenna conductor with the molding material containing the flat magnetic particles are provided.
  • ⁇ Second step> the tabular magnetic particles are dispersed and mixed in a solution obtained by dissolving an insulating material in a solvent to obtain a molding material.
  • a composite magnetic body 1621 is obtained in which tabular magnetic particles are dispersed in an insulating material.
  • the insulating material is not particularly limited as long as it is an insulating material.
  • the mechanical strength is high and the hygroscopic property is high. It is preferable that it is low and it is excellent in shape workability.
  • examples of such an insulating material include polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycyclohexane.
  • thermosetting resins or thermoplastic resins such as olefin resins, cyanate resins, polyphenylene ether resins, norbornene resins, ABS resins, and polystyrene resins are preferably used. These resins may be used alone or in combination of two or more.
  • a thermosetting resin the epoxy resin excellent in mechanical strength and shape workability is preferable, and a polyphenylene resin and an ABS resin are preferable as a thermoplastic resin.
  • what is necessary is just to select suitably the kind, quantity, etc. of a hardening
  • the solvent is not particularly limited as long as it can dissolve the resin.
  • examples of the solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol, ethyl acetate, acetic acid, and the like.
  • the content of the flat magnetic particles in the molding material is 20% by volume or more and 50% by volume or less with respect to the volume when the volatile components in the molding material are cured to form the composite magnetic body 1621. Preferably, 30 volume% or more and 40 volume% or less are more preferable. If the content of tabular magnetic particles is less than 20% by volume, the amount of tabular magnetic particles is too small and the magnetic permeability of the composite magnetic body 1621 decreases. It is preferable because there are too many body particles, the fluidity of the molding material is lowered, and as a result, the orientation of the tabular magnetic particles in the molding material is lowered and the magnetic permeability of the composite magnetic body 1621 may be lowered. Absent.
  • the method for dispersing and mixing the flat magnetic particles in the insulating material is not particularly limited, but a stirring device such as a planetary mill, a sand mill, or a ball mill can be used.
  • a kneading apparatus such as a pressure kneader, a twin-screw kneader, or a blast mill can also be used.
  • a thermoplastic resin it may be heated as necessary.
  • ⁇ Third step> the molding material produced in the second step is applied to the outer peripheral surface of the antenna conductor 1622 and cured to obtain the composite magnetic body 1621. Thereby, the monopole antenna 1620 of this embodiment can be obtained.
  • the method of applying the molding material to the antenna conductor 1622 and covering the composite magnetic body 1621 is not particularly limited as long as it can cover the composite magnetic body 1621 having a desired coating thickness d.
  • the coating thickness d of the composite magnetic body 1621 is determined based on the length L of the antenna conductor and the magnetic permeability of the composite magnetic body 1621.
  • Examples of a method for coating the composite magnetic body 1621 include a method in which the antenna conductor 1622 is molded and cured so as to be sandwiched inside the molding material by a heating press method, an injection molding method, or an extrusion molding method. When a thermosetting resin is used, it is preferable to cure the molding material by heat treatment or heat press treatment in a reducing atmosphere or in vacuum.
  • a plurality of the molding materials formed into a sheet shape or a film shape may be laminated so as to have a desired coating thickness, and the antenna conductor 1622 may be sandwiched to cover the molding material.
  • a method for molding the molding material into a sheet or film for example, a hot press method, a doctor blade method, an injection molding method, or the like is preferably used. Among these methods, the hot press molding method in which the flat magnetic particles are easily oriented in the insulating material is preferred.
  • the direction in which the tabular magnetic particles are oriented is preferably such that the magnetic field generated in the antenna 1620 passes through the tabular magnetic particles for a long distance to obtain a wavelength shortening effect. That is, it is preferable to align the antenna conductor 1622 so that the direction around the axis (circumferential direction) and the long axis of the tabular magnetic particles are substantially parallel.
  • the molding may be performed after volatilizing and concentrating the solvent contained in the molding material.
  • the orientation treatment of the tabular magnetic particles is necessary, after molding the molding material so that the antenna conductor 1622 is sandwiched inside, a magnetic field is applied to the molding material before drying the tabular magnetic body.
  • the particles may be oriented so that the direction around the axis of the antenna conductor 1622 (circumferential direction) and the major axis of the tabular magnetic particles are substantially parallel.
  • the antenna conductor is covered with the composite magnetic material in which the flat magnetic particles are dispersed in the insulating material, so that it can be mounted on a portable terminal.
  • the size can be reduced so much that it can be used in a low frequency band of 160 MHz to 222 MHz.
  • the antenna conductor is 200 mm or less by covering the composite magnetic body 1621 of this embodiment with 2.4 mm or more. However, it can resonate with a frequency of 200 MHz.
  • the antenna conductor is 200 mm or less by covering the composite magnetic body 1621 of this embodiment with 1.2 mm or more. However, it can resonate with a frequency of 200 MHz.
  • the linear monopole antenna 1620 of the present embodiment can be further miniaturized by using it together with a matching circuit.
  • the theoretical density ( ⁇ measured density) of the resin was calculated from these measured values by measuring the dimensions and mass of the cured body of resin alone.
  • the theoretical density of the tabular magnetic particles was the X-ray theoretical density determined from the X-ray diffraction pattern of the tabular magnetic particles. These values were substituted into equation (4) to calculate the porosity of the composite magnetic material.
  • Example 1 200 g of permalloy (trade name) magnetic particles containing 4% by mass of zinc and having an average particle diameter of 0.25 ⁇ m are mixed in a mixed solution of 400 g of xylene and 400 g of isopropyl alcohol in which a nitrogen-containing graft polymer is dissolved as a surfactant.
  • a sand mill Ultra Apex Mill UAM-5 manufactured by Kotobuki Industries Co., Ltd.
  • a circulation volume of 5 L and a container volume as shown in FIG. 2 was used as the closed container, and an average particle diameter of 200 ⁇ m was used as a dispersion medium in the closed container.
  • Zirconia beads were charged, and then the above slurry was charged to fill the sealed container.
  • piping was made so that the slurry discharged from the sealed container was charged again and circulated.
  • the obtained molding material was molded into a square film so as to be 30 mm square and 100 ⁇ m thick after curing by the doctor blade method. Next, this film was dried at 90 ° C. in the air for 1 hour to form a dry film, and then press fired in a reduced pressure press.
  • the press conditions were as follows: normal pressure was raised to 130 ° C. in 20 minutes, then 2 MPa pressure was applied and held for 5 minutes, then heated to 160 ° C. and held for 40 minutes to cure the resin, 30 mm square A square film-like composite magnetic body having a thickness of 50 ⁇ m was obtained.
  • FIG. 17 shows the complex permeability (real part ⁇ r ′ and imaginary part ⁇ r ′′) and loss tangent (tan ⁇ ) of this composite magnetic body
  • FIG. 18 shows the scanning electron microscope (SEM) image of this composite magnetic body. Show.
  • a film-like composite magnetic material of Comparative Example 1 was obtained in the same manner as in Example 1.
  • the complex magnetic permeability of this composite magnetic material was measured by a material analyzer, the real part ⁇ r ′ of the complex permeability at 90 MHz was 2.6, the loss tangent tan ⁇ was 0.09, and the real part ⁇ r of the complex permeability at 220 MHz. 'Was 2.8 and the loss tangent tan ⁇ was 0.11.
  • SEM scanning electron microscope
  • FIG. 19 shows the complex magnetic permeability (real part ⁇ r ′ and imaginary part ⁇ r ′′) and loss tangent (tan ⁇ ) of this composite magnetic body
  • FIG. 20 shows the scanning electron microscope (SEM) image of this composite magnetic body. Show.
  • Example 2 Twelve dry films having a length of 250 mm, a width of 30 mm, and a thickness of 60 ⁇ m were produced in the same manner as in Example 1. Next, these dry films were laminated, and a copper wire having a diameter of 0.6 mm and a length of 250 mm was sandwiched between the sixth and seventh sheets as an antenna wire. Press firing is performed under the same conditions, and an antenna conductor 63 made of copper wire is contained in a composite magnetic body 63 made of a dry film laminate having a length of 250 mm, a width of 30 mm, and a thickness of 0.8 mm as shown in FIG. A monopole antenna 61 in which is inserted is manufactured.
  • this monopole antenna 21 was connected to the center of a 500 mm square conductor ground plate 64, and 50 ⁇ was fed by an AC signal oscillator 66 using the connection point 65 as a feeding point.
  • the resonance frequency of the monopole antenna 21 was measured, and for comparison, the resonance frequency of only a copper wire having a diameter of 0.6 mm and a length of 250 mm was measured.
  • the resonance frequency is 273 MHz only for the copper wire
  • the monopole antenna loaded with the composite magnetic material of Example 2 is 180 MHz, and the shortening rate converted to the wavelength is about 66%. It was. From this result, it was found that the length of the 180 MHz antenna in the VHF band was reduced by about 34% by loading the composite magnetic material of the present invention.
  • Example 3 Dicyclopentadiene type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation), epoxy resin as curing agent and 1% by mass of 1-isobutyl-2-methylimidazole based on the total amount of curing agent, resin and curing agent,
  • the average major axis is 2.5 ⁇ m, the average thickness is 0.3 ⁇ m, and the average is made of a Ni—Fe—Zn alloy of 40% by volume of Ni 75% by mass—Fe 20% by mass—Zn 5% by mass with respect to the total amount of tabular magnetic particles
  • a plate-like magnetic particle having an aspect ratio of 8.3, 40% by mass of cyclohexanone with respect to the total mass of the plate-like magnetic particle, resin, and curing agent are put into a planetary stirrer and mixed for 15 minutes to form a slurry.
  • a shaped molding material was obtained.
  • the molding material had a viscosity of 0.4 Pa ⁇ S.
  • the molding material was molded on a polyethylene terephthalate (PET) film with a bar coater, and sheet molding was performed so that the length was 50 mm ⁇ width 50 mm ⁇ thickness 0.1 mm.
  • PET polyethylene terephthalate
  • a 900 gauss magnetic field was applied to the surface of the sheet in the horizontal direction for 6 minutes. Subsequently, it was air-dried by applying hot air of 80 ° C.
  • a press pressure of 10 MPa at 110 ° C. which is the softening point of the resin, a curing reaction was carried out at 160 ° C. for 2 hours to obtain a composite magnetic body of Example 3.
  • Table 1 shows the porosity of the composite magnetic material of Example 3 and the magnetic characteristics obtained from the material analyzer at 200 MHz. Further, the real part ⁇ r ′ and tan ⁇ of the complex permeability from 10 MHz to 1 GHz of the composite magnetic body of Example 3 are shown in FIG. 21, and the real part ⁇ r ′ and tan ⁇ of the complex dielectric constant are shown in FIG.
  • Example 4 Instead of dicyclopentadiene type resin, use a resin in which dicyclopentadiene type resin and liquid epoxy resin Rikaresin BPO-20 (manufactured by Shin Nippon Rika Co., Ltd.) are mixed at a mass ratio of 85:15, and further press pressure is applied.
  • a composite magnetic body of Example 4 was obtained according to Example 3 except that the temperature at that time was 160 ° C.
  • Table 1 shows the porosity of the composite magnetic material of Example 4 and the magnetic characteristics obtained from the material analyzer at 200 MHz.
  • FIG. 23 shows real parts ⁇ r ′ and tan ⁇ of complex permeability from 10 MHz to 1 GHz of the composite magnetic body of Example 4, and
  • FIG. 24 shows real parts ⁇ r ′ and tan ⁇ of complex permittivity, respectively.
  • Example 5 A composite magnetic body of Example 5 was obtained according to Example 3 except that the mixing time in the planetary stirrer was changed from 15 minutes to 5 minutes when obtaining the slurry-like molding material.
  • Table 1 shows the results of the magnetic properties obtained from the porosity of the composite magnetic material and the material analyzer at 200 MHz.
  • Example 6 A composite magnetic body of Example 6 was obtained according to Example 3 except that the temperature at which the compact was pressed was 160 ° C. Table 1 shows the results of the magnetic properties obtained from the porosity of the composite magnetic material and the material analyzer at 200 MHz.
  • Comparative Example 2 Instead of tabular magnetic particles having an average major axis of 2.5 ⁇ m, an average thickness of 0.3 ⁇ m, and an average aspect ratio of 8.3, the average major axis is 1.2 ⁇ m, the average thickness is 0.3 ⁇ m, and the average aspect ratio is 4
  • a composite magnetic material of Comparative Example 2 was obtained according to Example 3 except that the magnetic particles were used.
  • Table 1 shows the results of the magnetic properties obtained from the porosity of the composite magnetic material and the material analyzer at 200 MHz.
  • the composite magnetic bodies of Examples 3 and 4 had a porosity as small as 20% or less as compared with the composite magnetic bodies of Examples 5 and 6. Therefore, it was confirmed that the composite magnetic bodies of Examples 3 and 4 have a larger ⁇ r ′ but have almost the same ⁇ r ′ as compared with the composite magnetic bodies of Examples 5 and 6.
  • Comparative Example 2 since the magnetic particles having an average aspect ratio of less than 5 are used even when the porosity of the composite magnetic material is 20% or less, the ⁇ r ′ of the composite magnetic material is small, and the electronic components and electronic devices are small. It was confirmed that sufficient ⁇ r ′ could not be obtained.
  • Example 7 Dicyclopentadiene type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation), epoxy resin as curing agent and 1% by mass of 1-isobutyl-2-methylimidazole based on the total amount of curing agent, resin and curing agent, The average major axis is 2.5 ⁇ m, the average thickness is 0.3 ⁇ m, and the average aspect ratio is 8 ⁇ m. 3. Flat magnetic particles having an average coercive force of 35 oersted (Oe) and cyclohexanone were put into a planetary stirrer and mixed for 5 minutes to obtain a slurry-like molding material. The molding material had a viscosity of 0.4 Pa ⁇ S.
  • the molding material was molded on a polyethylene terephthalate (PET) film with a bar coater, and sheet molding was performed so that the length was 50 mm ⁇ width 50 mm ⁇ thickness 0.1 mm.
  • PET polyethylene terephthalate
  • the sheet was fed to the orientation device 11 shown in FIG. 3 at a speed of 2 m / min, and a magnetic field of 1200 gauss was applied.
  • 80 degreeC warm air was applied and air-dried, and also hardening reaction was performed at 160 degreeC for 2 hours, and the composite magnetic body of Example 7 was obtained.
  • the angle formed by the long axis direction of the tabular magnetic particles with respect to the direction (orientation direction) horizontal to the sheet surface is measured using the scanning electron microscope (SEM).
  • the inclination with respect to the horizontal direction was measured for 50 tabular magnetic particles.
  • the average value of the 50 tilts was 8.2 degrees, and it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
  • ⁇ r ′ of this composite magnetic body at room temperature and 200 MHz in the atmosphere was 8.5.
  • Example 8 The composite magnetic body of Example 8 is obtained in the same manner as in Example 7 except that the content of the tabular magnetic particles is 40% by volume with respect to the total amount of the resin, the curing agent, and the tabular magnetic particles. It was. When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 8.5 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good. Further, the complex permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, ⁇ r ′ at room temperature and 200 MHz in the atmosphere was 9.3.
  • Example 9 Instead of mixing 1% by mass of 1-isobutyl-2-methylimidazole as a curing agent with respect to the total amount of the epoxy resin, phenol novolac resin TD-2131 (manufactured by DIC Corporation) is used with respect to the total amount of the epoxy resin, etc.
  • a composite magnetic body of Example 9 was obtained in the same manner as Example 7 except that the amount was mixed.
  • the average value of the inclination was 8.6 degrees.
  • the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
  • the complex permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, ⁇ r ′ at room temperature and 200 MHz in the atmosphere was 8.3.
  • Example 10 A composite magnetic body of Example 10 was obtained in the same manner as in Example 7 except that the magnetic field applied to the sheet in Example 7 was changed from 1200 gauss to 1000 gauss.
  • the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7.
  • the average value of the inclination was 12.5 degrees.
  • the complex magnetic permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, ⁇ r ′ at room temperature and 200 MHz in the atmosphere was 7.7.
  • Example 11 A composite magnetic body of Example 11 was obtained in the same manner as in Example 7 except that the magnetic field applied to the sheet in Example 7 was changed from 1200 gauss to 900 gauss.
  • the average value of the inclination was 17.9 degrees.
  • the complex magnetic permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, ⁇ r ′ at room temperature and 200 MHz in the atmosphere was 7.2.
  • Example 12 In Example 8, after forming the sheet, instead of the orientation device 11 shown in FIG. 3, this sheet was fed to the orientation device 21 shown in FIG. 4 at a speed of 2 m / min, and a 900 gauss magnetic field was applied. A composite magnetic body of Example 12 was obtained in the same manner except for the above. When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 16.4 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good. In addition, this composite magnetic material had a ⁇ r ′ of 7.5 at 200 MHz in the air at room temperature.
  • Example 13 In Example 9, after sheet forming, instead of the orientation device 11 shown in FIG. 3, this sheet was fed to the orientation device 21 shown in FIG. 4 at a speed of 1 m / min, and a 900 gauss magnetic field was applied. A composite magnetic body of Example 13 was obtained in the same manner except for the above. When the inclination of the flat magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 flat magnetic particles in the same manner as in Example 7, the average value of the inclination was 17.0 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good. In addition, ⁇ r ′ of this composite magnetic material in the atmosphere at room temperature and 200 MHz was 7.3.
  • Example 14 In Example 12, after sheet forming, instead of the orientation device 21 shown in FIG. 4, this sheet is fed to the orientation device 31 shown in FIG. 5 at a speed of 2 m / min, and 300 gauss per pair of magnets. A magnetic field was applied. Subsequently, 80 degreeC warm air was applied and air-dried, and also hardening reaction was performed at 160 degreeC for 2 hours, and the composite magnetic body of Example 14 was obtained. When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 8.3 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good. Further, this composite magnetic body had a ⁇ r ′ of 9.0 at 200 MHz in the air at room temperature.
  • Example 15 Dicyclopentadiene type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation) was replaced with bisphenol type epoxy resin 1256 (manufactured by Mitsubishi Chemical Corporation) in the same manner as in Example 7, but the composite magnetic body of Example 15 Got.
  • the average value of the inclination was 21.5 degrees.
  • These tabular magnetic particles were not aligned in one direction, and it was confirmed that the orientation was lowered.
  • the complex permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, ⁇ r ′ at room temperature and 200 MHz in the atmosphere was 5.6.
  • Example 16 Dicyclopentadiene-type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation) and bisphenol A bis (propylene glycol glycidyl ether) ether-type liquid epoxy resin Rical Resin BPO-20 (manufactured by Shin Nippon Rika) 10 mass% was mixed with respect to the mass, and the epoxy resin mixture was obtained. Next, 1 wt% 1-isobutyl-2-methylimidazole with respect to the total weight of the epoxy resin mixture and the curing agent as a curing agent, the epoxy resin mixture, the curing agent, and the tabular magnetic particles are added to the epoxy resin mixture.
  • this slurry-like molding material was formed on a polyethylene terephthalate (PET) film by a bar coater, and then molded into a sheet of 100 mm in length, 200 mm in width, and 0.1 mm in thickness.
  • a film with a sheet was obtained.
  • a 900 gauss magnetic field was applied to the formed sheet for 6 minutes in the horizontal direction.
  • 80 ° C. warm air was applied and air-dried, the molded body sheet was peeled off from the PET film, and after applying a press pressure of 10 MPa at 110 ° C., a curing reaction was performed at 160 ° C. for 2 hours, A 100 mm ⁇ 200 mm sheet-shaped composite magnetic body of Example 16 was obtained.
  • the sheet-shaped composite magnetic body was not damaged.
  • the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance is 8.9, and the real part ⁇ r ′ of the complex dielectric constant is 30.4.
  • the porosity was 19%.
  • Example 17 Instead of applying a 900 gauss magnetic field in the horizontal direction to the compact sheet for 6 minutes, a 1200 gauss magnetic field is applied while feeding the compact sheet at a speed of 2 m / min using the orientation device 11 shown in FIG. Furthermore, in the drying / curing process, after applying a pressing pressure of 10 MPa at 110 ° C., instead of performing a curing reaction at 160 ° C. for 2 hours, curing is performed at 160 ° C. for 2 hours without applying a pressing pressure. A composite magnetic body of Example 17 was obtained in the same manner as Example 16 except that the reaction was performed.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.0, and the real part ⁇ r ′ of the complex dielectric constant was 27.1.
  • the porosity was 19%.
  • Example 18 Except for mixing 10% by mass of the liquid epoxy resin Gö Resin BPO-20 with the dicyclopentadiene type epoxy resin EPICLON HP-7200L, the same procedure as in Example 15 was carried out except that 20% by mass of the liquid epoxy resin Gö Resin BPO-20 was mixed. Similarly, a composite magnetic material of Example 18 was obtained.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the real part ⁇ r ′ of the complex permeability at 200 MHz of the composite magnetic substance was 9.3, and the real part ⁇ r ′ of the complex dielectric constant was 31.0.
  • the porosity was 11%.
  • the real part ⁇ r ′ of the complex permeability and the loss tangent tan ⁇ of the complex permeability in the frequency band of 70 to 1000 MHz of this composite magnetic material were measured with a material analyzer at room temperature (25 ° C.) in the atmosphere. These measurement results are shown in FIG. According to FIG. 25, the real part ⁇ r ′ of the complex permeability in the frequency band of 70 to 1000 MHz is 7 or more.
  • Example 19 The same procedure as in Example 16 was performed except that bisphenol A diglycidyl ether type epoxy resin Adeka Resin EP-4010S (manufactured by Adeka) was used instead of the bisphenol A bis (propylene glycol glycidyl ether) ether type liquid epoxy resin. The composite magnetic material of Example 19 was obtained.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the magnetic properties and the porosity of the composite magnetic material were measured, the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.3, and the real part ⁇ r ′ of the complex dielectric constant was 29.7.
  • the porosity was 19%.
  • Example 20 Instead of mixing 10% by mass of bisphenol A bis (propylene glycol glycidyl ether) ether type liquid epoxy resin Ricaresin BPO-20, 20% by mass of bisphenol A diglycidyl ether type epoxy resin Adeka Resin EP-4010S (manufactured by Adeka) was mixed. Except for this, the composite magnetic body of Example 20 was obtained in the same manner as Example 16.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.5, and the real part ⁇ r ′ of the complex dielectric constant was 28.9.
  • the porosity was 12%.
  • Example 21 Instead of applying a 900 gauss magnetic field in the horizontal direction to the green body sheet for 6 minutes, the green body sheet is fed to the orientation device 21 shown in FIG. 4 at a speed of 2 m / min, and a 900 gauss magnetic field is applied to the green body sheet.
  • a composite magnetic body of Example 21 was obtained in the same manner as Example 16 except that the voltage was applied.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the magnetic properties and porosity of the composite magnetic material were measured in the same manner as in Example 16.
  • the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 7.3, and the real part ⁇ r of the complex dielectric constant was 'Was 22.8 and the porosity was 19%.
  • Example 22 Instead of applying a 900 gauss magnetic field in the horizontal direction to the compact sheet for 6 minutes, the compact sheet is fed to the orientation device 31 shown in FIG. 5 at a speed of 2 m / min, and a 300 gauss magnetic field for each pair of magnets.
  • a composite magnetic body of Example 22 was obtained in the same manner as Example 16 except that was applied.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the magnetic properties and the porosity of this composite magnetic material were measured in the same manner as in Example 16.
  • the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.0, and the real part ⁇ r of the complex dielectric constant was 'Was 30.4 and the porosity was 19%.
  • Example 23 Example 16 Except that instead of mixing 10% by mass of the liquid epoxy resin Licarresin BPO-20 with the dicyclopentadiene type epoxy resin EPICLON HP-7200L, 40% by mass of the liquid epoxy resin Licur Resin BPO-20 was mixed. In the same manner as described above, the composite magnetic body of Example 23 was obtained.
  • the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
  • the magnetic properties and the porosity of the composite magnetic material were measured, the real part ⁇ r ′ of the complex permeability at 200 MHz of the composite magnetic substance was 7.5, and the real part ⁇ r ′ of the complex dielectric constant was 23.9. The porosity was 9%.
  • Example 24 A composite magnetic material of Example 24 was obtained in the same manner as in Example 21 except that the liquid epoxy resin Gör Resin BPO-20 was not mixed with dicyclopentadiene type epoxy resin EPICLON HP-7200L.
  • the sheet-shaped composite magnetic body when trying to peel the obtained sheet-shaped composite magnetic body from the PET film, the sheet-shaped composite magnetic body could not be peeled cleanly and was damaged, resulting in a sheet-shaped composite magnetic body of 100 mm ⁇ 200 mm ⁇ 0.1 mm. could not get. Therefore, the broken pieces of the composite magnetic material were subjected to a curing reaction at 160 ° C. for 2 hours, and the magnetic properties and the porosity of the obtained piece-like composite magnetic material were measured in the same manner as in Example 18.
  • the real part ⁇ r ′ of the complex magnetic permeability at 200 MHz of the composite magnetic material was 7.0
  • the real part ⁇ r ′ of the complex dielectric constant was 32.4
  • the porosity was 26%.
  • Example 25 Flat magnetic particles (Ni 76% by mass—Fe 20% by mass—Zn 4% by mass) having an average thickness of 0.19 ⁇ m, an average major axis of 1.63 ⁇ m, and an average aspect ratio of 8.6 were dispersed in an epoxy resin to obtain a molding material. . The obtained molding material was put into a mold, molded, and thermally cured to obtain a composite magnetic body.
  • the composite magnetic body was coated on an antenna conductor with a thickness of 1.7 mm to produce a square pole monopole antenna shown in FIG. 16A.
  • This monopole antenna resonated at 180 MHz when the antenna length was 200 mm, resonated at a frequency of 180 MHz or more when the antenna length was shorter than 200 mm, and resonated at 200 MHz when the antenna length was 180 mm.
  • the average gain of this antenna in the XZ plane in FIG. 16A was ⁇ 5.5 dBd.
  • FIG. 26 shows the measurement results of the real part ⁇ r ′ and the loss tangent tan ⁇ of the complex magnetic permeability of the composite magnetic body.
  • the real part ⁇ r ′ of the complex permeability at 160 to 222 MHz of the obtained composite magnetic body was 6 or more, and the loss tangent tan ⁇ of the complex permeability was 0.05 or less.
  • Example 26 A monopole antenna of Example 26 was produced in the same manner as in Example 25 except that the coating thickness of the composite magnetic material was 2.5 mm. This monopole antenna resonated at 120 MHz when the antenna length was 200 mm, resonated at a frequency of 120 MHz or more when the antenna length was shorter than 200 mm, and resonated at 200 MHz when 150 mm. The average gain of this antenna in the XZ plane was ⁇ 6.5 dBd.
  • Plate-like magnetic particles (Ni 76 mass% —Fe 20 mass% —Zn 4 mass%) having an average thickness of 0.35 ⁇ m, an average major axis of 2.49 ⁇ m, and an average aspect ratio of 7.3 were dispersed in an epoxy resin to obtain a molding material. .
  • This molding material was put into a mold, molded, and thermally cured to obtain a composite magnetic body.
  • the composite magnetic body was covered with a thickness of 2.5 mm around the rod-shaped antenna conductor to produce a quadrangular prism-shaped monopole antenna shown in FIG. 16A.
  • This monopole antenna resonated at 197 MHz when the antenna length was 200 mm, resonated at a frequency of 197 MHz or more when the antenna length was shorter than 200 mm, and resonated at 200 MHz when the antenna length was 195 mm.
  • the average gain of this antenna in the XZ plane was ⁇ 5.0 dBd.
  • the real part ⁇ r ′ of the complex permeability at 160 MHz to 222 MHz of this composite magnetic body was 3 or more, and the loss tangent tan ⁇ of the complex permeability was 0.03.
  • Example 28 A monopole antenna of Example 28 was produced in the same manner as in Example 25 except that the coating thickness of the composite magnetic material was changed to 0.8 mm. This monopole antenna resonates at 230 MHz when the antenna length is 200 mm, and needs to be 200 mm or more to resonate at a frequency of 222 MHz or less, and resonates at 200 MHz when the antenna length is 220 mm.
  • Example 29 A monopole antenna of Example 29 was produced in the same manner as in Example 27, except that the coating thickness of the composite magnetic material was 1.7 mm. This monopole antenna resonated at 236 MHz when the antenna length was 200 mm, and resonated at 200 MHz when the antenna length was 230 mm in order to resonate at a frequency of 222 MHz or less.
  • the coating thickness is required to be 2.4 mm or 1.2 mm or more in order to resonate at a frequency of 200 MHz or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Aerials (AREA)

Abstract

The present invention provides a composite magnet made by dispersing plate-shaped magnetic particles into an insulating material, a production method therefor, an antenna provided with the composite magnet, and a communication device provided with the antenna. The composite magnet is characterized in that the average thickness of the plate-shaped magnetic particles is 0.01 μm to 0.5 μm, the average diameter is 0.05 μm to 10 μm, and the average aspect ratio (major axis/thickness) is 5 or more.

