JP3874744B2 - Small high sensitivity antenna - Google Patents
Small high sensitivity antenna Download PDFInfo
- Publication number
- JP3874744B2 JP3874744B2 JP2003285350A JP2003285350A JP3874744B2 JP 3874744 B2 JP3874744 B2 JP 3874744B2 JP 2003285350 A JP2003285350 A JP 2003285350A JP 2003285350 A JP2003285350 A JP 2003285350A JP 3874744 B2 JP3874744 B2 JP 3874744B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic metal
- resin
- antenna
- weir
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Soft Magnetic Materials (AREA)
Description
本発明は、電波を電気信号に変換する棒状アンテナに関するものである。例えば、電波を受信、送信、送受信する棒状アンテナであり、RFID用アンテナ、車載イモビライザー用アンテナ、電子キー用アンテナ、電波時計用アンテナ、ラジオ用アンテナ、携帯機器用小型アンテナ等が挙げられる。これらの棒状アンテナの感度をさらに向上させるために、棒状アンテナの片側もしくは両端に磁性金属粉末を含んでなる堰を設けた棒状アンテナに関するものである。The present invention relates to rod-shaped antenna that converts radio waves to electrical signals. For example, it is a rod-shaped antenna that receives, transmits, and transmits / receives radio waves, such as an RFID antenna, an in-vehicle immobilizer antenna, an electronic key antenna, a radio clock antenna, a radio antenna , a small antenna for a portable device, and the like. In order to further improve the sensitivity of these rod- shaped antennas, the present invention relates to a rod-shaped antenna in which weirs containing magnetic metal powder are provided on one side or both ends of the rod-shaped antenna.
電子・通信分野の目覚しい発展に伴い、電気・電子機器に用いられる磁気応用製品の需要の拡大、これに伴う製品形態の多様化が急速に進んでおり、特に携帯機器の普及に伴って、薄型化、小型化、高効率化の要求が高まっている。これらの機器に用いられる、電波を電気信号に変換するアンテナはより薄型化、小型化、高効率化が望まれている。With the remarkable development of the electronic and communication fields, the demand for magnetic application products used in electrical and electronic equipment is rapidly expanding, and the resulting diversification of product forms is rapidly progressing. There is a growing demand for downsizing, downsizing, and high efficiency. Used in these devices, antenna is thinner for converting radio waves into electrical signals, downsizing, high efficiency is desired.
従来このようなアンテナとして特開平7−278763(特許文献1)では、図3に示すように、磁気特性が特に優れるアモルファス合金薄帯を用いて棒状のアンテナ用磁心として用い、該アンテナ用磁心にコイルを巻回することで、100kHz以上でQ値が高く高感度なアンテナが提案されている。また、この技術の改善策として、特開2001−337181(特許文献2)の方法が提案されている。この方法によれば、アンテナの棒状芯材の両端にフランジが形成され、そのフランジの間にコイルが巻回されている。このフランジを付加することにより、アンテナの受信感度を向上させることが可能となる。しかし、機器の小型化に伴いさらなる薄型化、小型化、高性能アンテナが要望されている。
近年の電波を利用した情報通信が、例えば防犯用の施錠システム、IDカード、タグ等のトランスポンダに使用されるRFID情報の送受信、等に用いられている。これらの用途では、携帯して使われることから、タグやキー等に対しさらなる薄型化、カード化の市場要求がある。こうした用途に用いるアンテナにさらなる小型化を図るために、アンテナの芯材を薄型化、短小化する必要がある。Information communication using recent radio waves, for example, locking system for security, ID cards, RFI D information transmission and reception to be used in transponder tag or the like, are used in like. In these applications, from being used in mobile and, further thinning for the tag and keys, and the like, there is a market demand of the card of. In order to further reduce the size of the antenna used for such applications , it is necessary to make the antenna core material thinner and shorter .
しかしながら、アンテナの体積減少に伴い、アンテナのL値またはQ値が低下し、L値とQ値の積に比例するアンテナ感度が低下する。その結果、実用上充分な電波受信感度が得られなくなることがある。 However, as the volume of the antenna decreases, the L value or Q value of the antenna decreases, and the antenna sensitivity proportional to the product of the L value and the Q value decreases. As a result, practically sufficient radio wave reception sensitivity may not be obtained.
そこで本発明は、アンテナの長さを変えずに、L値、Q値を向上させ、アンテナの送受信感度の向上を実現すること、或いは感度を変えずに更なる薄型化、小型化を実現することを課題とする。The present invention is without changing the length of the antenna, L value, to improve the Q value, to realize the improvement of the reception sensitivity of the antenna, or further thinned without changing the sensitivity, downsizing The task is to do.
このような課題を解決するために鋭意研究の結果以下のことを見出した。 As a result of earnest research to solve such problems, we have found the following.
本発明は、アモルファス磁性金属薄帯を積層した芯材に絶縁体で被覆された導電性線材が巻回されているアンテナにおいて、芯材の端部に堰が設けられていることを特徴とするアンテナを提供する。The present invention is characterized in that a weir is provided at an end portion of a core material in an antenna in which a conductive wire covered with an insulator is wound around a core material in which amorphous magnetic metal ribbons are laminated. Provide an antenna.
芯材に設けられている堰は、磁性金属粉末を含む組成物から成ることを特徴とする。Weir provided in the core material is characterized by comprising a composition comprising magnetic metals powders.
前記芯材に設けられている堰は、磁性金属粉末と樹脂とからなる組成物を含む複合体からなることを特徴とする。The weir provided in the core material is made of a composite containing a composition comprising magnetic metal powder and resin.
前記磁性金属粉末が、ナノ結晶磁性金属粉末を用いることは本発明の好ましい態様の1つである。The magnetic metal powder, the use of a nanocrystalline magnetic metal powder is one of the preferred embodiments of the present invention.
前記磁性金属粉末の形状が扁平状であることは本発明の好ましい態様の1つである。 Is one of the preferred embodiments of the present invention that the shape of the magnetic metal powder is Bian flat shape.
本発明は、堰を作るための磁性金属粉末5〜60Vol%と樹脂95〜40Vol%とからなる堰を提供する。The present invention provides a weir comprising a magnetic metal powder 5~60Vol% resin 95~40Vol% to make weir.
芯材に絶縁体で被覆された導電性線材が巻回されているアンテナにおいて、芯材の端部に堰が設けられることにより、アンテナのL値が向上し小型高感度アンテナを得ることができた。その結果、L値が一定でよい場合は、絶縁体で被覆された導電性線材の巻回数が減らせる。その結果、銅損が減り、Q値を向上でき、アンテナの送受信感度が大幅に向上する。また巻回数を減らした分、アンテナの幅、高さが小さくなり、アンテナの小型化、薄型化が可能となった。In the antenna conductive wire coated with an insulating material in the core material is wound, by weir end of the core material is eclipsed set, that L value of the antenna to obtain an improved miniature high sensitivity antenna did it. As a result, L value may be constant, the winding number of the coated conductive wire is be reduced by an insulator. As a result, fewer copper loss, can improve the Q value, transmission and reception sensitivity of the antenna can be greatly improved. In addition, the width and height of the antenna are reduced by reducing the number of turns, and the antenna can be made smaller and thinner.
次に本発明の実施の形態について具体的に説明する。
(アンテナ)
本発明のアンテナの例を図1に示す。本発明は、アンテナの芯材11、堰12、巻回さ れた絶縁体で被覆された導電性線材13の3つの要素から構成される。Next, embodiments of the present invention will be specifically described.