Description

複合磁性体とその製造方法、アンテナおよび通信装置COMPOSITE MAGNETIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
 本発明は、複合磁性体とその製造方法、アンテナ及び通信装置に関し、特に詳しくは、70MHzから500MHzまでの周波数帯域であるVHF帯の電磁波を利用する高周波回路基板、高周波電子部品、磁性シート、電磁波遮蔽シート、樹脂結合磁石、磁気記録媒体、アンテナ等に好適に用いられ、且つ高い複素透磁率の実部μr’を有する複合磁性体とその製造方法、及び、この複合磁性体を備えたアンテナ、並びに、このアンテナを備えた通信装置に関する。さらに、本発明は、160MHzから222MHzにおいて、携帯端末で使用することができる上記複合磁性体が装荷されたモノポールアンテナに関する。
 本願は、2010年11月30日に日本に出願された特願2010-266903、2011年3月23日に日本に出願された特願2011-064310、2011年4月25日に日本に出願された特願2011-097157、2011年5月31日に日本に出願された特願2011-122440、2011年7月29日に日本に出願された特願2011-167077、2011年7月29日に日本に出願された特願2011-167078、2011年11月21日に日本に出願された特願2011-254169、2011年11月25日に日本に出願された特願2011-257615、2011年11月25日に日本に出願された特願2011-257616に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a composite magnetic body, a manufacturing method thereof, an antenna, and a communication device, and more particularly, a high-frequency circuit board, a high-frequency electronic component, a magnetic sheet, and an electromagnetic wave using an electromagnetic wave in a VHF band that is a frequency band from 70 MHz to 500 MHz. A composite magnetic body suitably used for a shielding sheet, a resin-bonded magnet, a magnetic recording medium, an antenna, and the like and having a real part μr ′ having a high complex permeability, a manufacturing method thereof, and an antenna including the composite magnetic body, In addition, the present invention relates to a communication device provided with this antenna. Furthermore, the present invention relates to a monopole antenna loaded with the composite magnetic body that can be used in a portable terminal at 160 MHz to 222 MHz.
The present application is filed in Japanese Patent Application No. 2010-266903 filed in Japan on November 30, 2010, Japanese Patent Application No. 2011-064310 filed in Japan on March 23, 2011, and filed in Japan on April 25, 2011. Japanese Patent Application No. 2011-097157, Japanese Patent Application No. 2011-122440 filed in Japan on May 31, 2011, Japanese Patent Application No. 2011-167077 filed in Japan on July 29, 2011, July 29, 2011 Japanese Patent Application No. 2011-167078 filed in Japan, Japanese Patent Application No. 2011-254169 filed in Japan on November 21, 2011, Japanese Patent Application No. 2011-257615 filed in Japan on November 25, 2011, November 2011 Claim priority based on Japanese Patent Application No. 2011-257616 filed in Japan on May 25, the contents of which are incorporated herein by reference.
 磁性材料は、電磁波に対する特性や生産性、使い勝手の良さ等から、有機高分子材料等のような絶縁材料中に混合・分散させた複合磁性体として使用されることが知られている。
 この磁性材料は、電子機器に搭載される電子部品、磁性シート、電磁干渉抑制シート、モーター、トランス等の電気製品、ビデオテープやフロッピー(登録商標)ディスク等の磁気記録媒体に用いられている。
A magnetic material is known to be used as a composite magnetic material mixed and dispersed in an insulating material such as an organic polymer material because of its properties against electromagnetic waves, productivity, and ease of use.
This magnetic material is used for electronic components mounted on electronic devices, magnetic sheets, electromagnetic interference suppression sheets, electric products such as motors and transformers, and magnetic recording media such as video tapes and floppy (registered trademark) disks.
 近年、情報通信機器の高速化、高密度化に伴い、電子機器に搭載される電子部品や回路基板やアンテナ、特に、携帯情報機器用のアンテナ等の小型化及び低消費電力化が強く求められている。
 一般に、物質内を伝播する電磁波の波長λgは、真空中を伝播する電磁波の波長λoと物質の複素誘電率の実部εr’(以下εr’と略記する場合がある)及び複素透磁率の実部μr’(以下、μr’と略記する場合がある)を用いて、
     λg=λo/(εr’・μr’)1/2……(1)
と表すことができる。この式(1)によれば、εr’及びμr’が大きいほど波長λgの短縮率が大きくなる。したがって、電子部品や回路基板やアンテナ等を構成する磁性材料のεr’及びμr’を大きくすることで、波長λgの短縮率が大きくなり、よって、電子部品や回路基板やアンテナ等の小型化が可能になる。
In recent years, with the increase in speed and density of information communication devices, there is a strong demand for downsizing and low power consumption of electronic components, circuit boards and antennas mounted on electronic devices, especially antennas for portable information devices. ing.
In general, the wavelength λg of the electromagnetic wave propagating in the substance is determined by the wavelength λo of the electromagnetic wave propagating in the vacuum, the real part εr ′ of the complex permittivity of the substance (hereinafter sometimes abbreviated as εr ′), and the actual complex permeability. Using the part μr ′ (hereinafter sometimes abbreviated as μr ′),
λg = λo / (εr ′ · μr ′) 1/2 (1)
It can be expressed as. According to this equation (1), as εr ′ and μr ′ increase, the shortening rate of the wavelength λg increases. Therefore, by increasing εr ′ and μr ′ of the magnetic material constituting the electronic component, the circuit board, the antenna, etc., the shortening rate of the wavelength λg is increased, so that the electronic component, the circuit board, the antenna, etc. can be downsized. It becomes possible.
 波長の短縮率を大きくした材料としては、電子部品や回路基板を構成する絶縁材料中に磁性体粒子を混合・分散させた複合磁性体が提案されている(特許文献1)。この複合磁性体では、μr’を大きくすることで、波長の短縮率を大きくしている。 As a material with an increased wavelength shortening rate, a composite magnetic material in which magnetic particles are mixed and dispersed in an insulating material constituting an electronic component or a circuit board has been proposed (Patent Document 1). In this composite magnetic body, the wavelength shortening rate is increased by increasing μr ′.
 ところで、複合磁性体に球状の磁性体粒子を用いた場合、磁性体粒子個々における反磁界係数が大きくなることから、複合磁性体のμr’を大きくすることが難しいという問題点が生じることが一般に知られている。
 そこで、このような用途に用いられる磁性体粒子としては、厚み10μm以下の平板状磁性体粒子が望まれており、扁平状、鱗片状、フレーク状等のアスペクト比(長径/厚み)が大きい様々な形状の磁性体粒子が提案されている(例えば、特許文献2、3等参照)。
By the way, when spherical magnetic particles are used for the composite magnetic body, the demagnetizing factor coefficient of each magnetic particle increases, and therefore it is generally difficult to increase μr ′ of the composite magnetic body. Are known.
Therefore, as the magnetic particles used for such applications, flat magnetic particles having a thickness of 10 μm or less are desired, and various aspect ratios (major axis / thickness) such as a flat shape, a scale shape, and a flake shape are large. Magnetic particles having various shapes have been proposed (see, for example, Patent Documents 2 and 3).
 このような平板状磁性体粒子では、最も反磁界係数の低い平面方向、即ち長軸方向で高いμr’が得られる。そこで、平板状磁性体粒子を絶縁材料中に混合・分散させた複合磁性体が、反磁界係数の効果を有効に利用して高いμr’を得るためには、平板状磁性体粒子が絶縁材料中にて一方向に配向している必要がある。
 平板状磁性体粒子を配向させる方法としては、基体上に形成された平板状磁性微粒子を含む塗膜を磁石の磁極間を通過させる方法(特許文献4)や、永久磁石を内蔵する成形金型を用いる方法(特許文献5)が提案されている。
 これらの方法では、絶縁材料として樹脂が用いられており、この樹脂が熱硬化前あるいは加熱溶融で流動性がある状態で磁場を印加することにより、平板状磁性体粒子を配向させている。
With such tabular magnetic particles, a high μr ′ is obtained in the plane direction with the lowest demagnetizing field coefficient, that is, the major axis direction. Therefore, in order to obtain a high μr ′ by effectively utilizing the effect of the demagnetizing factor, a composite magnetic material in which tabular magnetic particles are mixed and dispersed in an insulating material is used as an insulating material. It must be oriented in one direction.
As a method of orienting the flat magnetic particles, a method of passing a coating film containing flat magnetic fine particles formed on a substrate between the magnetic poles of a magnet (Patent Document 4), or a molding die incorporating a permanent magnet There has been proposed a method using the above (Patent Document 5).
In these methods, a resin is used as the insulating material, and the magnetic particles are oriented by applying a magnetic field in a state where the resin is fluid before being thermally cured or heated and melted.
 ところで、従来の特許文献4や特許文献5に記載された平板状磁性体粒子を配向させる方法では、樹脂が熱硬化前あるいは加熱溶融で流動性がある状態で磁場を印加して平板状磁性体粒子を配向させても、得られる複合磁性体のμr’が小さいという問題点があった。 By the way, in the conventional method for orienting flat magnetic particles described in Patent Document 4 and Patent Document 5, a magnetic field is applied by applying a magnetic field in a state where the resin is fluid before heat curing or by heat melting. Even if the particles are oriented, there is a problem that the obtained composite magnetic body has a small μr ′.
 また、個々の軟磁性の平板状磁性体粒子自体のμr’は、保磁力の大きな硬磁性の平板状磁性体粒子より高いにも関わらず、従来の磁場印加方法では保磁力が小さい軟磁性の平板状磁性体粒子は配向性が悪く、複合磁性体全体として得られるμr’が小さいという問題点があった。特に、100μm以上の厚みを有する複合磁性体を製造する場合には、良好なμr’が得られないという問題点があった。 In addition, although the μr ′ of the individual soft magnetic tabular magnetic particles themselves is higher than that of the hard magnetic tabular magnetic particles having a large coercive force, the conventional magnetic field application method has a small soft magnetic force. The tabular magnetic particles have a problem that the orientation is poor and the μr ′ obtained as a whole of the composite magnetic material is small. In particular, when a composite magnetic body having a thickness of 100 μm or more is manufactured, there is a problem in that good μr ′ cannot be obtained.
 また、近年、90~220MHzのVHF帯においては、電波資源の有効利用の観点から、アナログテレビへの利用から他の用途への変更が計画されている。これらの用途としては、中でも携帯用情報端末向けが有望なものであるが、この携帯用情報端末では、VHF帯の電波の波長が長いことによるアンテナの小型化が難しく、現状では、大型のロッドアンテナやイヤホンコードをアンテナとして代用せざるを得ない。 In recent years, in the VHF band of 90 to 220 MHz, from the viewpoint of effective use of radio resources, a change from the use for analog TV to another use is planned. Among these applications, portable information terminals are particularly promising. However, in this portable information terminal, it is difficult to reduce the size of the antenna due to the long wavelength of the radio wave in the VHF band. An antenna or an earphone cord must be used as an antenna.
 一方、携帯用情報端末の用途が、通話から通話以外の通信に広がるなかで、携帯用情報端末を鞄やポケットの中に入れた状態でも受信することができる必要性から、アンテナの携帯用情報端末への内蔵化は必須事項である。そこで、波長短縮効果が大きく、かつVHF帯のアンテナを小型化することができる磁性材料が望まれている。
 しかしながら、従来の磁性材料をVHF帯のアンテナに適用すると、磁性材料の表面に渦電流が生じ、この渦電流が印加した磁界の変化を打ち消す向きに磁界を発生させるために、磁性材料の透磁率が見かけ上低下するという問題点があった。
 また、渦電流の増大がジュール熱によるエネルギー損失を生じさせることから、磁性材料をアンテナや電子部品等の材料として使用することは困難であった。
On the other hand, since the use of portable information terminals has expanded from calls to communications other than calls, the portable information terminals can be received even when they are placed in bags or pockets. Built into the terminal is a must. Therefore, there is a demand for a magnetic material that has a large wavelength shortening effect and can reduce the size of the VHF band antenna.
However, when a conventional magnetic material is applied to a VHF band antenna, an eddy current is generated on the surface of the magnetic material, and the magnetic material has a magnetic permeability in order to generate a magnetic field in a direction that cancels the change in the applied magnetic field. There was a problem that apparently decreased.
Further, since an increase in eddy current causes energy loss due to Joule heat, it is difficult to use a magnetic material as a material for an antenna, an electronic component or the like.
 特許文献6は、球状または扁平状の磁性粉末を絶縁性材料中に分散させた複合物であり、1GHzにおける複素透磁率の実部μr’が1よりも大きく、かつ複素透磁率の損失正接tanδμ(以下tanδμと略記する場合がある)が0.1以下の複合磁性体を提案した。
 この複合磁性体によれば、渦電流による磁気特性の劣化を避けることができ、500MHz~1GHzの周波数帯でも損失の低減を図ることができる。
 一方、VHF帯にて使用することができる磁性材料として、高周波用フェライトが提案されている。
Patent Document 6 is a composite in which spherical or flat magnetic powder is dispersed in an insulating material. The real part μr ′ of the complex permeability at 1 GHz is larger than 1, and the loss tangent tan δμ of the complex permeability. A composite magnetic body having a value of 0.1 or less (hereinafter sometimes abbreviated as tan δμ) has been proposed.
According to this composite magnetic body, it is possible to avoid deterioration of magnetic characteristics due to eddy current, and it is possible to reduce loss even in a frequency band of 500 MHz to 1 GHz.
On the other hand, high frequency ferrites have been proposed as magnetic materials that can be used in the VHF band.
 しかしながら、特許文献6の提案した複合磁性体では、渦電流による磁気特性の劣化や500MHz~1GHzの周波数帯での損失の低減を図ることはできるものの、500MHzより低い周波数では損失正接が増加していく傾向にあり、特に100MHzにおけるtanδμは0.1以上となる。したがって、この複合磁性体をVHF帯のアンテナに適用したとしても、さらなるアンテナの小型化は難しいという問題点があった。 However, although the composite magnetic material proposed in Patent Document 6 can reduce the magnetic characteristics due to eddy currents and reduce the loss in the frequency band of 500 MHz to 1 GHz, the loss tangent increases at a frequency lower than 500 MHz. In particular, tan δμ at 100 MHz is 0.1 or more. Therefore, even if this composite magnetic material is applied to a VHF band antenna, there is a problem that it is difficult to further downsize the antenna.
 また、高周波用フェライトは、VHF帯で使用することができるものの、このVHF帯は共鳴損失の影響が顕著に現れる周波数帯であるから、μr’の周波数依存性が大きく、回路設計が難しいという問題点があった。
 さらに、フェライトがセラミックスであることから、形状加工性や機械的信頼性に乏しいという問題点があり、したがって、携帯用情報端末に適用した場合に様々な制限が生じ、好ましくない。
In addition, although the high frequency ferrite can be used in the VHF band, the VHF band is a frequency band in which the influence of resonance loss is noticeable, so that the frequency dependence of μr ′ is large and the circuit design is difficult. There was a point.
Furthermore, since ferrite is a ceramic, there is a problem that shape workability and mechanical reliability are poor, and therefore, when applied to a portable information terminal, various limitations occur, which is not preferable.
 ところで、物質の特性インピーダンスZは真空の特性インピーダンスZを用いて、以下の式(2)で表すことができる。
    Z=Z・(μr’/εr’)1/2  ……(2)
 式(2)によれば、εr’とμr’の値の差が小さいほど、真空中の特性インピーダンスZと、複合磁性体の特性インピーダンスZの値の差も小さくなる。一方、電波が飛ぶ空間の特性インピーダンスは、真空の特性インピーダンスZとほとんど同じ値であるから、εr’とμr’の値の差が小さいほど、インピーダンスマッチングのための電力損失が抑制される。
 また、式(1)により、電磁波の波長を短縮する際には、εr’及びμr’の値を大きくとればよいが、εr’の値とμr’の値との差が大きいと送受信できる周波数帯域が狭くなるということも知られている。そこで、広周波数帯域で多くの情報を送受信するためにもεr’の値とμr’の値との差が小さいことが必要である。
Incidentally, the characteristic impedance Z g of material with a characteristic impedance Z 0 of the vacuum, can be represented by the following formula (2).
Z g = Z 0 · (μr ′ / εr ′) 1/2 (2)
According to Equation (2), the smaller the difference between the values of εr ′ and μr ′, the smaller the difference between the characteristic impedance Z 0 in vacuum and the characteristic impedance Z g of the composite magnetic material. On the other hand, the characteristic impedance of the space where radio waves fly is almost the same value as the vacuum characteristic impedance Z 0 , so that the smaller the difference between the values of εr ′ and μr ′, the lower the power loss for impedance matching.
Further, when the wavelength of the electromagnetic wave is shortened according to the equation (1), the values of εr ′ and μr ′ may be increased, but the frequency at which transmission and reception can be performed when the difference between the value of εr ′ and the value of μr ′ is large. It is also known that the bandwidth is narrowed. Therefore, in order to transmit and receive a large amount of information in a wide frequency band, it is necessary that the difference between the value of εr ′ and the value of μr ′ is small.
 そこで、電子部品及び電子機器の小型化と電力損失を抑制しつつ、広い周波数帯域で多くの情報を送受信するための複合磁性体として、球状の磁性体粒子を絶縁材料中に分散することにより、1GHzの周波数におけるμr’が5以上、(μr’・εr’)-1/2が0.2以下、かつ(μr’/εr’)1/2が0.5以上かつ1以下となる複合磁性体が提案されている(特許文献7)。 Therefore, by dispersing spherical magnetic particles in an insulating material as a composite magnetic material for transmitting and receiving a large amount of information in a wide frequency band while suppressing downsizing and power loss of electronic components and electronic devices, Composite magnetism in which μr ′ at a frequency of 1 GHz is 5 or more, (μr ′ · εr ′) − 1/2 is 0.2 or less, and (μr ′ / εr ′) 1/2 is 0.5 or more and 1 or less. A body has been proposed (Patent Document 7).
 しかしながら、特許文献7に記載された複合磁性体では、球状の磁性体粒子を用いていることから、磁性体粒子個々における反磁界係数が大きくなり、したがって、得られる複合磁性体のμr’が十分なものではなく、インピーダンスマッチングによる電力損失を抑制することができても、電子部品や電子機器の小型化が十分ではないという問題点があった。 However, since the composite magnetic body described in Patent Document 7 uses spherical magnetic body particles, the demagnetizing field coefficient of each magnetic body particle becomes large, and therefore the obtained composite magnetic body has a sufficient μr ′. However, even if power loss due to impedance matching can be suppressed, there is a problem in that electronic components and electronic devices are not sufficiently miniaturized.
 一方、特許文献8に記載された複合磁性体では、平板状磁性体粒子として導電性の高い金属材料を用いているので、複合磁性体のμr’の値も大きくなるが、この磁性体粒子と絶縁材料との界面が静電容量を有することにより、εr’の値がそれ以上に大きくなり、インピーダンスマッチングによる電力損失が増加するという問題点があった。
 この電力損失は、例えば、アンテナが電磁波を送受信する際の電磁波の出力損失となり、アンテナの最も重要な性能である放射効率が低下することとなる。また、μr’とεr’との差が拡大することにより、アンテナが送受信できる周波数帯域が狭くなることも問題であった。
On the other hand, in the composite magnetic body described in Patent Document 8, since a metal material having high conductivity is used as the tabular magnetic body particles, the value of μr ′ of the composite magnetic body also increases. Since the interface with the insulating material has a capacitance, the value of εr ′ becomes larger than that and there is a problem that power loss due to impedance matching increases.
This power loss is, for example, an output loss of electromagnetic waves when the antenna transmits and receives electromagnetic waves, and the radiation efficiency, which is the most important performance of the antenna, is reduced. In addition, since the difference between μr ′ and εr ′ is enlarged, the frequency band in which the antenna can transmit and receive is also narrowed.
 さらに、ほとんどの磁性体粒子においては、μr’はεr’より小さい(μr’<εr’)ので、磁性体粒子を改良することにより複合磁性体自体のμr’を大きくしたとしても、εr’がそれ以上に大きくなってしまい、電子部品や電子機器の小型化ができず、また、電力損失を抑制することができず、さらには、アンテナの送受信可能な周波数の広帯域化ができないという問題点があった。 Furthermore, in most magnetic particles, μr ′ is smaller than εr ′ (μr ′ <εr ′). Therefore, even if μr ′ of the composite magnetic material itself is increased by improving the magnetic particles, εr ′ is There is a problem that it becomes larger than that, electronic components and electronic devices cannot be reduced in size, power loss cannot be suppressed, and further, it is not possible to widen the frequency range of antenna transmission and reception. there were.
 このような問題点は、小型化の要求が大きい電子機器、例えば、携帯用電話機、携帯情報端末、多機能型携帯情報機器等の携帯用情報機器に使用されるアンテナ等では重大な問題点となる。
 特に、最近、普及が著しいスマートフォン等の多機能携帯用情報端末では、筐体と略同じ大きさであるディスプレイ部から強い電界を発生させているために、このディスプレイ部では電磁波を遮断することとなる。したがって、アンテナは、ディスプレイと重ならない位置に設けるか、あるいはディスプレイと間隔を置いた位置に設ける必要があるが、筐体内ではアンテナを設置できる位置が限られており、しかも極めて狭い領域である。
Such a problem is a serious problem in antennas used in portable information devices such as portable telephones, portable information terminals, and multifunctional portable information devices, which have a large demand for downsizing. Become.
In particular, multi-functional portable information terminals such as smartphones that have recently become widely used generate a strong electric field from a display unit that is approximately the same size as the housing, and therefore this display unit blocks electromagnetic waves. Become. Therefore, the antenna needs to be provided at a position that does not overlap with the display or at a position spaced from the display. However, the position where the antenna can be installed is limited within the housing, and is an extremely narrow area.
 一方、携帯用情報機器で使用されるワンセグ放送やマルチメディア放送は、用いられている電磁波の波長が長いので、広い波長帯域の電磁波の受信が必要となる。従来では、筐体内の小型アンテナでは十分な受信性能が得られず、そこで、これらの放送の受信を目的として、アンテナ部分を伸縮自在とすることにより筐体サイズの数倍の長さに延長することが可能なホイップアンテナを筐体の外に設置した携帯用情報機器が提案されている。しかしながら、このホイップアンテナを用いた場合であっても、携帯用情報機器がかばんやポケット等に入れられている場合には、ホイップアンテナを延長することができず、やはり、これらの放送の受信が困難であるという問題点があった。 On the other hand, one-segment broadcasting and multimedia broadcasting used in portable information devices require reception of electromagnetic waves in a wide wavelength band because the wavelengths of electromagnetic waves used are long. Conventionally, a small antenna in a housing cannot provide sufficient reception performance. Therefore, for the purpose of receiving these broadcasts, the antenna portion can be extended and extended to be several times longer than the housing size. There has been proposed a portable information device in which a whip antenna capable of being installed is installed outside a casing. However, even when this whip antenna is used, if the portable information device is put in a bag or pocket, the whip antenna cannot be extended. There was a problem that it was difficult.
 また、近年、携帯端末で使用されている電磁波の周波数帯域で最も低いものは、移動体向けの地上デジタル放送(ワンセグ)の470MHz~770MHzである。また、日本国内において、207MHz~222MHzを携帯端末向けマルチメディア放送として利用することが計画されている。また韓国では180MHz~210MHzの周波数帯域がデジタル放送に利用されようとしている。 In recent years, the lowest frequency band of electromagnetic waves used in mobile terminals is 470 MHz to 770 MHz for terrestrial digital broadcasting (one seg) for mobiles. In Japan, it is planned to use 207 MHz to 222 MHz as a multimedia broadcast for portable terminals. In Korea, the frequency band of 180 MHz to 210 MHz is about to be used for digital broadcasting.
 このような携帯端末に使用するアンテナは、携帯端末に搭載可能な小型のアンテナであることが必要である。しかし、アンテナが共振するためには、波長の1/4の長さのアンテナ導体が必要であり、160MHz~222MHz帯のように周波数が低く、波長が長い帯域については、携帯端末に搭載するにはアンテナが大きくなりすぎるという問題があった。 The antenna used for such a mobile terminal needs to be a small antenna that can be mounted on the mobile terminal. However, in order for the antenna to resonate, an antenna conductor having a length of ¼ of the wavelength is required, and a band having a low frequency such as the 160 MHz to 222 MHz band and a long wavelength is mounted on the portable terminal. Had the problem that the antenna was too large.
 上記問題を解決するために、特許文献9は、高透磁率を有するフェライトを使用することで、波長短縮効果により磁性体アンテナを小型化する方法が提案している。 In order to solve the above problem, Patent Document 9 proposes a method of miniaturizing a magnetic antenna by using a wavelength having a shortening effect by using a ferrite having a high magnetic permeability.
 しかし特許文献9に記載の技術では、フェライトのようなセラミックス材料は、160MHzから222MHzでは透磁率が小さいので波長短縮効果が小さく、十分なアンテナの小型化ができなかった。さらにセラミックス材料は加工性に劣るため、使用できる形状に制限があるという問題があった。 However, in the technique described in Patent Document 9, the ceramic material such as ferrite has a small magnetic permeability from 160 MHz to 222 MHz, so the wavelength shortening effect is small, and the antenna cannot be sufficiently miniaturized. Furthermore, since the ceramic material is inferior in workability, there is a problem that the shape that can be used is limited.
特開2004-087627号公報JP 2004-087627 A 特開昭63-35701号公報JP-A-63-35701 特開平1-188606号公報JP-A-1-188606 特開昭57-127931号公報Japanese Patent Laid-Open No. 57-127931 特開2000-141392号公報JP 2000-141392 A 特開2008-181905号公報JP 2008-181905 A 特開2010-103427号公報JP 2010-103427 A 特開2008-263098号公報JP 2008-263098 A 特開2009-159244号公報JP 2009-159244 A
 本発明は、上記事情に鑑みてなされたものであって、70MHzから500MHzまでの周波数帯域に適用可能であり、しかも、この周波数帯域における複素透磁率の実部μr’が大きく、かつ複素透磁率の損失正接tanδμも0.1以下となるような平板状磁性体粒子を備えた複合磁性体とその製造方法及びアンテナ並びに通信装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can be applied to a frequency band from 70 MHz to 500 MHz. Further, the real part μr ′ of the complex permeability in this frequency band is large, and the complex permeability. An object of the present invention is to provide a composite magnetic body having flat magnetic particles such that the loss tangent tan δμ of the above becomes 0.1 or less, a manufacturing method thereof, an antenna, and a communication device.
 また、電子部品や電子機器を小型化する際に、この小型化に合わせて複素透磁率の実部μr’が十分に大きく、かつ複素透磁率の実部μr’の値と複素誘電率の実部εr’の値との差が小さくなり、その結果、電子部品や電子機器を小型化すると同時に、インピーダンスマッチングによる電力損失を抑制して広帯域化することができる複合磁性体及びそれを備えたアンテナ並びに通信装置を提供することを目的とする。 Further, when downsizing electronic components and electronic devices, the real part μr ′ of the complex permeability is sufficiently large in accordance with the downsizing, and the value of the real part μr ′ of the complex permeability and the real value of the complex dielectric constant are used. The difference between the value of the portion εr ′ is reduced, and as a result, the electronic component and the electronic device can be downsized, and at the same time, the composite magnetic body capable of suppressing the power loss due to impedance matching and widening the band, and the antenna including the same An object of the present invention is to provide a communication device.
 また、上記平板状磁性体粒子が樹脂中にて良好に配向することにより、複素透磁率の実部μr’が高くなる複合磁性体とその製造方法及びアンテナ並びに通信装置を提供することを目的とする。 Another object of the present invention is to provide a composite magnetic body in which the real part μr ′ of the complex permeability is increased when the flat magnetic particles are well oriented in the resin, a manufacturing method thereof, an antenna, and a communication device. To do.
 また、160MHzから222MHzのような低周波帯域にも適用可能であり、かつ携帯端末に搭載可能である小型のモノポールアンテナを提供することを目的とする。 It is another object of the present invention to provide a small monopole antenna that can be applied to a low frequency band such as 160 MHz to 222 MHz and can be mounted on a portable terminal.
 本発明者等は、上記課題を解決するために鋭意検討を行った結果、以下の知見を得た。
 平均厚みが0.01μm以上かつ0.5μm以下、平均長径が0.05μm以上かつ10μm以下、かつ平均アスペクト比(長径/厚み)が5以上の平板状磁性体粒子を絶縁材料中に分散させた複合磁性体であれば、この複合磁性体の70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’を1よりも大とし、かつ複素透磁率の損失正接tanδμを0.1以下とすることができる。すなわち、この複合磁性体をVHF帯のアンテナに適用することが可能となり、その結果、さらなるアンテナの小型化、アンテナの携帯用情報端末への内蔵化を図ることが可能であることを見出した。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
Flat magnetic particles having an average thickness of 0.01 μm to 0.5 μm, an average major axis of 0.05 μm to 10 μm, and an average aspect ratio (major axis / thickness) of 5 or more were dispersed in an insulating material. In the case of a composite magnetic body, the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz of the composite magnetic body is set to be larger than 1, and the loss tangent tan δμ of the complex permeability is set to 0.1 or less. be able to. That is, the present inventors have found that this composite magnetic body can be applied to a VHF band antenna, and as a result, it is possible to further reduce the size of the antenna and incorporate the antenna into a portable information terminal.
 また、平板状磁性体粒子を絶縁材料中に分散した複合磁性体においては、平板状磁性体粒子が少量の場合には絶縁材料中に均一に分散し易いが、平板状磁性体粒子の量が増加するにしたがって、平板状磁性体粒子同士が絡み合ったり凝集したりすること等により、これらの平板状磁性体粒子の間に空間が生じ、この空間内に絶縁材料が進入し難くなり、結果として、得られた複合磁性体中に気孔が生じてしまうこととなる。また、平板状磁性体粒子が一方向に配向している場合には、互いに平行に配置されている平板状磁性体粒子間の間隔が極めて狭く、この狭い空間に絶縁材料が進入し難くなり、結果として、得られた複合磁性体中に気孔が生じてしまうこととなる。 Further, in a composite magnetic body in which tabular magnetic particles are dispersed in an insulating material, when the amount of tabular magnetic particles is small, it is easy to disperse uniformly in the insulating material. As the number of the tabular magnetic particles increases, a space is generated between the tabular magnetic particles due to the entanglement or aggregation of the tabular magnetic particles, and it becomes difficult for the insulating material to enter the space. As a result, pores are generated in the obtained composite magnetic material. Further, when the tabular magnetic particles are oriented in one direction, the interval between the tabular magnetic particles arranged in parallel to each other is extremely narrow, making it difficult for the insulating material to enter this narrow space, As a result, pores are generated in the obtained composite magnetic body.
 そこで、平板状磁性体粒子を絶縁材料中に分散した際に、これらの平板状磁性体粒子の間に生じる気孔を低減させることにより、μr’の値は増大するものの、εr’の値がほとんど変化しないことを見出し、その結果、μr’の値とεr’の値との差を小さくすることができることを見出した。 Therefore, when the tabular magnetic particles are dispersed in the insulating material, the value of εr ′ is almost increased although the value of μr ′ is increased by reducing the pores generated between the tabular magnetic particles. As a result, it was found that the difference between the value of μr ′ and the value of εr ′ can be reduced.
 また、絶縁材料として従来のビスフェノール型エポキシ樹脂と平板状磁性体粒子とを混合すると、得られた成形材料は、エポキシ樹脂の官能基が平板状磁性体粒子の表面に吸着し、高分子鎖が磁性体粒子の周囲を取り囲み、長く絡み合った状態となる。このような高分子鎖が長く絡み合った状態の成形材料は、高分子鎖が立体障害となって平板状磁性体粒子の配向が阻害されることがある。
 そこで、平板状磁性体粒子の流動性を良くするために、成形材料中の溶媒の量を増加させてマクロ的に低粘度にしても、やはり高分子鎖の立体障害の影響が大きく、平板状磁性体粒子の配向が阻害されることとなる。
 一方、高分子鎖の立体障害の影響を小さくするために高分子鎖を短くすると、高分子鎖同士の縮合あるいは結合反応が不十分となり、その結果、得られた複合磁性体としての機械的強度が低下し、場合によっては形状を維持することができなくなる虞があり、電子部品や回路基板等に用いることができない。
In addition, when a conventional bisphenol type epoxy resin and tabular magnetic particles are mixed as an insulating material, the resulting molding material has a functional group of the epoxy resin adsorbed on the surface of the tabular magnetic particles, and a polymer chain is not present. It surrounds the periphery of the magnetic particles and becomes intertwined for a long time. In such a molding material in which the polymer chains are long entangled, the polymer chains may be sterically hindered and the orientation of the tabular magnetic particles may be hindered.
Therefore, in order to improve the fluidity of the tabular magnetic particles, even if the amount of the solvent in the molding material is increased to make the viscosity low macroscopically, the influence of the steric hindrance of the polymer chain is still large, and the tabular shape The orientation of the magnetic particles will be hindered.
On the other hand, if the polymer chain is shortened in order to reduce the influence of steric hindrance of the polymer chain, the condensation or bonding reaction between the polymer chains becomes insufficient, and as a result, the mechanical strength of the resulting composite magnetic material In some cases, the shape may not be maintained, and the shape may not be maintained, and cannot be used for electronic components, circuit boards, and the like.
 そこで、高分子鎖の立体障害の影響を小さくするために、平面的で平板状磁性体粒子に絡み難い環状構造を主鎖に有する樹脂を用いることで、平板状磁性体粒子の磁場印加による配向が向上することを見出した。さらに、重合する官能基が末端にのみ存在するのではなく、モノマー単位で重合する官能基を有する樹脂を用いることで、高分子鎖が短くても多くの結合を形成することにより、得られた複合磁性体の機械的強度が向上し、形状の維持も容易であることを見出した。 Therefore, in order to reduce the influence of the steric hindrance of the polymer chain, by using a resin having a cyclic structure in the main chain that is flat and hardly entangled with the tabular magnetic particles, the orientation of the tabular magnetic particles by applying a magnetic field Found to improve. Furthermore, it was obtained by forming many bonds even when the polymer chain is short, by using a resin having a functional group that polymerizes by a monomer unit, rather than a functional group that polymerizes only at the terminal. It has been found that the mechanical strength of the composite magnetic material is improved and the shape can be easily maintained.
 また、平板状磁性体粒子に絡み難い上記環状構造を主鎖に有する樹脂に、可撓性及び伸縮性に優れた樹脂を添加させれば、この樹脂が平板状磁性体粒子同士の隙間に進入することで、複合磁性体の複素透磁率の実部μr’をさらに向上させ、かつ複合磁性体の基材からの剥離性をさらに向上させ、しかも生産性に優れた複合磁性体が得られることを見出した。 Moreover, if a resin excellent in flexibility and stretchability is added to the resin having the above-mentioned cyclic structure in the main chain which is not easily entangled with the flat magnetic particles, the resin enters the gap between the flat magnetic particles. As a result, the real part μr ′ of the complex magnetic permeability of the composite magnetic body can be further improved, the peelability of the composite magnetic body from the base material can be further improved, and a composite magnetic body excellent in productivity can be obtained. I found.
 さらに、上記樹脂と平板状磁性体粒子を混合させた成形材料を成形して磁場を印加させる場合には、成形体の表面に対して磁力線が略平行になるように、磁場を1回若しくは複数回印加させることにより、複合磁性体の複素透磁率の実部μr’が向上することを見出した。 Furthermore, when a magnetic material is applied by molding a molding material in which the resin and the flat magnetic particles are mixed, the magnetic field is applied once or a plurality of times so that the lines of magnetic force are substantially parallel to the surface of the molded body. It has been found that the real part μr ′ of the complex magnetic permeability of the composite magnetic material is improved by applying it twice.
 また、上記複合磁性体でモノポールアンテナの導体を被覆させることにより、そのアンテナを小型化できることを見出した。 Also, it was found that the antenna can be reduced in size by covering the conductor of the monopole antenna with the above composite magnetic material.
 すなわち、本発明は以下に関する。 That is, the present invention relates to the following.
(1)平板状磁性体粒子を絶縁材料中に分散してなる複合磁性体であって、
前記平板状磁性体粒子の平均厚みは0.01μm以上かつ0.5μm以下、平均長径は0.05μm以上かつ10μm以下、かつ平均アスペクト比(長径/厚み)は5以上であることを特徴とする複合磁性体。
(2)70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は1よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下であることを特徴とする前記(1)記載の複合磁性体。
(3)70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下であることを特徴とする前記(1)記載の複合磁性体。
(4)70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は10よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下であることを特徴とする前記(1)記載の複合磁性体。
(5)前記平板状磁性体粒子は、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)の群から選択される1種または2種以上の金属元素を含む鉄-ニッケル合金であることを特徴とする前記(1)記載の複合磁性体。
(6)前記平板状磁性体粒子は、平均粒子径が0.5μm以下の球状の磁性粒子に機械的応力を加えることにより、この球状の磁性粒子同士を変形及び融着してなることを特徴とする前記(1)記載の複合磁性体。
(7)90MHzから220MHzまでの周波数帯域における複素透磁率の実部μr’は1よりも大きく、かつ複素透磁率の損失正接tanδμは0.05以下であることを特徴とする前記(1)記載複合磁性体。
(8)気孔率が20%以下であることを特徴とする前記(1)記載の複合磁性体。
(9)70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’が7以上、複素誘電率の実部εr’が15以上であり、かつ、(μr’・εr’)-1/2が0.1以下、(μr’/εr’)1/2が0.5以上かつ1以下であることを特徴とする前記(8)記載の複合磁性体。
(10)70MHzから500MHzまでの周波数帯域における複素透磁率の損失正接tanδμが0.05以下、複素誘電率の損失正接tanδεが0.1以下であることを特徴とする前記(9)記載の複合磁性体。
(11)前記絶縁材料が主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂を含むことを特徴とする前記(1)記載の複合磁性体。
(12)前記樹脂は、熱硬化性樹脂であることを特徴とする前記(11)記載の複合磁性体。
(13)前記樹脂は、エポキシ樹脂であることを特徴とする前記(11)記載の複合磁性体。
(14)前記樹脂は、ジシクロペンタジエン型エポキシ樹脂であることを特徴とする前記(11)記載の複合磁性体。
(15)前記平板状磁性体粒子の、前記樹脂中における配向方向と該平板状磁性体粒子の長軸方向とのなす角度が20°以下であることを特徴とする前記(11)記載の複合磁性体。
(16)70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は、7以上であることを特徴とする前記(11)記載の複合磁性体。
(17)前記第1の樹脂に可撓性を付与する樹脂である第2の樹脂をさらに含むことを特徴とする前記(11)記載の複合磁性体。
(18)前記第2の樹脂は、ビスフェノールA型骨格及びビスフェノールF型骨格のうち少なくとも1種を有するエポキシ樹脂であることを特徴とする前記(17)記載の複合磁性体。
(19)前記第2の樹脂は、1分子中に2個以上のエポキシ基を含有し、かつエーテル骨格を有するエポキシ樹脂であることを特徴とする前記(17)記載の複合磁性体。
(20)前記第2の樹脂は、プロピレングリコール付加ビスフェノールA型骨格及びエチレングリコール付加ビスフェノールA型骨格のうちいずれか1種を有するエポキシ樹脂であることを特徴とする前記(17)記載の複合磁性体。
(21)70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7以上であることを特徴とする前記(17)記載の複合磁性体。
(22)前記(1)ないし(21)記載の複合磁性体の製造方法であって、平均粒子径が0.5μm以下の球状の磁性粒子を界面活性剤を含む溶液中に分散してなるスラリー及び分散媒体を、密閉可能な容器内に、前記スラリー及び前記分散媒体の合計の体積が前記容器内の体積と同じくなるように充填し、このスラリーを前記分散媒体と共に密閉状態にて撹拌し、前記球状の磁性粒子同士を変形及び融着させて平板状磁性体粒子とする第1の工程と、前記平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする第2の工程と、前記成形材料を成形または基材上に塗布して成形体を得る成形工程と、前記成形体を乾燥・硬化させる乾燥・硬化工程を含む第3の工程と、を備えたことを特徴とする複合磁性体の製造方法。
(23)前記絶縁材料が、主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する樹脂であることを特徴とする前記(22)記載の複合磁性体の製造方法。
(24)前記第3の工程において、前記成形工程後、得られた成形体に磁場を印加して該成形体中の前記平板状磁性体粒子を一方向に配向させる配向工程を行い、次いで前記乾燥・硬化工程を行うことを特徴とする前記(22)記載の複合磁性体の製造方法。
(25)前記(1)ないし(21)のいずれか1項記載の複合磁性体を備えてなることを特徴とするアンテナ。
(26)前記(25)記載のアンテナを備えてなることを特徴とする通信装置。
(27)アンテナ導体が、前記(1)記載の複合磁性体によって被覆されていることを特徴とするモノポールアンテナ。
(28)前記複合磁性体は、160MHzから222MHzまでの周波数帯域における複素透磁率の実部μr’が3以上であることを特徴とする前記(27)記載のモノポールアンテナ。
(29)前記複合磁性体の被覆厚さが2.4mm以上かつ10mm以下であることを特徴とする前記(28)記載のモノポールアンテナ。
(30)前記複合磁性体は、160MHzから222MHzまでの周波数帯域における複素透磁率の実部μr’が6以上であることを特徴とする前記(27)記載のモノポールアンテナ。
(31)前記複合磁性体の被覆厚さが1.2mm以上かつ10mm以下であることを特徴とする前記(30)記載のモノポールアンテナ。
(32)前記アンテナ導体の長さが200mm以下であることを特徴とする前記(27)記載のモノポールアンテナ。
(1) A composite magnetic material obtained by dispersing tabular magnetic particles in an insulating material,
The flat magnetic particles have an average thickness of 0.01 μm or more and 0.5 μm or less, an average major axis of 0.05 μm or more and 10 μm or less, and an average aspect ratio (major axis / thickness) of 5 or more. Composite magnetic material.
(2) The real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is greater than 1, and the loss tangent tan δμ of the complex permeability is 0.1 or less. Composite magnetic material.
(3) The real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is larger than 7, and the loss tangent tan δμ of the complex permeability is 0.1 or less. Composite magnetic material.
(4) The real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is greater than 10, and the loss tangent tan δμ of the complex permeability is 0.1 or less. Composite magnetic material.
(5) The flat magnetic particles include aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), and molybdenum (Mo). The composite magnetic material according to (1) above, which is an iron-nickel alloy containing one or more metal elements selected from the group consisting of indium (In) and tin (Sn).
(6) The tabular magnetic particles are formed by deforming and fusing the spherical magnetic particles by applying mechanical stress to the spherical magnetic particles having an average particle diameter of 0.5 μm or less. The composite magnetic material according to (1) above.
(7) The real part μr ′ of the complex permeability in the frequency band from 90 MHz to 220 MHz is greater than 1, and the loss tangent tan δμ of the complex permeability is 0.05 or less. Composite magnetic material.
(8) The composite magnetic body according to (1), wherein the porosity is 20% or less.
(9) The real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more, the real part εr ′ of the complex permittivity is 15 or more, and (μr ′ · εr ′) −1/2 Is 0.1 or less and (μr ′ / εr ′) 1/2 is 0.5 or more and 1 or less, the composite magnetic body according to (8) above.
(10) The loss tangent tan δμ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 0.05 or less, and the loss tangent tan δε of the complex permittivity is 0.1 or less. Magnetic material.
(11) The composite magnetic body according to (1), wherein the insulating material includes a first resin having a cyclic structure in a main chain and having a functional group that is polymerized in a monomer unit.
(12) The composite magnetic body according to (11), wherein the resin is a thermosetting resin.
(13) The composite magnetic body according to (11), wherein the resin is an epoxy resin.
(14) The composite magnetic body according to (11), wherein the resin is a dicyclopentadiene type epoxy resin.
(15) The composite according to (11), wherein an angle between the orientation direction of the tabular magnetic particles in the resin and the major axis direction of the tabular magnetic particles is 20 ° or less. Magnetic material.
(16) The composite magnetic body according to (11), wherein the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more.
(17) The composite magnetic body according to (11), further including a second resin, which is a resin that imparts flexibility to the first resin.
(18) The composite magnetic body according to (17), wherein the second resin is an epoxy resin having at least one of a bisphenol A skeleton and a bisphenol F skeleton.
(19) The composite magnetic body according to (17), wherein the second resin is an epoxy resin containing two or more epoxy groups in one molecule and having an ether skeleton.
(20) The composite magnetic material according to (17), wherein the second resin is an epoxy resin having any one of propylene glycol-added bisphenol A skeleton and ethylene glycol-added bisphenol A skeleton body.
(21) The composite magnetic body according to (17), wherein the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more.
(22) A method for producing a composite magnetic material according to (1) to (21), wherein a spherical magnetic particle having an average particle diameter of 0.5 μm or less is dispersed in a solution containing a surfactant. And the dispersion medium is filled in a sealable container so that the total volume of the slurry and the dispersion medium is the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state, A first step in which the spherical magnetic particles are deformed and fused to form tabular magnetic particles, and the tabular magnetic particles are dispersed and mixed in a solution in which an insulating material is dissolved in a solvent, and then molded. A third step including a second step as a material, a molding step of molding or applying the molding material on a substrate to obtain a molded body, and a drying / curing step of drying and curing the molded body; Of a composite magnetic material characterized by comprising Production method.
(23) The method for producing a composite magnetic body according to (22), wherein the insulating material is a resin having a cyclic structure in the main chain and a functional group that is polymerized in a monomer unit.
(24) In the third step, after the forming step, a magnetic field is applied to the obtained formed body to perform an aligning step of aligning the flat magnetic particles in the formed body in one direction, and then The method for producing a composite magnetic body according to (22), wherein a drying / curing step is performed.
(25) An antenna comprising the composite magnetic body according to any one of (1) to (21).
(26) A communication apparatus comprising the antenna according to (25).
(27) A monopole antenna, wherein the antenna conductor is covered with the composite magnetic material according to (1).
(28) The monopole antenna according to (27), wherein the composite magnetic body has a real part μr ′ of complex permeability in a frequency band from 160 MHz to 222 MHz being 3 or more.
(29) The monopole antenna according to (28), wherein a coating thickness of the composite magnetic body is 2.4 mm or more and 10 mm or less.
(30) The monopole antenna according to (27), wherein the composite magnetic body has a real part μr ′ of complex permeability in a frequency band from 160 MHz to 222 MHz of 6 or more.
(31) The monopole antenna according to (30), wherein a coating thickness of the composite magnetic body is 1.2 mm or more and 10 mm or less.
(32) The monopole antenna according to (27), wherein the length of the antenna conductor is 200 mm or less.
 本発明の複合磁性体によれば、平均厚みが0.01μm以上かつ0.5μm以下、平均長径が0.05μm以上かつ5μm以下、かつ平均アスペクト比(長さ/厚み)が5以上の平板状磁性体粒子を用いたので、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’を1よりも大きく、かつ複素透磁率の損失正接tanδμを0.1以下とできるので、この周波数帯域における波長の短縮率を大きく取ることができる。
 したがって、この複合磁性体をVHF帯のアンテナに適用すれば、この複合磁性体の表面における渦電流の発生を防止することができ、μr’の低下を防止することができ、さらなるアンテナの小型化を図ることができる。
 したがって、この複合磁性体をVHF帯のアンテナや電子部品に適用すれば、アンテナや電子部品のさらなる小型化を図ることができる。
According to the composite magnetic body of the present invention, a plate shape having an average thickness of 0.01 μm or more and 0.5 μm or less, an average major axis of 0.05 μm or more and 5 μm or less, and an average aspect ratio (length / thickness) of 5 or more. Since magnetic particles are used, the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz can be larger than 1 and the loss tangent tan δμ of the complex permeability can be 0.1 or less. The wavelength shortening rate can be increased.
Therefore, if this composite magnetic body is applied to a VHF band antenna, generation of eddy currents on the surface of the composite magnetic body can be prevented, μr ′ can be prevented from being lowered, and the antenna can be further reduced in size. Can be achieved.
Therefore, if this composite magnetic body is applied to a VHF band antenna or electronic component, the antenna or electronic component can be further reduced in size.
 本発明の複合磁性体によれば、上記平板状磁性体粒子を有する複合磁性体の気孔率を20%以下としたので、複素透磁率の実部μr’の値は増大するものの、複素誘電率の実部εr’の値を殆ど変わらなくすることができる。したがって、複素透磁率の実部μr’の値と複素誘電率の実部εr’の値との差を小さくすることができ、その結果、この複合磁性体が適用される電子部品や電子機器を小型化することができ、インピーダンスマッチングによる電力損失を抑制することができる。 According to the composite magnetic body of the present invention, since the porosity of the composite magnetic body having the above plate-like magnetic particles is set to 20% or less, the value of the real part μr ′ of the complex permeability increases, but the complex dielectric constant The value of the real part εr ′ can be made almost unchanged. Therefore, the difference between the value of the real part μr ′ of the complex magnetic permeability and the value of the real part εr ′ of the complex dielectric constant can be reduced. As a result, an electronic component or electronic device to which the composite magnetic body is applied can be reduced. The size can be reduced, and power loss due to impedance matching can be suppressed.
 本発明の複合磁性体によれば、上記平板状磁性体粒子と、主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する第1の樹脂とを含んでいるので、この樹脂が平面的で平板状磁性体粒子に絡み難い構造を有することから、平板状磁性体粒子に対する樹脂による立体障害の影響を小さくすることができる。したがって、平板状磁性体粒子の配向が良好であり、複素透磁率の実部μr’の高い複合磁性体が得られる。
 さらに、モノマー単位で重合する官能基を有する樹脂を用いているので、樹脂の結合が強固なものとなり、電子部品等に用いるのに十分な成形体としての機械的強度を有することができる。
According to the composite magnetic body of the present invention, since the plate-like magnetic body particle and the first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit are contained, Since it has a structure that is flat and hardly entangled with the tabular magnetic particles, the influence of steric hindrance by the resin on the tabular magnetic particles can be reduced. Therefore, a composite magnetic body having a good orientation of the tabular magnetic particles and a high real part μr ′ of complex permeability can be obtained.
Furthermore, since a resin having a functional group that is polymerized in monomer units is used, the resin bond becomes strong, and it is possible to have sufficient mechanical strength as a molded body for use in electronic parts and the like.
 本発明の複合磁性体によれば、上記平板状磁性粒子と、主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂と、この第1の樹脂に可撓性を付与する第2の樹脂とを含んでいるので、この主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂が、平板状磁性体粒子に対する樹脂による立体障害の影響を小さくすることができる。したがって、平板状磁性体粒子の一方向に対する配向性を向上させることができ、複素透磁率の実部μr’が高い複合磁性体を容易に得ることができる。
 そして、第2の樹脂が第1の樹脂に対して可撓性を付与するので、複合磁性体自体の可撓性及び伸縮性を向上させることができ、その結果、生産性に優れた複合磁性体を得ることができる。
According to the composite magnetic body of the present invention, the flat magnetic particles, the first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, and the first resin are flexible. The first resin having a cyclic structure in the main chain and having a functional group that polymerizes in monomer units is a three-dimensional structure formed by the resin with respect to the tabular magnetic particles. The influence of the failure can be reduced. Therefore, the orientation of the tabular magnetic particles in one direction can be improved, and a composite magnetic body having a high real part μr ′ of complex permeability can be easily obtained.
Since the second resin imparts flexibility to the first resin, it is possible to improve the flexibility and stretchability of the composite magnetic body itself, and as a result, the composite magnetism having excellent productivity. You can get a body.
 本発明の複合磁性体の製造方法によれば、平均粒子径が0.5μm以下の球状の磁性粒子を、界面活性剤を含む溶液中に分散してなるスラリー及び分散媒体を、密閉可能な容器内に、前記スラリー及び前記分散媒体の合計の体積量が前記容器内の体積と同じくなるように充填し、このスラリーを前記分散媒体と共に密閉状態にて撹拌し、前記球状の磁性粒子同士を変形及び融着させて平板状磁性体粒子とする第1の工程と、前記平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする第2の工程と、前記成形材料を成形または基材上に塗布して成形体を得る成形工程と、前記成形体を乾燥・硬化させる乾燥・硬化工程を含む第3の工程と、を備えたので、70MHzから500MHzまでの周波数帯域におけるμr’が大きく、かつ複素透磁率の損失正接tanδμも0.1以下の複合磁性体を容易に作製することができる。 According to the method for producing a composite magnetic body of the present invention, a container capable of sealing a slurry and a dispersion medium in which spherical magnetic particles having an average particle diameter of 0.5 μm or less are dispersed in a solution containing a surfactant. The total volume of the slurry and the dispersion medium is filled so as to be the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state to deform the spherical magnetic particles. And a first step of fusing to form tabular magnetic particles, and a second step of dispersing and mixing the tabular magnetic particles in a solution in which an insulating material is dissolved in a solvent to obtain a molding material; The molding material is molded or applied onto a base material to obtain a molded body, and the third process includes a drying / curing process for drying and curing the molded body. Up to That .mu.r 'is large and the loss tangent tanδμ the complex permeability can also be readily prepared 0.1 following composite magnetic body.
 また、絶縁材料として主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する樹脂を用いた場合には、平板状磁性体粒子の配向が良好であり、かつ複素透磁率の実部μr’の高い複合磁性体を、容易に作製することができる。
 さらに、第3の工程において、前記成形工程後、得られた成形体に磁場を印加して該成形体中の前記平板状磁性体粒子を一方向に配向させる配向工程を行い、次いで前記乾燥・硬化工程を行う場合には、平板状磁性体粒子の配向がさらに良好であり、かつ複素透磁率の実部μr’がさらに高い複合磁性体を容易に作製することができる。
In addition, when a resin having a cyclic structure in the main chain and a functional group that polymerizes in monomer units is used as the insulating material, the orientation of the tabular magnetic particles is good and the real part of the complex permeability A composite magnetic body having a high μr ′ can be easily produced.
Furthermore, in the third step, after the molding step, an orientation step is performed in which a magnetic field is applied to the obtained molded body to orient the flat magnetic particles in the molded body in one direction, and then the drying and drying are performed. When performing the curing step, it is possible to easily produce a composite magnetic material in which the orientation of the tabular magnetic particles is better and the real part μr ′ of the complex permeability is higher.
 本発明のアンテナによれば、上記複合磁性体を備えたので、70MHzから500MHzまでの周波数帯域において複素透磁率の実部μr’が高い複合磁性体を用いることにより、波長の1/4よりもアンテナ導体を短くさせることができるので、アンテナ全体の小型化を図ることができる。よって、さらに小型化されたアンテナを提供することができる。 According to the antenna of the present invention, since the composite magnetic body is provided, by using the composite magnetic body having a high real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz, the wavelength is less than ¼ of the wavelength. Since the antenna conductor can be shortened, the entire antenna can be reduced in size. Therefore, a further miniaturized antenna can be provided.
 さらに、気孔率が20%以下の複合磁性体を備えた場合には、放射効率を向上させることができる。したがって、小型で、インピーダンスマッチングによる電力損失が抑制され、小型で、放射効率が高く、70MHzから500MHzまでの広帯域にて使用することができるアンテナを提供することができる。 Furthermore, when a composite magnetic body having a porosity of 20% or less is provided, the radiation efficiency can be improved. Therefore, it is possible to provide a small antenna that can suppress power loss due to impedance matching, is small, has high radiation efficiency, and can be used in a wide band from 70 MHz to 500 MHz.
 また、上記絶縁材料として主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂を含む複合磁性体を備えた場合、または上記絶縁材料として前記第1の樹脂及び前記第1の樹脂に可撓性を付与する第2の樹脂を含む複合磁性体を供えた場合には、より高いμr’が得られるため、より小型化されたアンテナを提供することができる。 In addition, when the insulating material includes a composite magnetic body including a first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, or as the insulating material, the first resin and When a composite magnetic body containing a second resin that imparts flexibility to the first resin is provided, a higher μr ′ can be obtained, so that a more miniaturized antenna can be provided.
 本発明の通信装置によれば、上記アンテナを備えたので、小型化されたアンテナを用いることにより、通信装置全体の小型化を図ることができる。よって、さらに小型化された通信装置を提供することができる。 According to the communication device of the present invention, since the antenna is provided, the communication device as a whole can be reduced in size by using a miniaturized antenna. Therefore, a further miniaturized communication apparatus can be provided.
 さらに、上記気孔率が20%以下の複合磁性体に装荷されたアンテナを備えた場合には、小型で、放射効率が高く、広帯域にて使用することができるアンテナを用いることにより、通信装置全体の小型化及び通信性能の向上を図ることができる。よって、さらに小型化され、70MHzから500MHzの広帯域にて使用することができる通信装置を提供することができる。 Further, when the antenna loaded on the composite magnetic body having a porosity of 20% or less is provided, the communication apparatus as a whole can be obtained by using a small antenna having high radiation efficiency and usable in a wide band. Can be reduced in size and communication performance can be improved. Therefore, it is possible to provide a communication device that is further downsized and can be used in a wide band from 70 MHz to 500 MHz.
 本発明のモノポールアンテナによれば、上記複合磁性体をアンテナ導体に被覆させたので、波長の1/4よりもアンテナ導体を短くさせることができるので、160MHz~222MHzの低周波数帯域の電波を送信、受信または送受信が可能でありながら、携帯端末に搭載できるほど小型のモノポールアンテナが得られる。 According to the monopole antenna of the present invention, since the antenna conductor is coated with the composite magnetic material, the antenna conductor can be made shorter than ¼ of the wavelength, so that radio waves in a low frequency band of 160 MHz to 222 MHz can be transmitted. A monopole antenna that is small enough to be mounted on a portable terminal while being able to transmit, receive, or transmit / receive can be obtained.
開放容器を用いて球状の磁性粒子を含むスラリー及び分散媒体を高速撹拌する様を示す図である。It is a figure which shows a mode that the slurry containing a spherical magnetic particle and dispersion medium are stirred at high speed using an open container. 密閉容器を用いて球状の磁性粒子を含むスラリー及び分散媒体を高速撹拌する様を示す図である。It is a figure which shows a mode that the slurry and dispersion medium containing a spherical magnetic particle are stirred at high speed using an airtight container. 本発明の配向方法Aを実施するための配向装置を示す概略構成図である。It is a schematic block diagram which shows the orientation apparatus for implementing the orientation method A of this invention. 本発明の配向方法Bを実施するための配向装置を示す概略構成図である。It is a schematic block diagram which shows the orientation apparatus for implementing the orientation method B of this invention. 本発明の配向方法Cを実施するための配向装置を示す概略構成図である。It is a schematic block diagram which shows the orientation apparatus for implementing the orientation method C of this invention. 本発明の配向方法Cを実施するための配向装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the orientation apparatus for enforcing the orientation method C of this invention. 本発明の配向方法Dを実施するための配向装置を示す概略構成図である。It is a schematic block diagram which shows the orientation apparatus for implementing the orientation method D of this invention. 本発明の一実施形態のアンテナの一例であるモノポールアンテナの給電方法を示す模式図である。It is a schematic diagram which shows the electric power feeding method of the monopole antenna which is an example of the antenna of one Embodiment of this invention. 本発明の一実施形態の通信装置の一種の携帯用電話機の一例を示す斜視図である。It is a perspective view which shows an example of the kind of portable telephone of the communication apparatus of one Embodiment of this invention. 本発明の一実施形態の通信装置の一種の携帯用電話機の他の一例を示す斜視図である。It is a perspective view which shows another example of a kind of portable telephone of the communication apparatus of one Embodiment of this invention. 本発明の一実施形態の通信装置の一種の携帯用電話機のさらに他の一例を示す斜視図である。It is a perspective view which shows another example of a kind of portable telephone of the communication apparatus of one Embodiment of this invention. 本発明の一実施形態の通信装置の一種の携帯用電話機のさらに他の一例を示す斜視図である。It is a perspective view which shows another example of a kind of portable telephone of the communication apparatus of one Embodiment of this invention. 本発明の一実施形態の通信装置の一種の保護カバー付き携帯用電話機の一例を示す斜視図である。It is a perspective view which shows an example of the portable telephone with a kind of protective cover of the communication apparatus of one Embodiment of this invention. 本発明の一実施形態の通信装置の一種の保護カバー付き携帯用電話機の他の一例を示す平面図である。It is a top view which shows another example of the portable telephone with a kind of protective cover of the communication apparatus of one Embodiment of this invention. 図14のA-A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 本実施形態のモノポールアンテナの構造及び給電方法を示す模式図である。It is a schematic diagram which shows the structure and electric power feeding method of the monopole antenna of this embodiment. 図16AのA-A線に沿う位置における断面図である。It is sectional drawing in the position which follows the AA line of FIG. 16A. 本発明の実施例1の複合磁性体の複素透磁率及び損失正接を示す図である。It is a figure which shows the complex magnetic permeability and loss tangent of the composite magnetic body of Example 1 of this invention. 本発明の実施例1の複合磁性体の構造を示す走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image which shows the structure of the composite magnetic body of Example 1 of this invention. 比較例1の複合磁性体の複素透磁率及び損失正接を示す図である。It is a figure which shows the complex magnetic permeability and loss tangent of the composite magnetic body of the comparative example 1. 比較例1の複合磁性体の構造を示す走査型電子顕微鏡(SEM)像である。3 is a scanning electron microscope (SEM) image showing the structure of the composite magnetic body of Comparative Example 1. 本発明の実施例3の複合磁性体の各周波数における複素透磁率の実部μr’及び複素透磁率の損失正接tanδμを示す図である。It is a figure which shows the real part (micro | micron | mu) r 'of the complex magnetic permeability in each frequency of the composite magnetic body of Example 3 of this invention, and the loss tangent tan-deltamicro of a complex magnetic permeability. 本発明の実施例3の複合磁性体の各周波数における複素誘電率の実部εr’及び複素誘電率の損失正接tanδεを示す図である。It is a figure which shows the real part (epsilon) r 'of the complex dielectric constant in each frequency of the composite magnetic body of Example 3 of this invention, and the loss tangent tan-deltaepsilon of a complex dielectric constant. 本発明の実施例4の複合磁性体の各周波数における複素透磁率の実部μr’及び複素透磁率の損失正接tanδμを示す図である。It is a figure which shows the real part (micro | micron | mu) r 'of the complex magnetic permeability in each frequency of the composite magnetic body of Example 4 of this invention, and the loss tangent tan-deltamicro of a complex magnetic permeability. 本発明の実施例4の複合磁性体の各周波数における複素誘電率の実部εr’及び複素誘電率の損失正接tanδεを示す図である。It is a figure which shows the real part (epsilon) r 'of the complex dielectric constant in each frequency of the composite magnetic body of Example 4 of this invention, and the loss tangent tan-deltaepsilon of a complex dielectric constant. 本発明の実施例18の複合磁性体の10~1000MHzの周波数帯域における複素透磁率の実部μr’及び複素透磁率の損失正接tanδμを示す図である。FIG. 18 is a diagram showing the complex permeability real part μr ′ and the complex permeability loss tangent tan δμ in the frequency band of 10 to 1000 MHz of the composite magnetic body of Example 18 of the present invention. 実施例25の複合磁性体の各周波数における複素透磁率の実部μr’と複素透磁率の損失正接tanδμを示す図である。FIG. 26 is a diagram showing a real part μr ′ of complex permeability and a loss tangent tan δμ of complex permeability at each frequency of the composite magnetic body of Example 25. 複合磁性体の被覆厚さと共振するアンテナ長の関係を示す図である。It is a figure which shows the relationship between the antenna length which resonates with the coating thickness of a composite magnetic body.
 本発明の複合磁性体とその製造方法及びアンテナ並びに通信装置を実施するための形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The composite magnetic body according to the present invention, a manufacturing method thereof, an antenna, and a mode for carrying out a communication device will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
[第1の複合磁性体]
 本実施形態の複合磁性体は、平板状磁性体粒子を絶縁材料中に分散してなる複合磁性体であって、この平板状磁性体粒子の平均厚みは0.01μm以上かつ0.5μm以下、平均長径は0.05μm以上かつ10μm以下、かつ平均アスペクト比(長径/厚み)は5以上である複合磁性体である。
[First composite magnetic body]
The composite magnetic body of the present embodiment is a composite magnetic body obtained by dispersing tabular magnetic particles in an insulating material, and the average thickness of the tabular magnetic particles is 0.01 μm or more and 0.5 μm or less, The composite magnetic body has an average major axis of 0.05 μm or more and 10 μm or less, and an average aspect ratio (major axis / thickness) of 5 or more.
 平均厚み、平均長径は、複数個の平板状磁性体粒子それぞれの厚み及び長径(粒子内における最大長さ)、例えば、100個以上、好ましくは500個以上の平板状磁性体粒子それぞれの厚み及び長径を測定し、厚み及び長径各々の平均値を算出することで求めることができる。
 また、この平板状磁性体粒子の平均アスペクト比(長径/厚み)は、上記同様、複数個の平板状磁性体粒子それぞれの長径と厚み、例えば、100個以上、好ましくは500個以上の平板状磁性体粒子それぞれの長径と厚みを測定することにより、個々の平板状磁性体粒子それぞれのアスペクト比(長径/厚み)を求め、これらのアスペクト比(長径/厚み)の平均値を算出することで求められる。
 この平板状磁性体粒子の平均厚みは0.01μm以上かつ0.5μm以下、好ましくは、0.012μm以上かつ0.3μm以下である。平均長径は0.05μm以上かつ10μm以下、好ましくは0.5μm以上かつ5μm以下である。
 ここで、平均厚みが0.01μm未満とすることは、後述する製造上困難であり、取り扱いも難しくなるので、好ましくなく、また、平均厚みが0.5μmを超えると、粒子同士の融着に起因する厚みのばらつきが生じ、VHF帯の複素透磁率の損失正接tanδμが増加するので好ましくない。
The average thickness and the average major axis are the thickness and major axis (maximum length in the grain) of each of the plurality of tabular magnetic particles, for example, the thickness of each of the tabular magnetic particles of 100 or more, preferably 500 or more. It can be determined by measuring the major axis and calculating the average value of the thickness and major axis.
In addition, the average aspect ratio (major axis / thickness) of the tabular magnetic particles is the same as the above in terms of the major axis and thickness of each of the plurality of tabular magnetic particles, for example, 100 or more, preferably 500 or more. By measuring the major axis and thickness of each magnetic particle, the aspect ratio (major axis / thickness) of each tabular magnetic particle is determined, and the average value of these aspect ratios (major axis / thickness) is calculated. Desired.
The average thickness of the tabular magnetic particles is 0.01 μm or more and 0.5 μm or less, preferably 0.012 μm or more and 0.3 μm or less. The average major axis is 0.05 μm or more and 10 μm or less, preferably 0.5 μm or more and 5 μm or less.
Here, when the average thickness is less than 0.01 μm, it is difficult to manufacture, which will be described later, and handling becomes difficult. Therefore, when the average thickness exceeds 0.5 μm, the particles are fused. This is not preferable because the resulting thickness variation causes the loss tangent tan δμ of the complex permeability in the VHF band to increase.
 この平板状磁性体粒子の平均アスペクト比(長径/厚み)は5以上であることが好ましく、より好ましくは7以上である。
 ここで、平均アスペクト比(長径/厚み)が5より小さいと、平板状磁性体粒子の反磁界係数が大きくなり、その結果、複合磁性体のμr’が低下するので好ましくない。
The average aspect ratio (major axis / thickness) of the tabular magnetic particles is preferably 5 or more, more preferably 7 or more.
Here, if the average aspect ratio (major axis / thickness) is smaller than 5, the demagnetizing factor of the tabular magnetic particles is increased, and as a result, the μr ′ of the composite magnetic material is lowered, which is not preferable.
 この平板状磁性体粒子の形状を上記範囲に限定した理由は、次のとおりである。
 磁性粒子における反磁界の大きさは、磁性粒子の形状に依存する。例えば、磁性粒子が球状の場合には、反磁界が等方的に存在するために、得られる透磁率も等方的となり、高周波領域で優れた磁気特性を得ることが困難である。一方、磁性粒子の形状が上記範囲である場合には、平板面に平行な方向の反磁界が格段に小さくなり、したがって、得られるμr’が大きくなる。
 したがって、上記平板状磁性体粒子を用いることにより、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は1よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下である複合磁性体を得ることができる。
 複素透磁率の実部μr’は5以上が好ましく、10以上がより好ましい。
The reason why the shape of the tabular magnetic particles is limited to the above range is as follows.
The magnitude of the demagnetizing field in the magnetic particles depends on the shape of the magnetic particles. For example, when the magnetic particles are spherical, since the demagnetizing field is isotropic, the magnetic permeability obtained is isotropic, and it is difficult to obtain excellent magnetic properties in the high frequency region. On the other hand, when the shape of the magnetic particles is within the above range, the demagnetizing field in the direction parallel to the flat plate surface is remarkably reduced, and thus the obtained μr ′ is increased.
Therefore, by using the flat magnetic particles, the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is larger than 1, and the loss tangent tan δμ of the complex permeability is 0.1 or less. A composite magnetic body can be obtained.
The real part μr ′ of the complex permeability is preferably 5 or more, and more preferably 10 or more.
 ここで、複素透磁率の実部μr’及び複素透磁率の損失正接tanδμを上記の範囲に限定した理由は、この範囲が、電磁波の波長を短縮することができ、かつ、渦電流による磁気損失が低下し、エネルギー損失が小さくなる範囲だからである。
 この複合磁性体では、より好ましくは、90MHzから220MHzまでの周波数帯域における複素透磁率の実部μr’が1よりも大きく、かつ損失正接tanδμが0.05以下である。
Here, the reason why the real part μr ′ of the complex permeability and the loss tangent tan δμ of the complex permeability are limited to the above range is that this range can reduce the wavelength of the electromagnetic wave and the magnetic loss due to the eddy current. This is because the energy loss is reduced and the energy loss is reduced.
In this composite magnetic body, more preferably, the real part μr ′ of the complex permeability in the frequency band from 90 MHz to 220 MHz is larger than 1, and the loss tangent tan δμ is 0.05 or less.
 エネルギー損失の大きさは、下記の式(3)に示す複素透磁率の虚部μr’’(以下μr’’と略記する場合がある)により表すことができる。
  μr’’=μr’×tanδμ  ……(3)
 ここで、複素透磁率の虚部μr’’は0.5以下であることが好ましいので、上記の式(3)から、μr’が10の場合にはtanδμは0.05以下であることが好ましく、また、μr’が15の場合にはtanδμは1/30以下であることが好ましいこととなる。
The magnitude of the energy loss can be expressed by an imaginary part μr ″ (hereinafter sometimes abbreviated as μr ″) of the complex permeability shown in the following formula (3).
μr ″ = μr ′ × tan δμ (3)
Here, since the imaginary part μr ″ of the complex permeability is preferably 0.5 or less, from the above equation (3), when μr ′ is 10, tan δμ is 0.05 or less. Further, when μr ′ is 15, tan δμ is preferably 1/30 or less.
 この平板状磁性体粒子の組成は、パーマロイ(商品名)等のFe-Ni合金、スーパーマロイ(商品名)等のFe-Ni-Mo合金、センダスト(商品名)等のFe-Si-Al合金、Fe-Si合金、Fe-Co合金、Fe-Cr合金、Fe-Cr-Si合金等の高透磁率合金に、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、すず(Sn)等の金属元素を添加した合金が好ましい。 The composition of the tabular magnetic particles is Fe-Ni alloy such as Permalloy (trade name), Fe-Ni-Mo alloy such as Supermalloy (trade name), and Fe-Si-Al alloy such as Sendust (trade name). , Fe—Si alloy, Fe—Co alloy, Fe—Cr alloy, Fe—Cr—Si alloy and other high magnetic permeability alloys such as aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), An alloy to which a metal element such as copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo), indium (In), tin (Sn) is added is preferable.
 この平板状磁性体粒子における上記の金属元素の添加量は、0.1質量%以上かつ90質量%以下が好ましく、1質量%以上かつ12質量%以下がより好ましく、1質量%以上かつ5質量%以下がさらに好ましい。
 ここで、上記の金属元素の添加量を上記の範囲に限定した理由は、金属元素の添加量が0.1質量%未満では、磁性粒子に十分な塑性変形能を付与することができず、一方、添加量が90質量%を超えると、金属元素自体の磁気モーメントが小さいことから、磁性粒子全体の飽和磁化が小さくなり、その結果、得られるμr’も小さくなるからである。
The addition amount of the metal element in the tabular magnetic particles is preferably 0.1% by mass to 90% by mass, more preferably 1% by mass to 12% by mass, and more preferably 1% by mass to 5% by mass. % Or less is more preferable.
Here, the reason why the amount of the metal element added is limited to the above range is that if the amount of the metal element added is less than 0.1% by mass, sufficient plastic deformation ability cannot be imparted to the magnetic particles, On the other hand, when the addition amount exceeds 90% by mass, the magnetic moment of the metal element itself is small, so that the saturation magnetization of the entire magnetic particle is small, and as a result, the obtained μr ′ is also small.
 特に、高いμr’が得られる点で、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)の群から選択される1種または2種以上の金属元素を1質量%以上かつ5質量%以下含む鉄-ニッケル合金が好ましい。 In particular, aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo) in that high μr ′ can be obtained. An iron-nickel alloy containing 1% by mass to 5% by mass of one or more metal elements selected from the group consisting of indium (In) and tin (Sn) is preferable.
 絶縁材料は、絶縁性の材料であればよく、特に制限されないが、本実施形態の複合磁性体を携帯電話用アンテナや携帯情報端末用アンテナとして用いる場合には、機械的強度が高く、吸湿性が低く、しかも形状加工性に優れていることが好ましい。このような絶縁材料としては、例えば、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ノルボルネン樹脂、ABS樹脂、ポリスチレン樹脂等の熱硬化性樹脂または熱可塑性樹脂が好適に用いられる。これらの樹脂は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なかでも、熱硬化性樹脂としては、機械的強度及び形状加工性に優れているエポキシ樹脂が好ましく、また、熱可塑性樹脂としては、ポリフェニレン樹脂、ABS樹脂が好ましい。
The insulating material is not particularly limited as long as it is an insulating material. However, when the composite magnetic body of the present embodiment is used as an antenna for a mobile phone or an antenna for a portable information terminal, the mechanical strength is high and the hygroscopic property is high. It is preferable that it is low and it is excellent in shape workability. Examples of such an insulating material include polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycyclohexane. Thermosetting resins or thermoplastic resins such as olefin resins, cyanate resins, polyphenylene ether resins, norbornene resins, ABS resins, and polystyrene resins are preferably used. These resins may be used alone or in combination of two or more.
Especially, as a thermosetting resin, the epoxy resin excellent in mechanical strength and shape workability is preferable, and a polyphenylene resin and an ABS resin are preferable as a thermoplastic resin.
[第1の複合磁性体の製造方法]
 本実施形態の複合磁性体の製造方法は、平均粒子径が0.5μm以下の球状の磁性粒子を界面活性剤を含む溶液中に分散してなるスラリー及び分散媒体を、密閉可能な容器内に、前記スラリー及び前記分散媒体の合計の体積量が前記容器内の体積と同じくなるように充填し、このスラリーを前記分散媒体と共に密閉状態にて撹拌し、前記球状の磁性粒子同士を変形及び融着させて平板状磁性体粒子とする第1の工程と、前記平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする第2の工程と、前記成形材料を成形または基材上に塗布して成形体を得る成形工程と、前記成形体を乾燥・硬化させる乾燥・硬化工程を含む第3の工程と、を備えている。
[Method for producing first composite magnetic body]
In the method for producing a composite magnetic body of the present embodiment, a slurry and a dispersion medium obtained by dispersing spherical magnetic particles having an average particle diameter of 0.5 μm or less in a solution containing a surfactant are placed in a sealable container. The slurry is filled so that the total volume of the slurry and the dispersion medium is the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state to deform and melt the spherical magnetic particles. A first step of forming tabular magnetic particles to be coated; a second step of dispersing and mixing the tabular magnetic particles in a solution obtained by dissolving an insulating material in a solvent to form a molding material; A molding step of molding or applying a molding material on a substrate to obtain a molded body, and a third step including a drying / curing step of drying and curing the molded body.
 以下、各工程について詳細に説明する。
<第1の工程>
 まず、平均粒子径が0.5μm以下の球状の磁性粒子を界面活性剤を含む溶液中に分散してスラリーとする。
 磁性粒子の組成は、上記の平板状磁性体粒子の組成と全く同様である。
 界面活性剤としては、磁性粒子の表面と相性の良い窒素、リン、イオウ等の元素を含有している界面活性剤が好ましく、例えば、窒素含有ブロックコポリマー、燐酸塩、ポリビニルピロリドン等が挙げられる。
Hereinafter, each step will be described in detail.
<First step>
First, spherical magnetic particles having an average particle size of 0.5 μm or less are dispersed in a solution containing a surfactant to obtain a slurry.
The composition of the magnetic particles is exactly the same as the composition of the tabular magnetic particles described above.
As the surfactant, a surfactant containing an element such as nitrogen, phosphorus or sulfur that is compatible with the surface of the magnetic particles is preferable, and examples thereof include a nitrogen-containing block copolymer, a phosphate, and polyvinylpyrrolidone.
 この界面活性剤を溶解させる溶媒としては、磁性粒子に含まれる金属元素の酸化を防止する必要があることから、有機溶媒が好ましく、特に、キシレン、トルエン、シクロペンタノン、シクロヘキサノン等の非極性有機溶媒が好ましい。 As the solvent for dissolving the surfactant, an organic solvent is preferable because it is necessary to prevent oxidation of the metal element contained in the magnetic particles, and in particular, nonpolar organic materials such as xylene, toluene, cyclopentanone, and cyclohexanone. A solvent is preferred.
 次いで、このスラリー及び分散媒体を、密閉可能な容器内に、このスラリー及び分散媒体の合計の体積が容器内の体積と同じくなるように充填し、このスラリーを分散媒体と共に密閉状態にて撹拌し、球状の磁性粒子同士を変形及び融着させて平板状磁性体粒子とする。 Next, the slurry and the dispersion medium are filled in a sealable container so that the total volume of the slurry and the dispersion medium is the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state. Then, spherical magnetic particles are deformed and fused together to form flat magnetic particles.
 分散媒体としては、球状の磁性粒子よりも硬度が高いことが必要であり、例えば、アルミニウム、鋼(スチール)、ステンレススチール、鉛等の金属球、アルミナ、ジルコニア、二酸化ケイ素、チタニア等の金属酸化物あるいは無機酸化物からなる球状焼結体、窒化ケイ素等の無機窒化物からなる球状焼結体、炭化ケイ素等の無機炭化物からなる球状焼結体、ソーダガラス、鉛ガラス、高比重ガラス等からなるビーズと称される球状粒子が挙げられ、中でも、比重6以上のジルコニア、鋼(スチール)、ステンレススチール等が効率の点から好ましい。 The dispersion medium must be harder than spherical magnetic particles, for example, metal spheres such as aluminum, steel (steel), stainless steel, and lead, and metal oxides such as alumina, zirconia, silicon dioxide, and titania. Spherical sintered body made of an inorganic oxide such as silicon nitride, spherical sintered body made of inorganic nitride such as silicon nitride, spherical sintered body made of inorganic carbide such as silicon carbide, soda glass, lead glass, high specific gravity glass, etc. In particular, zirconia, steel (steel), stainless steel and the like having a specific gravity of 6 or more are preferable from the viewpoint of efficiency.
 球状の磁性粒子への機械的応力の付加は、分散媒体の衝突の際の衝撃によって行われるので、分散媒体の衝突回数が増加するにつれて、球状の磁性粒子同士の変形及び融着性が向上する。
 このように、分散媒体の平均粒径が小さいほど、単位体積当たりに存在する個数が増加し、衝突回数も多くなり、変形及び融着性も向上するが、一方、分散媒体の平均粒径が小さすぎると、この分散媒体をスラリーから分離することが困難となる。したがって、分散媒体の平均粒径は、少なくとも0.03mm以上、好ましくは0.04mm以上であることが必要である。
 また、分散媒体の平均粒径が大き過ぎると、衝突回数が減少することから、球状の磁性粒子同士の変形及び融着性が低下する。したがって、分散媒体の平均粒径の上限値は3.0mmである。
Since the mechanical stress is applied to the spherical magnetic particles by an impact at the time of collision of the dispersion medium, the deformation and fusion properties of the spherical magnetic particles improve as the number of collisions of the dispersion medium increases. .
Thus, the smaller the average particle size of the dispersion medium, the more the number existing per unit volume, the greater the number of collisions, and the better the deformation and fusion properties. If it is too small, it will be difficult to separate the dispersion medium from the slurry. Therefore, the average particle size of the dispersion medium needs to be at least 0.03 mm or more, preferably 0.04 mm or more.
In addition, when the average particle size of the dispersion medium is too large, the number of collisions decreases, so that the deformation and fusion property between the spherical magnetic particles deteriorates. Therefore, the upper limit of the average particle diameter of the dispersion medium is 3.0 mm.
 密閉可能な容器としては、ディスク、スクリュー、羽根等の1軸回転体を高速回転することで、分散媒体をスラリーとともに高速回転する密閉容器が好ましい。
 この密閉容器は、単純な1軸回転方式であることから、大型化も容易であり、工業生産上も有利である。
 なお、上記の密閉可能な容器に、スラリーを容器内に導入・導出するための流入口及び流出口を設け、スラリーを密閉容器内に循環するようにしてもかまわない。この場合、予め分散媒体を密閉容器内に収納しておき、球状の磁性粒子と界面活性剤と溶媒とを混合したスラリーを流入口から投入して容器内に空間がないように充填し、流出口から排出されるスラリーを再度密閉容器内へ投入するようにすればよい。
As the container that can be sealed, a sealed container that rotates the uniaxial rotating body such as a disk, a screw, and a blade at a high speed together with the slurry by rotating at high speed is preferable.
Since this hermetic container is a simple uniaxial rotation system, it is easy to increase the size and is advantageous for industrial production.
Note that the above-described sealable container may be provided with an inlet and an outlet for introducing and discharging the slurry into and from the container, and the slurry may be circulated in the sealed container. In this case, the dispersion medium is previously stored in a sealed container, and a slurry in which spherical magnetic particles, a surfactant, and a solvent are mixed is introduced from the inlet and filled so that there is no space in the container. The slurry discharged from the outlet may be charged again into the sealed container.
 ここでは、スラリー及び分散媒体の上記の密閉容器内への充填量を、密閉容器内の体積と同一とする。換言すれば、スラリー及び分散媒体を、密閉容器内に隙間なく充填する。
 ここで、スラリー及び分散媒体を、密閉容器内に隙間なく充填する理由は、次のとおりである。
Here, the filling amount of the slurry and the dispersion medium into the above-mentioned closed container is the same as the volume in the closed container. In other words, the slurry and the dispersion medium are filled in the sealed container without gaps.
Here, the reason why the slurry and the dispersion medium are filled in the sealed container without any gap is as follows.
 図1は、上部が開放された開放容器151に投入された球状の磁性粒子152を含むスラリー153及び分散媒体154を、1軸回転体155により高速回転することで高速撹拌する様を示す図である。
 この図では、1軸回転体155が高速で回転すると、スラリー153及び分散媒体154の液面は、遠心力により中心軸近傍が低く、周縁部が高いすり鉢状となる。
 1軸回転体155により球状の磁性粒子152を含むスラリー153及び分散媒体154に加えられた機械的応力は、すり鉢状の空間に逃げていくので、開放容器151内全体で分散媒体154を介して球状の磁性粒子152に伝搬される機械的応力は不均一なものとなり、得られた平板状磁性粒子の厚みがばらつく要因となる。
 また、すり鉢状の空間の底部近傍(中心軸近傍)で平板状磁性体粒子となった磁性体粒子は、分散媒体と共にすり鉢状の空間に放出されて不規則な衝撃を受けることとなり、割れや欠け等が生じる虞がある。このような磁性体粒子の厚みのばらつきや割れや欠けは、VHF帯での複素透磁率の損失正接tanδμが増加する要因となっている。
FIG. 1 is a diagram showing a state in which a slurry 153 containing spherical magnetic particles 152 and a dispersion medium 154 charged into an open container 151 having an open top are stirred at high speed by being rotated at high speed by a uniaxial rotating body 155. is there.
In this figure, when the uniaxial rotating body 155 rotates at a high speed, the liquid surfaces of the slurry 153 and the dispersion medium 154 have a mortar shape in which the vicinity of the central axis is low and the peripheral edge is high due to centrifugal force.
Since the mechanical stress applied to the slurry 153 including the spherical magnetic particles 152 and the dispersion medium 154 by the uniaxial rotating body 155 escapes into the mortar-shaped space, the entire inside of the open container 151 passes through the dispersion medium 154. The mechanical stress propagated to the spherical magnetic particles 152 becomes non-uniform, which causes a variation in the thickness of the obtained tabular magnetic particles.
Also, the magnetic particles that have become tabular magnetic particles in the vicinity of the bottom of the mortar-shaped space (near the central axis) are discharged into the mortar-shaped space together with the dispersion medium and are subjected to irregular impacts. There is a risk of chipping or the like. Such variation in thickness, cracking, and chipping of the magnetic particles are factors that increase the loss tangent tan δμ of the complex permeability in the VHF band.
 図2は、密閉容器1511に投入された球状の磁性粒子152を含むスラリー153及び分散媒体154を、1軸回転体155により高速回転することで高速撹拌する様を示す図である。
 この図では、1軸回転体155が高速で回転しても、密閉容器1511内が球状の磁性粒子152を含むスラリー153及び分散媒体154により満たされているので、開放容器151に見られるようなすり鉢状の空間が生じる虞は無い。したがって、1軸回転体155により球状の磁性粒子152を含むスラリー153及び分散媒体154に加えられた機械的応力は、密閉容器1511内全体で分散媒体154を介して球状の磁性粒子152に均一に伝搬され、得られた平板状磁性体粒子の厚みがばらつく虞は無い。また、平板状となった磁性体粒子は、不規則な衝撃を受けることもなく、割れや欠け等が生じる虞もない。
FIG. 2 is a diagram showing that the slurry 153 containing the spherical magnetic particles 152 and the dispersion medium 154 charged in the sealed container 1511 are stirred at high speed by being rotated at high speed by the uniaxial rotating body 155.
In this figure, even when the uniaxial rotating body 155 rotates at a high speed, the inside of the sealed container 1511 is filled with the slurry 153 including the spherical magnetic particles 152 and the dispersion medium 154, so that it can be seen in the open container 151. There is no risk of creating a mortar-shaped space. Therefore, the mechanical stress applied to the slurry 153 including the spherical magnetic particles 152 and the dispersion medium 154 by the uniaxial rotating body 155 is uniformly applied to the spherical magnetic particles 152 via the dispersion medium 154 in the entire closed container 1511. There is no possibility that the thickness of the propagating and obtained tabular magnetic particles varies. Further, the magnetic particles having a flat plate shape are not subjected to an irregular impact, and there is no possibility that cracks, chips or the like are generated.
 1軸回転体155の回転数は、密閉容器1511の大きさにより決定される。例えば、内径が120mmの密閉容器1511の場合、球状の磁性粒子152を含むスラリー153及び分散媒体154の密閉容器1511の内壁近傍の流速が5m/秒以上が好ましく、より好ましくは8m/秒以上である。
 なお、密閉容器1511の内容積が小さいと、得られた平板状磁性体粒子に球状の磁性粒子152が残留する虞がある。残留した球状の磁性粒子152は、球状の磁性粒子152同士の接触、または球状の磁性粒子152と平板状磁性体粒子との接触により、磁気損失を増加させたり、平板状磁性体粒子の配向を阻害したりする虞がある。したがって、平板状磁性体粒子は、磁性粒子全体量の90質量%以上が好ましく、より好ましくは95質量%以上、さらに好ましくは99質量%以上であり、球状の磁性粒子152を実質的に含まないことが望ましい。
The number of rotations of the uniaxial rotating body 155 is determined by the size of the sealed container 1511. For example, in the case of a sealed container 1511 having an inner diameter of 120 mm, the flow rate of the slurry 153 containing the spherical magnetic particles 152 and the dispersion medium 154 near the inner wall of the sealed container 1511 is preferably 5 m / second or more, more preferably 8 m / second or more. is there.
If the internal volume of the sealed container 1511 is small, the spherical magnetic particles 152 may remain in the obtained flat magnetic particles. The remaining spherical magnetic particles 152 increase the magnetic loss or the orientation of the tabular magnetic particles due to contact between the spherical magnetic particles 152 or contact between the spherical magnetic particles 152 and the tabular magnetic particles. There is a risk of obstruction. Therefore, the tabular magnetic particles are preferably 90% by mass or more of the total amount of magnetic particles, more preferably 95% by mass or more, and still more preferably 99% by mass or more, and are substantially free of spherical magnetic particles 152. It is desirable.
 ここで、密閉容器1511の内容積が小さい場合に球状の磁性粒子152が残留する理由は、密閉容器1511の角や回転体5と密閉容器1511との接合部といった機械的応力が十分に伝わらないデッドスペースが相対的に大きくなるからと考えられる。そこで、密閉容器1511の内容積を大きくすると、相対的にデッドスペースが小さくなり、よって、球状粒子2に機械的応力が十分に伝わり、球状の磁性粒子同士の変形及び融着性が向上し、その結果、球状の磁性粒子152の残留が少なくなり、実質的に球状の磁性粒子152がなくなる。
 このように、実質的に球状の磁性粒子152が残留しなくなる密閉容器1511の体積は、1L以上が好ましく、より好ましくは5L以上である。
 以上により、球状の磁性粒子同士は、1軸回転体155により加えられた機械的応力により変形及び融着し、平板状磁性体粒子となる。
 次いで、この平板状磁性体粒子を分散媒体及び溶媒から分離する。
Here, when the internal volume of the sealed container 1511 is small, the reason why the spherical magnetic particles 152 remain is that the mechanical stress such as the corner of the sealed container 1511 and the joint between the rotating body 5 and the sealed container 1511 is not sufficiently transmitted. This is probably because the dead space becomes relatively large. Therefore, when the internal volume of the sealed container 1511 is increased, the dead space is relatively reduced, and therefore, the mechanical stress is sufficiently transmitted to the spherical particles 2 to improve the deformation and fusion between spherical magnetic particles, As a result, the residual spherical magnetic particles 152 are reduced, and the substantially spherical magnetic particles 152 are eliminated.
Thus, the volume of the sealed container 1511 in which substantially spherical magnetic particles 152 do not remain is preferably 1 L or more, more preferably 5 L or more.
As described above, the spherical magnetic particles are deformed and fused by the mechanical stress applied by the uniaxial rotating body 155 to become flat magnetic particles.
Next, the tabular magnetic particles are separated from the dispersion medium and the solvent.
 なお、平板状磁性体粒子を作製するのに使用した溶媒と、後に混合する絶縁性材料との相溶性を考慮して、適宜スラリーの乾燥工程を実施すればよい。
 具体的には、平板状磁性体粒子を作製するのに用いた溶媒と、絶縁性材料の相溶性が悪い場合には、上記溶媒が4質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下となるまで乾燥処理することが好ましい。一方、平板状磁性体粒子を作製するのに用いた溶媒と絶縁性材料の相溶性が良い場合には、スラリーの乾燥工程を行わず、平板状磁性体粒子を溶媒中に分散させたスラリー状態のまま第2の工程に移行してもよい。
 乾燥方法は、平板状磁性体粒子作製後のスラリーから溶媒を除去することができれば特に限定されず、加熱乾燥、真空乾燥、フリーズドライ等が挙げられるが、乾燥効率の点で真空乾燥が好ましい。また、乾燥効率を高めるために、乾燥工程の前に、固液分離等の手法によりある程度の溶媒を除去してもよい。固液分離の方法としては、フィルタープレスや吸引ろ過等のろ過操作や、デカンターや遠心分離機による遠心分離操作等、通常の方法を用いればよい。
Note that a slurry drying step may be appropriately performed in consideration of the compatibility between the solvent used for producing the tabular magnetic particles and an insulating material to be mixed later.
Specifically, when the compatibility of the insulating material and the solvent used to produce the tabular magnetic particles is poor, the solvent is 4% by mass or less, preferably 2% by mass or less, more preferably It is preferable to dry-process until it becomes 1 mass% or less. On the other hand, when the compatibility of the insulating material and the solvent used to produce the tabular magnetic particles is good, the slurry state in which the tabular magnetic particles are dispersed in the solvent without performing the slurry drying step You may transfer to a 2nd process as it is.
The drying method is not particularly limited as long as the solvent can be removed from the slurry after preparing the flat magnetic particles, and examples thereof include heat drying, vacuum drying, freeze drying, and the like, but vacuum drying is preferable in terms of drying efficiency. In order to increase the drying efficiency, some solvent may be removed by a method such as solid-liquid separation before the drying step. As a solid-liquid separation method, a normal method such as a filtration operation such as a filter press or suction filtration, or a centrifugal separation operation using a decanter or a centrifuge may be used.
<第2の工程>
 上述の平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする。
 ここで、絶縁材料としては、上記で説明した絶縁材料と全く同様のものを用いることができるので、説明を省略する。
<Second step>
The flat magnetic particles described above are dispersed and mixed in a solution obtained by dissolving an insulating material in a solvent to obtain a molding material.
Here, as the insulating material, the same insulating material as described above can be used, and thus the description thereof is omitted.
 また、溶媒としては、上記の絶縁材料を溶解させることができるものであればよく、特に限定されないが、例えば、メタノール、エタノール、2-プロパノール、ブタノール、オクタノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒は、1種のみ単独で用いてもよく、2種以上を混合して用いてもよい。 The solvent is not particularly limited as long as it can dissolve the above insulating material. For example, alcohols such as methanol, ethanol, 2-propanol, butanol, octanol, ethyl acetate, butyl acetate , Ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as γ-butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol mono Ethers such as butyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone, methyl ethyl Preferred are ketones such as ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, and amides such as dimethylformamide, N, N-dimethylacetoacetamide and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
 分散混合方法としては、特に制限はないが、遊星ミル、サンドミル、ボールミル等の攪拌装置を用いることが好ましい。混合条件は、平板状磁性体粒子同士が凝集しないよう、適宜調整して実施すればよい。 The dispersion mixing method is not particularly limited, but it is preferable to use a stirring device such as a planetary mill, a sand mill, or a ball mill. What is necessary is just to adjust mixing conditions suitably so that tabular magnetic body particles may not aggregate.
<第3の工程>
 上記の成形材料を成形または基材上に塗布して成形体を作製し、次いで、得られた成形体を乾燥し、硬化させる。
 成形方法としては、公知の成形方法、例えば、プレス法、ドクターブレード法、射出成形法等が好適である。この成形方法を用いて任意の形状のシート状またはフィルム状に成形することにより、ドライフィルムを作製することができる。
 複合磁性体が積層体の場合には、ドクターブレード法によりシート状またはフィルム状に成形することが望ましい。
 上記の成形材料は、粘度調整を行う必要がある場合には、溶媒を揮発させて濃縮後に成形を行う。必要があれば、成形材料を基材上に塗布した後、乾燥前に磁場の配向により平板状磁性体粒子をシートまたはフィルムと平行な方向に配向する配向処理を行えばよい。
 硬化条件としては、還元性雰囲気中または真空中にて、熱処理またはホットプレスが好適である。これにより、本実施形態の複合磁性体が得られる。
<Third step>
The molding material is molded or applied onto a substrate to produce a molded body, and then the obtained molded body is dried and cured.
As the molding method, a known molding method, for example, a press method, a doctor blade method, an injection molding method or the like is suitable. A dry film can be produced by forming a sheet or film of any shape using this forming method.
When the composite magnetic body is a laminate, it is preferably formed into a sheet or film by the doctor blade method.
When it is necessary to adjust the viscosity, the molding material is molded after the solvent is volatilized and concentrated. If necessary, after the molding material is applied on the substrate, an orientation treatment for orienting the tabular magnetic particles in a direction parallel to the sheet or film by orientation of the magnetic field may be performed before drying.
As curing conditions, heat treatment or hot pressing is preferable in a reducing atmosphere or in a vacuum. Thereby, the composite magnetic body of this embodiment is obtained.
 なお、平板状磁性体粒子と熱硬化性樹脂あるいは熱可塑性樹脂とを加熱混錬により混合分散したものを成形することによっても、本実施形態の複合磁性体が得られる。
 加熱混練方法としては、公知の方法、例えば、加圧ニーダー、2軸式ニーダー、ブラストミル等で混合分散した混練物を作製することができる。この混練物の成形方法としては、公知の方法、例えば、加熱プレス成形、押出成形、射出成形等で成形体を作製することができる。これらの方法の中でも、平板状磁性体粒子を樹脂中に配向させるためには、平面状に引き伸ばす加熱プレス成形が好ましい。引き伸ばす際の粘度調整のために、可塑剤の添加、平板状磁性体粒子の表面処理を行うことも好ましい。必要があれば、加熱して流動性を維持した状態で、磁場の配向により平板状磁性体粒子を配向する処理を行うことが好ましい。
Note that the composite magnetic body of the present embodiment can also be obtained by molding a mixture of flat magnetic particles and thermosetting resin or thermoplastic resin by heat kneading.
As a heat-kneading method, a kneaded material mixed and dispersed by a known method such as a pressure kneader, a biaxial kneader, or a blast mill can be prepared. As a molding method of the kneaded product, a molded body can be produced by a known method such as hot press molding, extrusion molding, injection molding or the like. Among these methods, in order to orient the flat magnetic particles in the resin, hot press molding that extends in a planar shape is preferable. In order to adjust the viscosity at the time of stretching, it is also preferable to add a plasticizer and perform surface treatment of the tabular magnetic particles. If necessary, it is preferable to perform a treatment for orienting the tabular magnetic particles by the orientation of the magnetic field in a state where the fluidity is maintained by heating.
[第2の複合磁性体]
 本実施形態の複合磁性体は、上記平板状磁性体粒子を絶縁材料中に分散してなる複合磁性体であり、この複合磁性体の気孔率は20%以下である。
[Second composite magnetic body]
The composite magnetic body of the present embodiment is a composite magnetic body obtained by dispersing the flat magnetic particles in an insulating material, and the porosity of the composite magnetic body is 20% or less.
 ここで、複合磁性体の気孔率は、下記の式(4)により求めることができる。
     気孔率=(1-実測密度/理論密度)×100 ……(4)
 この複合磁性体の理論密度は、平板状磁性体粒子の理論密度と絶縁材料の理論密度(≒実測密度)を基に、平板状磁性体粒子と絶縁材料との混合比率を考慮して算出される。
 また、平板状磁性体粒子の理論密度を算出する方法としては、平板状磁性体粒子のX線回折図形から格子定数を算出し、この格子定数と結晶構造を基に理論密度値を算出する方法がある。
Here, the porosity of the composite magnetic body can be obtained by the following equation (4).
Porosity = (1−Measured density / Theoretical density) × 100 (4)
The theoretical density of this composite magnetic body is calculated in consideration of the mixing ratio of the tabular magnetic particles and the insulating material based on the theoretical density of the tabular magnetic particles and the theoretical density of the insulating material (≈ actually measured density). The
Further, as a method of calculating the theoretical density of the tabular magnetic particles, a method of calculating a lattice constant from an X-ray diffraction pattern of the tabular magnetic particles and calculating a theoretical density value based on the lattice constant and the crystal structure. There is.
 一方、絶縁材料の実測密度を算出する方法としては、例えば、絶縁材料が樹脂の場合には、樹脂のみを硬化させて外形寸法と質量を測定し、これらの測定値から実測密度を算出する方法がある。
 また、複合磁性体の実測密度を算出する方法としては、例えば、外形寸法と質量を測定し、これらの測定値から実測密度を算出する方法、ピクノメーター法で測定した値を用いる方法がある。
On the other hand, as a method for calculating the measured density of the insulating material, for example, when the insulating material is resin, only the resin is cured and the outer dimensions and mass are measured, and the measured density is calculated from these measured values. There is.
In addition, as a method for calculating the actual density of the composite magnetic body, for example, there are a method of measuring the external dimensions and mass, a method of calculating the actual density from these measured values, and a method of using a value measured by the pycnometer method.
 この複合磁性体は、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7以上、複素誘電率の実部εr’は15以上、(μr’・εr’)-1/2は0.1以下、(μr’/εr’)1/2は0.5以上かつ1以下であることが好ましい。
 この複合磁性体では、複素透磁率の実部μr’及び複素誘電率εr’を上記範囲とすることにより、本実施形態の複合磁性体を備えた電子部品や電子機器は、小型化が可能となり、インピーダンスマッチングによる電力損失を抑制することができる。
In this composite magnetic body, the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more, the real part εr ′ of the complex permittivity is 15 or more, and (μr ′ · εr ′) −1/2 is 0.1 or less and (μr ′ / εr ′) 1/2 are preferably 0.5 or more and 1 or less.
In this composite magnetic body, by setting the real part μr ′ of the complex permeability and the complex dielectric constant εr ′ within the above ranges, the electronic component or electronic device including the composite magnetic body of the present embodiment can be reduced in size. The power loss due to impedance matching can be suppressed.
 以下、この複合磁性体においては、上記の複素透磁率の実部μr’、複素誘電率の実部εr’、(μr’・εr’)-1/2及び(μr’/εr’)1/2の値として上記の範囲が好ましい理由を、この複合磁性体をアンテナに装荷した場合を例に取り詳細に説明する。
 なお、同様の効果は、上記のアンテナ以外の高周波を用いた電子部品全てで得られる。
Hereinafter, in this composite magnetic body, the real part μr ′ of the complex permeability, the real part εr ′ of the complex permittivity, (μr ′ · εr ′) −1/2 and (μr ′ / εr ′) 1 / The reason why the above range is preferable as the value of 2 will be described in detail, taking as an example the case where this composite magnetic body is loaded on an antenna.
The same effect can be obtained with all electronic components using high frequencies other than the antenna.
 まず、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7以上が好ましく、より好ましくは9以上である。ここで、μr’を7以上とした理由は、複素誘電率の実部εr’は通常15以上の大きな値を示すので、μr’を7未満とした場合には、μr’がεr’と比べて極端に小さな値となり、特性インピーダンスの不一致による電力損失が大きくなるからである。
 このμr’の上限値は特に制限されないが、実際に製造可能な平板状磁性体粒子のアスペクト比や含有率等から20以下が好ましく、15以下がより好ましい。
First, the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is preferably 7 or more, more preferably 9 or more. Here, the reason why μr ′ is set to 7 or more is that the real part εr ′ of the complex dielectric constant usually shows a large value of 15 or more. Therefore, when μr ′ is set to less than 7, μr ′ is smaller than εr ′. This is because the power loss due to the mismatch of the characteristic impedance is increased.
The upper limit of this μr ′ is not particularly limited, but is preferably 20 or less, more preferably 15 or less, from the aspect ratio, content, etc. of the tabular magnetic particles that can actually be produced.
 複素誘電率の実部εr’は15以上が好ましく、より好ましくは20以上である。ここで、εr’を15以上とした理由は、上記の式(1)にしたがってアンテナの小型化を達成するために有効な値であるからである。 The real part εr ′ of the complex dielectric constant is preferably 15 or more, more preferably 20 or more. Here, the reason why εr ′ is set to 15 or more is that it is an effective value for achieving miniaturization of the antenna according to the above equation (1).
 この複合磁性体では、μr’及びεr’の値を上記の範囲とした場合、さらに(μr’・εr’)-1/2は0.1以下であることが好ましい。その理由は以下のとおりである。
 この(μr’・εr’)-1/2の値は、式(1)に示したとおり、複合磁性体中の高周波波長の真空中の波長に対する短縮率である。なお、真空中の波長と通常の大気中の波長は、ほぼ等しい値を示す。
In this composite magnetic body, it is preferable that (μr ′ · εr ′) −1/2 is 0.1 or less when the values of μr ′ and εr ′ are in the above ranges. The reason is as follows.
The value of (μr ′ · εr ′) −1/2 is the shortening rate of the high frequency wavelength in the composite magnetic material with respect to the wavelength in vacuum, as shown in the equation (1). In addition, the wavelength in vacuum and the wavelength in normal air show a substantially equal value.
 一般に、アンテナは、通常は波長の1/2あるいは1/4の長さの導線等からなるアンテナ導体により構成されている。周波数の低い長波長領域、特に70MHzから500MHzまでの周波数帯域では波長は60cm以上であり、アンテナ導体の長さが30cm以上または15cm以上と、アンテナ自体が大きなものになってしまう。そこで、整合回路を用いて長い波長の信号を電子回路と整合して送受信しているが、アンテナの長さを短くした場合は、アンテナ導体上の電流量が少なくなるために、アンテナが送受信できる周波数帯域が狭くなったり、アンテナの放射効率が低下したりする等の問題が生じる。特に、アンテナの長さを波長の1/10以下にした場合には、電波の送受信が困難となり、実用上問題となる。 In general, an antenna is usually composed of an antenna conductor made of a conducting wire having a length of 1/2 or 1/4 of a wavelength. In the long wavelength region where the frequency is low, particularly in the frequency band from 70 MHz to 500 MHz, the wavelength is 60 cm or more, and the length of the antenna conductor is 30 cm or more or 15 cm or more, and the antenna itself becomes large. Therefore, a matching circuit is used to transmit and receive signals with a long wavelength in alignment with the electronic circuit. However, when the antenna length is shortened, the amount of current on the antenna conductor is reduced, so that the antenna can transmit and receive. Problems such as a narrow frequency band and a decrease in antenna radiation efficiency occur. In particular, when the length of the antenna is set to 1/10 or less of the wavelength, transmission / reception of radio waves becomes difficult, which is a practical problem.
 そこで、(μr’・εr’)-1/2が0.1以下の複合磁性体をアンテナに装荷すれば、複合磁性体上では、理論的には、高周波波長はほぼ1/10以下に短縮される。そのため整合回路を用いたときのように、アンテナが送受信できる周波数帯域を狭くさせたり、アンテナの放射効率を低下させたりすることなくアンテナの大きさを小型化することが可能となる。 Therefore, if a composite magnetic body having (μr ′ · εr ′) −1/2 of 0.1 or less is loaded on the antenna, the high-frequency wavelength is theoretically reduced to about 1/10 or less on the composite magnetic body. Is done. For this reason, the size of the antenna can be reduced without narrowing the frequency band in which the antenna can transmit and receive or reducing the radiation efficiency of the antenna, as in the case of using a matching circuit.
 上記の(μr’/εr’)1/2は、0.5以上かつ1以下であることが好ましい。その理由は以下のようである。
 この(μr’/εr’)1/2の値は、上記の式(2)に示したとおり、複合磁性体の特性インピーダンスZと真空の特性インピーダンスZとの比(Z/Z)であるから、複合磁性体の特性インピーダンスZは真空の特性インピーダンスZの(μr’/εr’)1/2倍となる。。
The above (μr ′ / εr ′) 1/2 is preferably 0.5 or more and 1 or less. The reason is as follows.
The value of (μr ′ / εr ′) 1/2 is the ratio (Z g / Z 0 ) between the characteristic impedance Z g of the composite magnetic material and the characteristic impedance Z 0 of the vacuum as shown in the above formula (2). Therefore, the characteristic impedance Z g of the composite magnetic material is (μr ′ / εr ′) ½ times the vacuum characteristic impedance Z 0 . .
 通常、複合磁性体のμr’はεr’より小さいので、複合磁性体の特性インピーダンスZは、大気の特性インピーダンスZ(≒真空の特性インピーダンスZ)の値よりも小さなものとなる。なお、高周波信号は、特性インピーダンスの大きな領域から小さな領域へ伝播する際に、反射や吸収が生じて減衰することが知られている。 Usually, μr ′ of the composite magnetic body is smaller than εr ′, and therefore the characteristic impedance Z g of the composite magnetic body is smaller than the value of the atmospheric characteristic impedance Z A (≈vacuum characteristic impedance Z 0 ). It is known that a high-frequency signal is attenuated by reflection or absorption when propagating from a region having a large characteristic impedance to a region having a small characteristic impedance.
 そこで、複合磁性体の特性インピーダンスZが大気の特性インピーダンスZより50%以上も小さくなる場合には、高周波の減衰率は極めて大きくなり、実用上問題となる。そこで、(μr’/εr’)1/2の値を0.5以上とすると、大気から複合磁性体に電磁波が伝播する際に、特性インピーダンスの変化を50%以内に抑えることができる。したがって、高周波信号の減衰を抑制することができるのである。また、複合磁性体の特性インピーダンスZが、大気のインピーダンスZより大きくなる場合には、これらの特性インピーダンスの差がわずかでも電磁波が大きく減衰する。したがって、(μr’/εr’)1/2の値は1以下であることが好ましい。 Therefore, when the characteristic impedance Z g of the composite magnetic body also reduced 50% or more than the characteristic impedance Z A of the atmosphere, high frequency attenuation rate becomes extremely large, and practical problems. Therefore, when the value of (μr ′ / εr ′) 1/2 is 0.5 or more, the change in characteristic impedance can be suppressed to 50% or less when electromagnetic waves propagate from the atmosphere to the composite magnetic body. Therefore, the attenuation of the high frequency signal can be suppressed. Further, the characteristic impedance Z g of the composite magnetic body, if greater than the impedance Z A of the atmosphere, the electromagnetic wave difference even slight these characteristic impedances is greatly attenuated. Therefore, the value of (μr ′ / εr ′) 1/2 is preferably 1 or less.
 この複合磁性体の複素透磁率の損失正接tanδμは0.05以下が好ましく、より好ましくは0.04以下である。また、この複合磁性体の複素誘電率の損失正接tanδε(以下、単にtanδεと略記する場合がある)は0.1以下が好ましく、より好ましくは0.07以下である。
 このように、tanδμ及びtanδεの値が、それぞれ好ましい値を超えた場合には、複合磁性体内にて高周波が複素透磁率の虚数部μr’’あるいは複素誘電率の虚数部εr’’に対応する部分だけ吸収されて熱に変わるので、高周波信号のエネルギーが減衰する上に、S/N比の低下や発熱等の問題が生じる虞があるので好ましくない。
The complex magnetic substance has a complex magnetic permeability loss tangent tan δμ of preferably 0.05 or less, and more preferably 0.04 or less. Further, the loss tangent tan δε (hereinafter sometimes simply referred to as tan δε) of the complex dielectric constant of the composite magnetic material is preferably 0.1 or less, and more preferably 0.07 or less.
As described above, when the values of tan δμ and tan δε exceed preferable values, the high frequency corresponds to the imaginary part μr ″ of the complex permeability or the imaginary part εr ″ of the complex permittivity in the composite magnetic body. Since only the portion is absorbed and changed to heat, the energy of the high-frequency signal is attenuated, and there is a possibility that problems such as a decrease in S / N ratio and heat generation may occur.
 現状では、70MHzから500MHzまでの周波数帯域では、電磁波の波長が長いことによりアンテナの小型化が難しく、したがって、携帯用電話機、携帯情報端末、多機能型携帯用情報機器等のような特に小型化の要求される用途では、ホィップアンテナを筐体の数倍の長さに伸ばして使用したり、イヤホンコードをアンテナとして代用せざるを得ない。 At present, in the frequency band from 70 MHz to 500 MHz, it is difficult to reduce the size of the antenna due to the long wavelength of the electromagnetic wave. Therefore, particularly downsizing such as a portable telephone, a portable information terminal, a multifunctional portable information device, etc. In applications that require this, it is necessary to extend the hop antenna to a length several times that of the casing, or substitute the earphone cord as an antenna.
 一方、本実施形態の複合磁性体では、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’等の諸特性が上記の範囲を満足すれば、70MHzから500MHzまで、好ましくは90MHzから220MHzまでの周波数帯域で使用される電子部品や電子機器、例えば、携帯用電話機、携帯情報端末、多機能型携帯用情報機器等の通信装置のアンテナにおいても、小型化と電力損失の低減を両立させることができる。
 さらに、500MHzまでの周波数帯域の場合には、500MHzを超える周波数帯域の場合と比べて、tanδμ及びtanδεが低くなるので、アンテナの利得が高くなり、好ましい。
On the other hand, in the composite magnetic body of this embodiment, if various characteristics such as the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz satisfy the above range, 70 MHz to 500 MHz, preferably 90 MHz to 220 MHz. Even in electronic devices and electronic devices used in frequency bands up to, for example, antennas for communication devices such as portable telephones, portable information terminals, and multifunctional portable information devices, both miniaturization and reduction of power loss are achieved. be able to.
Furthermore, in the case of a frequency band up to 500 MHz, tan δμ and tan δε are lower than in the case of a frequency band exceeding 500 MHz, which is preferable because the gain of the antenna is increased.
 本実施形態の複合磁性体では、上記平板状磁性体粒子を絶縁材料中に分散させることで、得られた複合磁性体の気孔率を20%以下とすることにより、複合磁性体のμr’を向上させるが、εr’をほとんど変化させない。これにより、この複合磁性体が適用される電子部品や電子機器、例えば、携帯用電話機、携帯情報端末、多機能型携帯用情報機器等の通信装置のアンテナを小型化させることができ、インピーダンスマッチングによる電力損失を抑制することができる。
 このような効果が得られるメカニズムとしては、次のように考えられる。
In the composite magnetic body of this embodiment, the flat magnetic particles are dispersed in an insulating material, thereby reducing the porosity of the obtained composite magnetic body to 20% or less, thereby reducing the μr ′ of the composite magnetic body. Although improved, εr ′ is hardly changed. As a result, the antenna of a communication device such as an electronic component or an electronic device to which the composite magnetic material is applied, for example, a portable telephone, a portable information terminal, or a multifunctional portable information device can be reduced in size, and impedance matching can be performed. The power loss due to can be suppressed.
The mechanism for obtaining such an effect is considered as follows.
 複合磁性体中の気孔率が増大すると、複合磁性体の単位体積当たりの平板状磁性体粒子の量が少なくなるので、μr’は小さくなる。一方、気孔の表面は絶縁材料と同様に平板状磁性体粒子との界面で静電容量を有するので、気孔率が高くなったとしてもεr’の値はほとんど変化しない。 When the porosity in the composite magnetic material increases, the amount of tabular magnetic particles per unit volume of the composite magnetic material decreases, so μr ′ decreases. On the other hand, since the surface of the pores has a capacitance at the interface with the tabular magnetic particles as in the case of the insulating material, the value of εr ′ hardly changes even when the porosity is increased.
 また、複合磁性体中の気孔率が減少すると、複合磁性体の単位体積当たりの磁性体粒子の量が多くなるので、μr’は大きくなる。一方、上述したとおり、εr’の値は気孔率の影響をほとんど受けないので、εr’の値はほぼ同じ値となる。
 すなわち、複合磁性体中の気孔率を減少させることにより、μr’の値は大きくなるが、εr’の値は殆ど変化しないので、μr’の値とεr’の値との差は小さくなる。よって、平均アスペクト比(長径/厚み)が5以上の平板状磁性体粒子を絶縁材料中に分散させた複合磁性体の気孔率を20%以下とすることで、この複合磁性体を備えた電子部品や電子機器を小型化させることが可能であり、インピーダンスマッチングによる電力損失を抑制することができる。
Further, when the porosity in the composite magnetic body decreases, the amount of magnetic particles per unit volume of the composite magnetic body increases, so μr ′ increases. On the other hand, as described above, since the value of εr ′ is hardly affected by the porosity, the value of εr ′ is almost the same value.
That is, by decreasing the porosity in the composite magnetic material, the value of μr ′ increases, but the value of εr ′ hardly changes, so the difference between the value of μr ′ and the value of εr ′ decreases. Therefore, by setting the porosity of a composite magnetic body in which flat magnetic particles having an average aspect ratio (major axis / thickness) of 5 or more are dispersed in an insulating material to 20% or less, an electron provided with this composite magnetic body It is possible to reduce the size of components and electronic devices, and to suppress power loss due to impedance matching.
 なお、複合磁性体の気孔率を減少させる方法としては、複合磁性体の気孔率を20%以下に減少させることができる方法であればよく、特に制限されない。例えば、平板状磁性体粒子の絶縁材料への分散性を向上させることで、平板状磁性体粒子同士の凝集を防ぐ方法、硬化剤の種類や量の最適化により絶縁材料の硬化性を向上させる方法、流動性の高い絶縁材料を選定し、絶縁材料が平板状磁性体粒子と平板状磁性体粒子の間の間隙に進入し易くする方法、得られた複合磁性体を加圧することで内部の気孔を減少させる方法等、さらには、これらの方法を組み合わせた方法等が挙げられる。 The method for reducing the porosity of the composite magnetic material is not particularly limited as long as it can reduce the porosity of the composite magnetic material to 20% or less. For example, by improving the dispersibility of the tabular magnetic particles in the insulating material, the curability of the insulating material is improved by optimizing the type and amount of the curing agent and the method for preventing aggregation of the tabular magnetic particles. A method, a method of selecting an insulating material having high fluidity, and a method in which the insulating material easily enters the gap between the tabular magnetic particles and the tabular magnetic particles. Examples thereof include a method for reducing pores, and a combination of these methods.
<絶縁材料>
 絶縁材料は、絶縁性の材料であればよく、上記第1の複合磁性体の項目で説明した絶縁材料と全く同様のものを用いることができる。すなわち、本実施形態の複合磁性体を携帯電話用アンテナや携帯情報端末用アンテナとして用いる場合には、機械的強度が高く、吸湿性が低く、しかも形状加工性に優れていることが好ましい。このような絶縁材料としては、例えば、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ノルボルネン樹脂、ABS樹脂、ポリスチレン樹脂等の熱硬化性樹脂または熱可塑性樹脂が好適に用いられる。これらの樹脂は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Insulating material>
The insulating material only needs to be an insulating material, and the same insulating material as that described in the item of the first composite magnetic body can be used. That is, when the composite magnetic body of this embodiment is used as an antenna for a mobile phone or an antenna for a portable information terminal, it is preferable that the mechanical strength is high, the hygroscopic property is low, and the shape workability is excellent. Examples of such an insulating material include polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycyclohexane. Thermosetting resins or thermoplastic resins such as olefin resins, cyanate resins, polyphenylene ether resins, norbornene resins, ABS resins, and polystyrene resins are preferably used. These resins may be used alone or in combination of two or more.
 なかでも、主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する樹脂は、平板状磁性体粒子と絡まり難いことから平板状磁性体粒子の配向を阻害する虞が無く、しかも高いμr’が得られ易いので、好ましい。このような樹脂としては、例えば、ジシクロペンタジエン型樹脂が挙げられる。 Among them, a resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit is unlikely to be entangled with the tabular magnetic particles, and thus there is no risk of inhibiting the orientation of the tabular magnetic particles. High μr ′ is preferable because it is easy to obtain. An example of such a resin is a dicyclopentadiene type resin.
 このジシクロペンタジエン型樹脂のような硬い樹脂を用いる場合、複合磁性体の気孔率を低減させるために、このような硬い樹脂に伸縮性や可撓性を付与する絶縁性樹脂を混合させてもよい。この伸縮性や可撓性を付与する絶縁性樹脂としては、上述した樹脂から適宜選択して用いればよく、特に、液状エポキシ樹脂やビスフェノール型エポキシ樹脂が好ましい。 When using a hard resin such as this dicyclopentadiene type resin, in order to reduce the porosity of the composite magnetic material, an insulating resin that imparts stretchability and flexibility may be mixed with such a hard resin. Good. The insulating resin that imparts stretchability and flexibility may be appropriately selected from the above-described resins, and liquid epoxy resins and bisphenol type epoxy resins are particularly preferable.
 このジシクロペンタジエン型樹脂と上記の液状エポキシ樹脂やビスフェノール型エポキシ樹脂とを組み合わせて用いる場合には、ジシクロペンタジエン型樹脂の樹脂全体量に対する含有率を50質量%以上かつ90質量%以下とすることが好ましい。このジシクロペンタジエン型樹脂の含有率を上記範囲とすることで、平板状磁性体粒子の配向性が向上し、かつ高いμr’を得ることができる。