(antenna)
An example of the antenna of the present invention is shown in FIG. The present invention is composed of three elements: an
アンテナの芯材は、磁性体からなり、アンテナの芯材の中央部に絶縁体で被覆された導 電性線材が巻回されている。巻回された絶縁体で被覆された導電性線材の両端はそれぞれ、堰に接していることが好ましい。堰は、磁性金属粉末と樹脂の組成物により形成されている。
(アンテナの芯材)
本発明のアンテナの芯材について説明する。The antenna core is made of a magnetic material, and a conductive wire covered with an insulator is wound around the center of the antenna core. Both ends of the conductive wire covered with the wound insulator are preferably in contact with the weir. The weir is formed of a composition of magnetic metal powder and resin .
(Antenna core)
The core material of the antenna of the present invention will be described.
アンテナの芯材の形状は円柱、角柱等の種々の形状が可能である。その中でも、直方体もしくは角柱が、積層体とした時にこれを切断加工して容易に作製できるため好ましい。The shape of the core of the antenna can be cylindrical, like various forms of prismatic and the like. Among them, a rectangular parallelepiped or a rectangular column is preferable because it can be easily manufactured by cutting when a laminated body is formed .
アンテナの芯材は磁性体からなり、磁性体の形状は板状である。材料としては、例えば、アモルファス磁性金属、ナノ結晶磁性金属等が挙げられる。 Core antenna comprises a magnetic material, the magnetic body shape of a plate shape. As the material, for example, A Amorphous magnetic metals, nanocrystalline magnetic metal.
なかでもCo系アモルファス磁性金属薄帯や、Fe系アモルファス磁性金属薄帯等は、透磁率が高く、損失が少ないため小型薄型用アンテナの芯材の材料として好適である。但し、1枚が10〜30μmと薄いため、必要な性能を得るために、実際には複数枚を積層して、アンテナの芯材の形状とする。ポリイミド等の耐熱性樹脂とCo系アモルファス磁性金属薄帯や、Fe系アモルファス磁性金属薄帯が交互に積層された積層体からなるアンテナの芯材は、この中でも、Co系アモルファス磁性金属薄帯や、Fe系アモルファス磁性金属薄帯とポリイミド等の耐熱樹脂からなる積層体が最も好ましい。またこれらの積層体が積層後、アモルファス金属の磁気特性向上に必要な熱処理ができ、さらにその後、機械加工が出来る。Among them, Co-based amorphous magnetic metal strip, Fe-based amorphous magnetic metal strip or the like has a high magnetic permeability is suitable as a material for the core loss is small fry small thin antenna. However, since one is 1 0 to 30 [mu] m and thin, in order to obtain the required performance, in fact by stacking a plurality, and the shape of the core material of the antenna. The core material of the antenna made of a laminate in which a heat-resistant resin such as polyimide and Co-based amorphous magnetic metal ribbons and Fe-based amorphous magnetic metal ribbons are alternately stacked includes Co-based amorphous magnetic metal ribbons, A laminated body made of a heat-resistant resin such as a Fe-based amorphous magnetic metal ribbon and polyimide is most preferable. Moreover, after these laminated bodies are laminated, heat treatment necessary for improving the magnetic properties of the amorphous metal can be performed, and thereafter, machining can be performed.
このアモルファス磁性金属薄帯と耐熱樹脂からなる積層体は以下の方法で作製することができる。
(アモルファス磁性金属薄帯)
本発明のアンテナの芯材に使用されるアモルファス磁性金属薄帯に用いられる磁性材料としては、Fe系、Co系のアモルファス磁性金属薄帯が用いられる。これらのアモルフ ァス磁性金属薄帯は、通常溶融金属を急冷ロールを用いて、急冷して得られる。通常は10〜50μmの厚さであり、好ましくは10〜30μmの厚さの薄帯が用いられる。A laminate comprising this amorphous magnetic metal ribbon and a heat-resistant resin can be produced by the following method.
(Amorphous magnetic metals ribbon)
As the magnetic material used for the amorphous magnetic metal ribbon used for the core material of the antenna of the present invention, Fe-based and Co-based amorphous magnetic metal ribbons are used. These Amorufu § scan magnetic metal ribbon, an ordinary molten metal using a chill roll, obtained by rapid cooling. Usually, a thickness of 10 to 50 μm is used, and a ribbon having a thickness of 10 to 30 μm is preferably used.
Fe系アモルファス磁性金属材料としては、Fe−Si−B系、Fe−B系、Fe−P−C系等のFe−半金属系アモルファス磁性金属材料やFe−Zr系、Fe−Hf系、Fe−Ti系等のFe−遷移金属系アモルファス磁性金属材料を挙げることができる。Co系アモルファス磁性金属材料としてはCo−Si−B系、Co−B系等のアモルファス磁 性金属材料が例示できる。これらの中でも、Q値が高い材料としては、以下の組成のものがより好ましい。The Fe-based amorphous magnetic metallic material, Fe-Si-B-based, Fe-B-based, Fe-P-C system, etc. of Fe- metalloid based amorphous magnetic metal material and Fe-Zr type, Fe-Hf type, Fe An Fe-transition metal amorphous magnetic metal material such as -Ti can be mentioned. The Co-based amorphous magnetic metallic material Co-Si-B-based, amorphous magnetic metallic material of Co-B system or the like can be exemplified. Among these, materials having the following composition are more preferable as materials having a high Q value.
アモルファス磁性金属薄帯の組成が、一般式(Co1−cFec)1−a−bXaYb(式中のXは、Si、B、C、Geから選ばれる少なくとも1種類以上の元素を表し、YはZr、Nb、Ti、Hf、Ta、W、Cr、Mo、V、Ni、P、Al、Pt、Rh、Ru、Sn、Sb、Cu、Mn、希土類元素から選ばれる少なくとも1種類以上の元素で表される。c、a、bは、それぞれ、0≦c≦0.2、10<a≦35、0≦b≦30、ここでa、bは原子%)で表される組成が好ましい。上記アモルファス磁性金属薄帯のCoをFeで置換することはアモルファス磁性金属の飽和磁化を増加させる傾向にある。このため、置換量cは0≦c≦0.2であることが好ましく、0≦c≦0.1であることがさらに好ましい。The composition of the amorphous magnetic metal ribbon has the general formula (Co 1-c Fe c ) 1-ab X a Y b (wherein X is at least one selected from Si, B, C, Ge) represents an element, Y is selected Zr, Nb, Ti, Hf, Ta, W, Cr, Mo, V, Ni, P, Al, Pt, R h, Ru, Sn, Sb, Cu, Mn, rare earth elements It is represented by at least one kind of element, where c, a, and b are 0 ≦ c ≦ 0.2, 10 <a ≦ 35, and 0 ≦ b ≦ 30 , respectively, where a and b are atomic%) The represented composition is preferred. Replacing the Co of the amorphous magnetic metal strip by Fe tends to make increasing the saturation magnetization of amorphous magnetic metal. For this reason, the substitution amount c is preferably 0 ≦ c ≦ 0.2, and more preferably 0 ≦ c ≦ 0.1.
X元素は本発明に用いるアモルファス磁性金属薄帯を製造する上で、結晶化速度を遅くするために有効な元素である。X元素が10原子%より少ないと、一部結晶質が混在し、また、35原子%を超えると、結晶質は混在しないものの金属薄帯の機械的強度が低下し、連続的な薄帯が得られなくなる。したがって、X元素の量aは、10<a≦35であることが好ましく、さらに好ましくは、12≦a≦30である。X elements in the production of amorphous magnetic metal strip used in the present invention is an element effective to slow the sintering crystallization speed. When the X element is less than 10 atomic%, a mix of part crystalline, When it exceeds 35 atomic%, the crystalline mechanical strength of the metal strip but not mixed is decreased, continuous ribbon It cannot be obtained. Therefore, the amount a of the X element is preferably 10 <a ≦ 35, and more preferably 12 ≦ a ≦ 30.
Y元素は、本発明に用いるアモルファス磁性金属薄帯の耐食性に効果がある。この中で特に有効な元素は、Zr、Nb、Mn、W、Mo、Cr、V、Ni、P、Al、Pt、Rh、Ru元素である。Y元素の添加量は30%以上になると、耐食性の効果はあるが、薄帯の機械強度が低下するので、0≦b≦30であることが好ましい。さらに好ましい範囲は、0≦b≦20である。The Y element is effective in the corrosion resistance of the amorphous magnetic metal ribbon used in the present invention. Particularly effective element in this, Zr, Nb, Mn, W , Mo, Cr, V, Ni, P, Al, Pt, R h, an Ru element. If the amount of Y element added is 30% or more, there is an effect of corrosion resistance, but the mechanical strength of the ribbon is reduced, so 0 ≦ b ≦ 30 is preferable. A more preferable range is 0 ≦ b ≦ 20.
また、前記アモルファス磁性金属薄帯は、例えば、所望の組成の金属を調合したものを高周波溶解炉等を用いて溶融し、均一な溶融体としたものを、不活性ガス等でフローして、急冷ロールに吹き付けて、急冷して得られる。通常は厚さは5〜50μmであり、好ましくは10〜30μmの薄帯が用いられる。本発明に用いられるアモルファス磁性金属薄帯は、液体急冷法等によりシート状に作製されたアモルファス磁性金属材料が使用できる。または、粉末状のアモルファス磁性金属材料をプレス成型等によりシート状にしたものを使用することができる。また、本発明に使用されるアモルファス磁性金属薄帯は、単一のアモルファス磁性金属薄帯を用いても良いし、多種類のアモルファス磁性金属薄帯を重ねたものを用いることができる。
(樹脂の塗工及び積層)
本発明のアンテナの芯材は耐熱樹脂を表面にコートしたアモルファス磁性金属薄帯から 作製される。ロールコータ等のコーティング装置で、アモルファス磁性金属薄帯上に液体状にした樹脂の塗膜を作り、これを乾燥させてアモルファス磁性金属薄帯に耐熱樹脂を付与する方法で作製することができる。Further, the amorphous magnetic metal strip, for example, those obtained by compounding metal having a desired composition was melted with high frequency melting furnace or the like, a material obtained by a uniform melt, and flow with an inert gas or the like, It is obtained by spraying on a quenching roll and quenching. Usually, the thickness is 5 to 50 μm, and preferably a 10 to 30 μm ribbon is used. As the amorphous magnetic metal ribbon used in the present invention, an amorphous magnetic metal material produced in a sheet shape by a liquid quenching method or the like can be used. Or it can be used after the powdered amorphous magnetic metallic material into a sheet by a press forming type. In addition, as the amorphous magnetic metal ribbon used in the present invention, a single amorphous magnetic metal ribbon may be used , or a stack of many kinds of amorphous magnetic metal ribbons may be used.
(Coating Ko及 beauty product layer of the resin)
The core material of the antenna of the present invention is produced from an amorphous magnetic metal ribbon whose surface is coated with a heat resistant resin . A coating apparatus such as a roll coater, creating a coating of a resin that is liquid-like amorphous magnetic metal strip on, be produced by a method of imparting resistance to Netsuju fat to the amorphous magnetic metal strip by drying it Can do.
アモルファス磁性金属薄帯に耐熱樹脂を付与し積層構造のアンテナの芯材を作製する場合、例えば熱プレスや熱ロール等により積層一体化することができる。加圧時の温度は耐熱樹脂の種類により異なるが、概ね、耐熱樹脂のガラス転移温度以上で軟化もしくは溶融する温度近傍で積層接着することが好ましい。
(アンテナの作製方法)
アンテナの芯材は、所望の形状に加工される。形状加工方法としては、ダイサー加工、打抜き加工、エッチング加工、レーザー加工、放電ワイヤー加工、ウォータージェット加 工等により加工される。この中でも、アンテナの芯材の形状が矩形の場合はダイサー加工が好ましい。また矩形以外の形状の場合は打抜き加工もしくはエッチング加工することが好ましい。When fabricating an antenna core material of imparting resistance Netsuju fat product layer structure amorphous magnetic metal strip can be laminated and integrated by, for example, hot press or hot roll or the like. Temperature of pressurization varies depending on the type of heat-resistant resin, generally, it is preferable to laminate adhesion at a temperature near the softening or melt in heat-resistant resin of the glass transition temperature or higher.
(Method for manufacturing antenna)
Core antenna is processed into the shape of Nozomu Tokoro. The shaping method, Dicer processing, punching, etching, laser processing, electrical discharge wire machining, is processed by a water jet pressure Engineering like. Among these, dicer processing is preferable when the shape of the antenna core is rectangular. In the case of a shape other than a rectangle, it is preferable to perform punching or etching.
アンテナの芯材はアモルファス磁性金属薄帯からなるので、アモルファス磁性金属の磁気特性発現に必要な200〜500℃の熱処理を施す。
(堰)
本発明の堰は、被覆された導電性線材が巻回されているアンテナの芯材の領域の両端に配置される。通常、巻回されている線材と堰は接している。 Since the core material of the antenna is made of amorphous magnetic metal strip is subjected to a heat treatment at 20 0 to 500 ° C. required magnetic property development of amorphous magnetic metal.
(Weir)
The weirs of the present invention are arranged at both ends of the antenna core material region around which the coated conductive wire is wound. Usually, the wound wire and the weir are in contact.
本発明の堰の形状は、具体的には図1に示すように棒状のアンテナの芯材が貫通するた めの貫通孔のあいたキャップ状であったり、図2に示すようなアンテナの芯材を覆うケース構造でも良い。ケース状の堰で棒状のアンテナの芯材をカバーすることで、線材を巻回 する時に棒状のアンテナの芯材のエッジで、線材の被覆が剥がれ絶縁破壊に至る可能性が大幅に減る。しかし、ケース分の厚みが増えるため、薄型化が必要な場合は不利となる。 The shape of the weir of the present invention, specifically Meet cap shape perforated because of through holes is core of the rod-shaped antenna through as shown in FIG. 1, the core material of the antenna as shown in FIG. 2 A case structure may be used. By a case-shaped dam covering core of the rod-shaped antenna, sometimes in rod-shaped core of an edge of the antenna winding the wire, significantly reduces the possibility of dielectric breakdown peeling coating of the wire. However, because the thickness of the case amount is increased, if thinning is required, which is disadvantageous.