 さらに、伸縮性や可撓性を付与する絶縁性樹脂を10質量%以上かつ50質量%以下含有するので、平板状磁性体粒子同士の間隙に樹脂が進入し易くなり、複合磁性体の気孔の生成を抑制し、気孔率を低減させることができるので好ましい。
When this dicyclopentadiene type resin is used in combination with the above liquid epoxy resin or bisphenol type epoxy resin, the content of the dicyclopentadiene type resin with respect to the total amount of the resin is 50% by mass or more and 90% by mass or less. It is preferable. By setting the content of the dicyclopentadiene type resin in the above range, the orientation of the tabular magnetic particles can be improved and high μr ′ can be obtained.
Further, since the insulating resin imparting stretchability and flexibility is contained in an amount of 10% by mass or more and 50% by mass or less, the resin can easily enter the gap between the flat magnetic particles, and the pores of the composite magnetic material can be reduced. Since generation | occurrence | production can be suppressed and a porosity can be reduced, it is preferable.
[第2の複合磁性体の製造方法]
 次に、本実施形態の複合磁性体の製造方法について説明する。
 この複合磁性体の製造方法は、絶縁材料に上記平板状磁性体粒子を混合・分散させて成形材料を作製する工程と、得られた成形材料を所定の形状に成形する成形工程と、得られた成形体を乾燥・硬化させる乾燥・硬化工程とを有する。
[Method for producing second composite magnetic body]
Next, the manufacturing method of the composite magnetic body of this embodiment is demonstrated.
This method of manufacturing a composite magnetic body includes a step of mixing and dispersing the flat magnetic particles in an insulating material to produce a molding material, and a molding step of molding the obtained molding material into a predetermined shape. And a drying / curing step for drying / curing the molded body.
<成形材料の作製工程>
 この工程では、上記平板状磁性体粒子と、絶縁材料と、溶媒と、必要に応じて硬化剤とを混合して、平板状磁性体粒子を絶縁材料中に分散させた成形材料を作製する工程である。
<Molding material production process>
In this step, the step of producing a molding material in which the flat magnetic particles are dispersed in the insulating material by mixing the flat magnetic particles, the insulating material, the solvent, and a curing agent as necessary. It is.
 絶縁材料については、既に述べているので、説明を省略する。
 絶縁材料として熱硬化性樹脂を用いる場合、硬化剤の種類や添加量については、使用する熱硬化性樹脂の種類や量に応じて適宜調整すればよい。
 上記の熱硬化性樹脂としてエポキシ樹脂を用いる場合には、エポキシ基同士の縮合反応を促進させて、複合磁性体の成形体における硬化不良による気孔の発生を防止する点で第3アミンが好ましい。
Since the insulating material has already been described, the description thereof will be omitted.
When a thermosetting resin is used as the insulating material, the type and amount of the curing agent may be appropriately adjusted according to the type and amount of the thermosetting resin to be used.
In the case of using an epoxy resin as the thermosetting resin, a tertiary amine is preferable in that the condensation reaction between the epoxy groups is promoted to prevent generation of pores due to poor curing in the molded body of the composite magnetic body.
 第3アミンとしては、例えば、1-イソブチル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等が挙げられる。
 硬化剤の添加量としては、官能基の縮合反応を促進させる点を考慮すると、熱硬化性樹脂と硬化剤の全体の質量に対して0.5質量%以上かつ3質量%以下、添加させればよい。
Examples of the tertiary amine include 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. It is done.
In consideration of the point of promoting the condensation reaction of the functional group, the addition amount of the curing agent is 0.5% by mass or more and 3% by mass or less based on the total mass of the thermosetting resin and the curing agent. That's fine.
 溶媒としては、上記の絶縁材料を溶解させることができるものであればよく、特に制限はされないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類が好適に用いられる。
 これらの溶媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。特に、シクロヘキサノンやキシレン等の沸点の高い溶媒は、溶媒の揮発による成形材料の増粘を抑制することができるので好ましい。
The solvent is not particularly limited as long as it can dissolve the above-described insulating material. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, cyclohexanone, benzene, toluene, xylene, Aromatic hydrocarbons such as ethylbenzene, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl Ethers such as ether, dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc. Amides are preferably used.
These solvents may be used alone or in combination of two or more. In particular, a solvent having a high boiling point such as cyclohexanone or xylene is preferable because it can suppress the thickening of the molding material due to the volatilization of the solvent.
 溶媒は、成形材料中30質量%以上混合させるのが好ましく、より好ましくは35質量%以上である。
 溶媒を30質量%以上混合させることにより、得られた成形材料の粘度が低下するので、混合時に平板状磁性体粒子同士が凝集していた場合においても、凝集がほぐれて絶縁材料中における分散性が向上する。これにより、複合磁性体の気孔率を低減させることができる。
 なお、溶媒の量が多すぎると、後述する乾燥に時間がかかり、乾燥時に気孔が生成する虞があるので、溶媒の量は50質量%以下であることが好ましい。
The solvent is preferably mixed in an amount of 30% by mass or more in the molding material, and more preferably 35% by mass or more.
By mixing 30% by mass or more of the solvent, the viscosity of the obtained molding material is reduced. Therefore, even when the flat magnetic particles are aggregated during mixing, the aggregation is loosened and the dispersibility in the insulating material is reduced. Will improve. Thereby, the porosity of a composite magnetic body can be reduced.
In addition, when there is too much quantity of a solvent, since the drying mentioned later takes time and there exists a possibility that a pore may produce | generate at the time of drying, it is preferable that the quantity of a solvent is 50 mass% or less.
 この成形材料中の平板状磁性体粒子の含有率は、絶縁材料と硬化剤と平板状磁性体粒子の合計量に対して、10体積%以上かつ60体積%以下が好ましく、より好ましくは30体積%以上かつ50体積%以下である。
 ここで、平板状磁性体粒子の含有率が10体積%未満では、平板状磁性体粒子が少なすぎて複合磁性体としての磁気特性が低下してしまうので好ましくない。一方、この平板状磁性体粒子の含有率が60体積%を超えると、平板状磁性体粒子が多すぎてしまい、この平板状磁性体粒子と絶縁材料と硬化剤と溶媒とを含む成形材料の流動性が低下し、したがって、この成形材料を用いて成形する際の成形性が低下してしまうので、好ましくない。
The content of the tabular magnetic particles in the molding material is preferably 10% by volume or more and 60% by volume or less, more preferably 30% by volume with respect to the total amount of the insulating material, the curing agent, and the tabular magnetic particles. % To 50% by volume.
Here, if the content of the tabular magnetic particles is less than 10% by volume, the amount of the tabular magnetic particles is too small, and the magnetic properties as a composite magnetic body are deteriorated. On the other hand, when the content of the tabular magnetic particles exceeds 60% by volume, there are too many tabular magnetic particles, and a molding material containing the tabular magnetic particles, an insulating material, a curing agent, and a solvent is included. Since fluidity | liquidity falls and therefore the moldability at the time of shape | molding using this molding material will fall, it is unpreferable.
 これら平板状磁性体粒子と、絶縁材料と、溶媒と、必要に応じて硬化剤とを混合し、成形材料を得る。
 混合装置としては、これら平板状磁性体粒子、絶縁材料、硬化剤及び溶媒を均一に混合・分散させてスラリー状の成形材料とすることができればよく、特に制限はされないが、例えば、ロールミル、自公転式ミキサー、ホモジナイザー、超音波ホモジナイザー、撹拌機等が挙げられる。これらの装置で混合する場合、平板状磁性体粒子が凝集しすぎず、絶縁材料中に均一に分散させるように、混合条件を適宜調整すればよい。
These flat magnetic particles, an insulating material, a solvent, and a curing agent as necessary are mixed to obtain a molding material.
The mixing device is not particularly limited as long as the flat magnetic particles, the insulating material, the curing agent, and the solvent can be uniformly mixed and dispersed to form a slurry-like molding material. A revolving mixer, a homogenizer, an ultrasonic homogenizer, a stirrer and the like can be mentioned. When mixing with these apparatuses, the mixing conditions may be appropriately adjusted so that the tabular magnetic particles do not aggregate too much and are uniformly dispersed in the insulating material.
<成形工程>
 上記の工程で得られた成形材料を、所定の形状のシート状、フィルム状またはバルク状に成形する工程である。
 成形法としては、成形材料を一定の形状に成形することができ、かつ成形後の形状を保持することができればよく、特に制限されない。
 また、成形体の形状や大きさも特に制限はされず、例えば、シート状またはフィルム状に成形してもよく、直方体状等の厚みがある形状、例えばバルク状に成形してもよい。
<Molding process>
This is a step of molding the molding material obtained in the above-described step into a sheet, film or bulk having a predetermined shape.
The molding method is not particularly limited as long as the molding material can be molded into a certain shape and the shape after molding can be maintained.
Further, the shape and size of the molded body are not particularly limited, and for example, it may be molded into a sheet shape or a film shape, or may be molded into a shape having a thickness such as a rectangular parallelepiped shape, for example, a bulk shape.
 シート状またはフィルム状に成形する場合、シート状またはフィルム状の基体上に上記の成形材料を塗布することで容易に得ることができる。この方法は、量産性に優れているので好ましい。
 シート状またはフィルム状に成形する方法としては、ドクターブレード法、バーコート法、ダイコート法、プレス法等を挙げることができる。また、薄板状等の厚みがある形状に成形する場合、例えば、任意の形状の型に成形材料を流し込む方法等が挙げられる。
 また、複合磁性体を積層して積層構造体とする場合には、ドクターブレード法によりシート状またはフィルム状に成形した複合磁性体を積層することが好ましい。
When forming into a sheet form or a film form, it can obtain easily by apply | coating said molding material on a sheet-like or film-form base | substrate. This method is preferable because it is excellent in mass productivity.
Examples of the method for forming the sheet or film include a doctor blade method, a bar coating method, a die coating method, and a pressing method. Moreover, when shape | molding in the shape with thickness, such as a thin plate shape, the method etc. which pour molding material into the type | molds of arbitrary shapes are mentioned, for example.
Moreover, when laminating | stacking a composite magnetic body and it is set as a laminated structure, it is preferable to laminate | stack the composite magnetic body shape | molded by the doctor blade method in the sheet form or the film form.
<配向工程>
 上記の成形工程で得られた成形体中の平均アスペクト比(長径/厚み)が5以上の平板状磁性体粒子を一方向に配向させる工程である。
 上記の成形工程で得られた成形体が、所望のμr’を有している場合には、この配向工程は不要であるが、よりμr’が高い複合磁性体を得るためには、得られた成形体に磁場を印加して成形体中の平板状磁性体粒子を一方向に配向させる配向工程を施すことが好ましい。
<Orientation process>
This is a step of orienting flat magnetic particles having an average aspect ratio (major axis / thickness) of 5 or more in the molded body obtained in the molding step in one direction.
When the molded body obtained in the above molding step has a desired μr ′, this orientation step is unnecessary, but in order to obtain a composite magnetic body having a higher μr ′, it can be obtained. It is preferable to apply an orientation process in which a magnetic field is applied to the compact and the tabular magnetic particles in the compact are oriented in one direction.
 成形体中の平板状磁性体粒子を配向させる方法としては、成形体中の平板状磁性体粒子を一方向に配向させることができるように磁場を印加すればよく、特に制限されない。
 成形体中の平板状磁性体粒子に磁場を印加する場合、成形体中で磁力線が曲がると、平板状磁性体粒子を一方向に配向させることができない。したがって、磁場は発生する磁力線が成形体の表面に対して略平行となるように印加することが好ましい。
The method for orienting the tabular magnetic particles in the molded body is not particularly limited as long as a magnetic field is applied so that the tabular magnetic particles in the molded body can be oriented in one direction.
When a magnetic field is applied to the flat magnetic particles in the compact, if the magnetic field lines are bent in the compact, the flat magnetic particles cannot be oriented in one direction. Therefore, it is preferable to apply the magnetic field so that the generated magnetic field lines are substantially parallel to the surface of the molded body.
 印加する磁場の大きさは、100ガウス以上かつ3000ガウス以下であることが好ましい。磁場の大きさが100ガウス未満であると、磁場が小さすぎてしまい、成形体中の平板状磁性体粒子を十分に一方向に配向させることができない場合がある。一方、3000ガウスを超えると、磁場が大きすぎてしまい、この磁場により平板状磁性体粒子同士が凝集して絶縁材料と分離してしまう虞があり、得られた複合磁性体の磁気特性に不均一が生じる虞があるので好ましくない。 The magnitude of the applied magnetic field is preferably 100 gauss or more and 3000 gauss or less. If the magnitude of the magnetic field is less than 100 gauss, the magnetic field is too small, and the flat magnetic particles in the compact may not be sufficiently oriented in one direction. On the other hand, if it exceeds 3000 gauss, the magnetic field becomes too large, and the magnetic field may cause the tabular magnetic particles to aggregate and separate from the insulating material, which is inadequate for the magnetic properties of the obtained composite magnetic material. This is not preferred because there is a risk of uniformity.
<乾燥・硬化工程>
 上記の配向工程で平板状磁性体粒子を配向させた成形体を、乾燥・硬化させ、複合磁性体とする工程である。
 ここでは、平板状磁性体粒子が配向した成形体を乾燥させ、次いで、加熱あるいは紫外線照射等により絶縁材料を硬化させる。
 乾燥・硬化条件(処理温度、処理時間等)は、使用する絶縁材料や溶媒の種類に応じて適宜調整すればよい。
<Drying / curing process>
This is a step of drying and curing the molded body in which the tabular magnetic particles are oriented in the orientation step to obtain a composite magnetic material.
Here, the molded body in which the flat magnetic particles are oriented is dried, and then the insulating material is cured by heating or ultraviolet irradiation.
The drying / curing conditions (processing temperature, processing time, etc.) may be appropriately adjusted according to the type of insulating material and solvent used.
「プレス工程」
 上記の乾燥工程で得られた成形体の気孔率が20%以下であれば、このプレス工程は不要であるが、成形体の気孔率が20%を超える場合や、成形体の気孔率をさらに減少させたい場合には、上記の乾燥工程後に、成形体をプレスする工程を施すことが好ましい。プレス装置は公知のものを適宜用いればよい。
"Pressing process"
If the porosity of the molded body obtained in the drying step is 20% or less, this pressing step is unnecessary. However, when the porosity of the molded body exceeds 20%, the porosity of the molded body is further increased. When it is desired to decrease, it is preferable to perform a step of pressing the formed body after the drying step. A known press apparatus may be used as appropriate.
 プレス装置で成形体に圧力を加える際に、絶縁材料として樹脂を用いる場合には、効果的に気孔を減少させるために、樹脂の軟化温度以上かつ硬化開始温度以下で圧力を加えることが好ましい。
 プレス時の圧力は適宜調整すればよいが、5MPa~20MPa程度の圧力を加えるのが好ましい。
 以上により、本実施形態の複合磁性体を得ることができる。
When a resin is used as the insulating material when applying pressure to the molded body with a press apparatus, it is preferable to apply pressure at a temperature higher than the softening temperature of the resin and lower than the curing start temperature in order to effectively reduce pores.
The pressure during pressing may be adjusted as appropriate, but it is preferable to apply a pressure of about 5 MPa to 20 MPa.
As described above, the composite magnetic body of the present embodiment can be obtained.
[第3の複合磁性体]
 本実施形態の複合磁性体は、前記第1の複合磁性体において、前記絶縁材料が主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する第1の樹脂を含む複合磁性体である。
[Third composite magnetic body]
The composite magnetic body of the present embodiment is a composite magnetic body including the first composite magnetic body including a first resin in which the insulating material has a cyclic structure in a main chain and has a functional group that is polymerized in a monomer unit. is there.
<第1の樹脂>
 上記第1の樹脂は、主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する樹脂である。この樹脂としては、平板状磁性体粒子と混合した場合に低粘度で流動性のある成形材料が得られる樹脂であればよく、特に限定されないが、熱硬化性樹脂、熱可塑性樹脂、紫外線硬化樹脂を用いることができる。
<First resin>
The first resin is a resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units. The resin is not particularly limited as long as it is a resin capable of obtaining a molding material having low viscosity and fluidity when mixed with flat magnetic particles, and is not particularly limited, but is a thermosetting resin, a thermoplastic resin, or an ultraviolet curable resin. Can be used.
 このような樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシクロヘキサン樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ウレタン樹脂、ウレタン-アクリル樹脂、エポキシ-アクリル樹脂等が挙げられる。これらの樹脂は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、多くの溶媒に対して溶解性を有し、かつ粘度を調整し易い点で、熱硬化性樹脂が好ましく、熱硬化性樹脂の中でもエポキシ樹脂やポリシクロオレフィン樹脂が好ましい。
Such resins include epoxy resins, silicone resins, phenol resins, polyimide resins, polybenzoxazole resins, polyphenylene resins, polybenzocyclobutene resins, polyarylene ether resins, polycyclohexane resins, polyester resins, fluororesins, polyolefin resins. Polycycloolefin resin, cyanate resin, polyphenylene ether resin, polystyrene resin, acrylic resin, methacrylic resin, urethane resin, urethane-acrylic resin, epoxy-acrylic resin and the like. These resins may be used alone or in combination of two or more.
Among these, a thermosetting resin is preferable because it has solubility in many solvents and the viscosity can be easily adjusted, and among the thermosetting resins, an epoxy resin and a polycycloolefin resin are preferable.
 ここで、主鎖に環状構造を有する樹脂として、エポキシ樹脂を例に取り説明すると、主鎖に環状構造のみを有するジシクロペンタジエン型エポキシ樹脂(式(1))またはナフタレン型エポキシ樹脂(式(2))が好適に用いられる。 Here, as an example of an epoxy resin as a resin having a cyclic structure in the main chain, a dicyclopentadiene type epoxy resin (formula (1)) having only a cyclic structure in the main chain or a naphthalene type epoxy resin (formula ( 2)) is preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rは、水素またはメチル基である。
Figure JPOXMLDOC01-appb-C000002
In formula (2), R 1 is hydrogen or a methyl group.
 また、主鎖に直鎖構造を有する樹脂としては、クレゾールノボラック型エポキシ樹脂の直鎖にC=1~3の短い直鎖構造を有する構造の樹脂(式(3))が挙げられる。式(3)中、XはC=1~3の短いアルキル鎖を有する直鎖構造であり、C=1の直鎖構造が好ましい。 As the resin having a linear structure in the main chain, a resin having a short linear structure of C = 1 to 3 in the linear chain of the cresol novolac type epoxy resin (formula (3)) can be mentioned. In the formula (3), X is a linear structure having a short alkyl chain of C = 1 to 3, and a linear structure of C = 1 is preferable.
Figure JPOXMLDOC01-appb-C000003
 式(3)中、XはC=1~3のアルキル鎖、Rは、水素、分子量が15~180の範囲のアルキル基、アリール基のいずれかである。
 このXとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ベンジル基、トリル基等があげられる。
Figure JPOXMLDOC01-appb-C000003
In the formula (3), X is an alkyl chain of C = 1 to 3, R 2 is hydrogen, an alkyl group having a molecular weight in the range of 15 to 180, or an aryl group.
Examples of X include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, benzyl group and tolyl group.
 また、主鎖に直鎖構造を有する樹脂として、ジシクロペンタジエン型エポキシ樹脂の直鎖にC=1~3の短い直鎖構造を有する構造の樹脂(式(4))であっても用いることができる。
 式(4)中、XはC=1~3のアルキル鎖を有する直鎖構造である。
 このXとしては式(3)と同様、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ベンジル基、トリル基等があげられる。
In addition, as a resin having a linear structure in the main chain, a resin (formula (4)) having a short linear structure of C = 1 to 3 in the linear chain of a dicyclopentadiene type epoxy resin may be used. Can do.
In the formula (4), X is a linear structure having an alkyl chain of C = 1-3.
Examples of X include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a benzyl group, and a tolyl group as in the formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記構造の樹脂が平板状磁性体粒子に絡み難い樹脂であっても、高分子鎖が長くなると、複合磁性体の複素透磁率の実部μr’が小さくなる場合がある。したがって、上記の式(1)、式(3)、式(4)のnは0~3が好ましく、n=0がさらに好ましい。
 すなわち、モノマーを単独で用いるか、モノマー及びオリゴマーを適宜組み合わせて用いることが好ましい。
Even if the resin having the structure described above is a resin that is difficult to be entangled with the flat magnetic particles, the real part μr ′ of the complex magnetic permeability of the composite magnetic material may be reduced as the polymer chain becomes longer. Therefore, n in the above formulas (1), (3), and (4) is preferably 0 to 3, and more preferably n = 0.
That is, it is preferable to use a monomer alone or use a combination of a monomer and an oligomer as appropriate.
 この複合磁性体全体量における平板状磁性体粒子の含有率は、10質量%以上かつ60質量%以下が好ましく、30質量%以上かつ50質量%以下がより好ましい。
 ここで、平板状磁性体粒子の含有率が10質量%未満であると、平板状磁性体粒子の割合が少なすぎるために、得られる複合磁性体のμr’が低くなり過ぎてしまい、その結果、所望のμr’を確保することができなくなる虞があるので、好ましくない。
 一方、平板状磁性体粒子の含有率が60質量%を超えると、平板状磁性体粒子の割合が多すぎるために、相対的に樹脂の量が少な過ぎて、平板状磁性体粒子と樹脂とを混合した場合に、低粘度で流動性のある成形材料が得られず、後工程での平板状磁性体粒子の配向が不十分なものとなるので、好ましくない。
The content of the tabular magnetic particles in the total amount of the composite magnetic material is preferably 10% by mass to 60% by mass, and more preferably 30% by mass to 50% by mass.
Here, when the content of the tabular magnetic particles is less than 10% by mass, the ratio of the tabular magnetic particles is too small, and the μr ′ of the obtained composite magnetic body becomes too low, and as a result. This is not preferable because a desired μr ′ cannot be secured.
On the other hand, when the content of the tabular magnetic particles exceeds 60% by mass, the amount of the tabular magnetic particles is too large, so the amount of the resin is relatively small, and the tabular magnetic particles and the resin Is not preferable because a molding material having low viscosity and fluidity cannot be obtained, and the orientation of the tabular magnetic particles in the subsequent process becomes insufficient.
 この平板状磁性体粒子の複合磁性体中における配向方向と該平板状磁性体粒子の長軸方向とのなす角度は20°以下が好ましく、より好ましくは0°以上かつ15°以下、さらに好ましくは0°以上かつ10°以下である。
 平板状磁性体粒子の長軸方向が、この平板状磁性体粒子の配向方向に対して上記範囲内で傾斜していることにより、μr’が高い複合磁性体を得ることができる。
 ここで、「配向方向」とは、平板状磁性体粒子の長軸が配向している方向、すなわち複合磁性体の断面を観察したときに、複数の平板状磁性体粒子の長軸方向となす角度の標準偏差が最も小さくなる方向をいう。
The angle formed by the orientation direction of the tabular magnetic particles in the composite magnetic body and the major axis direction of the tabular magnetic particles is preferably 20 ° or less, more preferably 0 ° or more and 15 ° or less, and still more preferably. It is 0 degree or more and 10 degrees or less.
When the major axis direction of the tabular magnetic particles is inclined within the above range with respect to the orientation direction of the tabular magnetic particles, a composite magnetic body having a high μr ′ can be obtained.
Here, the “orientation direction” is the direction in which the long axes of the tabular magnetic particles are oriented, that is, the long axis direction of a plurality of tabular magnetic particles when the cross section of the composite magnetic body is observed. The direction in which the standard deviation of the angle is the smallest.
 この複合磁性体のμr’は、70MHzから500MHzまでの周波数帯域において、7以上が好ましく、10以上がより好ましい。
 ここで、μr’を7以上とした理由は、μr’が大きいほど波長の短縮率が大きくなり、したがって、この複合磁性体を適用した電子部品や回路基板のさらなる小型化が可能になるからである。
In the frequency band from 70 MHz to 500 MHz, μr ′ of this composite magnetic body is preferably 7 or more, and more preferably 10 or more.
Here, the reason why μr ′ is set to 7 or more is that as μr ′ increases, the wavelength shortening rate increases, and therefore, electronic components and circuit boards to which this composite magnetic material is applied can be further miniaturized. is there.
[第3の複合磁性体の製造方法]
 第3の複合磁性体の製造方法は、第1の複合磁性体の製造方法における第2の工程において、絶縁材料として主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する第1の樹脂を含ませて成形材料とする以外は、第1の複合磁性体の製造方法と全く同様である。
 ここで、よりμr’が高い複合磁性体を得るためには、第1の複合磁性体の製造方法における第3の工程において、前記成形工程後、得られた成形体に磁場を印加して該成形体中の前記平板状磁性体粒子を一方向に配向させる配向工程を行い、次いで前記乾燥・硬化工程を行うことが好ましい。
[Method for Producing Third Composite Magnetic Material]
In the second step of the first composite magnetic body manufacturing method, the third composite magnetic body manufacturing method includes a first functional group that has a cyclic structure in the main chain and polymerizes in monomer units as an insulating material. This is exactly the same as the manufacturing method of the first composite magnetic body except that the molding material is included.
Here, in order to obtain a composite magnetic body having a higher μr ′, in the third step of the first composite magnetic body manufacturing method, a magnetic field is applied to the obtained compact after the molding step, It is preferable to perform an orientation process for orienting the flat magnetic particles in the molded body in one direction, and then perform the drying and curing processes.
 次に、第3の複合磁性体の製造方法について、詳細に説明する。
<成形材料の作製工程>
 まず、主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する樹脂と、平板状磁性体粒子と、溶媒と、必要に応じて硬化剤とを混合し、成形材料を作製する。
Next, the manufacturing method of the third composite magnetic body will be described in detail.
<Molding material production process>
First, a molding material is prepared by mixing a resin having a cyclic structure in the main chain and having a functional group that is polymerized in monomer units, tabular magnetic particles, a solvent, and a curing agent as necessary.
 この主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する樹脂としては、平板状磁性体粒子と混合した場合に低粘度で流動性のある成形材料が得られる樹脂であればよく、特に限定されないが、熱硬化性樹脂、熱可塑性樹脂、紫外線硬化樹脂を用いることができる。 The resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units may be any resin as long as it can obtain a molding material having low viscosity and fluidity when mixed with flat magnetic particles. Although not particularly limited, a thermosetting resin, a thermoplastic resin, or an ultraviolet curable resin can be used.
 このような樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシクロヘキサン樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ウレタン樹脂、ウレタン-アクリル樹脂、エポキシ-アクリル樹脂等が挙げられる。これらの樹脂は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、多くの溶媒に対して溶解性を有し、かつ粘度を調整し易い点で、熱硬化性樹脂が好ましく、熱硬化性樹脂の中でもエポキシ樹脂やポリシクロオレフィン樹脂が好ましい。
Such resins include epoxy resins, silicone resins, phenol resins, polyimide resins, polybenzoxazole resins, polyphenylene resins, polybenzocyclobutene resins, polyarylene ether resins, polycyclohexane resins, polyester resins, fluororesins, polyolefin resins. Polycycloolefin resin, cyanate resin, polyphenylene ether resin, polystyrene resin, acrylic resin, methacrylic resin, urethane resin, urethane-acrylic resin, epoxy-acrylic resin and the like. These resins may be used alone or in combination of two or more.
Among these, a thermosetting resin is preferable because it has solubility in many solvents and the viscosity can be easily adjusted, and among the thermosetting resins, an epoxy resin and a polycycloolefin resin are preferable.
 例えば、主鎖に環状構造を有するエポキシ樹脂としては、上述した式(1)で表される主鎖に環状構造のみを有するジシクロペンタジエン型エポキシ樹脂、式(2)で表されるナフタレン型エポキシ樹脂が挙げられる。
 また、主鎖に直鎖構造を有するエポキシ樹脂としては、上述した式(3)で表されるC=1~3の短い直鎖を有するクレゾールノボラック型エポキシ樹脂、式(4)で表されるC=1~3の短い直鎖を有するジシクロペンタジエン型エポキシ樹脂が挙げられる。
For example, as an epoxy resin having a cyclic structure in the main chain, a dicyclopentadiene type epoxy resin having only a cyclic structure in the main chain represented by the above formula (1), and a naphthalene type epoxy represented by the formula (2) Resin.
In addition, as the epoxy resin having a linear structure in the main chain, a cresol novolac type epoxy resin having a short straight chain of C = 1 to 3 represented by the above formula (3), represented by the formula (4) Examples thereof include dicyclopentadiene type epoxy resins having a short straight chain of C = 1 to 3.
 上記構造の樹脂が平板状磁性体粒子に絡み難い樹脂であっても、高分子鎖が長くなると、複合磁性体のμr’が小さくなる場合がある。したがって、上記の式(1)、式(3)、式(4)のnは0~3が好ましく、n=0がさらに好ましい。
 すなわち、モノマーを単独で用いるか、モノマー及びオリゴマーを適宜組み合わせて用いることが好ましい。
Even if the resin having the above structure is a resin that is not easily entangled with the flat magnetic particles, if the polymer chain becomes long, the μr ′ of the composite magnetic material may be reduced. Therefore, n in the above formulas (1), (3), and (4) is preferably 0 to 3, and more preferably n = 0.
That is, it is preferable to use a monomer alone or use a combination of a monomer and an oligomer as appropriate.
 硬化剤の種類や添加量は、使用する樹脂に応じて適宜調整すればよい。
 上記の樹脂としてエポキシ樹脂を用いる場合には、エポキシ基同士の縮合反応を促進させて、複合磁性体の成形体における機械的強度を向上させる点で第3アミンが好ましい。
 第3アミンとしては、例えば、1-イソブチル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等が挙げられる。
 硬化剤の添加量としては、官能基の縮合反応を促進させる点を考慮すると、樹脂と硬化剤の全体の質量に対して0.5質量%以上かつ3質量%以下、添加させればよい。
What is necessary is just to adjust suitably the kind and addition amount of a hardening | curing agent according to resin to be used.
When an epoxy resin is used as the above resin, a tertiary amine is preferable in that the condensation reaction between epoxy groups is promoted to improve the mechanical strength of the composite magnetic body.
Examples of the tertiary amine include 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. It is done.
In consideration of the point of promoting the condensation reaction of the functional group, the addition amount of the curing agent may be 0.5 mass% or more and 3 mass% or less with respect to the total mass of the resin and the curing agent.
 また、平板状磁性体粒子に対する立体障害の影響を小さくして複合磁性体のμr’を向上させる点では、上記の樹脂と同様に、環状構造を有する硬化剤が好ましい。
 この環状構造を有する硬化剤としては、例えば、フェノールノボラック型硬化剤、ザイロック型硬化剤、ジシクロペンタジエン型硬化剤等が挙げられる。これらの硬化剤は、第3アミン等と比べると樹脂を重合させる駆動力が弱いので、樹脂と同量程度添加するのが好ましい。
In addition, a curing agent having a cyclic structure is preferable in the same manner as the above-described resin in that the influence of steric hindrance on the tabular magnetic particles is reduced and the μr ′ of the composite magnetic material is improved.
Examples of the curing agent having a cyclic structure include a phenol novolac type curing agent, a zylock type curing agent, a dicyclopentadiene type curing agent, and the like. These curing agents are preferably added in the same amount as the resin because the driving force for polymerizing the resin is weak compared to tertiary amines and the like.
 溶媒としては、上記の樹脂を溶解させることができるものであればよく、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類が好適に用いられる。
 これらの溶媒は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。特に、シクロヘキサノンやキシレン等の沸点の高い溶媒は、溶媒の揮発による成形材料の増粘を抑制することができるので好ましい。
The solvent is not particularly limited as long as it can dissolve the above-mentioned resin. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, cyclohexanone, benzene, toluene, xylene, ethyl benzene, etc. Aromatic hydrocarbons, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, etc. Ethers such as dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like S is preferably used.
These solvents may be used alone or in combination of two or more. In particular, a solvent having a high boiling point such as cyclohexanone or xylene is preferable because it can suppress the thickening of the molding material due to the volatilization of the solvent.
 この成形材料中の平板状磁性体粒子の含有率は、成形材料中の揮発成分以外が硬化して固体状になった場合の体積(樹脂+硬化剤+平板状磁性体粒子)に対して、10体積%以上かつ60体積%以下が好ましく、より好ましくは30体積%以上かつ50体積%以下である。
 ここで、平板状磁性体粒子の含有率が10体積%未満では、平板状磁性体粒子が少なすぎて複合磁性体としての磁気特性が低下してしまい、一方、この平板状磁性体粒子の含有率が60体積%を超えると、平板状磁性体粒子が多すぎて、この平板状磁性体粒子と樹脂と硬化剤と溶媒とを含む成形材料の流動性が低下し、成形性が低下してしまうので、好ましくない。
The content of the tabular magnetic particles in the molding material is based on the volume (resin + curing agent + tabular magnetic particles) when the volatile components in the molding material are cured and become solid. 10 volume% or more and 60 volume% or less are preferable, More preferably, they are 30 volume% or more and 50 volume% or less.
Here, if the content of the tabular magnetic particles is less than 10% by volume, the tabular magnetic particles are too small and the magnetic properties as the composite magnetic material are deteriorated. On the other hand, the tabular magnetic particles are contained. If the rate exceeds 60% by volume, there are too many tabular magnetic particles, the fluidity of the molding material containing the tabular magnetic particles, the resin, the curing agent, and the solvent decreases, and the moldability decreases. This is not preferable.
 これら平板状磁性体粒子、樹脂、硬化剤及び溶媒を混合し、成形材料を得る。この場合、溶媒の添加量を適宜調整することにより、成形材料の粘度を調整することができる。
 混合装置としては、これら平板状磁性体粒子、樹脂、硬化剤及び溶媒を均一に混合してスラリー状の成形材料とすることができればよく、特に限定されないが、例えば、ロールミル、自公転式ミキサー、ホモジナイザー、超音波ホモジナイザー、撹拌機等が挙げられる。
These flat magnetic particles, resin, curing agent and solvent are mixed to obtain a molding material. In this case, the viscosity of the molding material can be adjusted by appropriately adjusting the amount of the solvent added.
The mixing device is not particularly limited as long as the flat magnetic particles, the resin, the curing agent, and the solvent can be mixed uniformly to form a slurry-like molding material. For example, a roll mill, a self-revolving mixer, Examples thereof include a homogenizer, an ultrasonic homogenizer, and a stirrer.
 この成形材料の粘度は0.1Pa・S以上かつ10Pa・S以下であることが好ましく、より好ましくは0.3Pa・S以上かつ10Pa・S以下である。
 ここで、粘度が0.1Pa・S未満の場合には、流動性が大きくなりすぎて乾燥工程での生産性が悪くなり、一方、粘度が10Pa・Sを超えると、粘性が高すぎて平板状磁性体粒子の配向が起こり難くなり、その結果、複合磁性体中における平板状磁性体粒子の配向性が低下してしまうので、好ましくない。
 このように、平板状磁性体粒子の含有率を10体積%以上かつ60体積%以下、かつ成形材料の粘度を0.1Pa・S以上かつ10Pa・S以下とすることにより、μr’と成形体の機械的強度のバランスがとれた複合磁性体を得ることができる。
The viscosity of the molding material is preferably 0.1 Pa · S or more and 10 6 Pa · S or less, more preferably 0.3 Pa · S or more and 10 4 Pa · S or less.
Here, when the viscosity is less than 0.1 Pa · S, the fluidity becomes too high and the productivity in the drying process is deteriorated. On the other hand, when the viscosity exceeds 10 6 Pa · S, the viscosity is too high. Therefore, the orientation of the tabular magnetic particles is difficult to occur, and as a result, the orientation of the tabular magnetic particles in the composite magnetic material is lowered, which is not preferable.
Thus, by setting the content of the tabular magnetic particles to 10 volume% or more and 60 volume% or less, and setting the viscosity of the molding material to 0.1 Pa · S or more and 10 6 Pa · S or less, μr ′ and A composite magnetic body in which the mechanical strength of the molded body is balanced can be obtained.
<成形>
 成形法としては、成形材料に磁場を印加する工程時に一定の形状を保持することができればよく、特に限定されない。
 また、成形体の形状や大きさも特に限定はされず、例えば、シート状あるいはフィルム状に成形してもよく、直方体状等の厚みがある形状に成形してもよい。
 シート状あるいはフィルム状に成形したものは、シートあるいはフィルムの基体に上記の成形材料を塗布することで容易に得ることができ、しかも量産性に優れているので好ましい。
<Molding>
The molding method is not particularly limited as long as a certain shape can be maintained during the step of applying a magnetic field to the molding material.
Further, the shape and size of the molded body are not particularly limited, and for example, it may be molded into a sheet shape or a film shape, or may be molded into a shape having a thickness such as a rectangular parallelepiped shape.
A sheet or film molded is preferable because it can be easily obtained by applying the molding material to a sheet or film substrate and is excellent in mass productivity.
 シート状あるいはフィルム状に成形する場合、例えば、成形材料の粘度が10Pa・S以下の場合には、ドクターブレード法、バーコート法等を用いることができ、また、成形材料の粘度が10Pa・sを超える場合には、ダイコート法等を用いることができる。また、厚みがある形状に成形する場合、例えば、任意の形状の型に成形材料を流し込む方法等が挙げられる。 In the case of molding into a sheet or film, for example, when the viscosity of the molding material is 10 Pa · S or less, a doctor blade method, a bar coating method or the like can be used, and the viscosity of the molding material is 10 Pa · s. In the case of exceeding, die coating method or the like can be used. Moreover, when shape | molding to a shape with thickness, the method of pouring a molding material into the type | mold of arbitrary shapes, etc. are mentioned, for example.
 成形材料が、シート状、フィルム状あるいは直方体状等に成形されただけの状態では、平板状磁性体粒子はそれぞれがランダムな方向を向いて、配向が十分ではない場合がある。
 そこで、このシート状、フィルム状あるいは直方体状等に成形された成形体に磁場を印加し、この成形体中の平板状磁性体粒子を配向させる。
When the molding material is simply molded into a sheet shape, a film shape, a rectangular parallelepiped shape, or the like, the tabular magnetic particles may be oriented in random directions and the orientation may not be sufficient.
Therefore, a magnetic field is applied to the molded body formed into a sheet shape, a film shape, a rectangular parallelepiped shape, or the like, and the flat magnetic particles in the molded body are oriented.
<配向>
 成形体中の平板状磁性体粒子を配向させる方法としては、成形体中の平板状磁性体粒子を一方向に配向させることができるように磁場を印加すればよく、特に限定されないが、成形体中で磁力線が曲がると、平板状磁性体粒子を一方向に配向させることができない。そこで、磁場は、発生する磁力線が成形体の表面に対して略平行となるように印加させる必要がある。
 このような配向方法としては、次に挙げる4つの配向方法がある。
<Orientation>
The method for orienting the tabular magnetic particles in the compact is not particularly limited as long as a magnetic field is applied so that the tabular magnetic particles in the compact can be oriented in one direction. If the magnetic field lines are bent, the tabular magnetic particles cannot be oriented in one direction. Therefore, it is necessary to apply the magnetic field so that the generated magnetic field lines are substantially parallel to the surface of the molded body.
As such an alignment method, there are the following four alignment methods.
(1)配向方法A
 図3は、本発明の複合磁性体の製造方法における配向方法Aを実施するための配向装置を示す概略構成図であり、上記の成形材料(図示略)をシート状あるいはフィルム状の基体1の上面に塗布した塗布膜2に磁場を印加して発生する磁力線Hにより塗布膜2中の平板状磁性体粒子を配向させる装置の例である。
(1) Orientation method A
FIG. 3 is a schematic configuration diagram showing an orientation apparatus for carrying out the orientation method A in the method for producing a composite magnetic body of the present invention. The molding material (not shown) is applied to the base 1 in the form of a sheet or film This is an example of an apparatus for orienting flat magnetic particles in the coating film 2 by magnetic lines of force H generated by applying a magnetic field to the coating film 2 coated on the upper surface.
 この配向装置11は、上記の成形材料(図示略)を図中矢印方向に進行gする基体1の上面に塗布して塗布膜2を形成するディスペンサを備えた塗布手段12と、この塗布膜2の幅方向の両側にそれぞれ設けられて塗布膜2にその幅方向に沿って磁場を印加して発生する磁力線Hにより塗布膜2中の平板状磁性体粒子を配向させる一対の磁石13a、13bと、磁力線Hにより平板状磁性体粒子が配向した塗布膜2を乾燥する乾燥手段14とにより構成されている。磁石13a、13bは、対向する極同士が互いに異極となるように配置されている。 The aligning device 11 includes a coating means 12 including a dispenser that forms the coating film 2 by coating the molding material (not shown) on the upper surface of the substrate 1 that proceeds in the direction of the arrow in the drawing, and the coating film 2. A pair of magnets 13a and 13b that are respectively provided on both sides in the width direction and orient the flat magnetic particles in the coating film 2 by magnetic lines H generated by applying a magnetic field to the coating film 2 along the width direction; , And drying means 14 for drying the coating film 2 in which the flat magnetic particles are oriented by the magnetic lines of force H. The magnets 13a and 13b are arranged so that the opposing poles are different from each other.
 この配向装置11では、磁石13aのN極から磁石13bのS極に向かって磁場が発生するので、磁石13a、13b間を通過する塗布膜2には、磁石13aのN極から磁石13bのS極に向かう方向に対して平行な磁力線Hが発生することとなる。この磁力線Hにより、塗布膜2中の平板状磁性体粒子は、磁力線Hに平行に配向することとなる。
 以上により、塗布膜2中の平板状磁性体粒子を、磁力線Hに平行に配向させることができる。
In this orientation device 11, since a magnetic field is generated from the N pole of the magnet 13a toward the S pole of the magnet 13b, the coating film 2 passing between the magnets 13a and 13b is applied to the S of the magnet 13b from the N pole of the magnet 13a. Magnetic field lines H parallel to the direction toward the pole are generated. Due to the magnetic force lines H, the tabular magnetic particles in the coating film 2 are oriented parallel to the magnetic force lines H.
As described above, the tabular magnetic particles in the coating film 2 can be oriented parallel to the magnetic field lines H.
(2)配向方法B
 図4は、本発明の複合磁性体の製造方法における配向方法Bを実施するための配向装置を示す概略構成図であり、この配向装置21が、図3の配向装置11と異なる点は、塗布膜2の上側及び下側それぞれに設けられた一対の磁石22a、22bの対向する極同士が互いに同極となるように配置した点である。
(2) Orientation method B
FIG. 4 is a schematic configuration diagram showing an orientation device for carrying out the orientation method B in the method for producing a composite magnetic body of the present invention. The orientation device 21 is different from the orientation device 11 in FIG. This is in that the opposing poles of a pair of magnets 22a and 22b provided on the upper side and the lower side of the film 2 are arranged so as to have the same polarity.
 この配向装置21では、一対の磁石22a、22bにより塗布膜2に磁場を印加すると、一方の磁石22aから発生した磁力線と他方の磁石22bから発生した磁力線とは、塗布膜2の位置で互いに反発し合うために、この塗布膜2の表面に対して平行な磁場を印加させる磁力線H1、H2が発生することとなる。この磁力線H1、H2により、塗布膜2中の平板状磁性体粒子は、磁力線H1、H2に平行に配向することとなる。
 以上により、塗布膜2中の平板状磁性体粒子を、磁力線H1、H2に平行に配向させることができる。
In this orientation device 21, when a magnetic field is applied to the coating film 2 by a pair of magnets 22 a and 22 b, the magnetic lines of force generated from one magnet 22 a and the magnetic lines of force generated from the other magnet 22 b repel each other at the position of the coating film 2. Therefore, the lines of magnetic force H1 and H2 for applying a magnetic field parallel to the surface of the coating film 2 are generated. Due to the magnetic lines of force H1 and H2, the tabular magnetic particles in the coating film 2 are oriented in parallel to the magnetic lines of force H1 and H2.
As described above, the plate-like magnetic particles in the coating film 2 can be oriented in parallel to the magnetic lines of force H1 and H2.
(3)配向方法C
 図5は、本発明の複合磁性体の製造方法における配向方法Cを実施するための配向装置を示す概略構成図であり、この配向装置31が、図4の配向装置21と異なる点は、塗布膜2の上側及び下側それぞれに設けられた各一対の磁石32a、32b、磁石33a、33b及び磁石34a、34bのそれぞれの対向する極同士が互いに同極となるように、一定の間隔、例えば隣接する磁石同士の磁力線が互いに打ち消し合わないような間隔をおいて配置した点である。
(3) Orientation method C
FIG. 5 is a schematic configuration diagram showing an orientation device for carrying out the orientation method C in the method for producing a composite magnetic body of the present invention. The orientation device 31 is different from the orientation device 21 in FIG. A fixed interval, for example, so that the opposing poles of each of the pair of magnets 32a and 32b, the magnets 33a and 33b, and the magnets 34a and 34b provided on the upper side and the lower side of the film 2 are the same, respectively. It is the point arrange | positioned at the space | interval which the magnetic force lines of adjacent magnets do not cancel each other.
 例えば、図4に示す配向装置21では、磁石22a、22b各々のN極から発生した磁力線H1、H2がS極に戻るために、磁石22a、22bの水平方向の両端付近では、磁力線が塗布膜2の表面に対して垂直となり、塗布膜2に対して平行方向でない磁力線も発生することとなり、その結果、平板状磁性体粒子の配向性が低下する場合がある。 For example, in the orientation device 21 shown in FIG. 4, since the magnetic lines H1 and H2 generated from the N poles of the magnets 22a and 22b return to the S pole, the magnetic lines of force are applied near the both ends in the horizontal direction of the magnets 22a and 22b. Magnetic field lines that are perpendicular to the surface 2 and not parallel to the coating film 2 are also generated, and as a result, the orientation of the tabular magnetic particles may be lowered.
 一方、図5に示す配向装置31では、図6に示すように、塗布膜2が一対の磁石32a、32b間を通過前では、塗布膜2中の平板状磁性体粒子41は、配向方向が無秩序な状態であるが、磁石32a、32b間を通過することで、この塗布膜2の表面に対して平行に発生した磁力線H1、H2により、塗布膜2中の平板状磁性体粒子41は、磁力線H1、H2に沿って配向した平板状磁性体粒子41となる。 On the other hand, in the orientation device 31 shown in FIG. 5, as shown in FIG. 6, before the coating film 2 passes between the pair of magnets 32a and 32b, the plate-like magnetic particles 41 in the coating film 2 have an orientation direction. Although it is in a disordered state, the tabular magnetic particles 41 in the coating film 2 are caused by the lines of magnetic force H1 and H2 generated parallel to the surface of the coating film 2 by passing between the magnets 32a and 32b. The tabular magnetic particles 41 are aligned along the magnetic field lines H1 and H2.
 しかしながら、最初の磁石32a、32b間を通過しただけでは、平板状磁性体粒子41の配向が不十分な場合がある。そこで、磁石33a、33b間を通過させることにより、平板状磁性体粒子41の不十分な配向を修正し、配向性を向上させる。最後の磁石34a、34b間を通過させた後には、平板状磁性体粒子41の不十分な配向は修正されて配向性の高いものとなる。
 このように、塗布膜2に磁場を複数回印加することで、塗布膜2中の平板状磁性体粒子41の配向性を向上させることができる。
However, the orientation of the tabular magnetic particles 41 may be insufficient only by passing between the first magnets 32a and 32b. Therefore, by passing between the magnets 33a and 33b, the insufficient orientation of the tabular magnetic particles 41 is corrected and the orientation is improved. After passing between the last magnets 34a and 34b, the insufficient orientation of the tabular magnetic particles 41 is corrected and becomes highly oriented.
Thus, the orientation of the tabular magnetic particles 41 in the coating film 2 can be improved by applying the magnetic field to the coating film 2 a plurality of times.
(4)配向方法D
 図7は、本発明の複合磁性体の製造方法における配向方法Dを実施するための配向装置を示す概略構成図であり、この配向装置51が、図4の配向装置21と異なる点は、磁力線H1、H2が塗布膜2中の平板状磁性体粒子41に対して平行な位置に、塗布膜2を予備乾燥するための乾燥手段52を設けた点である。
(4) Orientation method D
FIG. 7 is a schematic configuration diagram showing an orientation device for performing the orientation method D in the method for producing a composite magnetic body of the present invention. The orientation device 51 is different from the orientation device 21 in FIG. A drying means 52 for pre-drying the coating film 2 is provided at a position where H1 and H2 are parallel to the tabular magnetic particles 41 in the coating film 2.
 乾燥手段52としては、塗布膜2を固化することのできる程度の乾燥機能を備えていれば特に限定されず、例えば、温風供給源に接続した温風吹き出しノズル等が挙げられる。 The drying means 52 is not particularly limited as long as it has a drying function capable of solidifying the coating film 2, and examples thereof include a hot air blowing nozzle connected to a hot air supply source.
 この配向装置51では、一対の磁石22a、22bにより塗布膜2に磁場を印加すると、この塗布膜2の表面に対して平行な磁場を印加させる磁力線H1、H2が発生し、この磁力線H1、H2により、塗布膜2中の平板状磁性体粒子は、磁力線H1、H2に平行に配向する。この際、乾燥手段52により塗布膜2を予備乾燥すれば、塗布膜2が固化することで磁力線H1、H2に平行に配向している平板状磁性体粒子の配向状態を固定することができる。
 以上により、塗布膜2中の平板状磁性体粒子を、磁力線H1、H2に平行に配向させることができる。
In the orientation device 51, when a magnetic field is applied to the coating film 2 by the pair of magnets 22a and 22b, magnetic lines H1 and H2 for applying a magnetic field parallel to the surface of the coating film 2 are generated, and the magnetic lines H1 and H2 are generated. Thus, the tabular magnetic particles in the coating film 2 are oriented parallel to the magnetic field lines H1 and H2. At this time, if the coating film 2 is pre-dried by the drying means 52, the coating film 2 is solidified, so that the orientation state of the flat magnetic particles that are oriented in parallel to the magnetic lines of force H 1 and H 2 can be fixed.
As described above, the plate-like magnetic particles in the coating film 2 can be oriented parallel to the magnetic field lines H1 and H2.
 以上のように、配向方法A~Dのうち1種のみを単独で行うか、もしくは2種以上を組み合わせて行うことにより、塗布膜2中の平板状磁性体粒子の配向性を向上させることができる。
 塗布膜2を所定形状の成形体に替えた場合においても、配向方法A~Dのうち1種以上を適宜適用することにより、成形体中の平板状磁性体粒子の配向性を向上させることができる。
As described above, the orientation of the tabular magnetic particles in the coating film 2 can be improved by performing only one of the orientation methods A to D alone or in combination of two or more. it can.
Even when the coating film 2 is replaced with a molded body having a predetermined shape, the orientation of the tabular magnetic particles in the molded body can be improved by appropriately applying one or more of the orientation methods A to D. it can.
 上記の磁石13a、13b、…としては、電磁石、永久磁石等が挙げられる。磁石の配置や対の数は特に限定されず、塗布膜や成形体の形状や求められる磁気特性に合わせて適宜調整すればよい。 The magnets 13a, 13b,... Include electromagnets and permanent magnets. The arrangement of the magnets and the number of pairs are not particularly limited, and may be appropriately adjusted according to the shape of the coating film and the molded body and the required magnetic characteristics.
 印加する磁場の大きさは、図3に示す配向装置のような異極を向かい合わせた場合は、100ガウス以上かつ1000ガウス以下であることが好ましい。磁場の大きさが100ガウス未満であると、磁場が小さすぎてしまい、成形体中の平板状磁性体粒子を十分に配向させることができない場合がある。一方、1000ガウスを超えると、磁場が大きすぎて、平板状磁性体粒子と樹脂が分離してしまう虞があり、その結果、得られた複合磁性体の磁気特性に不均一が生じる。
 また、図4に示す配向装置のような同極を向かい合わせた場合は、平板状磁性体粒子と樹脂の分離は起こり難くなるので、100ガウス以上3000ガウス以下であることが好ましい。
The magnitude of the magnetic field to be applied is preferably 100 gauss or more and 1000 gauss or less when different polarities such as those of the alignment apparatus shown in FIG. If the magnitude of the magnetic field is less than 100 gauss, the magnetic field is too small, and the flat magnetic particles in the compact may not be sufficiently oriented. On the other hand, if it exceeds 1000 gauss, the magnetic field is too large and the flat magnetic particles and the resin may be separated, resulting in non-uniformity in the magnetic properties of the obtained composite magnetic material.
Further, when the same poles as in the orientation device shown in FIG. 4 are faced to each other, separation between the tabular magnetic particles and the resin is difficult to occur, and therefore it is preferably 100 gauss or more and 3000 gauss or less.
<乾燥・硬化>
 平板状磁性体粒子が配向した成形体を乾燥させ、次いで、加熱あるいは紫外線照射等により樹脂を硬化させる。乾燥・硬化条件(処理温度、処理時間等)は、使用する樹脂や溶媒の種類に応じて適宜調整すればよい。
 以上により、第3の複合磁性体を得ることができる。
<Drying and curing>
The molded body in which the flat magnetic particles are oriented is dried, and then the resin is cured by heating or ultraviolet irradiation. The drying / curing conditions (processing temperature, processing time, etc.) may be appropriately adjusted according to the type of resin and solvent used.
Thus, the third composite magnetic body can be obtained.
[第4の複合磁性体]
 本実施形態の複合磁性体は、前記第1の複合磁性体において、前記絶縁材料が主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂を含み、この第1の樹脂に可撓性を付与する第2の樹脂をさらに含む複合磁性体である。
[Fourth composite magnetic body]
The composite magnetic body of the present embodiment includes a first resin in the first composite magnetic body, wherein the insulating material has a cyclic structure in the main chain and has a functional group that is polymerized in a monomer unit. The composite magnetic body further includes a second resin that imparts flexibility to one resin.
 この複合磁性体の70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7以上が好ましく、より好ましくは10以上である。
 ここで、この複合磁性体の70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’を7以上とした理由は、μr’が大きいほど波長の短縮率が大きくなり、したがって、この複合磁性体を適用した電子部品や回路基板等のさらなる小型化が可能になるからである。
The real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz of this composite magnetic body is preferably 7 or more, more preferably 10 or more.
Here, the reason why the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz of this composite magnetic material is set to 7 or more is that the larger the μr ′, the greater the wavelength shortening rate. This is because further downsizing of electronic parts and circuit boards to which the body is applied becomes possible.
 この複合磁性体の複素透磁率の損失正接tanδμは、0.05以下が好ましく、より好ましくは0.04以下である。ここで、tanδμが0.05を超えた場合には、複合磁性体内にて高周波が複素透磁率の虚数部μr’’に対応する部分だけ吸収されて熱に変わることにより、高周波信号のエネルギーが減衰する上に、S/N比の低下や発熱等の問題が生じ、利得が低くなる場合があるので、好ましくない。 The loss tangent tan δμ of the complex magnetic permeability of this composite magnetic body is preferably 0.05 or less, more preferably 0.04 or less. Here, when tan δμ exceeds 0.05, only the portion corresponding to the imaginary part μr ″ of the complex magnetic permeability is absorbed in the composite magnetic body and changed to heat, whereby the energy of the high frequency signal is changed. In addition to attenuation, problems such as a decrease in S / N ratio and heat generation may occur, which may reduce the gain.
 ここで、本実施形態の複合磁性体を構成する第2の樹脂について詳細に説明する。
 第2の樹脂は、主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂に可撓性を付与する樹脂である。
 この第2の樹脂としては、第1の樹脂及び平板状磁性体粒子と混合して成形・硬化した場合に、得られた硬化体に可撓性及び伸縮性を付与することのできる樹脂であればよく、特に限定されず、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、ポリアミド樹脂等の可撓性に優れた樹脂が好適である。
 また、エポキシ樹脂にウレタン、ポリエチレン、エチレンプロピレン等を用いて変性した変性エポキシ樹脂、あるいは、エポキシ樹脂にプロピレンオキシドを付加したプロピレンオキシド付加エポキシ樹脂を用いることができる。
Here, the 2nd resin which comprises the composite magnetic body of this embodiment is demonstrated in detail.
The second resin is a resin that imparts flexibility to the first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit.
The second resin may be a resin that can impart flexibility and stretchability to the resulting cured body when mixed and molded and cured with the first resin and flat magnetic particles. There is no particular limitation, and for example, a resin having excellent flexibility such as an epoxy resin, a silicone resin, a urethane resin, or a polyamide resin is suitable.
Alternatively, a modified epoxy resin modified with urethane, polyethylene, ethylene propylene, or the like as the epoxy resin, or a propylene oxide-added epoxy resin obtained by adding propylene oxide to the epoxy resin can be used.
 このような可撓性を付与する樹脂としては、エポキシ樹脂が好ましく、例えば、ビスフェノールA型、ビスフェノールB型、ビスフェノールF型等のビスフェノール骨格を有するエポキシ樹脂がより好ましい。
 ビスフェノールA型の骨格を有するエポキシ樹脂としては、イソプロピリデンビスフェノール、イソプロピリデンビス(オルソクレゾール)、テトラブロムビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)等が挙げられる。
As such a resin imparting flexibility, an epoxy resin is preferable, and for example, an epoxy resin having a bisphenol skeleton such as bisphenol A type, bisphenol B type, and bisphenol F type is more preferable.
Examples of the epoxy resin having a bisphenol A type skeleton include isopropylidene bisphenol, isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4 -Hydroxycumylbenzene) and the like.
 ビスフェノールB型の骨格を有するエポキシ樹脂としては、2,2-ビス(4-ヒドロキシフェニル)ブタン等が挙げられる。
 ビスフェノールF型の骨格を有するエポキシ樹脂としては、メチレンビスフェノール、メチレンビス(オルソクレゾール)等が挙げられる。
Examples of the epoxy resin having a bisphenol B type skeleton include 2,2-bis (4-hydroxyphenyl) butane.
Examples of the epoxy resin having a bisphenol F-type skeleton include methylene bisphenol and methylene bis (orthocresol).
 このビスフェノール骨格を有するエポキシ樹脂の中でも、ビスフェノールA型骨格及びビスフェノールF型骨格のうち少なくとも1種を有するエポキシ樹脂が好ましい。中でも、伸縮性、剪断強度の観点から、ビスフェノールA骨格を有するエポキシ樹脂が好ましい。 Among the epoxy resins having a bisphenol skeleton, an epoxy resin having at least one of a bisphenol A skeleton and a bisphenol F skeleton is preferable. Among these, an epoxy resin having a bisphenol A skeleton is preferable from the viewpoints of stretchability and shear strength.
 また、上記のビスフェノール骨格を有するエポキシ樹脂の中でも、1分子中に2個以上のエポキシ基を含有し、かつエーテル骨格を有するエポキシ樹脂が好ましい。この1分子中に2個以上のエポキシ基を含有する構造としては、例えば、ジグリシジルエーテル、ジグリシジルエステル、ジグリシジルアミン等が挙げられる。 Of the epoxy resins having a bisphenol skeleton, an epoxy resin having two or more epoxy groups in one molecule and having an ether skeleton is preferable. Examples of the structure containing two or more epoxy groups in one molecule include diglycidyl ether, diglycidyl ester, diglycidyl amine and the like.
 上記のエーテル骨格としては、1つ以上のエーテル部分構造を含む化合物であれば特に限定されない。このようなエーテル骨格としては、例えば、アルキレングリコールが挙げられる。
 このアルキレングリコールとしては、アルキレンの炭素の数が2~6が好ましく、より好ましくは2~5、さらに好ましくは2~4である。
 このエーテル骨格は、直鎖状であってもよく、分岐鎖を有していてもよいが、エチレングリコールやプロピレングリコールに由来するエーテル骨格が好ましい。
The ether skeleton is not particularly limited as long as it is a compound containing one or more ether partial structures. Examples of such an ether skeleton include alkylene glycol.
The alkylene glycol preferably has 2 to 6 carbon atoms of alkylene, more preferably 2 to 5, and still more preferably 2 to 4.
The ether skeleton may be linear or may have a branched chain, but an ether skeleton derived from ethylene glycol or propylene glycol is preferable.
 また、ビスフェノールA型の骨格を有し、一分子中に2個以上のエポキシ基を含有し、かつエーテル骨格を有する構造としては、例えば、ビスフェノールA型の骨格に、プロピレングリコールからなるエーテル骨格を導入し、このビスフェノールA型の骨格の末端にグリシジルエーテルを導入した、プロピレングリコール付加ビスフェノールA型構造(化学式(5))が挙げられる。 Further, as a structure having a bisphenol A type skeleton, containing two or more epoxy groups in one molecule, and having an ether skeleton, for example, an ether skeleton made of propylene glycol is added to a bisphenol A type skeleton. A propylene glycol-added bisphenol A type structure (chemical formula (5)) in which glycidyl ether is introduced at the terminal of the bisphenol A type skeleton.
Figure JPOXMLDOC01-appb-C000005