図1のように堰に貫通孔があいている場合、貫通孔の形状は、アンテナの芯材の断面形状にほぼ一致し、アンテナの芯材に嵌めた時に空隙が無いことが望ましい。また図1の形 状の堰の長手方向の長さは、アンテナの芯材の長さの2〜30%であることが良い。さらに好ましくはアンテナの芯材の長さの5〜20%が良い。
(堰を構成する材料)
本発明の堰は、磁性金属粉末と樹脂とを複合して構成される。When the weir has a through hole as shown in FIG. 1, it is desirable that the shape of the through hole substantially coincides with the cross-sectional shape of the antenna core material and that there is no gap when fitted to the antenna core material. The longitudinal length of the shape of the weir of FIG. 1, it is not good is from 2 to 30% of the length of the core material of the antenna. More preferably, the length is 5 to 20% of the length of the antenna core .
(Materials constituting the weir )
The weir of the present invention is composed of a composite of magnetic metal powder and resin.
以下に堰を構成する磁性金属粉末と堰を構成する樹脂及び堰の複合方法について述べる。
(堰に用いる磁性金属粉末)
本発明の堰に用いる磁性金属粉末は、ナノ結晶磁性金属粉末、およびアモルファス磁性金属粉末が挙げられる。アモルファス磁性金属粉末とナノ結晶磁性金属粉末を堰の構成材 料に用いることでアンテナのL値及びQ値の向上に著しい効果があることを見出した。さらに扁平状のナノ結晶磁性金属粉末及び扁平状のアモルファス磁性金属粉末がアンテナのL値及びQ値の向上に著しい効果を有している。
(堰に用いるナノ結晶磁性金属粉末)
本発明の堰に用いるナノ結晶磁性金属粉末は組織が粒径100nm以下のナノ結晶粒を主成分とする磁性金属粉末であり、アモルファス金属を結晶化温度以上の温度で熱処理し、ナノ結晶粒を析出させることで得られる。 A composite method of the magnetic metal powder constituting the weir, the resin constituting the weir and the weir will be described below.
(Magnetic metal powder used for weirs )
Magnetic metal powder are use to dam of the present invention include nanocrystalline magnetic metal powder powder, and amorphous magnetic metal powder powder is. It found that there is a diplomatic fruit authored in improving the L value and the Q value of the antenna by using A Amorphous magnetic metal powder powder and nanocrystalline magnetic metal powder powder to construction materials of the dam. Flat nanocrystalline magnetic metal powder and flat amorphous magnetic metal powder powder has a diplomatic fruit authored in improving the L value and the Q value of the antenna is found.
(Nanocrystalline magnetic metal powder used for weirs )
Nanocrystalline magnetic metal powder are use to dam of the present invention the tissue is a magnetic metal powder based on the following nanocrystalline grain particle size 100 nm, heat treatment of the amorphous metals at crystallization temperature or higher, nanocrystals It is obtained by precipitating the grains.
ナノ結晶磁性金属粉末の組成としては、ナノ結晶磁性金属材料として代表的なFe−Cu−Nb−Si−B系でも良いが、下記組成に限らないが、最も望ましくは、一般式(Fe1−xMx)100−a−b−c−dSiaAlbBcM’d(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表す。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表される組成が望ましい。The composition of nanocrystalline magnetic metal powder, good in typical Fe-Cu-Nb-Si- B system as nanocrystalline magnetic metal material Iga, but are not limited to the following composition, and most preferably, the general formula (Fe 1 -x M x) 100-a- b-c-d Si a Al b B c M 'd ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, One or more elements selected from Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, and P. x represents an atomic ratio, and a, b, c, and d represent atomic%. And 0 ≦ x ≦ 0.5, 0 ≦ a ≦ 24, 1 ≦ b ≦ 20, 4 ≦ c ≦ 30, and 0 ≦ d ≦ 10, respectively.
望ましくは、以下の一般式A、B、C、D、Eの5通りで表現されるナノ結晶磁性金属粉末が望ましい。Desirably, the following general formula A, B, C, D, and the nanocrystalline magnetic metal powder powder is desirable expressed by 5 Street E.
一般式Aは、(Fe1−xMx)100−a−b−c−dSiaAlbBcM’d(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Pd、Ru、Ge、C、P、希土類元素から選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、0.1<b≦20、4≦c≦30、0≦d≦20を満たすものとする)で表される組成である。The general formula A is (Fe 1-x M x ) 100-a-b-c-D Si a Al b B c M ′ d (wherein M is Co and / or Ni, M ′ is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Pd, Ru, Ge, C, P, and one or more elements selected from rare earth elements, where x is an atomic ratio, a, b, c , D represents atomic%, and 0 ≦ x ≦ 0.5, 0 ≦ a ≦ 24, 0.1 <b ≦ 20, 4 ≦ c ≦ 30, and 0 ≦ d ≦ 20, respectively. Composition.
一般式Bは、(Fe1−xMx)100−a−b−c−dCuaSibBcM’d(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Pd、Ru、Ge、C、P、希土類元素から選ばれる1種類以上の元素を表す。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.4、0.1≦a≦3、b≦19、5≦c≦25、0<d≦20、15≦b+c≦30を満たすものとする)で表される組成である。The general formula B is (Fe 1-x M x ) 100-ab-c-d Cu a Si b B c M ′ d (wherein M is Co and / or Ni, M ′ is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Pd, Ru, Ge, C, P, one or more elements selected from rare earth elements, where x is an atomic ratio, a, b, c , D represents atomic%, and satisfy 0 ≦ x ≦ 0.4, 0.1 ≦ a ≦ 3, b ≦ 19, 5 ≦ c ≦ 25, 0 <d ≦ 20, 15 ≦ b + c ≦ 30, respectively. The composition represented by
一般式Cは、(Fe1−xMx)100−a−bBaM’b(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Pd、Ru、Ga、Ge、C、希土類元素から選ばれる1種類以上の元素を表す。xは原子比を、a、bは原子%を示し、それぞれ0≦x≦0.5、0<a≦20、2≦b≦20を満たすものとする)で表される組成である。Formula C is, (Fe 1-x M x ) 100-a-b B a M 'b ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, It represents one or more elements selected from Ti, V, Cr, Mn, Pd, Ru, Ga, Ge, C, and rare earth elements, x represents an atomic ratio, a and b represent atomic%, and 0 ≦ x, respectively. ≦ 0.5, 0 <a ≦ 20, 2 ≦ b ≦ 20).
一般式Dは、(Fe1−xMx)100−a−b−cPaM’bCuc(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Pd、Ru、Ga、Ge、Al、C、希土類元素から選ばれる1種類以上の元素を表す。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x≦0.5、0<a≦20、2≦b≦20、0≦c≦3を満たすものとする)で表される組成である。The general formula D is (Fe 1-x M x ) 100-a-b-c P a M ′ b Cu c (wherein M is Co and / or Ni, M ′ is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Pd, Ru, Ga, Ge, Al, C, and one or more elements selected from rare earth elements, where x is an atomic ratio, a, b, and c are atoms % are shown, Ru composition der represented by each 0 ≦ x ≦ 0.5,0 <shall meet a ≦ 20,2 ≦ b ≦ 20,0 ≦ c ≦ 3).
一般式Eは、(Fe1−xMx)100−a−bM’ aM” b(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Pd、Ru、Ga、Ge、Si、Al、P、Cu、希土類元素から選ばれる1種類以上の元素を表す。M”はC、N、Oから選ばれる1種類以上の元素を表す。xは原子比を、a、bは原子%を示し、それぞれ0≦x≦0.5、2<a≦30、4≦b≦30を満たすものとする)で表される組成である。Formula E is, (Fe 1-x M x ) 100-a-b M 'a M "b ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf , Ti, V, Cr, Mn, Pd, Ru, Ga, Ge, Si, Al, P, Cu, and one or more elements selected from rare earth elements. M ″ is selected from C, N, and O X represents an atomic ratio, a and b represent atomic%, and 0 ≦ x ≦ 0.5, 2 <a ≦ 30, and 4 ≦ b ≦ 30, respectively. Ru composition der to be.