 この化学式(5)では、p+qの値は1~5であるが、このp+qのより好ましい値は2~4であり、さらに好ましい値は2~3である。
Figure JPOXMLDOC01-appb-C000005


In this chemical formula (5), the value of p + q is 1 to 5, but a more preferable value of p + q is 2 to 4, and a more preferable value is 2 to 3.
 また、この構造の他の例としては、ビスフェノールA型の骨格に、プロピレングリコールからなるエーテル骨格の替わりにエチレングリコールからなるエーテル骨格を導入し、このビスフェノールA型の骨格の末端にグリシジルエーテルを導入した、化学式(6)で表されるエチレングリコール付加ビスフェノールA型構造も挙げられる。 As another example of this structure, an ether skeleton made of ethylene glycol is introduced into a bisphenol A skeleton instead of an ether skeleton made of propylene glycol, and glycidyl ether is introduced at the end of the bisphenol A skeleton. Moreover, the ethylene glycol addition bisphenol A type structure represented by Chemical formula (6) is also mentioned.
Figure JPOXMLDOC01-appb-C000006
 この化学式(6)では、n+mの値は1~10であるが、このn+mのより好ましい値は4~8であり、さらに好ましい値は6である。
Figure JPOXMLDOC01-appb-C000006
In this chemical formula (6), the value of n + m is 1 to 10, but a more preferable value of n + m is 4 to 8, and a more preferable value is 6.
 ビスフェノールA型骨格を有し、かつ1分子中に2個以上のエポキシ基を含有し、ポリエーテル骨格を有する樹脂としては、ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル、ビスフェノールAビス(トリエチレングリコールグリシジルエーテル)エーテル等が挙げられる。 Resins having a bisphenol A skeleton and containing two or more epoxy groups in one molecule and having a polyether skeleton include bisphenol A bis (propylene glycol glycidyl ether) ether and bisphenol A bis (triethylene glycol). Glycidyl ether) ether and the like.
 これら第1の樹脂と第2の樹脂とを組み合わせて用いる場合、第1の樹脂としては、化学式(1)でn=0のジシクロペンタジエン型エポキシ樹脂を用いるのが好ましく、第2の樹脂としては、化学式(5)または化学式(6)の可撓性を付与する樹脂を組み合わせて用いることが好ましい。 When the first resin and the second resin are used in combination, it is preferable to use a dicyclopentadiene type epoxy resin of n = 0 in the chemical formula (1) as the first resin. Is preferably used in combination with a resin that imparts flexibility of chemical formula (5) or chemical formula (6).
 これら第1の樹脂及び第2の樹脂の混合割合としては、第1の樹脂と第2の樹脂との合計質量に対して、第2の樹脂を5質量%以上かつ30質量%以下含有させることが好ましい。
 上記範囲で第2の樹脂を第1の樹脂に混合させることにより、複合磁性体を基材上に成形して製造する際に、この複合磁性体に、基材からの剥離性が良好になる程度に伸縮性及び可撓性を付与することができるので好ましい。
As a mixing ratio of the first resin and the second resin, the second resin is contained in an amount of 5% by mass to 30% by mass with respect to the total mass of the first resin and the second resin. Is preferred.
By mixing the second resin with the first resin within the above range, when the composite magnetic body is molded and manufactured on the base material, the composite magnetic body has excellent peelability from the base material. Since elasticity and flexibility can be imparted to the extent, it is preferable.
[第4の複合磁性体の製造方法]
 次に、第4の複合磁性体の製造方法について説明する。
 第4の複合磁性体の製造方法は、第3の複合磁性体の製造方法における第2の工程において、絶縁材料として主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する第1の樹脂を含み、前記第1の樹脂に可撓性を付与する樹脂である第2の樹脂をさらに含んだ成形材料とする以外は、第3の複合磁性体の製造方法と全く同様である。
[Fourth Method for Manufacturing Composite Magnetic Material]
Next, the manufacturing method of the 4th composite magnetic body is demonstrated.
In the second method of manufacturing the third composite magnetic body, the fourth composite magnetic body manufacturing method includes a first functional group that has a cyclic structure in the main chain and polymerizes in monomer units as an insulating material in the second step of the third composite magnetic body manufacturing method. This is exactly the same as the manufacturing method of the third composite magnetic body except that the molding material further includes a second resin that is a resin that imparts flexibility to the first resin.
<成形材料の作製工程>
 この工程では、主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂と、この第1の樹脂に可撓性を付与する第2の樹脂と、平板状磁性体粒子と、溶媒と、必要に応じて硬化剤を混合して成形材料を作製する工程である。
 これら第1の樹脂、第2の樹脂及び平板状磁性体粒子それぞれの組成、形状、特性、製造方法等については、既に説明しているので、説明を省略する。
<Molding material production process>
In this step, a first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, a second resin that imparts flexibility to the first resin, and a plate-like magnetic property This is a step of preparing a molding material by mixing body particles, a solvent, and, if necessary, a curing agent.
Since the composition, shape, characteristics, manufacturing method, and the like of each of the first resin, the second resin, and the tabular magnetic particles have already been described, description thereof will be omitted.
 なお、第1の樹脂及び第2の樹脂は、公知の方法で合成してもよく、市販品を用いてもよい。
 また、第2の樹脂の市販品としては、商品名「アデカレジンEP-4000」(アデカ社製 (上記の化学式(5)でp+q=2のもの))、商品名「リカレジンBPO-20E」(新日本理化社製 (上記の化学式(5)でp+q=2のもの)、商品名「リカレジンBEO-60E」(新日本理化社製(上記の化学式(6)でn+m=6のもの))等が好ましい。
In addition, 1st resin and 2nd resin may be synthesize | combined by a well-known method, and a commercial item may be used.
In addition, as a commercially available product of the second resin, a trade name “ADEKA RESIN EP-4000” (manufactured by ADEKA Corporation (p + q = 2 in the above chemical formula (5))), a trade name “RIKARESIN BPO-20E” (new) Made by Nippon Rika Co., Ltd. (the above chemical formula (5) with p + q = 2), trade name “Rikaresin BEO-60E” (manufactured by Shin Nippon Rika Co., Ltd. (with above chemical formula (6), n + m = 6)) preferable.
 上記の第1の樹脂及び第2の樹脂を用いる場合の硬化剤の種類や添加量については、使用する樹脂の種類や量に応じて適宜調整すればよい。
 上記の樹脂としてエポキシ樹脂を用いる場合には、エポキシ基同士の縮合反応を促進させて、複合磁性体の成形体における機械的強度を向上させる点で第3アミンが好ましい。
What is necessary is just to adjust suitably about the kind and addition amount of a hardening | curing agent in the case of using said 1st resin and 2nd resin according to the kind and amount of resin to be used.
When an epoxy resin is used as the above resin, a tertiary amine is preferable in that the condensation reaction between epoxy groups is promoted to improve the mechanical strength of the composite magnetic body.
 第3アミンとしては、例えば、1-イソブチル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等が挙げられる。
 硬化剤の添加量としては、官能基の縮合反応を促進させる点を考慮すると、樹脂及び硬化剤の全体の質量に対して0.5質量%以上かつ3質量%以下、添加させればよい。
Examples of the tertiary amine include 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. It is done.
In consideration of the point of promoting the condensation reaction of the functional group, the addition amount of the curing agent may be 0.5% by mass to 3% by mass with respect to the total mass of the resin and the curing agent.
 また、上記の硬化剤として、平板状磁性体粒子に対する立体障害の影響を小さくして複合磁性体のμr’を向上させるという点では、上記の樹脂と同様、主鎖に環状構造を有する硬化剤が好ましい。
 この環状構造を有する硬化剤としては、例えば、フェノールノボラック型硬化剤、ザイロック型硬化剤、ジシクロペンタジエン型硬化剤等が挙げられる。これらの硬化剤は、第3アミン等と比べると樹脂を重合させる駆動力が弱いので、樹脂と同量程度添加することが好ましい。
Moreover, as said hardening | curing agent, the hardening agent which has a cyclic structure in a principal chain similarly to said resin in the point that the influence of the steric hindrance with respect to a flat magnetic particle is made small and micror 'of a composite magnetic body is improved Is preferred.
Examples of the curing agent having a cyclic structure include a phenol novolac type curing agent, a zylock type curing agent, a dicyclopentadiene type curing agent, and the like. These hardeners are preferably added in the same amount as the resin because the driving force for polymerizing the resin is weaker than tertiary amines.
 溶媒としては、上記第3の複合磁性体において挙げられたものと同じものが挙げられる。 Examples of the solvent are the same as those mentioned in the third composite magnetic body.
 この成形材料中の平板状磁性体粒子の含有率は、成形材料中の揮発成分以外が硬化して固体状になった場合の第1の樹脂の体積V1と第2の樹脂の体積V2と硬化剤の体積V3と平板状磁性体粒子の体積V4の和(V1+V2+V3+V4)に対して、10体積%以上かつ60体積%以下が好ましく、より好ましくは30体積%以上かつ50体積%以下である。
 ここで、平板状磁性体粒子の含有率が10体積%未満では、平板状磁性体粒子が少なすぎて複合磁性体としての磁気特性が低下してしまうので好ましくなく、一方、この平板状磁性体粒子の含有率が60体積%を超えると、平板状磁性体粒子が多すぎてしまい、この平板状磁性体粒子と樹脂と硬化剤と溶媒とを含む成形材料の流動性が低下し、したがって、この成形材料により成形体を形成したときに平板状磁性体粒子の配向が起こり難くなり、その結果、複合磁性体中における平板状磁性体粒子の配向性が低下してしまうので、好ましくない。
The content rate of the flat magnetic particles in the molding material is determined by the volume V1 of the first resin and the volume V2 of the second resin when the components other than the volatile components in the molding material are cured and become solid. It is preferably 10% by volume to 60% by volume, more preferably 30% by volume to 50% by volume, based on the sum of the volume V3 of the agent and the volume V4 of the tabular magnetic particles (V1 + V2 + V3 + V4).
Here, if the content of the tabular magnetic particles is less than 10% by volume, the tabular magnetic particles are too small and the magnetic properties as a composite magnetic body are deteriorated. When the content of the particles exceeds 60% by volume, there are too many tabular magnetic particles, and the fluidity of the molding material containing the tabular magnetic particles, the resin, the curing agent, and the solvent is reduced. When a molded body is formed from this molding material, the orientation of the tabular magnetic particles is difficult to occur, and as a result, the orientation of the tabular magnetic particles in the composite magnetic body is lowered, which is not preferable.
 これら平板状磁性体粒子、第1の樹脂、第2の樹脂、硬化剤及び溶媒を混合し、成形材料を作製する。この場合、溶媒の添加量を適宜調整することにより、成形材料の粘度を調整することができる。
 混合装置としては、上記第1の複合磁性体において挙げられたものと同じものが挙げられる。
These flat magnetic particles, first resin, second resin, curing agent and solvent are mixed to produce a molding material. In this case, the viscosity of the molding material can be adjusted by appropriately adjusting the amount of the solvent added.
Examples of the mixing apparatus include the same ones as those mentioned in the first composite magnetic body.
 得られた成形材料の粘度は0.1Pa・S以上かつ10Pa・S以下であることが好ましく、より好ましくは0.3Pa・S以上かつ10Pa・S以下である。
 ここで、粘度が0.1Pa・S未満の場合には、流動性が大きくなりすぎて乾燥工程での生産性が悪くなるので好ましくなく、一方、粘度が10Pa・Sを超えると、粘性が高すぎて平板状磁性体粒子の配向が起こり難くなり、その結果、複合磁性体中における平板状磁性体粒子の配向性が低下してしまうので、好ましくない。
The viscosity of the obtained molding material is preferably 0.1 Pa · S or more and 10 6 Pa · S or less, more preferably 0.3 Pa · S or more and 10 4 Pa · S or less.
Here, when the viscosity is less than 0.1 Pa · S, it is not preferable because the fluidity becomes too high and the productivity in the drying process is deteriorated. On the other hand, when the viscosity exceeds 10 6 Pa · S, the viscosity is Is too high, and the orientation of the tabular magnetic particles is difficult to occur. As a result, the orientation of the tabular magnetic particles in the composite magnetic material is lowered, which is not preferable.
 このように、この成形材料中の平板状磁性体粒子の含有率を10体積%以上かつ60体積%以下、かつ、この成形材料の粘度を0.1Pa・S以上かつ10Pa・S以下とすることにより、μr’と成形体の機械的強度のバランスがとれた複合磁性体を得ることができる。 Thus, the content of the tabular magnetic particles in the molding material is 10 volume% or more and 60 volume% or less, and the viscosity of the molding material is 0.1 Pa · S or more and 10 6 Pa · S or less. By doing so, a composite magnetic body in which μr ′ and the mechanical strength of the compact are balanced can be obtained.
<成形工程>
 上記の工程で得られた成形材料を所定の形状に成形する工程である。
 成形法としては、成形材料を一定の形状に成形することができ、かつ成形後に磁場を印加する際に一定の形状を保持することができればよく、特に制限されない。
 また、成形体の形状や大きさも特に制限はされず、例えば、シート状またはフィルム状に成形してもよく、直方体状等の厚みがある形状、例えばバルク状に成形してもよい。
<Molding process>
This is a step of molding the molding material obtained in the above step into a predetermined shape.
The molding method is not particularly limited as long as the molding material can be molded into a constant shape and can maintain a constant shape when a magnetic field is applied after molding.
Further, the shape and size of the molded body are not particularly limited, and for example, it may be molded into a sheet shape or a film shape, or may be molded into a shape having a thickness such as a rectangular parallelepiped shape, for example, a bulk shape.
 シート状またはフィルム状に成形する場合、シート状またはフィルム状の基体上に上記の成形材料を塗布することで容易に得ることができる。この方法は、量産性に優れているので好ましい。 In the case of molding into a sheet or film, it can be easily obtained by applying the molding material on a sheet or film substrate. This method is preferable because it is excellent in mass productivity.
 シート状またはフィルム状に成形する場合、例えば、成形材料の粘度が10Pa・S以下の場合には、ドクターブレード法、バーコート法等を用いることができる。また、成形材料の粘度が10Pa・Sを超える場合には、ダイコート法等を用いることができる。また、厚みがある形状に成形する場合、例えば、任意の形状の型に成形材料を流し込む方法等が挙げられる。 When molding into a sheet or film, for example, when the viscosity of the molding material is 10 Pa · S or less, a doctor blade method, a bar coating method, or the like can be used. Moreover, when the viscosity of the molding material exceeds 10 Pa · S, a die coating method or the like can be used. Moreover, when shape | molding to a shape with thickness, the method of pouring a molding material into the type | mold of arbitrary shapes, etc. are mentioned, for example.
 成形材料が、シート状、フィルム状あるいは直方体状等に成形されただけの状態では、平板状磁性体粒子はそれぞれがランダムな方向を向いて、配向が十分ではない場合がある。
 そこで、このシート状、フィルム状あるいは直方体状等に成形された成形体に磁場を印加し、この成形体中の平板状磁性体粒子を一方向に配向させる。
When the molding material is simply molded into a sheet shape, a film shape, a rectangular parallelepiped shape, or the like, the tabular magnetic particles may be oriented in random directions and the orientation may not be sufficient.
Therefore, a magnetic field is applied to the molded body formed into a sheet shape, a film shape, a rectangular parallelepiped shape or the like, and the flat magnetic particles in the molded body are oriented in one direction.
<配向工程>
 第4の複合磁性体の配向工程は、上記第3の複合磁性体において記載した配向工程と同じである。
<Orientation process>
The alignment step of the fourth composite magnetic body is the same as the alignment step described in the third composite magnetic body.
<乾燥・硬化工程>
 上記の配向工程で平板状磁性体粒子を配向させた成形体を、乾燥・硬化させ、複合磁性体とする工程である。
 この乾燥・硬化工程は、上記第3の複合磁性体の乾燥・硬化工程と同じである。
<Drying / curing process>
This is a step of drying and curing the molded body in which the tabular magnetic particles are oriented in the orientation step to obtain a composite magnetic material.
This drying / curing process is the same as the drying / curing process of the third composite magnetic body.
<プレス工程>
 上記の乾燥工程で得られた成形体の気孔率をさらに減少させたい場合には、上記の乾燥工程後に、成形体をプレスする工程を施すことが好ましい。プレス装置は公知のものを適宜用いればよい。
<Pressing process>
When it is desired to further reduce the porosity of the molded body obtained in the drying step, it is preferable to perform a step of pressing the molded body after the drying step. A known press apparatus may be used as appropriate.
 プレス装置で成形体に圧力を加える際には、効果的に気孔を減少させるために、樹脂の軟化温度以上かつ硬化開始温度以下で圧力を加えることが好ましい。
 プレス時の圧力は適宜調整すればよいが、5MPa~20MPa程度の圧力を加えるのが好ましい。
 以上により、本実施形態の複合磁性体を得ることができる。
When pressure is applied to the molded body with a press device, in order to effectively reduce pores, it is preferable to apply pressure above the softening temperature of the resin and below the curing start temperature.
The pressure during pressing may be adjusted as appropriate, but it is preferable to apply a pressure of about 5 MPa to 20 MPa.
As described above, the composite magnetic body of the present embodiment can be obtained.
[アンテナ]
 本実施形態のアンテナは、上記第1ないし第4のいずれかの複合磁性体を備えている。
 このアンテナの一形態としては、上記の複合磁性体を装荷したアンテナがある。
 このアンテナに上記の複合磁性体を装荷させる方法としては、特に制限されず、アンテナを構成する銅線等の導体(以下、「アンテナ導体」と称する)に上記の複合磁性体を被覆させる等、公知の方法で装荷させればよい。
[antenna]
The antenna of this embodiment includes any one of the first to fourth composite magnetic bodies.
As one form of this antenna, there is an antenna loaded with the above composite magnetic material.
The method for loading the antenna with the composite magnetic body is not particularly limited, and the conductor such as a copper wire constituting the antenna (hereinafter referred to as “antenna conductor”) is covered with the composite magnetic body. What is necessary is just to load by a well-known method.
 アンテナの種類及び形状は、特に制限されず、モノポールアンテナ、ループアンテナ、ヘリカルアンテナ、パッチアンテナ、F型アンテナ、L型アンテナ等が好適に用いられる。また、アンテナをより小型化させるために整合回路を併用してもよい。
 例えば、モノポールアンテナやL字アンテナは、アンテナ導体を中心として、上記の複合磁性体を棒状あるいは長尺の板状に加工したもので挟み込むように形成することで得ることができる。
 また、ヘリカルアンテナは、上記の複合磁性体を棒状に加工した棒状複合磁性体の周囲に、銅線等からなる長尺かつ極細のアンテナ導体をコイル状に巻回することで得ることができる。
 これらのアンテナでは、波長短縮効果により、所望波長の1/4よりも長さが短い小型アンテナを得ることが可能である。
The type and shape of the antenna are not particularly limited, and a monopole antenna, a loop antenna, a helical antenna, a patch antenna, an F-type antenna, an L-type antenna, or the like is preferably used. Further, a matching circuit may be used in combination in order to reduce the size of the antenna.
For example, a monopole antenna or an L-shaped antenna can be obtained by sandwiching the above composite magnetic body into a rod-like or long plate-like shape around the antenna conductor.
The helical antenna can be obtained by winding a long and extremely thin antenna conductor made of copper wire or the like in a coil shape around a rod-shaped composite magnetic material obtained by processing the above-described composite magnetic material into a rod shape.
With these antennas, it is possible to obtain a small antenna having a length shorter than ¼ of the desired wavelength due to the wavelength shortening effect.
 図8は、本実施形態のアンテナの一例であるモノポールアンテナの給電方法を示す模式図であり、このモノポールアンテナ61は、棒状のアンテナ導体62と、このアンテナ導体62を埋め込むことによりその表面を被覆した板状の複合磁性体63とを備えている。
 このモノポールアンテナ61は、所定形状の導体からなる地板64に同軸コネクタ等を介して接続され、この同軸コネクタ等の内導体である接続部65を給電点とするように交流信号発信機66が接続されている。
 その他の種類及び形状のアンテナにおける給電方法も上記と同様、アンテナは地板64にコネクタ等を介して接続され、この接続部65を給電点とするように交流信号発信機66が接続される。この給電点となる接続部65と地板64とは、電気的に絶縁されている。
FIG. 8 is a schematic diagram showing a method of feeding a monopole antenna which is an example of the antenna of the present embodiment. The monopole antenna 61 has a rod-shaped antenna conductor 62 and a surface of the antenna conductor 62 embedded by embedding the antenna conductor 62. And a plate-like composite magnetic body 63 covered with
The monopole antenna 61 is connected to a ground plane 64 made of a conductor having a predetermined shape via a coaxial connector or the like, and an AC signal transmitter 66 is used so that the connection portion 65 that is an inner conductor of the coaxial connector or the like serves as a feeding point. It is connected.
In the same manner as described above, the antenna is connected to the ground plane 64 via a connector or the like, and the AC signal transmitter 66 is connected so that the connecting portion 65 serves as a feeding point. The connection portion 65 and the ground plane 64 serving as a feeding point are electrically insulated.
[通信装置]
 本実施形態の通信装置は、上記のアンテナを備えている。
 この通信装置としては、電磁波を介して各種情報の送信、受信、送受信のいずれかを行う装置であればよく、特に限定されない。例えば、パーソナルコンピューター、携帯用電話機、携帯情報端末、スマートフォン等の多機能携帯用情報端末、PDA(Personal Digital Assistant)等の通信機器、オーディオ機器、ビデオ機器、カメラ機器等の各種電子機器等が挙げられる。
[Communication device]
The communication device of this embodiment includes the antenna described above.
The communication device is not particularly limited as long as it is a device that transmits, receives, or transmits / receives various information via electromagnetic waves. For example, personal computers, portable telephones, portable information terminals, multifunctional portable information terminals such as smartphones, communication devices such as PDAs (Personal Digital Assistants), various electronic devices such as audio devices, video devices, camera devices, etc. It is done.
 本実施形態の通信装置には、上述した各種機器の他、これらの各種機器に付随する保護カバー等の各種アクセサリー(補助用具)に上記のアンテナを設けた補助アンテナを装着した通信装置も含まれる。
 これらの通信装置においては、上記のアンテナは、通信装置の外部に設けられていてもよく、また、内蔵されていてもよく、いずれでもよい。
In addition to the various devices described above, the communication device according to the present embodiment includes a communication device in which an auxiliary antenna provided with the antenna is mounted on various accessories (auxiliary tools) such as a protective cover attached to the various devices. .
In these communication devices, the antenna may be provided outside the communication device, or may be built in either.
 ここで、通信装置として携帯用電話機を例に取り、上記のアンテナの様々な取り付け方について説明する。
 図9は、本実施形態の通信装置の一種の携帯用電話機の一例を示す斜視図であり、この携帯用電話機71は、筐体72の前面に液晶ディスプレイや有機ELディスプレイ等からなる表示機能を有する表示部73が設けられ、この表示部73の裏面側には地板(図示略)が設けられ、この地板にコネクタ等を介して棒状のモノポールアンテナ74内に配設されたアンテナ導体75が接続され、この接続部を介して携帯用電話機71の電子回路(図示略)が接続されている。このモノポールアンテナ74のアンテナ導体75は、複合磁性体76により被覆されている。
Here, taking a portable telephone as an example of the communication device, various methods of attaching the antenna will be described.
FIG. 9 is a perspective view showing an example of a kind of mobile phone of the communication apparatus according to the present embodiment. The mobile phone 71 has a display function including a liquid crystal display, an organic EL display, or the like on the front surface of the casing 72. The display unit 73 is provided, and a ground plate (not shown) is provided on the back side of the display unit 73, and an antenna conductor 75 disposed in the rod-shaped monopole antenna 74 via a connector or the like is provided on the ground plate. The electronic circuit (not shown) of the portable telephone 71 is connected through this connection portion. The antenna conductor 75 of the monopole antenna 74 is covered with a composite magnetic body 76.
 このモノポールアンテナ74は、筐体72から取り出し可能かつ筐体72に収納可能とされており、通信時は、必要に応じて筐体72から引き出して通信を行い、通信しない時には、筐体72に押し込んで収納するようになっている。
 このモノポールアンテナ74は、棒状である必要はなく、伸縮自在であってもよい。
 このモノポールアンテナ74は、アンテナ利得を向上させることを考慮すると、表示部73等と重ならない位置に設けることが好ましい。なお、表示部73等と重なる位置にモノポールアンテナ74を設ける場合には、このモノポールアンテナ74と表示部73との間隔を空けることが好ましい。
The monopole antenna 74 can be taken out from the casing 72 and can be stored in the casing 72. When communicating, the monopole antenna 74 is pulled out from the casing 72 as necessary to perform communication. When not communicating, the casing 72 It is designed to be pushed into the storage.
The monopole antenna 74 does not have to be rod-shaped and may be telescopic.
The monopole antenna 74 is preferably provided at a position that does not overlap the display unit 73 or the like in consideration of improving the antenna gain. In the case where the monopole antenna 74 is provided at a position overlapping with the display unit 73 and the like, it is preferable that the monopole antenna 74 and the display unit 73 are spaced from each other.
 図10は、本実施形態の通信装置の一種の携帯用電話機の他の一例を示す斜視図であり、この携帯用電話機81は、筐体82の前面に液晶ディスプレイや有機ELディスプレイ等からなる表示機能を有する表示部83が設けられ、側面に外部アンテナ用端子84が設けられ、この外部アンテナ用端子84には、棒状のモノポールアンテナ85の側面に設けられた接続端子86が嵌め込まれており、このモノポールアンテナ85内に配設されたアンテナ導体87が、表示部83の裏面側に設けられた地板(図示略)に接続端子86及び外部アンテナ用端子84を介して接続され、この接続部を介して携帯用電話機81の電子回路(図示略)が接続されている。このモノポールアンテナ85は、アンテナ導体87が複合磁性体88により被覆されている。
 この携帯用電話機81では、モノポールアンテナ85の接続端子86を外部アンテナ用端子84に挿入・取り外しすることで、装着及び取り外し可能とされている。
FIG. 10 is a perspective view showing another example of a kind of mobile phone of the communication apparatus of the present embodiment. The mobile phone 81 is a display comprising a liquid crystal display, an organic EL display, or the like on the front surface of the housing 82. A display portion 83 having a function is provided, and an external antenna terminal 84 is provided on the side surface. A connection terminal 86 provided on the side surface of the rod-shaped monopole antenna 85 is fitted into the external antenna terminal 84. The antenna conductor 87 disposed in the monopole antenna 85 is connected to a ground plate (not shown) provided on the back side of the display unit 83 via a connection terminal 86 and an external antenna terminal 84, and this connection The electronic circuit (not shown) of the portable telephone 81 is connected through the unit. In this monopole antenna 85, an antenna conductor 87 is covered with a composite magnetic body 88.
The portable telephone 81 can be attached and detached by inserting / removing the connection terminal 86 of the monopole antenna 85 to / from the external antenna terminal 84.
 図11は、本実施形態の通信装置の一種の携帯用電話機のさらに他の一例の一部を示す部分斜視図であり、この携帯用電話機91は、筐体92の前面の液晶ディスプレイや有機ELディスプレイ等からなる表示機能を有する表示部(図示略)の背面側に地板93が設けられ、この地板93と重ならない位置(図22では、地板93の上方)にL字アンテナ94が設けられ、このL字アンテナ94内に配設された銅線等の導体からなるアンテナ導体95が地板93にコネクタ等を介して接続され、この接続部を介して携帯用電話機91の電子回路(図示略)が接続されている。このL字アンテナ94は、アンテナ導体95が複合磁性体96により被覆されている。 FIG. 11 is a partial perspective view showing a part of still another example of a mobile phone of a kind of the communication apparatus according to the present embodiment. The mobile phone 91 includes a liquid crystal display or an organic EL on the front surface of a housing 92. A ground plate 93 is provided on the back side of a display unit (not shown) having a display function such as a display, and an L-shaped antenna 94 is provided at a position that does not overlap with the ground plate 93 (in FIG. 22, above the ground plate 93). An antenna conductor 95 made of a conductor such as a copper wire disposed in the L-shaped antenna 94 is connected to the ground plane 93 via a connector or the like, and an electronic circuit (not shown) of the portable telephone 91 is connected via this connection portion. Is connected. In this L-shaped antenna 94, an antenna conductor 95 is covered with a composite magnetic body 96.
 図12は、本実施形態の通信装置の一種の携帯用電話機のさらに他の一例の一部を示す部分斜視図であり、この携帯用電話機101は、筐体102の前面の液晶ディスプレイや有機ELディスプレイ等からなる表示機能を有する表示部(図示略)の背面側に地板103が設けられ、この地板103と重ならない位置(図23では、地板103の上方)にヘリカルアンテナ104が設けられ、このヘリカルアンテナ104のうち棒状の複合磁性体105に巻回された螺旋状のアンテナ導体106が地板103にコネクタ等を介して接続され、この接続部を介して携帯用電話機101の電子回路(図示略)が接続されている。
 このヘリカルアンテナ104は、棒状の複合磁性体105を取り巻くように、銅線等の導体からなるアンテナ導体106が螺旋状に巻回されている。
FIG. 12 is a partial perspective view showing a part of still another example of a mobile phone of a kind of the communication apparatus according to the present embodiment. The mobile phone 101 includes a liquid crystal display or an organic EL on the front surface of the housing 102. A ground plate 103 is provided on the back side of a display unit (not shown) having a display function such as a display, and a helical antenna 104 is provided at a position that does not overlap with the ground plate 103 (above the ground plate 103 in FIG. 23). A helical antenna conductor 106 wound around a rod-shaped composite magnetic body 105 of the helical antenna 104 is connected to the ground plate 103 via a connector or the like, and an electronic circuit (not shown) of the portable telephone 101 is connected via this connection portion. ) Is connected.
In the helical antenna 104, an antenna conductor 106 made of a conductor such as a copper wire is spirally wound so as to surround a rod-shaped composite magnetic body 105.
 図13は、本実施形態の通信装置の一種の保護カバー付き携帯用電話機の一例を示す斜視図であり、この保護カバー付き携帯用電話機111は、携帯用電話機112と、この携帯用電話機112に装着されたアクセサリーの一種である保護カバー113とにより構成され、携帯用電話機112は、筐体114の前面に液晶ディスプレイや有機ELディスプレイ等からなる表示機能を有する表示部115が設けられ、この筐体114の一方の側面に表示部115の裏面側に設けられた地板(図示略)に接続する外部アンテナ用端子116が設けられている。 FIG. 13 is a perspective view showing an example of a mobile phone with a protective cover of a kind of the communication device of the present embodiment. The mobile phone 111 with a protective cover includes a mobile phone 112 and the mobile phone 112. The portable telephone 112 is provided with a display unit 115 having a display function including a liquid crystal display, an organic EL display, and the like on the front surface of the casing 114. The protective cover 113 is a kind of attached accessory. An external antenna terminal 116 connected to a ground plate (not shown) provided on the back side of the display unit 115 is provided on one side surface of the body 114.
 一方、保護カバー113は、柔軟性を有する樹脂等からなる変形可能なもので、筐体114の表示部113を除く周縁部及び背面を覆うように設けられ、この保護カバー113の一方の側部にはダイポールアンテナ121が設けられ、このダイポールアンテナ121は、銅線等の導体からなるアンテナ導体122が複合磁性体123により被覆されている。このダイポールアンテナ121には、このダイポールアンテナ121を外部アンテナ用端子116に接続するための接続端子124が設けられている。
 ダイポールアンテナ121は、モノポールアンテナを対にして2つ備えたもので、保護カバー113を携帯用電話機112に装着したときに、表示部115と重ならない位置に備えられていることが好ましい。なお、表示部115と重なる位置に設ける場合には、保護カバー113の厚みを厚くし、保護カバー113内部でダイポールアンテナ121と表示部115の間隔を適宜空けることが望ましい。
On the other hand, the protective cover 113 is a deformable one made of a flexible resin or the like, and is provided so as to cover the peripheral edge and the back surface of the housing 114 excluding the display portion 113, and one side portion of the protective cover 113. Is provided with a dipole antenna 121, and an antenna conductor 122 made of a conductor such as a copper wire is covered with a composite magnetic body 123. The dipole antenna 121 is provided with a connection terminal 124 for connecting the dipole antenna 121 to the external antenna terminal 116.
The dipole antenna 121 includes two monopole antennas as a pair, and is preferably provided at a position that does not overlap with the display unit 115 when the protective cover 113 is attached to the portable telephone 112. Note that in the case where the protective cover 113 is provided at a position overlapping with the display portion 115, it is desirable that the thickness of the protective cover 113 is increased and the dipole antenna 121 and the display portion 115 are appropriately spaced inside the protective cover 113.
 この保護カバー付き携帯用電話機111は、ダイポールアンテナ121が表示部115の裏面側に設けられた地板(図示略)に接続端子124及び外部アンテナ用端子116を介して接続され、この接続部を介して携帯用電話機の電子回路(図示略)が接続されている。
 この保護カバー付き携帯用電話機111では、保護カバー113の接続端子124を携帯用電話機112の外部アンテナ用端子116に挿入し、この状態を保持したまま、保護カバー113を携帯用電話機112に被せることで、ダイポールアンテナ121を携帯用電話機112に接続することができる。
 また、保護カバー113を携帯用電話機112から取り外すことで、ダイポールアンテナ121を携帯用電話機112から取り外すことができる。
In this portable telephone 111 with a protective cover, a dipole antenna 121 is connected to a ground plate (not shown) provided on the back side of the display unit 115 via a connection terminal 124 and an external antenna terminal 116, An electronic circuit (not shown) of the portable telephone is connected.
In the portable telephone 111 with the protective cover, the connection terminal 124 of the protective cover 113 is inserted into the external antenna terminal 116 of the portable telephone 112, and the protective cover 113 is put on the portable telephone 112 while maintaining this state. Thus, the dipole antenna 121 can be connected to the mobile phone 112.
Further, the dipole antenna 121 can be detached from the portable telephone 112 by removing the protective cover 113 from the portable telephone 112.
 図14は、本実施形態の通信装置の一種の保護カバー付き携帯用電話機の他の一例を示す平面図、図15は図14のA-A線に沿う断面図であり、この保護カバー付き携帯用電話機131は、携帯用電話機132と、保護カバー133とにより構成され、携帯用電話機132は、筐体134の前面に液晶ディスプレイや有機ELディスプレイ等からなる表示機能を有する表示部135が設けられ、この筐体134の上面に表示部135の裏面側に設けられた地板(図示略)に接続する外部アンテナ用端子136が設けられている。 FIG. 14 is a plan view showing another example of a portable telephone with a protective cover of the communication apparatus of this embodiment, and FIG. 15 is a cross-sectional view taken along the line AA in FIG. The mobile phone 131 includes a mobile phone 132 and a protective cover 133, and the mobile phone 132 is provided with a display unit 135 having a display function including a liquid crystal display or an organic EL display on the front surface of the housing 134. An external antenna terminal 136 is provided on the upper surface of the housing 134 for connection to a ground plate (not shown) provided on the back side of the display unit 135.
 一方、保護カバー133は、柔軟性を有する樹脂等からなる変形可能なもので、筐体134の周縁部及び背面を覆うように設けられ、この保護カバー133の背面の上部にはスパイラルアンテナ141が設けられている。このスパイラルアンテナ141は、スパイラル状にしたアンテナ導体142を複合磁性体143により被覆したもので、このスパイラルアンテナ141には、外部アンテナ用端子136に接続するための接続端子144が設けられている。
 このスパイラルアンテナ141は、保護カバー133を携帯用電話機132に装着したときに、表示部135と重ならない位置に備えられていることが好ましい。なお、表示部135と重なる位置に設ける場合には、保護カバー133の厚みを厚くし、保護カバー133内部でスパイラルアンテナ141と表示部135の間隔を適宜空けることが望ましい。
On the other hand, the protective cover 133 is made of a flexible resin or the like and is deformable, and is provided so as to cover the peripheral portion and the back surface of the casing 134. A spiral antenna 141 is provided on the back surface of the protective cover 133. Is provided. The spiral antenna 141 is obtained by coating a spiral antenna conductor 142 with a composite magnetic body 143, and the spiral antenna 141 is provided with a connection terminal 144 for connection to an external antenna terminal 136.
The spiral antenna 141 is preferably provided at a position that does not overlap the display unit 135 when the protective cover 133 is attached to the portable telephone 132. Note that in the case where the protective cover 133 is provided so as to overlap with the display portion 135, it is desirable that the thickness of the protective cover 133 is increased and the space between the spiral antenna 141 and the display portion 135 is appropriately set inside the protective cover 133.
 この保護カバー付き携帯用電話機131は、スパイラルアンテナ141が、表示部135の裏面側に設けられた地板(図示略)に接続端子144及び外部アンテナ用端子136を介して接続され、この接続部を介して携帯用電話機の電子回路(図示略)が接続されている。
 この保護カバー付き携帯用電話機131では、保護カバー133の接続端子144を携帯用電話機132の外部アンテナ用端子136に挿入し、この状態を保持したまま、保護カバー133を携帯用電話機132に被せることで、スパイラルアンテナ141を携帯用電話機132に接続することができる。
 また、保護カバー133を携帯用電話機132から取り外すことで、スパイラルアンテナ141を携帯用電話機132から取り外すことができる。
In this portable telephone 131 with a protective cover, a spiral antenna 141 is connected to a ground plate (not shown) provided on the back side of the display unit 135 via a connection terminal 144 and an external antenna terminal 136. An electronic circuit (not shown) of the portable telephone is connected through the cable.
In the portable telephone 131 with the protective cover, the connection terminal 144 of the protective cover 133 is inserted into the external antenna terminal 136 of the portable telephone 132, and the protective cover 133 is put on the portable telephone 132 while maintaining this state. Thus, the spiral antenna 141 can be connected to the mobile phone 132.
Further, the spiral antenna 141 can be detached from the portable telephone 132 by removing the protective cover 133 from the portable telephone 132.
 上記の各例によれば、搭載しているモノポールアンテナ74、85、L字アンテナ94、ヘリカルアンテナ104、ダイポールアンテナ121及びスパイラルアンテナ141が共に小型であるから、アンテナを携帯用電話機内の狭い空間に配置させることができ、アンテナ以外の部品により電磁波が遮断されることなく、アンテナ利得の高い携帯用電話機を得ることができる。
 特に、ダイポールアンテナ61及びスパイラルアンテナ141は、保護カバー113、133のようなアクセサリー内にも設置が可能であるから、携帯用電話機の筐体内の領域を占有することなく、携帯用電話機に補助アンテナを設けることができ、アンテナの性能を向上させることができる。
According to each of the above examples, since the mounted monopole antennas 74 and 85, the L-shaped antenna 94, the helical antenna 104, the dipole antenna 121, and the spiral antenna 141 are all small, the antenna is narrow in the portable telephone. A portable telephone with a high antenna gain can be obtained without being blocked by components other than the antenna, and can be placed in a space.
In particular, since the dipole antenna 61 and the spiral antenna 141 can be installed in accessories such as the protective covers 113 and 133, the auxiliary antenna is provided in the portable telephone without occupying the area in the portable telephone casing. And the performance of the antenna can be improved.
 本実施形態の複合磁性体によれば、平板状磁性体粒子の平均厚みを0.01μm以上かつ0.5μm以下、平均長径を0.05μm以上かつ10μm以下、かつ平均アスペクト比(長径/厚み)を5以上としたので、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’を1よりも大きく、かつ損失正接tanδμを0.1以下とすることができ、この周波数帯域における波長の短縮率を大きく取ることができる。
 したがって、この複合磁性体をVHF帯のアンテナに適用すれば、この複合磁性体の表面における渦電流の発生を防止することができ、複素透磁率の実部μr’の低下を防止することができ、さらなるアンテナの小型化を図ることができる。
According to the composite magnetic body of this embodiment, the average thickness of the tabular magnetic particles is 0.01 μm or more and 0.5 μm or less, the average major axis is 0.05 μm or more and 10 μm or less, and the average aspect ratio (major axis / thickness). Therefore, the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz can be larger than 1 and the loss tangent tan δμ can be 0.1 or less. The reduction rate can be greatly increased.
Therefore, if this composite magnetic body is applied to a VHF band antenna, generation of eddy currents on the surface of the composite magnetic body can be prevented, and a reduction in the real part μr ′ of the complex permeability can be prevented. Further antenna miniaturization can be achieved.
 本実施形態の複合磁性体の製造方法によれば、平均粒子径が0.5μm以下の球状の磁性粒子を界面活性剤を含む溶液中に分散してなるスラリー及び分散媒体を、密閉可能な容器内に、前記スラリー及び前記分散媒体の合計の体積量が前記容器内の体積と同じくなるように充填し、このスラリーを前記分散媒体と共に密閉状態にて撹拌し、前記球状の磁性粒子同士を変形及び融着させて平板状の磁性体粒子とする第1の工程と、前記平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする第2の工程と、前記成形材料を成形または基材上に塗布して成形体を得る成形工程と、前記成形体を乾燥・硬化させる乾燥・硬化工程を含む第3の工程と、を備えたので、70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’が大きく、かつ複素透磁率の損失正接tanδμも0.1以下の複合磁性体を容易に作製することができる。 According to the method for producing a composite magnetic body of the present embodiment, a slurry in which spherical magnetic particles having an average particle diameter of 0.5 μm or less are dispersed in a solution containing a surfactant and a dispersion medium can be sealed. The total volume of the slurry and the dispersion medium is filled so as to be the same as the volume in the container, and the slurry is stirred together with the dispersion medium in a sealed state to deform the spherical magnetic particles. And a first step of fusing to form flat magnetic particles, and a second step of dispersing and mixing the flat magnetic particles in a solution in which an insulating material is dissolved in a solvent to obtain a molding material. And a molding step of molding or applying the molding material on a substrate to obtain a molded body, and a third step including a drying / curing step of drying / curing the molded body. Frequency band up to 500MHz Real part .mu.r 'is large definitive complex permeability and the loss tangent tanδμ be 0.1 or less of the composite magnetic body of the complex permeability can be easily fabricated.
 また、本実施形態の複合磁性体の気孔率を20%以下とした場合の複合磁性体によれば、複素透磁率の実部μr’の値を向上させ、かつ複素誘電率の実部εr’の値を殆ど変わらなくすることができる。したがって、この複合磁性体が適用される電子部品や電子機器を小型化することができ、インピーダンスマッチングによる電力損失を抑制することができる。
 また、70MHzから500MHzまでにおける複素誘電率の損失正接tanδμを0.05以下、複素誘電率の損失正接tanδεを0.1以下とした場合には、電子部品や電子機器の利得を向上させることができる。
In addition, according to the composite magnetic body when the porosity of the composite magnetic body of the present embodiment is 20% or less, the value of the real part μr ′ of the complex permeability is improved and the real part εr ′ of the complex permittivity is improved. The value of can be kept almost unchanged. Therefore, electronic parts and electronic devices to which this composite magnetic body is applied can be reduced in size, and power loss due to impedance matching can be suppressed.
Further, when the loss tangent tan δμ of the complex dielectric constant from 70 MHz to 500 MHz is 0.05 or less and the loss tangent tan δε of the complex dielectric constant is 0.1 or less, the gain of the electronic component or electronic device can be improved. it can.
 また、絶縁材料として主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する第1の樹脂を含む複合磁性体によれば、平板状磁性体粒子に対する樹脂による立体障害の影響を小さくすることができる。したがって、複素透磁率の実部μr’が高くかつ機械的強度に優れた複合磁性体を提供することができる。
 しかも、モノマー単位で重合する官能基を有する樹脂を用いているので、樹脂の結合が強固なものとなり、電子部品等に用いるのに十分な成形体としての機械的強度を有することができる。
In addition, according to the composite magnetic body including the first resin having the cyclic structure in the main chain and the functional group that is polymerized in the monomer unit as the insulating material, the influence of the steric hindrance by the resin on the flat magnetic particles is reduced. can do. Therefore, it is possible to provide a composite magnetic body having a high real part μr ′ of complex permeability and excellent mechanical strength.
In addition, since a resin having a functional group that is polymerized by monomer units is used, the bonding of the resin becomes strong, and it is possible to have mechanical strength as a molded body sufficient for use in electronic parts and the like.
 本実施形態の複合磁性体の製造方法によれば、主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する樹脂と、平板状磁性体粒子と、溶媒と、必要に応じて硬化剤とを混合し、成形材料を得る工程と、この成形材料に磁場を印加させて平板状磁性体粒子を配向させる工程と、平板状磁性体粒子が配向した成形体を乾燥・硬化させる工程とを有するので、複素透磁率の実部μr’が高くかつ機械的強度に優れた複合磁性体を、容易に作製することができる。
 さらに、塗布膜に磁場を1回若しくは複数回印加することで、塗布膜中の平板状磁性体粒子の配向性を向上させることができる。
According to the method for producing a composite magnetic body of the present embodiment, a resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units, tabular magnetic particles, a solvent, and curing as necessary A step of mixing the agent to obtain a molding material, a step of applying a magnetic field to the molding material to orient the tabular magnetic particles, and a step of drying and curing the molded body in which the tabular magnetic particles are oriented. Therefore, a composite magnetic body having a high real part μr ′ of complex permeability and excellent mechanical strength can be easily produced.
Furthermore, the orientation of the flat magnetic particles in the coating film can be improved by applying a magnetic field to the coating film once or a plurality of times.
 また、絶縁材料として主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂と、この第1の樹脂に可撓性を付与する第2の樹脂を含む複合磁性体によれば平板状磁性体粒子に対する樹脂による立体障害の影響を小さくすることができ、平板状磁性体粒子の一方向に対する配向性を向上させることができ、μr’を高くすることができる。
 また、第2の樹脂が第1の樹脂に対して可撓性を付与するので、複合磁性体自体の可撓性及び伸縮性を向上させることができる。
 したがって、μr’が高くかつ機械的強度に優れ、ロールに巻き取ることができる程度に柔らかく、生産性に優れた複合磁性体を提供することができる。
In addition, the composite magnetic material includes a first resin having a cyclic structure in the main chain as an insulating material and having a functional group that is polymerized in a monomer unit, and a second resin that imparts flexibility to the first resin. According to the body, the influence of the steric hindrance by the resin on the tabular magnetic particles can be reduced, the orientation of the tabular magnetic particles in one direction can be improved, and μr ′ can be increased.
Further, since the second resin imparts flexibility to the first resin, the flexibility and stretchability of the composite magnetic body itself can be improved.
Therefore, it is possible to provide a composite magnetic body having a high μr ′, excellent mechanical strength, soft enough to be wound on a roll, and excellent in productivity.
 しかも、モノマー単位で重合する官能基を有する第1の樹脂を用いているので、樹脂の結合が強固なものとなり、電子部品等に用いるのに十分な成形体としての機械的強度を有することができる。 In addition, since the first resin having a functional group that is polymerized in monomer units is used, the resin bond becomes strong, and it has sufficient mechanical strength as a molded body for use in electronic parts and the like. it can.
 さらに、ミクロレベルあるいはナノレベルの大きさでも可撓性及び伸縮性を有するので、平板状磁性体粒子同士の隙間に樹脂が進入し易くなり、μr’を低下させる原因となる複合磁性体中の気孔を減少させることができる。
 また、第1の樹脂と第2の樹脂とを併用することにより、第1の樹脂による立体障害を緩和させることができ、したがって、樹脂-樹脂間や樹脂-平板状磁性体粒子間に生じる気孔も減少させることができる。
 以上により、高いμr’を有する複合磁性体を提供することができる。
Furthermore, since it has flexibility and stretchability even at a micro-level or nano-level size, it becomes easier for the resin to enter the gaps between the tabular magnetic particles, and causes a decrease in μr ′. Pore can be reduced.
Further, by using the first resin and the second resin in combination, the steric hindrance caused by the first resin can be alleviated. Therefore, pores generated between the resin and the resin or between the resin and the tabular magnetic particles. Can also be reduced.
As described above, a composite magnetic body having a high μr ′ can be provided.
 本実施形態の複合磁性体の製造方法によれば、主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂と、この第1の樹脂に可撓性を付与する第2の樹脂と、平板状磁性体粒子と、溶媒とを混合して成形材料を作製する工程と、この成形材料を所定の形状に成形する成形工程と、得られた成形体に磁場を印加して成形体中の平板状磁性体粒子を一方向に配向させる配向工程と、配向させた成形体を乾燥・硬化させる乾燥・硬化工程と、を有するので、μr’が高くかつ機械的強度に優れ、柔軟で生産性に優れた複合磁性体を容易に作製することができる。
 さらに、塗布膜に磁場を1回若しくは複数回印加することで、塗布膜中の平板状磁性体粒子の配向性を向上させることができる。よって、μr’が高い複合磁性体を製造することができる。
According to the method for producing a composite magnetic body of the present embodiment, a first resin having a cyclic structure in the main chain and having a functional group that is polymerized in a monomer unit, and imparting flexibility to the first resin A second resin, flat magnetic particles, and a solvent are mixed to produce a molding material, a molding step of molding the molding material into a predetermined shape, and a magnetic field is applied to the obtained molding. Since it has an orientation step of applying and orienting the flat magnetic particles in the compact in one direction and a drying / curing step of drying / curing the oriented compact, the μr ′ is high and the mechanical strength is high. It is easy to produce a composite magnetic body that is excellent in flexibility, productivity, and productivity.
Furthermore, the orientation of the flat magnetic particles in the coating film can be improved by applying a magnetic field to the coating film once or a plurality of times. Therefore, a composite magnetic body having a high μr ′ can be produced.
 本実施形態のアンテナによれば、本実施形態の複合磁性体を装荷し、かつ70MHzから500MHzまでの周波数帯域の電磁波を、送信、受信または送受信することとしたので、アンテナのさらなる小型化を図ることができる。すなわち、波長短縮効果により、所望波長の1/4よりも長さが短い小型アンテナを得ることが可能である。 According to the antenna of this embodiment, since the composite magnetic body of this embodiment is loaded and electromagnetic waves in the frequency band from 70 MHz to 500 MHz are transmitted, received, or transmitted / received, further miniaturization of the antenna is achieved. be able to. That is, it is possible to obtain a small antenna having a length shorter than ¼ of the desired wavelength due to the wavelength shortening effect.
 さらに、本実施形態の気孔率が20%以下の複合磁性体を備えた場合には、70MHzから500MHzまでの周波数帯域において複素透磁率の実部μr’が7以上、複素誘電率の実部εr’が15以上、(μr’・εr’)-1/2が0.1以下、(μr’/εr’)1/2が0.5以上かつ1以下の性能を得ることができる。
 したがって、波長短縮効果により、所望波長の1/4よりも長さが短い小型で、インピーダンスマッチングによる電力損失が抑制され、放射効率が高いアンテナを提供することができる。よって、マルチメディア放送のようなVHF帯のように波長の長い電磁波であっても、波長短縮効果により、携帯用電話機の筐体サイズで受信できる小型のアンテナを提供することができる。
Further, when the composite magnetic body having a porosity of 20% or less according to the present embodiment is provided, the real part μr ′ of the complex permeability is 7 or more and the real part εr of the complex dielectric constant in the frequency band from 70 MHz to 500 MHz. It is possible to obtain performances in which 'is 15 or more, (μr ′ · εr ′) −1/2 is 0.1 or less, and (μr ′ / εr ′) 1/2 is 0.5 or more and 1 or less.
Therefore, it is possible to provide an antenna having a small radiation length shorter than ¼ of the desired wavelength due to the wavelength shortening effect, power loss due to impedance matching, and high radiation efficiency. Therefore, even with an electromagnetic wave having a long wavelength such as a VHF band such as multimedia broadcasting, a small antenna that can be received with the casing size of a portable telephone can be provided due to the wavelength shortening effect.
 本実施形態の通信装置によれば、本実施形態の小型のアンテナを備えたので、電波を遮断する他の電子機器の影響を受けにくい場所にアンテナを配置させる自由度が高く、良好な送受信が可能な小型の通信装置を得ることができる。 According to the communication device of the present embodiment, since the small antenna of the present embodiment is provided, there is a high degree of freedom in arranging the antenna in a place that is not easily affected by other electronic devices that block radio waves, and good transmission and reception are possible. A possible small communication device can be obtained.
[モノポールアンテナ]
 図16Aは、本発明の一実施の形態であるモノポールアンテナを示す模式図(斜視図)であり、図16Bは、図16AのA-A線に沿う位置における断面図である。
 本実施形態のモノポールアンテナ1620は、棒状のアンテナ導体1622と、アンテナ導体1622の表面に被覆された本実施形態の複合磁性体1621とを有する。本実施形態の場合、図16Bに示すように、円柱状のアンテナ導体1622の周面に断面正方形状に複合磁性体1621が形成され、全体として四角柱状を成すモノポールアンテナである。モノポールアンテナ1620は、典型的には、図16Aに示すように、所定寸法の導体地板1624の中央にコネクタ等を介して接続され、この接続部1626を給電点とするように交流信号発信機1625が接続される。
[Monopole antenna]
FIG. 16A is a schematic diagram (perspective view) showing a monopole antenna according to one embodiment of the present invention, and FIG. 16B is a cross-sectional view taken along the line AA in FIG. 16A.
The monopole antenna 1620 of this embodiment includes a rod-shaped antenna conductor 1622 and a composite magnetic body 1621 of this embodiment that is coated on the surface of the antenna conductor 1622. In the case of this embodiment, as shown in FIG. 16B, a composite magnetic body 1621 having a square cross section is formed on the peripheral surface of a cylindrical antenna conductor 1622, and the monopole antenna has a quadrangular prism shape as a whole. As shown in FIG. 16A, the monopole antenna 1620 is typically connected to the center of a conductor ground plate 1624 having a predetermined size via a connector or the like, and an AC signal transmitter so that the connection portion 1626 serves as a feeding point. 1625 is connected.
 モノポールアンテナ1620に用いられるアンテナ導体1622の形状は特に限定されず、直線状のロッドアンテナ、ホイップアンテナや、曲線状のヘリカル型アンテナ、ミアンダ型アンテナ等の公知の形状を用いることができる。これらの中でも、アンテナ導体間での静電容量が発生しにくく、高いアンテナ利得が得られる点で直線状のアンテナが好ましい。 The shape of the antenna conductor 1622 used for the monopole antenna 1620 is not particularly limited, and a known shape such as a linear rod antenna, a whip antenna, a curved helical antenna, or a meander antenna can be used. Among these, a linear antenna is preferable in that electrostatic capacitance is hardly generated between antenna conductors and a high antenna gain can be obtained.
 なお、本実施形態における「直線状」は、アンテナの共振部が真っ直ぐな棒状若しくは板状であることを意味する。したがって、直線状のモノポールアンテナ1620の形状は、通常の円柱状だけでなく、角柱状や細長い平板状であってもよい。また、芯材となるアンテナ導体1622についても同様に、円柱状、角柱状、及び平板状のいずれであってもよい。 Note that “linear” in the present embodiment means that the resonance part of the antenna is a straight rod or plate. Therefore, the shape of the linear monopole antenna 1620 may be not only a normal columnar shape but also a prismatic shape or an elongated flat plate shape. Similarly, the antenna conductor 1622 serving as the core material may be any one of a cylindrical shape, a prismatic shape, and a flat plate shape.
 アンテナ導体1622としては導電性の金属や合金を用いることが好ましい。このような金属としては例えば、銅(Cu)、銀(Ag)、ニッケル(Ni)、白金(Pt)、金(Au)などが挙げられ、合金としてはこれらのうちから選ばれる2種以上の金属の合金が好ましい。 It is preferable to use a conductive metal or alloy as the antenna conductor 1622. Examples of such a metal include copper (Cu), silver (Ag), nickel (Ni), platinum (Pt), and gold (Au), and the alloy includes two or more selected from these. Metal alloys are preferred.
 アンテナ導体1622の断面形状は、携帯端末に搭載できる大きさ程度のものであれば特に限定されず、例えば径Dが0.5mm~2mm程度の角状または丸状の断面形状とすることができる。
 さらに、160MHzから222MHzの電波は導電体の表面を流れることから、アンテナ導体1622を表面積が大きいテープ形状とすることも有効である。テープ形状のアンテナ導体1622は、その幅が0.5mm~2mmで、厚さが0.05~0.2mmであることが好ましい。
The cross-sectional shape of the antenna conductor 1622 is not particularly limited as long as it is of a size that can be mounted on a mobile terminal, and can be a square or round cross-sectional shape with a diameter D of about 0.5 mm to 2 mm, for example. .
Furthermore, since radio waves of 160 MHz to 222 MHz flow on the surface of the conductor, it is also effective to make the antenna conductor 1622 into a tape shape with a large surface area. The tape-shaped antenna conductor 1622 preferably has a width of 0.5 mm to 2 mm and a thickness of 0.05 to 0.2 mm.
 アンテナ導体1622の長さLは携帯端末に容易に搭載できる程度の長さであれば特に限定されず、40mm以上かつ200mm以下であることが好ましく、50mm以上かつ100mm以下がより好ましい。長さLを上記範囲とすることで、携帯端末に容易に搭載でき、160MHz~222MHzの周波数帯域で使用できるモノポールアンテナ1620とすることができる。 The length L of the antenna conductor 1622 is not particularly limited as long as it can be easily mounted on a mobile terminal, and is preferably 40 mm or more and 200 mm or less, more preferably 50 mm or more and 100 mm or less. By setting the length L within the above range, the monopole antenna 1620 that can be easily mounted on a portable terminal and can be used in the frequency band of 160 MHz to 222 MHz can be obtained.
<複合磁性体>
 本実施形態の複合磁性体1621は、上記複合磁性体のいずれを用いてもよい。
<Composite magnetic material>
Any of the above composite magnetic bodies may be used as the composite magnetic body 1621 of the present embodiment.
 複合磁性体1621は、160MHzから222MHzまでの周波数帯域における複素透磁率の実部μr’が3以上であることが好ましく、6以上であることがさらに好ましい。
 複合磁性体1621の複素透磁率の実部μr’が3以上であれば、2.4mm以上の被覆厚さとすることで、長さ200mmのアンテナ導体1622を用いた場合にも200MHzの周波数で共振を起こすことができるモノポールアンテナ1620を得ることができる。
 複合磁性体1621の複素透磁率μr’が6以上であれば、さらなる波長短縮効果が得られるため、アンテナ導体1622への被覆厚さを1.2mmにまで薄くしても、長さ200mmのアンテナ導体1622を用いて200MHzの周波数で共振を起こすことができるモノポールアンテナ1620を得ることができる。
In the composite magnetic body 1621, the real part μr ′ of the complex permeability in the frequency band from 160 MHz to 222 MHz is preferably 3 or more, and more preferably 6 or more.
If the real part μr ′ of the complex permeability of the composite magnetic body 1621 is 3 or more, the coating thickness is 2.4 mm or more, so that even when the antenna conductor 1622 having a length of 200 mm is used, resonance occurs at a frequency of 200 MHz. A monopole antenna 1620 that can cause
If the complex magnetic permeability 16r ′ of the composite magnetic body 1621 is 6 or more, a further wavelength shortening effect can be obtained. Therefore, even if the coating thickness of the antenna conductor 1622 is reduced to 1.2 mm, the antenna having a length of 200 mm A monopole antenna 1620 that can resonate at a frequency of 200 MHz using the conductor 1622 can be obtained.
 複合磁性体1621の被覆厚さdは、厚くなりすぎるとアンテナが太くなり、携帯端末の装置の構成やデザインの関係上搭載することが難しくなる。そのため実用上は、複合磁性体による被覆厚さdは10mm以下の範囲である。
 なお、複合磁性体1621とアンテナ導体1622は密着している必要はなく、例えば円筒状の複合磁性体1621の内部にアンテナ導体1622を配置して、外観上被覆しているような形態でも良い。
When the coating thickness d of the composite magnetic body 1621 is too thick, the antenna becomes thick, and it becomes difficult to mount it due to the configuration and design of the device of the mobile terminal. Therefore, practically, the coating thickness d by the composite magnetic material is in the range of 10 mm or less.
Note that the composite magnetic body 1621 and the antenna conductor 1622 do not need to be in close contact with each other. For example, the antenna conductor 1622 may be disposed inside the cylindrical composite magnetic body 1621 and covered in appearance.
 本実施形態の複合磁性体1621は、160MHzから222MHzまでの周波数帯域における複素透磁率の損失正接tanδμが0.05以下であることが好ましい。tanδμを0.05以下とすることにより、160MHzから222MHzの周波数帯域の信号を損失することに起因するアンテナの利得低下を防ぐことができる。 In the composite magnetic body 1621 of this embodiment, the loss tangent tan δμ of the complex permeability in the frequency band from 160 MHz to 222 MHz is preferably 0.05 or less. By setting tan δμ to 0.05 or less, it is possible to prevent a decrease in antenna gain due to loss of signals in the frequency band from 160 MHz to 222 MHz.
<モノポールアンテナの製造方法>
 本実施形態のモノポールアンテナ1620の製造方法は、球状の磁性粒子を平板状に加工することで上記平板状磁性体粒子を作製する第1の工程と、前記平板状磁性体粒子を絶縁材料と混合して成形材料を作製する第2の工程と、上記平板状磁性体粒子を含む成形材料をアンテナ導体に被覆する第3の工程とを備えている。
<Manufacturing method of monopole antenna>
The manufacturing method of the monopole antenna 1620 of the present embodiment includes a first step of producing the above-mentioned flat magnetic particles by processing spherical magnetic particles into a flat plate shape, and the flat magnetic particles as an insulating material. A second step of mixing to form a molding material and a third step of coating the antenna conductor with the molding material containing the flat magnetic particles are provided.
 以下、各工程について説明する。 Hereinafter, each process will be described.
<第1の工程>
 平板状磁性体粒子を作製する第1の工程は、上記第1の複合磁性体の製造方法で説明した第1の工程と全く同様であるので、説明を省略する
<First step>
Since the first step for producing the tabular magnetic particles is exactly the same as the first step described in the first method for producing a composite magnetic body, the description thereof is omitted.
<第2の工程>
 次に、第2の工程では、平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする。この成形材料を固化させると、絶縁材料中に平板状磁性体粒子が分散された複合磁性体1621となる。
<Second step>
Next, in the second step, the tabular magnetic particles are dispersed and mixed in a solution obtained by dissolving an insulating material in a solvent to obtain a molding material. When this molding material is solidified, a composite magnetic body 1621 is obtained in which tabular magnetic particles are dispersed in an insulating material.
 絶縁材料は、絶縁性の材料であればよく、特に制限されないが、本実施形態の複合磁性体を携帯電話用アンテナや携帯情報端末用アンテナとして用いる場合には、機械的強度が高く、吸湿性が低く、しかも形状加工性に優れていることが好ましい。このような絶縁材料としては、例えば、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレン樹脂、ポリベンゾシクロブテン樹脂、ポリアリーレンエーテル樹脂、ポリシロキサン樹脂、エポキシ樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ノルボルネン樹脂、ABS樹脂、ポリスチレン樹脂等の熱硬化性樹脂または熱可塑性樹脂が好適に用いられる。これらの樹脂は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なかでも、熱硬化性樹脂としては、機械的強度及び形状加工性に優れているエポキシ樹脂が好ましく、また、熱可塑性樹脂としては、ポリフェニレン樹脂、ABS樹脂が好ましい。
なお、硬化剤の種類や量などは、使用する樹脂の種類に対して、適宜選択すればよい。
The insulating material is not particularly limited as long as it is an insulating material. However, when the composite magnetic body of the present embodiment is used as an antenna for a mobile phone or an antenna for a portable information terminal, the mechanical strength is high and the hygroscopic property is high. It is preferable that it is low and it is excellent in shape workability. Examples of such an insulating material include polyimide resin, polybenzoxazole resin, polyphenylene resin, polybenzocyclobutene resin, polyarylene ether resin, polysiloxane resin, epoxy resin, polyester resin, fluorine resin, polyolefin resin, polycyclohexane. Thermosetting resins or thermoplastic resins such as olefin resins, cyanate resins, polyphenylene ether resins, norbornene resins, ABS resins, and polystyrene resins are preferably used. These resins may be used alone or in combination of two or more.
Especially, as a thermosetting resin, the epoxy resin excellent in mechanical strength and shape workability is preferable, and a polyphenylene resin and an ABS resin are preferable as a thermoplastic resin.
In addition, what is necessary is just to select suitably the kind, quantity, etc. of a hardening | curing agent with respect to the kind of resin to be used.