なお、上記組成の磁性金属粉末において、これらの構成元素以外に磁性金属粉末を作製する上で使用母材に含まれるS等の不純物は不可避である。Incidentally, in the magnetic metal powder of the above composition, impurities S such use is included in the base material in manufacturing magnetic metal powder in addition to these constituent elements is unavoidable.
磁性金属粉末に含まれるナノ結晶粒は、100nm以下、望ましくは50nm以下、更に望ましくは、30nm以下が望ましい。磁性金属粉末がこれらナノ結晶粒の磁性金属粉 末であることで、保磁力が下がる等の軟磁気特性の向上が見られる。ナノ結晶粒は、実験的には、X線回折を測定し、回折ピークの半値幅より結晶粒のサイズを算出することができる。Nanocrystal grains contained in the magnetic metal powder are 100 nm or less, desirably 50 nm or less, and more desirably 30 nm or less. Magnetic metal powder with a magnetic metal powder powder der Rukoto of nanograins, the improvement of soft magnetic characteristics such as coercive force decreases are observed. Experimentally, nanocrystal grains can be experimentally measured for X-ray diffraction, and the size of the crystal grains can be calculated from the half width of the diffraction peak.
(堰に用いるアモルファス磁性金属粉末)
一方、本発明の堰に用いるアモルファス磁性金属粉末は、熱処理後もアモルファス構造を維持しており、アモルファス磁性金属粉末の組成としては、これに制限を受けないが、一般式(Fe1−xMx)100−a−b−cSiaBbM’c(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表す。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)が望ましいが、これに限定されるものでは無い。 (Amorphous magnetic metal powder used for weirs)
On the other hand, an amorphous magnetic metal powder are use to dam of the present invention, after the heat treatment is also maintained an amorphous structure, as the composition of the amorphous magnetic metal powder, but not restricted to, the general formula (Fe 1-x M x ) 100-abc Si a B b M ′ c (wherein M is Co and / or Ni, M ′ is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, 1 or more elements selected from Mn, Y, Pd, Ru, Ga, Ge, C, and P. x represents an atomic ratio, a, b, and c represent atomic%, and 0 ≦ x <1, 0 ≦ a ≦ 24, 4 ≦ b ≦ 30, and 0 ≦ c ≦ 10) are desirable. However, the present invention is not limited to this.
(堰に用いる磁性金属粉末の形状)
本発明の堰に用いる磁性金属粉末の厚み、粒径は厚み5μm以下の扁平状の形状を有しているものが良く、更に望ましくは、厚み5μm以下、粒径300μm以下が望ましい。更に望ましくは、厚み3μm以下、粒径200μm以下が望ましい。 (Shape of magnetic metal powder used for weir)
The thickness of the magnetic metal powder are use to dam of the present invention, the particle size may Those having a thickness 5 [mu] m or less flat shape, more desirably, the thickness 5 [mu] m or less, desirably a particle diameter 300 [mu] m . More desirably, the thickness is 3 μm or less and the particle size is 200 μm or less.
本発明の堰に用いる磁性金属粉末の厚み、粒径は厚み5μm以下の扁平状の形状を有しているものが良いが、円盤状、回転楕円体状、球状、針状、不定形などであっても良いが、厚みが5μm以下であるような薄型の磁性金属粉末がアンテナのL値、Q値を向上させる上で望ましい。The thickness of the magnetic metal powder are use to dam of the present invention, the particle size should preferably be those having a thickness 5 [mu] m or less of flat shape, a disk shape, spheroidal, spherical shape, needle shape, not it may be a fixed form but, desirable for thin magnetic metal powders such as the thickness is 5 [mu] m or less L value of the antenna, Ru improve the Q value.
本発明の堰に用いる磁性金属粉末は、上記の扁平状の磁性金属粉末を単独で用いても良いが、球状や他の形状の磁性金属粉末と混合して用いても良い。Magnetic metal powder are use to dam of the present invention may be used flat magnetic metal powder described above alone may be used as a mixture with a magnetic metal powder of spherical shape or other shapes.
本発明の磁性金属粉末の製造方法であるが、所望の組成の金属を調合したものを高周波 溶解炉等を用いて溶融し、均一な溶融体としたものを、不活性ガス等でフローして、急冷 ロールに吹き付けて、急冷して得られたアモルファス磁性金属薄帯を作製した後、これを 粉砕し粉末を得る方法があるが、粉砕する方法は粉砕時の応力により磁気特性の低下が起こりやすいため、水アトマイズ方法やガスアトマイズ方法等の直接磁性金属粉末が得られる方法が望ましい。The method for producing magnetic metal powder of the present invention, wherein a metal having a desired composition is melted using a high-frequency melting furnace or the like, and a uniform melt is made to flow with an inert gas or the like. , by blowing a chill roll, after work made of amorphous magnetic metal strip obtained by rapid cooling, there is a method of obtaining a pulverizng powdered, a method of grinding a decrease in the magnetic properties by a stress during pulverization since easily occurs, direct method magnetic metal powder powder are obtained, such as a water atomizing method or the gas atomization method is preferable.
本発明の堰に用いる磁性金属粉末は、上記のアモルファス磁性金属粉末、又はナノ結晶磁性金属粉末を単独で用いても良いが、ナノ結晶磁性金属粉末とアモルファス磁性金属粉 末とを混合させても良い。更に、他の磁性材料、例えばフェライトやセンダスト等と混合して用いても良い。
(堰に用いる樹脂)
本発明の堰の成型に磁性金属粉末とともに用いられる樹脂材料の目的は、堰の電気的絶縁と、磁性金属粉末の結着である。このような材料として、無機系材料では水ガラス、セラミックス、有機系材料としては熱可塑性樹脂、熱硬化製樹脂等種々の樹脂が挙げられるが、特に磁気特性の向上に200℃以上の熱処理が必要な場合は、熱可塑性であり、弾性率の低い耐熱樹脂を混ぜることが、優れた性能を発揮する上で効果的である。Magnetic metal powder are use to dam of the present invention, the amorphous magnetic metal powder, or nanocrystalline magnetic metal powder may be used alone, but by mixing the amorphous magnetic metal powder powder nanocrystalline magnetic metal powder Also good. Furthermore, other magnetic materials may be used in admixture with for example ferrite, sendust and the like.
(Resin used for weirs )
The purpose of the resin material used in forming type weir with a magnetic metal powder powder of the present invention includes an electrically insulating weir, a binder of powder magnetic metal powder. Examples of such materials include water-based glass and ceramics for inorganic materials, and various resins such as thermoplastic resins and thermosetting resins for organic materials. In particular, heat treatment at 200 ° C. or higher is required to improve magnetic properties. In such a case, mixing a heat-resistant resin that is thermoplastic and has a low elastic modulus is effective in achieving excellent performance.