 また、上記の溶媒としては、上記の樹脂を溶解させることができるものであればよく、特に限定されないが、例えば、メタノール、エタノール、2-プロパノール、ブタノール、オクタノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒は、1種のみ単独で用いてもよく、2種以上を混合して用いてもよい。 The solvent is not particularly limited as long as it can dissolve the resin. Examples of the solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol, ethyl acetate, acetic acid, and the like. Butyl, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as γ-butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol Ethers such as monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone, methyl ether Preferred are ketones such as ruketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, and amides such as dimethylformamide, N, N-dimethylacetoacetamide and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
 上記成形材料中の平板状磁性体粒子の含有率は、成形材料中の揮発成分以外が硬化して複合磁性体1621になった場合の体積に対して、20体積%以上かつ50体積%以下が好ましく、30体積%以上かつ40体積%以下がより好ましい。
 ここで平板状磁性体粒子の含有率が20体積%未満では、平板状磁性体粒子が少なすぎて複合磁性体1621の透磁率が低下するので好ましくなく、50体積%を超えると、平板状磁性体粒子が多すぎて、成形材料の流動性が低下し、その結果、成形材料中の平板状磁性体粒子の配向性が低下して複合磁性体1621の透磁率が低下する場合があるので好ましくない。
The content of the flat magnetic particles in the molding material is 20% by volume or more and 50% by volume or less with respect to the volume when the volatile components in the molding material are cured to form the composite magnetic body 1621. Preferably, 30 volume% or more and 40 volume% or less are more preferable.
If the content of tabular magnetic particles is less than 20% by volume, the amount of tabular magnetic particles is too small and the magnetic permeability of the composite magnetic body 1621 decreases. It is preferable because there are too many body particles, the fluidity of the molding material is lowered, and as a result, the orientation of the tabular magnetic particles in the molding material is lowered and the magnetic permeability of the composite magnetic body 1621 may be lowered. Absent.
 平板状磁性体粒子を絶縁材料に分散混合させる方法は、特に制限はないが、遊星ミル、サンドミル、ボールミル等の攪拌装置を用いることができる。また、加圧ニーダ、二軸式ニーダ、ブラストミル等の混練装置を用いることもできる。熱可塑性樹脂を用いる場合には、必要に応じて加熱すればよい。 The method for dispersing and mixing the flat magnetic particles in the insulating material is not particularly limited, but a stirring device such as a planetary mill, a sand mill, or a ball mill can be used. A kneading apparatus such as a pressure kneader, a twin-screw kneader, or a blast mill can also be used. When a thermoplastic resin is used, it may be heated as necessary.
<第3の工程>
 第3の工程では、第2の工程で作製した成形材料をアンテナ導体1622の外周面に塗布し、これを硬化させることで複合磁性体1621とする。これにより、本実施形態のモノポールアンテナ1620を得ることができる。
<Third step>
In the third step, the molding material produced in the second step is applied to the outer peripheral surface of the antenna conductor 1622 and cured to obtain the composite magnetic body 1621. Thereby, the monopole antenna 1620 of this embodiment can be obtained.
 アンテナ導体1622に成形材料を塗布し、複合磁性体1621を被覆する方法としては、所望の被覆厚さdの複合磁性体1621を被覆することができる方法であれば特に限定されない。
 複合磁性体1621の被覆厚さdは、アンテナ導体の長さLと複合磁性体1621の透磁率とに基づいて決定される。複合磁性体1621の被覆方法としては、例えば、加熱プレス法、射出成形方法、押出成形方法により、アンテナ導体1622を上記成形材料の内側に挟み込むように成形、硬化させて被覆させる方法が挙げられる。なお、熱硬化性樹脂を用いる場合には、還元性雰囲気中または真空中にて、熱処理又は加熱プレス処理により成形材料を硬化させるのが好ましい。
The method of applying the molding material to the antenna conductor 1622 and covering the composite magnetic body 1621 is not particularly limited as long as it can cover the composite magnetic body 1621 having a desired coating thickness d.
The coating thickness d of the composite magnetic body 1621 is determined based on the length L of the antenna conductor and the magnetic permeability of the composite magnetic body 1621. Examples of a method for coating the composite magnetic body 1621 include a method in which the antenna conductor 1622 is molded and cured so as to be sandwiched inside the molding material by a heating press method, an injection molding method, or an extrusion molding method. When a thermosetting resin is used, it is preferable to cure the molding material by heat treatment or heat press treatment in a reducing atmosphere or in vacuum.
 また、上記成形材料を任意の形状のシート状またはフィルム状に成形したものを、所望の被覆厚になるように複数枚積層させたもので、アンテナ導体1622を挟み込むことにより被覆させてもよい。成形材料をシート状又はフィルム状に成形する方法としては、例えば、加熱プレス法、ドクターブレード法、射出成形法等が好適に用いられる。
 これらの方法の中でも、平板状磁性体粒子を絶縁材料中に配向させやすい点で、平面状に引き伸ばす加熱プレス成形法が好ましい。引き伸ばす際の粘度調整のために、可塑剤の添加、平板状磁性体粒子の表面処理を行うことも好ましい。必要があれば、加熱して流動性を維持した状態で、磁場の配向により平板状磁性体粒子を配向させる処理を行うことが好ましい。
In addition, a plurality of the molding materials formed into a sheet shape or a film shape may be laminated so as to have a desired coating thickness, and the antenna conductor 1622 may be sandwiched to cover the molding material. As a method for molding the molding material into a sheet or film, for example, a hot press method, a doctor blade method, an injection molding method, or the like is preferably used.
Among these methods, the hot press molding method in which the flat magnetic particles are easily oriented in the insulating material is preferred. In order to adjust the viscosity at the time of stretching, it is also preferable to add a plasticizer and perform surface treatment of the tabular magnetic particles. If necessary, it is preferable to perform a treatment for orienting the tabular magnetic particles by orientation of a magnetic field in a state where the fluidity is maintained by heating.
 平板状磁性体粒子を配向させる方向は、アンテナ1620中に発生する磁界が、平板状磁性体粒子中を長い距離通過して波長短縮効果をより得られるようにするのが好ましい。すなわち、アンテナ導体1622の軸周り方向(周方向)と平板状磁性体粒子の長軸が略平行になるように配向させるのが好ましい。 The direction in which the tabular magnetic particles are oriented is preferably such that the magnetic field generated in the antenna 1620 passes through the tabular magnetic particles for a long distance to obtain a wavelength shortening effect. That is, it is preferable to align the antenna conductor 1622 so that the direction around the axis (circumferential direction) and the long axis of the tabular magnetic particles are substantially parallel.
 また複合磁性体1621の形成に際して、上記成形材料の粘度調整を行う必要がある場合には、成形材料に含まれる溶媒を揮発させて濃縮した後に成形を行えばよい。
 また平板状磁性体粒子の配向処理が必要な場合には、アンテナ導体1622を内側に挟み込むように成形材料を成形した後、これを乾燥させる前に成形材料に磁場を印加し、平板状磁性体粒子をアンテナ導体1622の軸周り方向(周方向)と平板状磁性体粒子の長軸が略平行になるように配向させればよい。
In addition, when it is necessary to adjust the viscosity of the molding material in forming the composite magnetic body 1621, the molding may be performed after volatilizing and concentrating the solvent contained in the molding material.
Further, when the orientation treatment of the tabular magnetic particles is necessary, after molding the molding material so that the antenna conductor 1622 is sandwiched inside, a magnetic field is applied to the molding material before drying the tabular magnetic body. The particles may be oriented so that the direction around the axis of the antenna conductor 1622 (circumferential direction) and the major axis of the tabular magnetic particles are substantially parallel.
 以上説明したように、本実施形態のモノポールアンテナによれば、平板状磁性体粒子を絶縁材料中に分散してなる複合磁性体によってアンテナ導体が被覆されているので、携帯端末に搭載が可能なほど小型化でき、160MHz~222MHzの低周波数帯域において使用が可能である。 As described above, according to the monopole antenna of the present embodiment, the antenna conductor is covered with the composite magnetic material in which the flat magnetic particles are dispersed in the insulating material, so that it can be mounted on a portable terminal. The size can be reduced so much that it can be used in a low frequency band of 160 MHz to 222 MHz.
 また、160MHz~222MHzまでの周波数帯域における複素透磁率の実部μr’が3以上である場合には、本実施形態の複合磁性体1621を2.4mm以上被覆させることで、アンテナ導体が200mm以下でも200MHzの周波数と共振させることができる。 When the real part μr ′ of the complex permeability in the frequency band from 160 MHz to 222 MHz is 3 or more, the antenna conductor is 200 mm or less by covering the composite magnetic body 1621 of this embodiment with 2.4 mm or more. However, it can resonate with a frequency of 200 MHz.
 また、160MHz~222MHzまでの周波数帯域における複素透磁率の実部μr’が6以上である場合には、本実施形態の複合磁性体1621を1.2mm以上被覆させることで、アンテナ導体が200mm以下でも200MHzの周波数と共振させることができる。 When the real part μr ′ of the complex permeability in the frequency band from 160 MHz to 222 MHz is 6 or more, the antenna conductor is 200 mm or less by covering the composite magnetic body 1621 of this embodiment with 1.2 mm or more. However, it can resonate with a frequency of 200 MHz.
 本実施形態の直線状のモノポールアンテナ1620は、整合回路と併用することにより、さらに小型化させることができる。 The linear monopole antenna 1620 of the present embodiment can be further miniaturized by using it together with a matching circuit.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
 なお、各例における諸特性は、以下の方法により評価した。
(1)平板状磁性体粒子の観察
 走査型電子顕微鏡S-4000(日立ハイテク社製)で観察した。
(3)電磁気特性(μr’、μr’’、tanδμ、εr’、εr’’、tanδε)の測定
 透磁率測定装置 マテリアルアナライザー E4991A型(Agilent Technologies社製)にて、大気中室温(25℃)において測定した。そして、これらμr’及びεr’を基に(μr’・εr’)-1/2及び(μr’/εr’)1/2を算出した。
(4)気孔率
 複合磁性体の寸法と質量を測定し、これらの測定値に基づき実測密度を算出した。
 一方、樹脂の理論密度(≒実測密度)は樹脂のみの硬化体の寸法と質量を測定し、これらの測定値から算出した。また、平板状磁性体粒子の理論密度は、平板状磁性体粒子のX線回折パターンから求めたX線理論密度を用いた。
 これらの値を式(4)に代入し、複合磁性体の気孔率を算出した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.
Various characteristics in each example were evaluated by the following methods.
(1) Observation of tabular magnetic particles The particles were observed with a scanning electron microscope S-4000 (manufactured by Hitachi High-Tech).
(3) Measurement of electromagnetic characteristics (μr ′, μr ″, tan δμ, εr ′, εr ″, tanδε) Permeability measuring device Material analyzer E4991A type (manufactured by Agilent Technologies) at room temperature in air (25 ° C.) Measured in Based on these μr ′ and εr ′, (μr ′ · εr ′) −1/2 and (μr ′ / εr ′) 1/2 were calculated.
(4) Porosity The dimensions and mass of the composite magnetic material were measured, and the actual density was calculated based on these measured values.
On the other hand, the theoretical density (≈measured density) of the resin was calculated from these measured values by measuring the dimensions and mass of the cured body of resin alone. The theoretical density of the tabular magnetic particles was the X-ray theoretical density determined from the X-ray diffraction pattern of the tabular magnetic particles.
These values were substituted into equation (4) to calculate the porosity of the composite magnetic material.
[実施例1]
 亜鉛を4質量%含有した平均粒径0.25μmのパーマロイ(商品名)磁性粒子200gを、界面活性剤として窒素含有のグラフトポリマーを溶解したキシレン400gおよびイソプロピルアルコール400gの混合液に混合し、スラリーを作製した。
 次いで、密閉容器として、図2に示すような循環密閉型で容器体積が5Lのサンドミル ウルトラアペックスミルUAM-5(寿工業社製)を用い、この密閉容器内に、分散媒体として平均粒径200μmのジルコニアビーズを投入し、次いで、上記のスラリーを投入し、密閉容器内を満たした。ここでは、密閉容器内から排出されたスラリーを再度投入して循環するように配管した。
[Example 1]
200 g of permalloy (trade name) magnetic particles containing 4% by mass of zinc and having an average particle diameter of 0.25 μm are mixed in a mixed solution of 400 g of xylene and 400 g of isopropyl alcohol in which a nitrogen-containing graft polymer is dissolved as a surfactant. Was made.
Next, a sand mill Ultra Apex Mill UAM-5 (manufactured by Kotobuki Industries Co., Ltd.) having a circulation volume of 5 L and a container volume as shown in FIG. 2 was used as the closed container, and an average particle diameter of 200 μm was used as a dispersion medium in the closed container. Zirconia beads were charged, and then the above slurry was charged to fill the sealed container. Here, piping was made so that the slurry discharged from the sealed container was charged again and circulated.
 この状態で、スラリーの密閉容器内の滞留時間が20分になるまで、密閉容器内の最外周の流速が10m/秒となる回転数で攪拌し、平板状磁性体粒子を作製した。
 次いで、得られた平板状磁性体粒子を乾燥させて溶媒を散逸させた後、この平板状磁性体粒子の所定量を、エポキシ樹脂を固形分比率40%に希釈して得られた樹脂ワニスに添加して攪拌混合した。
In this state, until the residence time of the slurry in the sealed container reached 20 minutes, stirring was performed at a rotational speed at which the flow velocity at the outermost periphery in the sealed container was 10 m / second, to produce flat magnetic particles.
Next, after drying the obtained tabular magnetic particles to dissipate the solvent, a predetermined amount of the tabular magnetic particles is added to a resin varnish obtained by diluting the epoxy resin to a solid content ratio of 40%. Added and mixed with stirring.
 得られた成形材料を、ドクターブレード法により硬化後に30mm角、厚み100μmになるよう正方形状のフィルムに成形した。
 次いで、このフィルムを90℃、大気中にて1時間乾燥してドライフィルムとし、その後、減圧プレス装置にてプレス焼成を行った。プレス条件は、常圧のまま130℃まで20分で昇温させ、その後2MPaの圧力を加えて5分間保持し、その後160℃まで昇温させて40分間保持して樹脂を硬化させ、30mm角、厚み50μmの正方形のフイルム状の複合磁性体を得た。
The obtained molding material was molded into a square film so as to be 30 mm square and 100 μm thick after curing by the doctor blade method.
Next, this film was dried at 90 ° C. in the air for 1 hour to form a dry film, and then press fired in a reduced pressure press. The press conditions were as follows: normal pressure was raised to 130 ° C. in 20 minutes, then 2 MPa pressure was applied and held for 5 minutes, then heated to 160 ° C. and held for 40 minutes to cure the resin, 30 mm square A square film-like composite magnetic body having a thickness of 50 μm was obtained.
 この複合磁性体の複素透磁率をマテリアルアナライザーにより測定したところ、90MHzにおける複素透磁率の実部μr’は13、損失正接tanδμは0.02であり、220MHzにおける複素透磁率の実部μr’は13、損失正接tanδμは0.04であった。
 また、この複合磁性体の形状を走査型電子顕微鏡(SEM)により観察したところ、平板状磁性体粒子50個の平均の厚みは0.08μm、平均長径は0.5μmであり、平均アスペクト比は6.25であった。また、球状の磁性粒子や、厚みが0.01μm以上かつ0.5μm以下、長径が0.05μm以上かつ10μm以下、かつアスペクト比が5以上でない磁性体粒子は、実質的に認められなかった。
 この複合磁性体の複素透磁率(実部μr’及び虚部μr’’)及び損失正接(tanδμ)を図17に、この複合磁性体の走査型電子顕微鏡(SEM)像を図18に、それぞれ示す。
When the complex permeability of this composite magnetic material was measured with a material analyzer, the real part μr ′ of the complex permeability at 90 MHz was 13, the loss tangent tan δμ was 0.02, and the real part μr ′ of the complex permeability at 220 MHz was 13. The loss tangent tan δμ was 0.04.
Further, when the shape of the composite magnetic material was observed with a scanning electron microscope (SEM), the average thickness of 50 tabular magnetic particles was 0.08 μm, the average major axis was 0.5 μm, and the average aspect ratio was 6.25. In addition, spherical magnetic particles and magnetic particles having a thickness of 0.01 μm or more and 0.5 μm or less, a major axis of 0.05 μm or more and 10 μm or less, and an aspect ratio of 5 or more were not substantially observed.
FIG. 17 shows the complex permeability (real part μr ′ and imaginary part μr ″) and loss tangent (tan δμ) of this composite magnetic body, and FIG. 18 shows the scanning electron microscope (SEM) image of this composite magnetic body. Show.
[比較例1]
 亜鉛を4質量%含有した平均粒径0.25μmのパーマロイ(商品名)磁性粒子20gを、界面活性剤として窒素含有のグラフトポリマーを溶解したキシレン40gおよびイソプロピルアルコール40gの混合液に混合し、スラリーを作製した。
 次いで、開放容器として、図1に示すような上部開放型のサンドミルを用い、この開放容器のベッセル内に、分散媒体として平均粒径200μmのジルコニアビーズを投入し、次いで、上記のスラリーを投入した。ここでは、ベッセル内の最外周の流速が10m/秒となる回転数で30分間攪拌し、磁性体粒子を作製した。
[Comparative Example 1]
20 g of permalloy (trade name) magnetic particles containing 4% by mass of zinc and having an average particle diameter of 0.25 μm are mixed in a mixed solution of 40 g of xylene and 40 g of isopropyl alcohol in which a nitrogen-containing graft polymer is dissolved as a surfactant. Was made.
Next, an upper open-type sand mill as shown in FIG. 1 was used as an open container, and zirconia beads having an average particle diameter of 200 μm were charged as a dispersion medium into the vessel of the open container, and then the above slurry was charged. . Here, magnetic particles were prepared by stirring for 30 minutes at a rotational speed at which the flow velocity at the outermost periphery in the vessel was 10 m / sec.
 得られた磁性体粒子を用いて、実施例1と同様にして比較例1のフイルム状の複合磁性体を得た。
 この複合磁性体の複素透磁率をマテリアルアナライザーにより測定したところ、90MHzにおける複素透磁率の実部μr’は2.6、損失正接tanδμは0.09であり、220MHzにおける複素透磁率の実部μr’は2.8、損失正接tanδμは0.11であった。
 また、この複合磁性体の形状を走査型電子顕微鏡(SEM)により観察したところ、磁性体粒子は、互いに不規則に重なり合って、実質的に厚みが0.5μm以上のものも多数存在していることが分かった。長径及びアスペクト比も不均一であった。
 この複合磁性体の複素透磁率(実部μr’及び虚部μr’’)及び損失正接(tanδμ)を図19に、この複合磁性体の走査型電子顕微鏡(SEM)像を図20に、それぞれ示す。
Using the obtained magnetic particles, a film-like composite magnetic material of Comparative Example 1 was obtained in the same manner as in Example 1.
When the complex magnetic permeability of this composite magnetic material was measured by a material analyzer, the real part μr ′ of the complex permeability at 90 MHz was 2.6, the loss tangent tan δμ was 0.09, and the real part μr of the complex permeability at 220 MHz. 'Was 2.8 and the loss tangent tan δμ was 0.11.
Further, when the shape of the composite magnetic material was observed with a scanning electron microscope (SEM), the magnetic particles were irregularly overlapped with each other, and there were many particles having a thickness of 0.5 μm or more. I understood that. The major axis and aspect ratio were also nonuniform.
FIG. 19 shows the complex magnetic permeability (real part μr ′ and imaginary part μr ″) and loss tangent (tan δμ) of this composite magnetic body, and FIG. 20 shows the scanning electron microscope (SEM) image of this composite magnetic body. Show.
[実施例2]
 実施例1と同様の方法により、長さ250mm、幅30mm、厚み60μmのドライフィルムを12枚作製した。
 次いで、これらのドライフィルムを積層し、6枚目と7枚目の間にアンテナ線として直径0.6mm、長さ250mmの銅線を挟み、その後、減圧プレス装置を用いて、実施例1と同様の条件にてプレス焼成を行い、図8に示すような、長さ250mm、幅30mm、厚み0.8mmのドライフィルムの積層体からなる複合磁性体63中に、銅線からなるアンテナ導体63が挟み込まれたモノポールアンテナ61を作製した。
[Example 2]
Twelve dry films having a length of 250 mm, a width of 30 mm, and a thickness of 60 μm were produced in the same manner as in Example 1.
Next, these dry films were laminated, and a copper wire having a diameter of 0.6 mm and a length of 250 mm was sandwiched between the sixth and seventh sheets as an antenna wire. Press firing is performed under the same conditions, and an antenna conductor 63 made of copper wire is contained in a composite magnetic body 63 made of a dry film laminate having a length of 250 mm, a width of 30 mm, and a thickness of 0.8 mm as shown in FIG. A monopole antenna 61 in which is inserted is manufactured.
 次いで、このモノポールアンテナ21を500mm角の導体地板64の中央に接続し、交流信号発振機66により接続点65を給電点として、50Ω給電した。
 ここでは、このモノポールアンテナ21の共振周波数を測定し、また、比較のために、直径0.6mm、長さ250mmの銅線のみの共振周波数を測定した。
 その結果、共振周波数は、銅線のみが273MHzであるのに対して、実施例2の複合磁性体を装荷したモノポールアンテナは180MHzであり、波長に換算した短縮率としては約66%となった。この結果から、本発明の複合磁性体を装荷することにより、VHF帯の180MHzのアンテナの長さは34%ほど小型化されることが分かった。
Next, this monopole antenna 21 was connected to the center of a 500 mm square conductor ground plate 64, and 50 Ω was fed by an AC signal oscillator 66 using the connection point 65 as a feeding point.
Here, the resonance frequency of the monopole antenna 21 was measured, and for comparison, the resonance frequency of only a copper wire having a diameter of 0.6 mm and a length of 250 mm was measured.
As a result, the resonance frequency is 273 MHz only for the copper wire, whereas the monopole antenna loaded with the composite magnetic material of Example 2 is 180 MHz, and the shortening rate converted to the wavelength is about 66%. It was. From this result, it was found that the length of the 180 MHz antenna in the VHF band was reduced by about 34% by loading the composite magnetic material of the present invention.
[実施例3]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200L(DIC株式会社製)と、硬化剤としてエポキシ樹脂と硬化剤の全体量に対して1質量%の1-イソブチル-2メチルイミダゾールと、樹脂と硬化剤と平板状磁性体粒子の全体量に対して40体積%のNi75質量%-Fe20質量%-Zn5質量%のNi-Fe-Zn合金からなる平均長径が2.5μm、平均厚みが0.3μm、平均アスペクト比が8.3の平板状磁性体粒子と、平板状磁性体粒子と樹脂と硬化剤の合計質量に対して40質量%のシクロヘキサノンとを遊星撹拌機に投入し、15分間混合してスラリー状の成形材料を得た。この成形材料の粘度は0.4Pa・Sであった。
[Example 3]
Dicyclopentadiene type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation), epoxy resin as curing agent and 1% by mass of 1-isobutyl-2-methylimidazole based on the total amount of curing agent, resin and curing agent, The average major axis is 2.5 μm, the average thickness is 0.3 μm, and the average is made of a Ni—Fe—Zn alloy of 40% by volume of Ni 75% by mass—Fe 20% by mass—Zn 5% by mass with respect to the total amount of tabular magnetic particles A plate-like magnetic particle having an aspect ratio of 8.3, 40% by mass of cyclohexanone with respect to the total mass of the plate-like magnetic particle, resin, and curing agent are put into a planetary stirrer and mixed for 15 minutes to form a slurry. A shaped molding material was obtained. The molding material had a viscosity of 0.4 Pa · S.
 次いで、この成形材料をポリエチレンテレフタレート(PET)フィルム上にバーコーターにて硬化後に縦50mm×横50mm×厚み0.1mmになるように、シート成形を行った。
 シート成形後、このシートの面に水平方向に900ガウスの磁場を6分間印加した。次いで、80℃の温風を当てて風乾させた。次いで、樹脂の軟化点である110℃で10MPaのプレス圧力を加えた後に、160℃にて2時間硬化反応を行い、実施例3の複合磁性体を得た。
Next, the molding material was molded on a polyethylene terephthalate (PET) film with a bar coater, and sheet molding was performed so that the length was 50 mm × width 50 mm × thickness 0.1 mm.
After forming the sheet, a 900 gauss magnetic field was applied to the surface of the sheet in the horizontal direction for 6 minutes. Subsequently, it was air-dried by applying hot air of 80 ° C. Next, after applying a press pressure of 10 MPa at 110 ° C., which is the softening point of the resin, a curing reaction was carried out at 160 ° C. for 2 hours to obtain a composite magnetic body of Example 3.
 実施例3の複合磁性体の気孔率及び200MHzにおいてマテリアルアナライザーより得られた磁気特性の結果を表1に示す。
 また、実施例3の複合磁性体の10MHzから1GHzまでにおける複素透磁率の実部μr’及びtanδμを図21に、複素誘電率の実部εr’及びtanδεを図22に、それぞれ示す。
Table 1 shows the porosity of the composite magnetic material of Example 3 and the magnetic characteristics obtained from the material analyzer at 200 MHz.
Further, the real part μr ′ and tan δμ of the complex permeability from 10 MHz to 1 GHz of the composite magnetic body of Example 3 are shown in FIG. 21, and the real part εr ′ and tan δε of the complex dielectric constant are shown in FIG.
[実施例4]
 ジシクロペンタジエン型樹脂の替わりに、ジシクロペンタジエン型樹脂と液状エポキシ樹脂 リカレジンBPO-20(新日本理化株式会社製)を85:15の質量比で混合した樹脂を使用し、さらにプレス圧力を加える際の温度を160℃とした以外は、実施例3に準じて実施例4の複合磁性体を得た。
[Example 4]
Instead of dicyclopentadiene type resin, use a resin in which dicyclopentadiene type resin and liquid epoxy resin Rikaresin BPO-20 (manufactured by Shin Nippon Rika Co., Ltd.) are mixed at a mass ratio of 85:15, and further press pressure is applied. A composite magnetic body of Example 4 was obtained according to Example 3 except that the temperature at that time was 160 ° C.
 実施例4の複合磁性体の気孔率及び200MHzにおいてマテリアルアナライザーより得られた磁気特性の結果を表1に示す。
 また、実施例4の複合磁性体の10MHzから1GHzまでにおける複素透磁率の実部μr’及びtanδμを図23に、複素誘電率の実部εr’及びtanδεを図24に、それぞれ示す。
Table 1 shows the porosity of the composite magnetic material of Example 4 and the magnetic characteristics obtained from the material analyzer at 200 MHz.
In addition, FIG. 23 shows real parts μr ′ and tan δμ of complex permeability from 10 MHz to 1 GHz of the composite magnetic body of Example 4, and FIG. 24 shows real parts εr ′ and tan δε of complex permittivity, respectively.
[実施例5]
 スラリー状の成形材料を得る際に、遊星撹拌機での混合時間を15分から5分へ変えた以外は、実施例3に準じて実施例5の複合磁性体を得た。
 この複合磁性体の気孔率及び200MHzにおいてマテリアルアナライザーより得られた磁気特性の結果を表1に示す。
[Example 5]
A composite magnetic body of Example 5 was obtained according to Example 3 except that the mixing time in the planetary stirrer was changed from 15 minutes to 5 minutes when obtaining the slurry-like molding material.
Table 1 shows the results of the magnetic properties obtained from the porosity of the composite magnetic material and the material analyzer at 200 MHz.
[実施例6]
 成形体をプレスする際の温度を160℃とした以外は、実施例3に準じて実施例6の複合磁性体を得た。
 この複合磁性体の気孔率及び200MHzにおいてマテリアルアナライザーより得られた磁気特性の結果を表1に示す。
[Example 6]
A composite magnetic body of Example 6 was obtained according to Example 3 except that the temperature at which the compact was pressed was 160 ° C.
Table 1 shows the results of the magnetic properties obtained from the porosity of the composite magnetic material and the material analyzer at 200 MHz.
[比較例2]
 平均長径が2.5μm、平均厚みが0.3μm、平均アスペクト比が8.3の平板状磁性体粒子の替わりに、平均長径が1.2μm、平均厚みが0.3μm、平均アスペクト比が4の磁性体粒子を用いた以外は、実施例3に準じて比較例2の複合磁性体を得た。
 この複合磁性体の気孔率及び200MHzにおいてマテリアルアナライザーより得られた磁気特性の結果を表1に示す。
[Comparative Example 2]
Instead of tabular magnetic particles having an average major axis of 2.5 μm, an average thickness of 0.3 μm, and an average aspect ratio of 8.3, the average major axis is 1.2 μm, the average thickness is 0.3 μm, and the average aspect ratio is 4 A composite magnetic material of Comparative Example 2 was obtained according to Example 3 except that the magnetic particles were used.
Table 1 shows the results of the magnetic properties obtained from the porosity of the composite magnetic material and the material analyzer at 200 MHz.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1によれば、実施例3、4の複合磁性体は、実施例5、6の複合磁性体と比べて気孔率が20%以下と小さかった。したがって、実施例3、4の複合磁性体は、実施例5、6の複合磁性体と比べて、μr’は大きくなるが、εr’はほとんど変わらないことが確認された。
 また、比較例2では、複合磁性体の気孔率が20%以下でも、平均アスペクト比が5未満の磁性体粒子を用いたので、複合磁性体のμr’が小さく、電子部品や電子機器を小型化するのに十分なμr’を得ることができないことが確認された。
According to Table 1, the composite magnetic bodies of Examples 3 and 4 had a porosity as small as 20% or less as compared with the composite magnetic bodies of Examples 5 and 6. Therefore, it was confirmed that the composite magnetic bodies of Examples 3 and 4 have a larger μr ′ but have almost the same εr ′ as compared with the composite magnetic bodies of Examples 5 and 6.
In Comparative Example 2, since the magnetic particles having an average aspect ratio of less than 5 are used even when the porosity of the composite magnetic material is 20% or less, the μr ′ of the composite magnetic material is small, and the electronic components and electronic devices are small. It was confirmed that sufficient μr ′ could not be obtained.
[実施例7]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200L(DIC株式会社製)と、硬化剤としてエポキシ樹脂と硬化剤の全体量に対して1質量%の1-イソブチル―2メチルイミダゾールと、樹脂と硬化剤と平板状磁性体粒子の全体量に対して30体積%のNi75質量%-Fe20質量%-Zn5質量%の合金からなる平均長径が2.5μm、平均厚みが0.3μm、平均アスペクト比が8.3、平均保持力が35エルステッド(Oe)の平板状磁性体粒子と、シクロヘキサノンを遊星撹拌機に投入し、5分間混合してスラリー状の成形材料を得た。この成形材料の粘度は0.4Pa・Sであった。
[Example 7]
Dicyclopentadiene type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation), epoxy resin as curing agent and 1% by mass of 1-isobutyl-2-methylimidazole based on the total amount of curing agent, resin and curing agent, The average major axis is 2.5 μm, the average thickness is 0.3 μm, and the average aspect ratio is 8 μm. 3. Flat magnetic particles having an average coercive force of 35 oersted (Oe) and cyclohexanone were put into a planetary stirrer and mixed for 5 minutes to obtain a slurry-like molding material. The molding material had a viscosity of 0.4 Pa · S.
 次いで、この成形材料をポリエチレンテレフタレート(PET)フィルム上にバーコーターにて硬化後に縦50mm×横50mm×厚み0.1mmになるように、シート成形を行った。
 シート成形後、図3に示す配向装置11に、このシートを2m/分の速度にて送り、1200ガウスの磁場を印加した。次いで、80℃の温風を当てて風乾させ、さらに、160℃にて2時間硬化反応を行い、実施例7の複合磁性体を得た。
Next, the molding material was molded on a polyethylene terephthalate (PET) film with a bar coater, and sheet molding was performed so that the length was 50 mm × width 50 mm × thickness 0.1 mm.
After forming the sheet, the sheet was fed to the orientation device 11 shown in FIG. 3 at a speed of 2 m / min, and a magnetic field of 1200 gauss was applied. Subsequently, 80 degreeC warm air was applied and air-dried, and also hardening reaction was performed at 160 degreeC for 2 hours, and the composite magnetic body of Example 7 was obtained.
 この複合磁性体中の平板状磁性体粒子を、走査型電子顕微鏡(SEM)を用いて、平板状磁性体粒子の長軸方向がシート面に水平な方向(配向方向)に対してなす角(水平方向に対する傾き)を50個の平板状磁性体粒子について測定した。その結果、50個の傾きの平均値は8.2度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向しており、配向性が良好であることが確認された。
 また、この複合磁性体の大気中、室温、200MHzにおけるμr’は8.5であった。
Using a scanning electron microscope (SEM), the angle formed by the long axis direction of the tabular magnetic particles with respect to the direction (orientation direction) horizontal to the sheet surface is measured using the scanning electron microscope (SEM). The inclination with respect to the horizontal direction was measured for 50 tabular magnetic particles. As a result, the average value of the 50 tilts was 8.2 degrees, and it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
In addition, μr ′ of this composite magnetic body at room temperature and 200 MHz in the atmosphere was 8.5.
[実施例8]
 平板状磁性体粒子の含有量を樹脂と硬化剤と平板状磁性体粒子の全体量に対して40体積%とした以外は、実施例7と同様にして、実施例8の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は8.5度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向し、配向性が良好であることが確認された。
 また、この複合磁性体の複素透磁率を、実施例7と同様に測定したところ、大気中、室温、200MHzにおけるμr’は9.3であった。
[Example 8]
The composite magnetic body of Example 8 is obtained in the same manner as in Example 7 except that the content of the tabular magnetic particles is 40% by volume with respect to the total amount of the resin, the curing agent, and the tabular magnetic particles. It was.
When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 8.5 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
Further, the complex permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, μr ′ at room temperature and 200 MHz in the atmosphere was 9.3.
[実施例9]
 硬化剤として、1-イソブチル―2メチルイミダゾールをエポキシ樹脂の全体量に対して1質量%混合する替わりに、フェノールノボラック樹脂 TD-2131(DIC株式会社製)をエポキシ樹脂の全体量に対して等量混合した以外は、実施例7と同様にして、実施例9の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は8.6度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向し、配向性が良好であることが確認された。
 また、この複合磁性体の複素透磁率を、実施例7と同様に測定したところ、大気中、室温、200MHzにおけるμr’は8.3であった。
[Example 9]
Instead of mixing 1% by mass of 1-isobutyl-2-methylimidazole as a curing agent with respect to the total amount of the epoxy resin, phenol novolac resin TD-2131 (manufactured by DIC Corporation) is used with respect to the total amount of the epoxy resin, etc. A composite magnetic body of Example 9 was obtained in the same manner as Example 7 except that the amount was mixed.
When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 8.6 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
Further, the complex permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, μr ′ at room temperature and 200 MHz in the atmosphere was 8.3.
[実施例10]
 実施例7にてシートに印加する磁場を1200ガウスから1000ガウスに変更した以外は、実施例7と同様にして、実施例10の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は12.5度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向し、配向性が良好であることが確認された。
 また、この複合磁性体の複素透磁率を、実施例7と同様に測定したところ、大気中、室温、200MHzにおけるμr’は7.7であった。
[Example 10]
A composite magnetic body of Example 10 was obtained in the same manner as in Example 7 except that the magnetic field applied to the sheet in Example 7 was changed from 1200 gauss to 1000 gauss.
The inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7. The average value of the inclination was 12.5 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
The complex magnetic permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, μr ′ at room temperature and 200 MHz in the atmosphere was 7.7.
[実施例11]
 実施例7にてシートに印加する磁場を1200ガウスから900ガウスに変更した以外は、実施例7と同様にして、実施例11の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は17.9度であり、平板状磁性体粒子がだいたいシート面に水平な方向に配向していることが確認された。
 また、この複合磁性体の複素透磁率を、実施例7と同様に測定したところ、大気中、室温、200MHzにおけるμr’は7.2であった。
[Example 11]
A composite magnetic body of Example 11 was obtained in the same manner as in Example 7 except that the magnetic field applied to the sheet in Example 7 was changed from 1200 gauss to 900 gauss.
When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the direction horizontal to the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 17.9 degrees. Thus, it was confirmed that the tabular magnetic particles were generally oriented in the horizontal direction on the sheet surface.
The complex magnetic permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, μr ′ at room temperature and 200 MHz in the atmosphere was 7.2.
[実施例12]
 実施例8にて、シート成形後、図3に示す配向装置11の替わりに、図4に示す配向装置21に、このシートを2m/分の速度にて送り、900ガウスの磁場を印加させた以外は同様にして、実施例12の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は16.4度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向し、配向性が良好であることが確認された。
 また、この複合磁性体の、大気中、室温、200MHzにおけるμr’は7.5であった。
[Example 12]
In Example 8, after forming the sheet, instead of the orientation device 11 shown in FIG. 3, this sheet was fed to the orientation device 21 shown in FIG. 4 at a speed of 2 m / min, and a 900 gauss magnetic field was applied. A composite magnetic body of Example 12 was obtained in the same manner except for the above.
When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 16.4 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
In addition, this composite magnetic material had a μr ′ of 7.5 at 200 MHz in the air at room temperature.
[実施例13]
 実施例9にて、シート成形後、図3に示す配向装置11の替わりに、図4に示す配向装置21に、このシートを1m/分の速度にて送り、900ガウスの磁場を印加させた以外は同様にして、実施例13の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は17.0度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向し、配向性が良好であることが確認された。
 また、この複合磁性体の大気中、室温、200MHzにおけるμr’は7.3であった。
[Example 13]
In Example 9, after sheet forming, instead of the orientation device 11 shown in FIG. 3, this sheet was fed to the orientation device 21 shown in FIG. 4 at a speed of 1 m / min, and a 900 gauss magnetic field was applied. A composite magnetic body of Example 13 was obtained in the same manner except for the above.
When the inclination of the flat magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 flat magnetic particles in the same manner as in Example 7, the average value of the inclination was 17.0 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
In addition, μr ′ of this composite magnetic material in the atmosphere at room temperature and 200 MHz was 7.3.
[実施例14]
 実施例12にて、シート成形後、図4に示す配向装置21の替わりに、図5に示す配向装置31に、このシートを2m/分の速度にて送り、1対の磁石につき300ガウスの磁場を印加させた。次いで、80℃の温風を当てて風乾させ、さらに、160℃にて2時間硬化反応を行い、実施例14の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は8.3度であり、平板状磁性体粒子がほぼシート面に水平な方向に配向し、配向性が良好であることが確認された。
 また、この複合磁性体の、大気中、室温、200MHzにおけるμr’は9.0であった。
[Example 14]
In Example 12, after sheet forming, instead of the orientation device 21 shown in FIG. 4, this sheet is fed to the orientation device 31 shown in FIG. 5 at a speed of 2 m / min, and 300 gauss per pair of magnets. A magnetic field was applied. Subsequently, 80 degreeC warm air was applied and air-dried, and also hardening reaction was performed at 160 degreeC for 2 hours, and the composite magnetic body of Example 14 was obtained.
When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 8.3 degrees. Thus, it was confirmed that the tabular magnetic particles were oriented in a direction substantially horizontal to the sheet surface, and the orientation was good.
Further, this composite magnetic body had a μr ′ of 9.0 at 200 MHz in the air at room temperature.
[実施例15]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200L(DIC株式会社製)をビスフェノール型エポキシ樹脂 1256(三菱化学株式会社製)に替えた以外は、実施例7と同様にして、実施例15の複合磁性体を得た。
 この複合磁性体中の平板状磁性体粒子のシート面に水平な方向に対する傾きを、実施例7と同様に50個の平板状磁性体粒子について測定したところ、傾きの平均値は21.5度であり、これらの平板状磁性体粒子は一方向に揃っておらず、配向性が低下していることが確認された。
 また、この複合磁性体の複素透磁率を、実施例7と同様に測定したところ、大気中、室温、200MHzにおけるμr’は5.6であった。
[Example 15]
Dicyclopentadiene type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation) was replaced with bisphenol type epoxy resin 1256 (manufactured by Mitsubishi Chemical Corporation) in the same manner as in Example 7, but the composite magnetic body of Example 15 Got.
When the inclination of the tabular magnetic particles in the composite magnetic body with respect to the horizontal direction on the sheet surface was measured for 50 tabular magnetic particles in the same manner as in Example 7, the average value of the inclination was 21.5 degrees. These tabular magnetic particles were not aligned in one direction, and it was confirmed that the orientation was lowered.
The complex permeability of this composite magnetic material was measured in the same manner as in Example 7. As a result, μr ′ at room temperature and 200 MHz in the atmosphere was 5.6.
[実施例16]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200L(DIC株式会社製)に、ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル型液状エポキシ樹脂 リカレジンBPO-20(新日本理化製)を、これらのエポキシ樹脂の全体質量に対して10質量%混合し、エポキシ樹脂混合物を得た。
 次いで、このエポキシ樹脂混合物に、硬化剤としてエポキシ樹脂混合物と硬化剤の全体質量に対して1質量%の1-イソブチル-2メチルイミダゾールと、このエポキシ樹脂混合物と硬化剤と平板状磁性体粒子の全体量に対して40体積%のNi75質量%-Fe20質量%-Zn5質量%の合金からなる平均長径が2.5μm、平均厚みが0.3μm、平均アスペクト比が8.3の平板状磁性体粒子と、このエポキシ樹脂混合物と硬化剤と平板状磁性体粒子の全体質量に対して40質量%のシクロヘキサノンを遊星撹拌機に投入し、5分間混合してスラリー状の成形材料を得た。
[Example 16]
Dicyclopentadiene-type epoxy resin EPICLON HP-7200L (manufactured by DIC Corporation) and bisphenol A bis (propylene glycol glycidyl ether) ether-type liquid epoxy resin Rical Resin BPO-20 (manufactured by Shin Nippon Rika) 10 mass% was mixed with respect to the mass, and the epoxy resin mixture was obtained.
Next, 1 wt% 1-isobutyl-2-methylimidazole with respect to the total weight of the epoxy resin mixture and the curing agent as a curing agent, the epoxy resin mixture, the curing agent, and the tabular magnetic particles are added to the epoxy resin mixture. A flat magnetic body having an average major axis of 2.5 μm, an average thickness of 0.3 μm, and an average aspect ratio of 8.3, comprising an alloy of 40% by volume of Ni 75% by mass—Fe 20% by mass—Zn 5% by mass. 40 mass% of cyclohexanone with respect to the total mass of the particles, the epoxy resin mixture, the curing agent, and the flat magnetic particles was put into a planetary stirrer and mixed for 5 minutes to obtain a slurry-like molding material.
 次いで、このスラリー状の成形材料を、ポリエチレンテレフタレート(PET)フィルム上にバーコーターにて硬化後に縦100mm×横200mm×厚み0.1mmになるように、シート成形を行い、実施例16の成形体シート付きフィルムを得た。
 次いで、このシート成形後、この成形体シートに水平方向に900ガウスの磁場を6分間印加した。次いで、80℃の温風を当てて風乾させた後、PETフィルムから成形体シートを剥離させ、さらに、110℃で10MPaのプレス圧力を加えた後、160℃にて2時間硬化反応を行い、実施例16の100mm×200mmのシート形状の複合磁性体を得た。このシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
Subsequently, this slurry-like molding material was formed on a polyethylene terephthalate (PET) film by a bar coater, and then molded into a sheet of 100 mm in length, 200 mm in width, and 0.1 mm in thickness. A film with a sheet was obtained.
Next, after forming the sheet, a 900 gauss magnetic field was applied to the formed sheet for 6 minutes in the horizontal direction. Next, after 80 ° C. warm air was applied and air-dried, the molded body sheet was peeled off from the PET film, and after applying a press pressure of 10 MPa at 110 ° C., a curing reaction was performed at 160 ° C. for 2 hours, A 100 mm × 200 mm sheet-shaped composite magnetic body of Example 16 was obtained. When the sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
 次いで、この複合磁性体の電磁気特性と気孔率を測定した結果、複合磁性体の200MHzにおける複素透磁率の実部μr’は8.9、複素誘電率の実部εr’は30.4であり、気孔率は19%であった。 Next, as a result of measuring the electromagnetic characteristics and the porosity of the composite magnetic body, the real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance is 8.9, and the real part εr ′ of the complex dielectric constant is 30.4. The porosity was 19%.
[実施例17]
 成形体シートに水平方向に900ガウスの磁場を6分間印加する替わりに、図3に示す配向装置11を用いて、この成形体シートを2m/分の速度にて送りつつ1200ガウスの磁場を印加し、さらに、乾燥・硬化工程にて、110℃で10MPaのプレス圧力を加えた後、160℃にて2時間硬化反応を行う替わりに、プレス圧力を加えずに、160℃にて2時間硬化反応を行った以外は、実施例16と同様にして、実施例17の複合磁性体を得た。
[Example 17]
Instead of applying a 900 gauss magnetic field in the horizontal direction to the compact sheet for 6 minutes, a 1200 gauss magnetic field is applied while feeding the compact sheet at a speed of 2 m / min using the orientation device 11 shown in FIG. Furthermore, in the drying / curing process, after applying a pressing pressure of 10 MPa at 110 ° C., instead of performing a curing reaction at 160 ° C. for 2 hours, curing is performed at 160 ° C. for 2 hours without applying a pressing pressure. A composite magnetic body of Example 17 was obtained in the same manner as Example 16 except that the reaction was performed.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は9.0、複素誘電率の実部εr’は27.1であり、気孔率は19%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, when the magnetic properties and the porosity of the composite magnetic material were measured, the real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.0, and the real part εr ′ of the complex dielectric constant was 27.1. The porosity was 19%.
[実施例18]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200Lに対して、液状エポキシ樹脂 リカレジンBPO-20を10質量%混合する替わりに、液状エポキシ樹脂 リカレジンBPO-20を20質量%混合した以外は、実施例15と同様にして、実施例18の複合磁性体を得た。
[Example 18]
Except for mixing 10% by mass of the liquid epoxy resin Rica Resin BPO-20 with the dicyclopentadiene type epoxy resin EPICLON HP-7200L, the same procedure as in Example 15 was carried out except that 20% by mass of the liquid epoxy resin Rica Resin BPO-20 was mixed. Similarly, a composite magnetic material of Example 18 was obtained.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は9.3、複素誘電率の実部εr’は31.0であり、気孔率は11%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, when the magnetic properties and the porosity of the composite magnetic material were measured, the real part μr ′ of the complex permeability at 200 MHz of the composite magnetic substance was 9.3, and the real part εr ′ of the complex dielectric constant was 31.0. The porosity was 11%.
 さらに、この複合磁性体の70~1000MHzの周波数帯域における複素透磁率の実部μr’及び複素透磁率の損失正接tanδμを、マテリアルアナライザーにて、大気中室温(25℃)にて測定した。これらの測定結果を、図25に示す。
 この図25によれば、70~1000MHzの周波数帯域での複素透磁率の実部μr’は7以上であった。
Further, the real part μr ′ of the complex permeability and the loss tangent tan δμ of the complex permeability in the frequency band of 70 to 1000 MHz of this composite magnetic material were measured with a material analyzer at room temperature (25 ° C.) in the atmosphere. These measurement results are shown in FIG.
According to FIG. 25, the real part μr ′ of the complex permeability in the frequency band of 70 to 1000 MHz is 7 or more.
[実施例19]
 ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル型液状エポキシ樹脂の替わりに、ビスフェノールAジグリシジルエーテル型エポキシ樹脂 アデカレジンEP-4010S(アデカ社製)を用いた以外は、実施例16と同様にして、実施例19の複合磁性体を得た。
[Example 19]
The same procedure as in Example 16 was performed except that bisphenol A diglycidyl ether type epoxy resin Adeka Resin EP-4010S (manufactured by Adeka) was used instead of the bisphenol A bis (propylene glycol glycidyl ether) ether type liquid epoxy resin. The composite magnetic material of Example 19 was obtained.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は9.3、複素誘電率の実部εr’は29.7であり、気孔率は19%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, when the magnetic properties and the porosity of the composite magnetic material were measured, the real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.3, and the real part εr ′ of the complex dielectric constant was 29.7. The porosity was 19%.
[実施例20]
 ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル型液状エポキシ樹脂 リカレジンBPO-20を10質量%混合する替わりに、ビスフェノールAジグリシジルエーテル型エポキシ樹脂 アデカレジンEP-4010S(アデカ社製)を20質量%混合した以外は、実施例16と同様にして、実施例20の複合磁性体を得た。
[Example 20]
Instead of mixing 10% by mass of bisphenol A bis (propylene glycol glycidyl ether) ether type liquid epoxy resin Ricaresin BPO-20, 20% by mass of bisphenol A diglycidyl ether type epoxy resin Adeka Resin EP-4010S (manufactured by Adeka) was mixed. Except for this, the composite magnetic body of Example 20 was obtained in the same manner as Example 16.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は9.5、複素誘電率の実部εr’は28.9であり、気孔率は12%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, when the magnetic properties and the porosity of the composite magnetic material were measured, the real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.5, and the real part εr ′ of the complex dielectric constant was 28.9. The porosity was 12%.
[実施例21]
 成形体シートに水平方向に900ガウスの磁場を6分間印加する替わりに、成形体シートを図4に示す配向装置21に2m/分の速度にて送り、この成形体シートに900ガウスの磁場を印加した以外は、実施例16と同様にして、実施例21の複合磁性体を得た。
[Example 21]
Instead of applying a 900 gauss magnetic field in the horizontal direction to the green body sheet for 6 minutes, the green body sheet is fed to the orientation device 21 shown in FIG. 4 at a speed of 2 m / min, and a 900 gauss magnetic field is applied to the green body sheet. A composite magnetic body of Example 21 was obtained in the same manner as Example 16 except that the voltage was applied.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を実施例16と同様にして測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は7.3、複素誘電率の実部εr’は22.8であり、気孔率は19%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, the magnetic properties and porosity of the composite magnetic material were measured in the same manner as in Example 16. As a result, the real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 7.3, and the real part εr of the complex dielectric constant was 'Was 22.8 and the porosity was 19%.
[実施例22]
 成形体シートに水平方向に900ガウスの磁場を6分間印加する替わりに、成形体シートを図5に示す配向装置31に2m/分の速度にて送り、1対の磁石それぞれにつき300ガウスの磁場を印加した以外は、実施例16と同様にして、実施例22の複合磁性体を得た。
[Example 22]
Instead of applying a 900 gauss magnetic field in the horizontal direction to the compact sheet for 6 minutes, the compact sheet is fed to the orientation device 31 shown in FIG. 5 at a speed of 2 m / min, and a 300 gauss magnetic field for each pair of magnets. A composite magnetic body of Example 22 was obtained in the same manner as Example 16 except that was applied.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を実施例16と同様にして測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は9.0、複素誘電率の実部εr’は30.4であり、気孔率は19%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, the magnetic properties and the porosity of this composite magnetic material were measured in the same manner as in Example 16. As a result, the real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic substance was 9.0, and the real part εr of the complex dielectric constant was 'Was 30.4 and the porosity was 19%.
[実施例23]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200Lに対して、液状エポキシ樹脂 リカレジンBPO-20を10質量%混合する替わりに、この液状エポキシ樹脂 リカレジンBPO-20を40質量%混合した以外は、実施例16と同様にして、実施例23の複合磁性体を得た。
[Example 23]
Example 16 Except that instead of mixing 10% by mass of the liquid epoxy resin Licarresin BPO-20 with the dicyclopentadiene type epoxy resin EPICLON HP-7200L, 40% by mass of the liquid epoxy resin Licur Resin BPO-20 was mixed. In the same manner as described above, the composite magnetic body of Example 23 was obtained.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させた際に、シート形状の複合磁性体に破損は生じなかった。
 次いで、この複合磁性体の磁気特性及び気孔率を測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は7.5、複素誘電率の実部εr’は23.9であり、気孔率は9%であった。
Here, when the obtained sheet-shaped composite magnetic body was peeled from the PET film, the sheet-shaped composite magnetic body was not damaged.
Next, when the magnetic properties and the porosity of the composite magnetic material were measured, the real part μr ′ of the complex permeability at 200 MHz of the composite magnetic substance was 7.5, and the real part εr ′ of the complex dielectric constant was 23.9. The porosity was 9%.
[実施例24]
 ジシクロペンタジエン型エポキシ樹脂 EPICLON HP-7200Lに対して、液状エポキシ樹脂 リカレジンBPO-20を混合しなかった以外は、実施例21と同様にして、実施例24の複合磁性体を得た。
[Example 24]
A composite magnetic material of Example 24 was obtained in the same manner as in Example 21 except that the liquid epoxy resin Ricar Resin BPO-20 was not mixed with dicyclopentadiene type epoxy resin EPICLON HP-7200L.
 ここで、得られたシート形状の複合磁性体をPETフィルムから剥離させようとしたところ、きれいに剥離させることができず、破損してしまい、100mm×200mm×0.1mmのシート形状の複合磁性体を得ることができなかった。
 そこで、破損した複合磁性体の破片に対して、160℃にて2時間硬化反応を行い、得られた破片状の複合磁性体の磁気特性及び気孔率を実施例18と同様にして測定したところ、複合磁性体の200MHzにおける複素透磁率の実部μr’は7.0、複素誘電率の実部εr’は32.4であり、気孔率は26%であった。
Here, when trying to peel the obtained sheet-shaped composite magnetic body from the PET film, the sheet-shaped composite magnetic body could not be peeled cleanly and was damaged, resulting in a sheet-shaped composite magnetic body of 100 mm × 200 mm × 0.1 mm. Could not get.
Therefore, the broken pieces of the composite magnetic material were subjected to a curing reaction at 160 ° C. for 2 hours, and the magnetic properties and the porosity of the obtained piece-like composite magnetic material were measured in the same manner as in Example 18. The real part μr ′ of the complex magnetic permeability at 200 MHz of the composite magnetic material was 7.0, the real part εr ′ of the complex dielectric constant was 32.4, and the porosity was 26%.
[実施例25]
 エポキシ樹脂中へ平均厚み0.19μm、平均長径1.63μm、平均アスペクト比8.6の平板状磁性体粒子(Ni76質量%-Fe20質量%-Zn4質量%)を分散させて成形材料を得た。得られた成形材料を型に入れて成形し、熱硬化させて複合磁性体を得た。
[Example 25]
Flat magnetic particles (Ni 76% by mass—Fe 20% by mass—Zn 4% by mass) having an average thickness of 0.19 μm, an average major axis of 1.63 μm, and an average aspect ratio of 8.6 were dispersed in an epoxy resin to obtain a molding material. . The obtained molding material was put into a mold, molded, and thermally cured to obtain a composite magnetic body.
 この複合磁性体を厚さ1.7mmでアンテナ導体に被覆して、図16Aに示す四角柱状のモノポールアンテナを作製した。このモノポールアンテナはアンテナ長を200mmにすると180MHzで共振し、アンテナ長を200mmよりも短くすると180MHz以上の周波数で共振し、アンテナ長が180mmのときに200MHzで共振した。このアンテナの図16AにおけるX-Z平面における平均利得は-5.5dBdであった。この複合磁性体の複合磁性体の複素透磁率の実部μr’と損失正接tanδμを測定した結果を図26に示す。得られた複合磁性体の160~222MHzにおける複素透磁率の実部μr’は6以上であり、複素透磁率の損失正接tanδμは0.05以下であった。 The composite magnetic body was coated on an antenna conductor with a thickness of 1.7 mm to produce a square pole monopole antenna shown in FIG. 16A. This monopole antenna resonated at 180 MHz when the antenna length was 200 mm, resonated at a frequency of 180 MHz or more when the antenna length was shorter than 200 mm, and resonated at 200 MHz when the antenna length was 180 mm. The average gain of this antenna in the XZ plane in FIG. 16A was −5.5 dBd. FIG. 26 shows the measurement results of the real part μr ′ and the loss tangent tan δμ of the complex magnetic permeability of the composite magnetic body. The real part μr ′ of the complex permeability at 160 to 222 MHz of the obtained composite magnetic body was 6 or more, and the loss tangent tan δμ of the complex permeability was 0.05 or less.
[実施例26]
 実施例25において複合磁性体の被覆厚さを2.5mmとした以外は同様にして、実施例26のモノポールアンテナを作製した。このモノポールアンテナはアンテナ長を200mmにすると120MHzで共振し、アンテナ長を200mmよりも短くすると120MHz以上の周波数で共振し、150mmのときに200MHzで共振した。このアンテナのX-Z平面における平均利得は-6.5dBdであった。
[Example 26]
A monopole antenna of Example 26 was produced in the same manner as in Example 25 except that the coating thickness of the composite magnetic material was 2.5 mm. This monopole antenna resonated at 120 MHz when the antenna length was 200 mm, resonated at a frequency of 120 MHz or more when the antenna length was shorter than 200 mm, and resonated at 200 MHz when 150 mm. The average gain of this antenna in the XZ plane was −6.5 dBd.
[実施例27]
 エポキシ樹脂中へ平均厚み0.35μm、平均長径2.49μm、平均アスペクト比7.3の平板状磁性体粒子(Ni76質量%-Fe20質量%-Zn4質量%)を分散させて成形材料を得た。この成形材料を型に入れて成形し、熱硬化させて複合磁性体を得た。この複合磁性体を棒状のアンテナ導体の周囲に厚さ2.5mmで被覆して、図16Aに示した四角柱状のモノポールアンテナを作製した。
[Example 27]
Plate-like magnetic particles (Ni 76 mass% —Fe 20 mass% —Zn 4 mass%) having an average thickness of 0.35 μm, an average major axis of 2.49 μm, and an average aspect ratio of 7.3 were dispersed in an epoxy resin to obtain a molding material. . This molding material was put into a mold, molded, and thermally cured to obtain a composite magnetic body. The composite magnetic body was covered with a thickness of 2.5 mm around the rod-shaped antenna conductor to produce a quadrangular prism-shaped monopole antenna shown in FIG. 16A.
 このモノポールアンテナは、アンテナ長を200mmにすると197MHzで共振し、アンテナ長を200mmよりも短くすると197MHz以上の周波数で共振し、195mmのときに200MHzで共振した。このアンテナのX-Z平面における平均利得は-5.0dBdであった。
 この複合磁性体の160MHz~222MHzにおける複素透磁率の実部μr’は3以上であり、複素透磁率の損失正接tanδμは0.03であった。
This monopole antenna resonated at 197 MHz when the antenna length was 200 mm, resonated at a frequency of 197 MHz or more when the antenna length was shorter than 200 mm, and resonated at 200 MHz when the antenna length was 195 mm. The average gain of this antenna in the XZ plane was −5.0 dBd.
The real part μr ′ of the complex permeability at 160 MHz to 222 MHz of this composite magnetic body was 3 or more, and the loss tangent tan δμ of the complex permeability was 0.03.
[実施例28]
 実施例25において複合磁性体の被覆厚さを0.8mmとした以外は同様にして、実施例28のモノポールアンテナを作製した。このモノポールアンテナはアンテナ長を200mmにすると230MHzで共振し、222MHz以下の周波数で共振させるには、アンテナ長は200mm以上必要であり、アンテナ長220mmのときに200MHzで共振した。
[Example 28]
A monopole antenna of Example 28 was produced in the same manner as in Example 25 except that the coating thickness of the composite magnetic material was changed to 0.8 mm. This monopole antenna resonates at 230 MHz when the antenna length is 200 mm, and needs to be 200 mm or more to resonate at a frequency of 222 MHz or less, and resonates at 200 MHz when the antenna length is 220 mm.
[実施例29]
 実施例27において複合磁性体の被覆厚さを1.7mmとした以外は同様にして、実施例29のモノポールアンテナを作製した。このモノポールアンテナはアンテナ長を200mmにすると236MHzで共振し、222MHz以下の周波数で共振させるには、アンテナ長は200mm以上必要でありアンテナ長230mmのときに200MHzで共振した。
[Example 29]
A monopole antenna of Example 29 was produced in the same manner as in Example 27, except that the coating thickness of the composite magnetic material was 1.7 mm. This monopole antenna resonated at 236 MHz when the antenna length was 200 mm, and resonated at 200 MHz when the antenna length was 230 mm in order to resonate at a frequency of 222 MHz or less.
 次に、図16Aに示したモノポールアンテナをモデルとして、複素透磁率の実部μr’=3、tanδμ=0.02の複合磁性体でアンテナ導体を被覆したモノポールアンテナ、及びμr’=6、tanδμ=0.02の複合磁性体でアンテナ導体を被覆したモノポールアンテナについて、複合磁性体の被覆厚さと200MHzで共振する最小アンテナ長との関係を電磁界シミュレーターHFSSにて計算した。計算結果を図27中に直線で示す。上記各実施例及び参考例の結果も図27中にプロットした。 Next, using the monopole antenna shown in FIG. 16A as a model, a monopole antenna in which the antenna conductor is covered with a composite magnetic material having a real part μr ′ = 3 and tan δμ = 0.02 of the complex magnetic permeability, The relationship between the coating thickness of the composite magnetic material and the minimum antenna length that resonates at 200 MHz was calculated with an electromagnetic field simulator HFSS for the monopole antenna in which the antenna conductor was coated with the composite magnetic material of tan δμ = 0.02. The calculation result is shown by a straight line in FIG. The results of the above examples and reference examples are also plotted in FIG.
 図27に示すように、計算値の直線上に実測値がほぼ一致することから、複素透磁率の実部μr’=3と6の複合磁性体の被覆によって、アンテナ導体長が200mm以下でありながら、200MHz以下の周波数で共振させるには、被覆厚さが2.4mmあるいは1.2mm以上必要であることがわかる。 As shown in FIG. 27, since the measured values almost coincide with the calculated value line, the antenna conductor length is 200 mm or less due to the composite magnetic material coating of the real part μr ′ = 3 and 6 of the complex permeability. However, it is understood that the coating thickness is required to be 2.4 mm or 1.2 mm or more in order to resonate at a frequency of 200 MHz or less.
 1 基体
 2 塗布膜
 11 配向装置
 12 塗布手段
 13a、13b 磁石
 14 乾燥手段
 21 配向装置
 22a、22b 磁石
 22 磁石
 31 配向装置
 32a、32b、33a、33b、34a、34b 磁石
 41 平板状磁性体粒子
 51 配向装置
 52 乾燥手段
 61 モノポールアンテナ
 62 アンテナ導体
 63 複合磁性体
 64 地板
 65 接続部
 66 交流信号発信機
 71 携帯用電話機
 72 筐体
 73 表示部
 74 モノポールアンテナ
 75 アンテナ導体
 76 複合磁性体
 81 携帯用電話機
 82 筐体
 83 表示部
 84 外部アンテナ用端子
 85 モノポールアンテナ
 86 接続端子
 87 アンテナ導体
 88 複合磁性体
 91 携帯用電話機
 92 筐体
 93 地板
 94 L字アンテナ
 95 アンテナ導体
 96 複合磁性体
 101 携帯用電話機
 102 筐体
 103 地板
 104 ヘリカルアンテナ
 105 複合磁性体
 106 アンテナ導体
 H、H1、H2 磁力線
 g 進行方向
 111 保護カバー付き携帯用電話機
 112 携帯用電話機
 113 保護カバー
 114 筐体
 115 表示部
 116 外部アンテナ用端子
 121 ダイポールアンテナ
 122 アンテナ導体
 123 複合磁性体
 124 接続端子
 131 保護カバー付き携帯用電話機
 132 携帯用電話機
 133 保護カバー
 134 筐体
 135 表示部
 136 外部アンテナ用端子
 141 スパイラルアンテナ
 142 アンテナ導体
 143 複合磁性体
 144 接続端子
 151 開放容器
 152 球状の磁性粒子
 153 スラリー
 154 分散媒体
 155 1軸回転体
 1511 密閉容器
 1620 モノポールアンテナ
 1621 複合磁性体
 1622 アンテナ導体
 1624 地板
 1625 交流信号発信機
 1626 接続部
DESCRIPTION OF SYMBOLS 1 Base | substrate 2 Coating film 11 Orientation apparatus 12 Application | coating means 13a, 13b Magnet 14 Drying means 21 Orientation apparatus 22a, 22b Magnet 22 Magnet 31 Orientation apparatus 32a, 32b, 33a, 33b, 34a, 34b Magnet 41 Flat magnetic particle 51 Orientation Device 52 Drying means 61 Monopole antenna 62 Antenna conductor 63 Composite magnetic body 64 Ground plate 65 Connection section 66 AC signal transmitter 71 Portable telephone 72 Case 73 Display section 74 Monopole antenna 75 Antenna conductor 76 Composite magnetic body 81 Portable telephone DESCRIPTION OF SYMBOLS 82 Case 83 Display part 84 External antenna terminal 85 Monopole antenna 86 Connection terminal 87 Antenna conductor 88 Composite magnetic body 91 Portable telephone 92 Case 93 Base plate 94 L-shaped antenna 95 Antenna conductor 96 Composite magnetic body 101 Portable telephone 102 Case DESCRIPTION OF SYMBOLS 103 Ground plate 104 Helical antenna 105 Composite magnetic body 106 Antenna conductor H, H1, H2 Magnetic field line g Traveling direction 111 Portable telephone with a protective cover 112 Portable telephone 113 Protection cover 114 Case 115 Display part 116 External antenna terminal 121 Dipole antenna 122 Antenna conductor 123 Composite magnetic body 124 Connection terminal 131 Portable telephone with protective cover 132 Portable telephone 133 Protective cover 134 Case 135 Display unit 136 Terminal for external antenna 141 Spiral antenna 142 Antenna conductor 143 Composite magnetic body 144 Connection terminal 151 Open container 152 Spherical magnetic particles 153 Slurry 154 Dispersion medium 155 Uniaxial rotating body 1511 Sealed container 1620 Monopole antenna 1621 Composite magnetic body 1622 Antenna Body 1624 main plate 1625 AC signal transmitter 1626 connection unit