本発明の堰の成型に用いられる樹脂は、アンテナの芯材に用いるアモルファス磁性金属薄帯の磁気特性を向上させる最適熱処理温度で熱処理される場合があるので、当該熱処理温度でも熱分解の少ない材料を選定することが必要になる。アモルファス磁性金属薄帯の熱処理温度は、アモルファス磁性金属薄帯の組成及び目的とする磁気特性により異なるが、良好な磁気特性を発現させる温度は概ね200〜600℃の範囲にあり、さらに好ましくは300〜500℃の範囲である。 Tree fat that is used in the molding of the weir of the present invention, because it may be heat treated at an optimal heat treatment temperature for improving the magnetic properties of the amorphous magnetic metallic ribbon used for the core material of the antenna, pyrolysis at the heat treatment temperature It is necessary to select a material with a small amount. The heat treatment temperature of the amorphous magnetic metal strip varies by magnetic properties of the composition 及 beauty purposes of amorphous magnetic metal strip is in the range of temperature is generally 200 to 600 ° C. to express the good magnetic properties, more preferably in the range of 30 0 to 500 ° C..
本発明の堰の成型に用いられる樹脂としては、熱可塑性、非熱可塑性、熱硬化性の耐熱樹脂を挙げることができる。中でも熱可塑性の耐熱樹脂を用いるのが好ましい。該熱可塑性の耐熱樹脂は、ガラス転移温度Tgが50℃以上420℃以下が良く、更に、望ましくは、ガラス転移温度Tgが60℃以上350℃以下のものが良い。更に望ましくは、ガラス転移温度Tgが100℃以上300℃以下のものが良い。The tree fat that is used in the molding of the weir of the present invention, mention may be made of thermoplastic, non-thermoplastic, a thermosetting heat-resistant resin. Among these, it is preferable to use a thermoplastic heat-resistant resin. The thermoplastic of the heat-resistant resin has a glass transition temperature Tg is well 50 ° C. or higher 420 ° C. or less, in a further, preferably, the glass transition temperature Tg is good those 60 ° C. or higher 350 ° C. or less. More preferably, the glass transition temperature Tg is 100 ° C. or higher and 300 ° C. or lower.
このような特性を有する樹脂を用いることで、室温でタック性がなく、また安定であるため、取り扱いが簡便であり、作業性が良く工程の歩留まりが向上できるメリットがある。 By using a resin having these properties, no tackiness at room temperature, also because of its stability, handling is simple, there is a merit that work property can be improved improved yield of the process.
本発明の堰の成型に用いる耐熱樹脂としては、前処理として120℃で4時間乾燥を施し、その後、窒素雰囲気下、300℃で2時間保持した際の重量減少率をDTA−TGを用いて測定した時に、1%以下、好ましくは0.5%以下であるものが用いられる。具体的な樹脂としては、ポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミド系樹脂、液晶ポリマー、ニトリル系樹脂、チオエーテル系樹脂、ポリエステル系樹脂、アリレート系樹脂、サルホン系樹脂、イミド系樹脂、アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂、サルホン系樹脂、アミドイミド系樹脂を用いるのが好ましい。The anti Netsuju fats are use in the molding of the weir of the present invention, pre-treatment subjected to 4 hours drying at 120 ° C. as subsequently under a nitrogen atmosphere, 300 DTA-TG weight loss rate when held for 2 hours at ° C. 1% or less, preferably 0.5% or less is used when measured using Specific resins include polyimide resins, silicon-containing resins, ketone resins, polyamide resins, liquid crystal polymers, nitrile resins, thioether resins, polyester resins, arylate resins, sulfone resins, imide resins, Examples thereof include amidoimide resins. Of these polyimides, Sa sulfone-based resin, to use an amide-imide resin.
また本発明において、アンテナの芯材や堰に用いる磁性金属材料に200℃以上の温度 で熱処理をする必要がない場合は、これに限定されないが、本発明に用いられる熱可塑性樹脂を具体的に挙げるとすれば、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、ポリエチレンテレフタレート、ナイロン、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリサルホン、ポリアミド、ポリアミドイミド、ポリ乳酸、ポリエチレン、ポリプロピレン等があるが、この中でも、望ましくは、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、ポリエチレン、ポリプロピレン、エポキシ樹脂、シリコン樹脂、ゴム系樹脂(クロロプレンゴム、シリコンゴム)等を用いることができる。In the present invention, when there is no need to heat treatment at 200 ° C. temperature above the magnetic metal material used for the core material and the dam of the antenna, but not limited to, a thermoplastic resin used in the present invention is specifically if mentioned, polyether sulfone, polyether imide, polyether ketone, polyethylene terephthalate, nylon, polybutylene terephthalate, polycarbonate, polyphenylene ether, polyphenylene sulfide, polysulfone, polyamide, polyamideimide, polylactic acid, polyethylene, polypropylene or the like the case, among this, desirably, polyether sulfone, polyether imide, polyether ketone, polyethylene, polypropylene, epoxy resin, silicone resin, rubber resin (chloroprene rubber, silicone rubber) It can be used.
(堰の成型方法)
本発明の堰の成型方法としては、磁性金属粉末と、樹脂粉末とを混練する方法や、磁性金属粉末と樹脂粉末とを溶媒を用いず乾式で混合した後ホットプレスする方法や、ジメチルアセトアミドのような有機溶媒に樹脂を溶かし、磁性金属粉末を混合してペーストを作製し、金型中で乾燥させ堰を成型する方法等がある。この中でも、磁性金属粉末と樹脂粉 末とを乾式で混合し、直接ホットプレスをする方法で堰を成型することが好ましい。(Weir molding method )
As molding methods of the weir of the present invention, the magnetic metal powder, or a method of kneading a resin powder, a method of e Ttopuresu after the magnetic metal powder and resin powder are mixed dry without solvent, dimethylacetamide dissolved organic solvent to the resin, such as, a paste work made by mixing magnetic metal powder, and a method of molding the dam dried in the mold. Among these, a resin Powder magnetic metal powder mixed with dry, it is preferable to mold the weir in a manner that a direct hot pressing.
本発明の堰の磁性金属粉末と樹脂との配合比は、好ましくは磁性金属粉末が堰の5〜60Vol%となる様に用いるのが好ましく、さらに好ましくは10〜30Vol%用いることが好ましく、さらに好ましくは15〜25Vol%用いることが好ましい。堰の配合 比がこの範囲にあると本発明の効果であるアンテナのL値Q値が大幅に向上できることを見出した。
堰を形成する材料を混合した後、アンテナの芯材に付加できるように形状加工を施す。成型方法は、堰を形成する材料がペレット状の場合は射出成型または押出し成型が好適である。また溶剤を含まない混合粉の場合は、熱プレス等の方法が挙げられる。射出成型や押出し成型は量産時に低コストで製造できるため好ましい。Compounding ratio of the weir of the magnetic metal powder and a resin of the present invention preferably is preferably used as the magnetic metal powder is 5 to 6 0 vol% of the weir, it is more preferably used 1 0 to 30 vol% preferably preferably further preferably used 1. 5 to 25 vol%. It has been found that the L value Q value of the antenna, which is the effect of the present invention, can be significantly improved when the mixing ratio of the weir is within this range.
After mixing the material forming the weir , shape processing is performed so that it can be added to the core material of the antenna. Forming type method, if the material forming the weir of pellets is preferably injection molding type or extrusion forming type. Moreover, in the case of the mixed powder which does not contain a solvent, methods, such as a hot press, are mentioned. Injection molding type or an extrusion forming mold preferred because it can manufacture at low cost in mass production.
アンテナの芯材は、ハネウェル社製、Metglas:2714A(商品名)、幅約50mm、厚み約15μmであるCo66Fe4Ni1(BSi)29(原子%)の組成を持つアモルファス磁性金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定(25℃)し約0.3Pa・sの粘度のポリアミド酸溶液を付与し、140℃で乾燥後、260℃でキュアし、アモルファス磁性金属薄帯の片面に厚さ約6μmの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いる。
このポリイミド樹脂を片面に付与したアモルファス磁性金属薄帯を、40枚積み重ねて大気中260℃で30分間5MPaの圧力で熱プレスすることにより、厚み1.0mmの積層体を作製した。磁気特性を発現させるためにこれをさらに、400℃1hr窒素雰囲気中で加圧、加熱し、ダイサーにより長さ15mm、幅1mm、厚さ1mmのアンテナの芯材とした。The core material of the antenna is an amorphous magnetic metal ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%) having a width of about 50 mm and a thickness of about 15 μm, manufactured by Honeywell, Metglas: 2714A (trade name). It was used. The surface of one surface of the ribbon is measured with an E-type viscometer (25 ° C), a polyamic acid solution having a viscosity of about 0.3 Pa · s is applied, dried at 140 ° C, cured at 260 ° C, and the amorphous magnetic metal thin film A heat resistant resin (polyimide resin) having a thickness of about 6 μm was applied to one side of the band. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′ , 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and shrinking at room temperature in a dimethylacetamide solvent. It was obtained by polymerization. Usually, it is used as a diacetylamide solution as a polyamic acid.
The amorphous magnetic metal strip that is applied to one surface of the polyimide resin, Ri by the thermally pressed at 40 sheets stacked in 30 minutes 5MPa at 260 ° C. in atmosphere pressure, to produce a laminate having a thickness of 1.0 mm. This in order expressing the magnetic properties further pressurized in 400 ° C. 1hr nitrogen atmosphere, heated, and the length 15 mm, width 1mm, core material 1mm thick antenna by Dicer.
次に堰の作製方法を示す。堰は磁性金属粉末と樹脂粉末とを混合して作製される。
磁性金属粉末はFe66Ni4Si14B9Al4Nb3の組成の合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズルの先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、平均長径150μm、平均短径55μm、平均厚み2μmの扁平状の磁性金属粉末を作製した。
磁性金属粉末の熱処理前のX線回折を測定した結果、磁性金属粉末は典型的なアモルフ ァスのハローパターンを示し、完全なアモルファスであることが確認された。得られた磁性金属粉末を580℃で1時間熱処理を行った。磁性金属粉末の熱処理後のX線回折を測定した結果、熱処理後の磁性金属粉末は微結晶化しており、回折ピークの半値幅よりほぼ20nmの微結晶が析出していることが確認された。Next, a method for producing the weir will be described. Weir is manufactured by mixing magnetic metal powder powder and resin powder powder.
Magnetic metal powder weekend alloy composition of Fe 66 Ni 4 Si 14 B 9 Al 4 Nb 3 a melt of 1300 ° C. in a high frequency melting furnace, passed down the melt through a nozzle mounted in the bottom of the melting furnace, ahead of the nozzle The molten metal is atomized with a high pressure gas of 75 kg / cm 2 from the attached gas atomizing part, and this atomized molten metal is further collided with a rotating cooling body having a roll diameter of 190 mm, a cone angle of 80 degrees, and a rotational speed of 7200 rpm, and an average major axis of 150 μm It was prepared average minor diameter 55 [mu] m, the flat magnetic metal powder powder having an average thickness of 2 [mu] m.
Result of measuring the X-ray diffraction before the heat treatment of the fine magnetic metal powder, magnetic metal powder powder shows a typical Amorufu § scan halo pattern, it was confirmed that the fully amorphous. Obtained magnetic metal powder powder was subjected to 1 hour heat treatment at 580 ° C.. Result of measuring the X-ray diffraction after heat treatment of the magnetic metal powder powder, magnetic metal powder powder after heat treatment are finely crystallized, it was confirmed that fine crystals of approximately 20nm is deposited from the half bandwidth of the diffraction peak It was.
堰を作製するための樹脂としてポリエーテルサルホン(以下、PESと記す)(三井化学社製)粉末を用いた。PESのペレットをボールミルで粉砕し、PESの粒径100μ mの粉末を作製した。そして、得られたナノ結晶磁性金属粉末を20Vol%、結着剤として前記のPESの粉末80Vol%を混合し、ハイブリッドミキサー(キーエンス社製)にて10分間撹拌し、磁性粉末と樹脂からなる均一な混合粉末を得た。Polyethersulfone (hereinafter referred to as PES) (Mitsui Chemicals) powder was used as a resin for producing the weir. Pellets of PES was ground in a ball mill to prepare a powder having a particle size of 100 mu m of the PES. The resulting nanocrystalline magnetic metal powder powder of 20 vol%, a mixture of powder 80 vol% of said PES as a binder, and stirred for 10 minutes at a hybrid mixer (Keyence Corp.), and the magnetic properties Powder A uniform mixed powder made of resin was obtained.
次いでこの混合粉末を、300℃、15MPaにて10分間熱プレスを行い、厚さ4mmの複合材シートを作製した。その後NC工作機により3×3×4mmのブロックに成形した。さらに中心部に1×1mmのアンテナの芯材を貫通させる穴を設けた。 Next, this mixed powder was hot-pressed at 300 ° C. and 15 MPa for 10 minutes to produce a composite sheet having a thickness of 4 mm. Thereafter, it was molded into 3 × 3 × 4 mm blocks using an NC machine tool. Furthermore, the hole which penetrates the core material of a 1 * 1 mm antenna was provided in the center part.
本方法で作製した堰を、先に作製しておいたアンテナの芯材の両端に嵌めた後、Φ0.1mmのポリウレタン被覆銅線を600ターン巻回した。The weir prepared by this method was fitted to both ends of the core material of the antenna prepared previously, and then a polyurethane-coated copper wire having a diameter of 0.1 mm was wound for 600 turns.
アンテナ特性を評価するため、L値とQ値を測定し、比透磁率を算出した。測定にはヒューレットパッカード社製LCRメータ4024Aを用いた。結果を下表に示す。その結果、本発明による実施例1のアンテナは、従来技術に比べて、大幅な磁気特性の向上が可能なことがわかった。In order to evaluate antenna characteristics , L value and Q value were measured and relative permeability was calculated. For the measurement, an LCR meter 4024A manufactured by Hewlett-Packard Company was used . The results are shown in the table below. As a result, it was found that the antenna of Example 1 according to the present invention can greatly improve the magnetic characteristics as compared with the prior art.
実施例1とは堰を構成する磁性金属粉末の形状が球状であることのみ異なる。球状の磁 性金属粉末の作製方法は、実施例1と同様に磁性金属粉末の組成はFe66Ni4Si1 4B9Al4Nb3の合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズルの先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化する。この時実施例1とは異なり回転冷却体に衝 突させることなく、冷却固化させ、球状の磁性金属粉末とする。それ以外は全て実施例1と同様の材料、及び工程でアンテナを作製した。This example differs from Example 1 only in that the shape of the magnetic metal powder constituting the weir is spherical. The method for manufacturing a magnetic metal powder of spherical, and 1300 ° C. in the melt in a high frequency melting furnace in the same manner as the composition of the magnetic metal powder is Fe 66 Ni 4 Si 1 4 B 9 Al 4 Nb 3 alloy as in Example 1, dissolved The molten metal is caused to flow down through a nozzle attached to the bottom of the furnace, and the molten metal is atomized with a high-pressure gas of 75 kg / cm 2 from a gas atomizing portion attached to the tip of the nozzle. Without collision to the rotating cooling body unlike the case in Example 1, cooled to a solid reduction, the magnetic metal powder powder spherical. Other than that, an antenna was manufactured by using the same materials and processes as in Example 1.