Claims (32)

  1.  平板状磁性体粒子を絶縁材料中に分散してなる複合磁性体であって、
    前記平板状磁性体粒子の平均厚みは0.01μm以上かつ0.5μm以下、平均長径は0.05μm以上かつ10μm以下、かつ平均アスペクト比(長径/厚み)は5以上であることを特徴とする複合磁性体。
    A composite magnetic material obtained by dispersing tabular magnetic particles in an insulating material,
    The flat magnetic particles have an average thickness of 0.01 μm or more and 0.5 μm or less, an average major axis of 0.05 μm or more and 10 μm or less, and an average aspect ratio (major axis / thickness) of 5 or more. Composite magnetic material.
  2.  70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は1よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下であることを特徴とする請求項1記載の複合磁性体。 2. The composite magnetic body according to claim 1, wherein the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is greater than 1, and the loss tangent tan δμ of the complex permeability is 0.1 or less. .
  3.  70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下であることを特徴とする請求項1記載の複合磁性体。 2. The composite magnetic body according to claim 1, wherein the real part μr ′ of the complex permeability in a frequency band from 70 MHz to 500 MHz is larger than 7, and the loss tangent tan δμ of the complex permeability is 0.1 or less. .
  4.  70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は10よりも大きく、かつ複素透磁率の損失正接tanδμは0.1以下であることを特徴とする請求項1記載の複合磁性体。 2. The composite magnetic body according to claim 1, wherein the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is greater than 10 and the loss tangent tan δμ of the complex permeability is 0.1 or less. .
  5.  前記平板状磁性体粒子は、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)の群から選択される1種または2種以上の金属元素を含む鉄-ニッケル合金であることを特徴とする請求項1記載の複合磁性体。 The flat magnetic particles include aluminum (Al), chromium (Cr), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo), indium ( 2. The composite magnetic body according to claim 1, which is an iron-nickel alloy containing one or more metal elements selected from the group of In) and tin (Sn).
  6.  前記平板状磁性体粒子は、平均粒子径が0.5μm以下の球状の磁性粒子に機械的応力を加えることにより、この球状の磁性粒子同士を変形及び融着してなることを特徴とする請求項1記載の複合磁性体。 The tabular magnetic particles are formed by deforming and fusing the spherical magnetic particles by applying mechanical stress to the spherical magnetic particles having an average particle diameter of 0.5 μm or less. Item 2. The composite magnetic material according to Item 1.
  7.  90MHzから220MHzまでの周波数帯域における複素透磁率の実部μr’は1よりも大きく、かつ複素透磁率の損失正接tanδμは0.05以下であることを特徴とする請求項1記載の複合磁性体。 2. The composite magnetic body according to claim 1, wherein the real part μr ′ of the complex permeability in the frequency band from 90 MHz to 220 MHz is greater than 1, and the loss tangent tan δμ of the complex permeability is 0.05 or less. .
  8.  気孔率が20%以下であることを特徴とする請求項1記載の複合磁性体。 2. The composite magnetic body according to claim 1, wherein the porosity is 20% or less.
  9.  70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’が7以上、複素誘電率の実部εr’が15以上であり、かつ、(μr’・εr’)-1/2が0.1以下、(μr’/εr’)1/2が0.5以上かつ1以下であることを特徴とする請求項8記載の複合磁性体。 The real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more, the real part εr ′ of the complex permittivity is 15 or more, and (μr ′ · εr ′) −1/2 is 0.00. The composite magnetic body according to claim 8, wherein 1 or less and (μr ′ / εr ′) 1/2 are 0.5 or more and 1 or less.
  10.  70MHzから500MHzまでの周波数帯域における複素透磁率の損失正接tanδμが0.05以下、複素誘電率の損失正接tanδεが0.1以下であることを特徴とする請求項9記載の複合磁性体。 10. The composite magnetic body according to claim 9, wherein the loss tangent tan δμ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 0.05 or less and the loss tangent tan δε of the complex dielectric constant is 0.1 or less.
  11.  前記絶縁材料が主鎖に環状構造を有し、かつモノマー単位で重合する官能基を有する第1の樹脂を含むことを特徴とする請求項1記載の複合磁性体。 The composite magnetic body according to claim 1, wherein the insulating material includes a first resin having a cyclic structure in a main chain and having a functional group that is polymerized in a monomer unit.
  12.  前記樹脂は、熱硬化性樹脂であることを特徴とする請求項11記載の複合磁性体。 12. The composite magnetic body according to claim 11, wherein the resin is a thermosetting resin.
  13.  前記樹脂は、エポキシ樹脂であることを特徴とする請求項11記載の複合磁性体。 The composite magnetic body according to claim 11, wherein the resin is an epoxy resin.
  14.  前記樹脂は、ジシクロペンタジエン型エポキシ樹脂であることを特徴とする請求項11記載の複合磁性体。 12. The composite magnetic body according to claim 11, wherein the resin is a dicyclopentadiene type epoxy resin.
  15.  前記平板状磁性体粒子の、前記樹脂中における配向方向と該平板状磁性体粒子の長軸方向とのなす角度が20°以下であることを特徴とする請求項11記載の複合磁性体。 The composite magnetic body according to claim 11, wherein an angle formed by the orientation direction of the tabular magnetic particles in the resin and the major axis direction of the tabular magnetic particles is 20 ° or less.
  16.  70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は、7以上であることを特徴とする請求項11記載の複合磁性体。 The composite magnetic body according to claim 11, wherein the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more.
  17.  前記第1の樹脂に可撓性を付与する樹脂である第2の樹脂をさらに含むことを特徴とする請求項11記載の複合磁性体。 The composite magnetic body according to claim 11, further comprising a second resin, which is a resin that imparts flexibility to the first resin.
  18.  前記第2の樹脂は、ビスフェノールA型骨格及びビスフェノールF型骨格のうち少なくとも1種を有するエポキシ樹脂であることを特徴とする請求項17記載の複合磁性体。 The composite magnetic body according to claim 17, wherein the second resin is an epoxy resin having at least one of a bisphenol A skeleton and a bisphenol F skeleton.
  19.  前記第2の樹脂は、1分子中に2個以上のエポキシ基を含有し、かつエーテル骨格を有するエポキシ樹脂であることを特徴とする請求項17記載の複合磁性体。 18. The composite magnetic body according to claim 17, wherein the second resin is an epoxy resin containing two or more epoxy groups in one molecule and having an ether skeleton.
  20.  前記第2の樹脂は、プロピレングリコール付加ビスフェノールA型骨格及びエチレングリコール付加ビスフェノールA型骨格のうちいずれか1種を有するエポキシ樹脂であることを特徴とする請求項17記載の複合磁性体。 18. The composite magnetic body according to claim 17, wherein the second resin is an epoxy resin having any one of a propylene glycol-added bisphenol A skeleton and an ethylene glycol-added bisphenol A skeleton.
  21.  70MHzから500MHzまでの周波数帯域における複素透磁率の実部μr’は7以上であることを特徴とする請求項17記載の複合磁性体。 The composite magnetic body according to claim 17, wherein the real part μr ′ of the complex permeability in the frequency band from 70 MHz to 500 MHz is 7 or more.
  22.  請求項1ないし21のいずれか1項記載の複合磁性体の製造方法であって、
     平均粒子径が0.5μm以下の球状の磁性粒子を界面活性剤を含む溶液中に分散してなるスラリー及び分散媒体を、密閉可能な容器内に、前記スラリー及び前記分散媒体の合計の体積が前記容器内の体積と同じくなるように充填し、このスラリーを前記分散媒体と共に密閉状態にて撹拌し、前記球状の磁性粒子同士を変形及び融着させて平板状磁性体粒子とする第1の工程と、
     前記平板状磁性体粒子を、絶縁材料を溶媒に溶解した溶液中に分散し混合して成形材料とする第2の工程と、
     前記成形材料を成形または基材上に塗布して成形体を得る成形工程と、前記成形体を乾燥・硬化させる乾燥・硬化工程を含む第3の工程と、
    を備えたことを特徴とする複合磁性体の製造方法。
    A method for producing a composite magnetic body according to any one of claims 1 to 21,
    A slurry obtained by dispersing spherical magnetic particles having an average particle size of 0.5 μm or less in a solution containing a surfactant and a dispersion medium are contained in a sealable container, and the total volume of the slurry and the dispersion medium is The slurry is filled so as to have the same volume as in the container, and the slurry is stirred together with the dispersion medium in a sealed state, and the spherical magnetic particles are deformed and fused together to form flat magnetic particles. Process,
    A second step in which the tabular magnetic particles are dispersed and mixed in a solution of an insulating material dissolved in a solvent to form a molding material;
    A molding step of molding or applying the molding material on a substrate to obtain a molded body, and a third step including a drying / curing step of drying / curing the molded body,
    A method for producing a composite magnetic body comprising:
  23.  前記絶縁材料が主鎖に環状構造を有しかつモノマー単位で重合する官能基を有する樹脂であることを特徴とする請求項22記載の複合磁性体の製造方法。 The method for producing a composite magnetic body according to claim 22, wherein the insulating material is a resin having a cyclic structure in the main chain and a functional group that is polymerized in monomer units.
  24.  前記第3の工程において、前記成形工程後、得られた成形体に磁場を印加して該成形体中の前記平板状磁性体粒子を一方向に配向させる配向工程を行い、次いで前記乾燥・硬化工程を行うことを特徴とする請求項22記載の複合磁性体の製造方法。 In the third step, after the molding step, a magnetic field is applied to the obtained molded body to perform an orientation step in which the flat magnetic particles in the molded body are oriented in one direction, and then the drying and curing The method of manufacturing a composite magnetic body according to claim 22, wherein a step is performed.
  25.  請求項1ないし21のいずれか1項記載の複合磁性体を備えてなることを特徴とするアンテナ。 An antenna comprising the composite magnetic body according to any one of claims 1 to 21.
  26.  請求項25記載のアンテナを備えてなることを特徴とする通信装置。 A communication apparatus comprising the antenna according to claim 25.
  27.  アンテナ導体が、請求項1記載の複合磁性体によって被覆されていることを特徴とするモノポールアンテナ。 A monopole antenna, wherein the antenna conductor is covered with the composite magnetic material according to claim 1.
  28.  前記複合磁性体は、160MHzから222MHzまでの周波数帯域における複素透磁率の実部μr’が3以上であることを特徴とする請求項27記載のモノポールアンテナ。 The monopole antenna according to claim 27, wherein the composite magnetic body has a real part μr 'of complex permeability in a frequency band from 160 MHz to 222 MHz being 3 or more.
  29.  前記複合磁性体の被覆厚さが2.4mm以上かつ10mm以下であることを特徴とする請求項28記載のモノポールアンテナ。 29. The monopole antenna according to claim 28, wherein a coating thickness of the composite magnetic material is 2.4 mm or more and 10 mm or less.
  30.  前記複合磁性体は、160MHzから222MHzまでの周波数帯域における複素透磁率の実部μr’が6以上であることを特徴とする請求項27記載のモノポールアンテナ。 28. The monopole antenna according to claim 27, wherein the composite magnetic body has a real part μr ′ of complex permeability in a frequency band from 160 MHz to 222 MHz of 6 or more.
  31.  前記複合磁性体の被覆厚さが1.2mm以上かつ10mm以下であることを特徴とする請求項30記載のモノポールアンテナ。 The monopole antenna according to claim 30, wherein a coating thickness of the composite magnetic body is 1.2 mm or more and 10 mm or less.
  32.  前記アンテナ導体の長さが200mm以下であることを特徴とする請求項27記載のモノポールアンテナ。 The monopole antenna according to claim 27, wherein the antenna conductor has a length of 200 mm or less.
PCT/JP2011/077706 2010-11-30 2011-11-30 Composite magnet and production method therefor, antenna, and communication device WO2012074024A1 (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2010-266903 2010-11-30
JP2010266903 2010-11-30
JP2011064310 2011-03-23
JP2011-064310 2011-03-23
JP2011-097157 2011-04-25
JP2011097157 2011-04-25
JP2011-122440 2011-05-31
JP2011122440 2011-05-31
JP2011167078 2011-07-29
JP2011-167078 2011-07-29
JP2011167077 2011-07-29
JP2011-167077 2011-07-29
JP2011-254169 2011-11-21
JP2011254169A JP6044064B2 (en) 2010-11-30 2011-11-21 Composite magnetic body, method for manufacturing the same, antenna, and communication apparatus
JP2011-257616 2011-11-25
JP2011257616 2011-11-25
JP2011-257615 2011-11-25
JP2011257615 2011-11-25

Publications (1)

Publication Number Publication Date
WO2012074024A1 true WO2012074024A1 (en) 2012-06-07

Family

ID=46171950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077706 WO2012074024A1 (en) 2010-11-30 2011-11-30 Composite magnet and production method therefor, antenna, and communication device

Country Status (1)

Country Link
WO (1) WO2012074024A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165370A (en) * 2013-02-26 2014-09-08 Sumitomo Osaka Cement Co Ltd Insulative plate-like magnetic powder, composite magnetic substance containing the same, antenna with the same, communication device and method of manufacturing composite magnetic substance
CN109545493A (en) * 2017-09-22 2019-03-29 株式会社村田制作所 Composite magnetic and the coil component for having used the composite magnetic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140026A (en) * 2002-10-15 2004-05-13 Daido Steel Co Ltd Compound magnetic sheet
JP2005033156A (en) * 2003-06-18 2005-02-03 Shin Etsu Polymer Co Ltd Electromagnetic wave absorption sheet, electronic apparatus, and method of manufacturing electromagnetic wave absorption sheet
WO2007088762A1 (en) * 2006-02-02 2007-08-09 Sumida Corporation Composite magnetic sheet and process for producing the same
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140026A (en) * 2002-10-15 2004-05-13 Daido Steel Co Ltd Compound magnetic sheet
JP2005033156A (en) * 2003-06-18 2005-02-03 Shin Etsu Polymer Co Ltd Electromagnetic wave absorption sheet, electronic apparatus, and method of manufacturing electromagnetic wave absorption sheet
WO2007088762A1 (en) * 2006-02-02 2007-08-09 Sumida Corporation Composite magnetic sheet and process for producing the same
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165370A (en) * 2013-02-26 2014-09-08 Sumitomo Osaka Cement Co Ltd Insulative plate-like magnetic powder, composite magnetic substance containing the same, antenna with the same, communication device and method of manufacturing composite magnetic substance
CN109545493A (en) * 2017-09-22 2019-03-29 株式会社村田制作所 Composite magnetic and the coil component for having used the composite magnetic
CN109545493B (en) * 2017-09-22 2020-11-24 株式会社村田制作所 Composite magnetic material and coil component using same

Similar Documents

Publication Publication Date Title
CN102474011B (en) Coil antenna and electronic device using same
JP3874744B2 (en) Small high sensitivity antenna
WO2013168411A1 (en) Magnetic part, metal powder used therein and manufacturing method therefor
CN108141994B (en) Magnetic field shielding unit, module including the same, and portable device including the same
JP2013253122A (en) Composite magnetic material, method for manufacturing the same, antenna, and communication device
WO2020174864A1 (en) Power feeding member, magnetic sheet used for coil arrangement, and production method for magnetic sheet used for coil arrangement
CN108353524B (en) Magnetic field shielding unit for wireless power transmission and wireless power transmission module including the same
JP6044064B2 (en) Composite magnetic body, method for manufacturing the same, antenna, and communication apparatus
WO2012074024A1 (en) Composite magnet and production method therefor, antenna, and communication device
JP2013247351A (en) Tabular magnetic powder with insulation property, composite magnetic material including it, antenna and communication device comprising it, and method for manufacturing tabular magnetic powder with insulation property
JP6167560B2 (en) Insulating flat magnetic powder, composite magnetic body including the same, antenna and communication device including the same, and method for manufacturing composite magnetic body
JP2013253123A (en) Composite magnetic material, antenna equipped with the same, communication device, and method for manufacturing the composite magnetic material
CN102742076B (en) Antenna component and method for producing same
TW201230083A (en) Composite magnetic material, production method thereof, antenna and communication device
TWI792866B (en) Wireless charging device and vehicle comprising the same
JP6167533B2 (en) Composite magnetic body, antenna including the same, and RFID tag
WO2013077285A1 (en) Composite magnet, antenna provided therewith, and non-contact ic card
JP2014064258A (en) Antenna, unbalanced feeding type antenna, and communication device
JP2013254757A (en) Composite magnetic material, and antenna having the same, and communication device
KR20170062415A (en) Magnetic shielding unit and multi-function complex module comprising the same
JP2013247352A (en) Composite magnetic material, its manufacturing method, antenna, and communication device
WO2013094677A1 (en) Antenna, unbalanced power supply antenna, and communication device
KR20210061720A (en) Wireless charging pad, wireless charging device, and electric vehicle comprising same
EP4064304A1 (en) Wireless charging device, and transportation means comprising same
JP2014029936A (en) Method of producing composite magnetic body and composite magnetic body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845140

Country of ref document: EP

Kind code of ref document: A1