アンテナ特性を評価するため、L値とQ値を測定し、比透磁率を算出した。測定にはヒューレットパッカード社製LCRメータ4024Aを用いた。結果を下表に示す。その結果、本発明による実施例2のアンテナは、従来技術に比べて大幅な磁気特性の向上が可能なことがわかった。In order to evaluate antenna characteristics , L value and Q value were measured and relative permeability was calculated. For the measurement, an LCR meter 4024A manufactured by Hewlett-Packard Company was used . The results are shown in the table below. As a result, it was found that the antenna of Example 2 according to the present invention can greatly improve the magnetic characteristics as compared with the prior art .
本発明の比較例は、実施例1とは、堰の構成材料だけが異なる。それ以外は全て実施例1と同様の材料、及び工程でアンテナを作製した。なおΦ0.1mmのポリウレタン被覆 銅線は670ターン巻回した。 The ratio Comparative Examples of the present invention, as in Example 1, different injuries but construction materials of the dam. Otherwise the same material as in Example 1 to prepare an antenna in 及 beauty step. The Φ0.1 mm polyurethane-coated copper wire was wound by 670 turns.
アンテナ特性を評価するため、L値とQ値を測定し、比透磁率を算出した。測定にはヒューレットパッカード社製LCRメータ4024Aを用いた。結果を下表に示す。
In order to evaluate antenna characteristics , L value and Q value were measured and relative permeability was calculated. For the measurement, an LCR meter 4024A manufactured by Hewlett-Packard Company was used . The results are shown in the table below.
11 アンテナの芯材
12 堰
13 巻回されている絶縁材で被覆された導電性線材
11 Core material of
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003285350A JP3874744B2 (en) | 2003-08-01 | 2003-08-01 | Small high sensitivity antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003285350A JP3874744B2 (en) | 2003-08-01 | 2003-08-01 | Small high sensitivity antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005057444A JP2005057444A (en) | 2005-03-03 |
JP3874744B2 true JP3874744B2 (en) | 2007-01-31 |
Family
ID=34365003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003285350A Expired - Fee Related JP3874744B2 (en) | 2003-08-01 | 2003-08-01 | Small high sensitivity antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3874744B2 (en) |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7825543B2 (en) | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
AU2006269374C1 (en) | 2005-07-12 | 2010-03-25 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
RU2413343C2 (en) * | 2006-08-11 | 2011-02-27 | Мицуи Кемикалз, Инк. | Antenna core and antenna |
US8115448B2 (en) | 2007-06-01 | 2012-02-14 | Michael Sasha John | Systems and methods for wireless power |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
EP2345100B1 (en) | 2008-10-01 | 2018-12-05 | Massachusetts Institute of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
JP5332719B2 (en) * | 2009-02-25 | 2013-11-06 | カシオ計算機株式会社 | Antenna device and radio wave receiving device |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
JP6148234B2 (en) | 2011-08-04 | 2017-06-14 | ワイトリシティ コーポレーションWitricity Corporation | Tunable wireless power architecture |
JP6185472B2 (en) | 2011-09-09 | 2017-08-23 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
WO2013067484A1 (en) | 2011-11-04 | 2013-05-10 | Witricity Corporation | Wireless energy transfer modeling tool |
JP2015508987A (en) | 2012-01-26 | 2015-03-23 | ワイトリシティ コーポレーションWitricity Corporation | Wireless energy transmission with reduced field |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
JP6397417B2 (en) | 2012-10-19 | 2018-09-26 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
EP3039770B1 (en) | 2013-08-14 | 2020-01-22 | WiTricity Corporation | Impedance tuning |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
EP3140680B1 (en) | 2014-05-07 | 2021-04-21 | WiTricity Corporation | Foreign object detection in wireless energy transfer systems |
WO2015196123A2 (en) | 2014-06-20 | 2015-12-23 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US10898104B2 (en) | 2015-03-16 | 2021-01-26 | St. Jude Medical, Cardiology Division, Inc. | Field concentrating antennas for magnetic position sensors |
US11367947B2 (en) | 2015-03-16 | 2022-06-21 | St. Jude Medical International Holding S.á r.l. | Field concentrating antennas for magnetic position sensors |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
EP3362804B1 (en) | 2015-10-14 | 2024-01-17 | WiTricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
WO2017070227A1 (en) | 2015-10-19 | 2017-04-27 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
CN108781002B (en) | 2015-10-22 | 2021-07-06 | 韦特里西提公司 | Dynamic tuning in wireless energy transfer systems |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
CN109075613B (en) | 2016-02-02 | 2022-05-31 | 韦特里西提公司 | Controlling a wireless power transfer system |
JP6888017B2 (en) | 2016-02-08 | 2021-06-16 | ワイトリシティ コーポレーションWitricity Corporation | PWM capacitor control |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
-
2003
- 2003-08-01 JP JP2003285350A patent/JP3874744B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005057444A (en) | 2005-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3874744B2 (en) | Small high sensitivity antenna | |
KR101167492B1 (en) | Antenna core and antenna | |
JP3771224B2 (en) | Amorphous soft magnetic alloy powder and powder core and radio wave absorber using the same | |
CN110225801B (en) | Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component, and dust core | |
EP3549696A1 (en) | Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core | |
KR101165839B1 (en) | Printed Circuit Board | |
CN110033916B (en) | Soft magnetic alloy and magnetic component | |
JP2005307291A (en) | Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it | |
US20060099454A1 (en) | Method for producing electromagnetic wave absorbing sheet, method for classifying powder, and electromagnetic wave absorbing sheet | |
JP2006207001A (en) | Method for manufacturing magnetic composite sheet | |
JP2004140322A (en) | Electric wave absorber and manufacturing method of the same | |
JP2016014162A (en) | Amorphous alloy powder, dust core, magnetic element and electronic equipment | |
CN110033917B (en) | Soft magnetic alloy and magnetic component | |
JP2020122186A (en) | Soft magnetic powder, powder magnetic core, magnetic element, and electronic device | |
JP4922253B2 (en) | Magnetic core and method for manufacturing magnetic core | |
CN116670314A (en) | Magnetic powder for manufacturing magnet, magnet and magnetic element | |
JP6422569B2 (en) | Soft magnetic powder, molded member, dust core, electric / electronic component, electric / electronic device, magnetic sheet, communication component, communication device, and electromagnetic interference suppression member | |
JP2008172099A (en) | Core for antenna, and antenna | |
TWI689599B (en) | Soft magnetic alloys and magnetic components | |
JP3980828B2 (en) | Dust core | |
JP2004363235A (en) | Dust core | |
JP2004111756A (en) | Magnetic composite and magnetic composite material | |
CN113380485A (en) | Magnetic powder, magnetic powder compact, and method for producing magnetic powder | |
JP6167560B2 (en) | Insulating flat magnetic powder, composite magnetic body including the same, antenna and communication device including the same, and method for manufacturing composite magnetic body | |
JP2004063798A (en) | Magnetic composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060919 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061024 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |