JP2004111756A - Magnetic composite and magnetic composite material - Google Patents

Magnetic composite and magnetic composite material Download PDF

Info

Publication number
JP2004111756A
JP2004111756A JP2002274131A JP2002274131A JP2004111756A JP 2004111756 A JP2004111756 A JP 2004111756A JP 2002274131 A JP2002274131 A JP 2002274131A JP 2002274131 A JP2002274131 A JP 2002274131A JP 2004111756 A JP2004111756 A JP 2004111756A
Authority
JP
Japan
Prior art keywords
magnetic
bis
powder
amorphous
magnetic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002274131A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nogi
野木 栄信
Takuo Tajima
田島 卓雄
Kishiyun Abe
阿部  貴春
Hiroshi Watanabe
渡辺 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002274131A priority Critical patent/JP2004111756A/en
Publication of JP2004111756A publication Critical patent/JP2004111756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic composite material which is enhanced in strength and simplified in process by using a soft magnetic alloy powder, in particular among them, a nanocrystal magnetic powder. <P>SOLUTION: The magnetic composite is produced by using a paste which comprises the nanocrystal magnetic material or an amorphous magnetic material, and a polyimide precursor as the binder. The nanocrystal magnetic material has a construction having nanocrystal particles of a particle size 100 nm or smaller as a principal component, and an amorphous alloy is heated at a crystallization temperature or more to separate the nanocrystal particles. The composition of the nanocrystal magnetic material may be typical Fe-Cu-Nb-Si-B, but more preferably the composition is represented by a general formula (Fel-xMx)100-a-b-c-dSiaAlbBcM'd (where M represents Co and/or Ni; M' represents one kind or more of element selected from among Nb, Mo, Zr, W, Ta, Hf, Ti V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C and P; and x indicates the atomic ratio; a, b, c, and d indicate atomic %, each satisfying 0≤x≤0.5, 0≤a≤24, 1≤b≤20, 4≤c≤30 and 0≤d≤10). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、主に、電子部品に用いられる磁性複合材料、特に良好な軟磁気特性を有するFe基軟磁性合金粉末を用いた磁性複合材料に属する。
【0002】
【産業上の利用分野】
本発明は、主に、電子部品に用いられる磁性複合材料、特に良好な軟磁気特性を有するFe基軟磁性合金粉末を用いた磁性複合材料とその製造法に属する。
【0003】
【従来の技術】
従来から、軟磁気特性に優れた合金としては、非晶質合金、ナノ結晶磁性材料が知られており、形状加工が容易な粉末への適応が図られている。
【0004】
バインダーとして用いる樹脂としては、機械強度、電気絶縁性、耐熱性が必要であり、これらの特性が優れているものとしては、ポリイミドがある。ポリイミドの磁性粉のバインダーへの適応としては、特開2000−21618号公報(特許文献1)の磁性材料として軟磁性合金粉末とバインダーとしてポリイミド等の熱可塑性樹脂を用いた磁性複合材に関する出願はなされているが、バインダーとしている樹脂に具体的記述が無く、また、圧粉磁心に関する発明が記載されており扁平状磁性粉の成型性についての詳細な記載も無い。
【0005】
また、ポリイミドの無機材料の適応としては、特開2001−176720号公報(特許文献2)の無機材料とポリイミド前駆体とのペーストで実施例はフェライト、チタン酸バリウムの無機酸化物についての記載はあるが、軟磁気特性の優れた合金粉末への適応に関して十分な記載が無い。
【0006】
【特許文献1】特開2000−21618号公報
【0007】
【特許文献2】特開2001−176720号公報
【0008】
【発明が解決しようとする課題】
本発明は軟磁性合金粉末を用いた磁性複合材料の強度の向上、その中でも特に、ナノ結晶磁性粉末、非晶質磁性粉末を用いた磁性複合材料の強度の向上することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、軟磁性合金粉末の磁性複合材料の強度の向上の鋭意検討した結果、ナノ結晶磁性材料および非晶質磁性材料を中心とする軟磁性合金粉末とポリイミド前駆体のペーストを作製し、このペーストから作製されるナノ結晶磁性材料および非晶質磁性材料を中心とする軟磁性合金粉末とポリイミドの磁性複合材料が強度向上できることを見出し、本発明に到達した。
【0010】
すなわち、本発明は、
(A)Fe基又はCo基含有磁性合金粉末
(B)ポリイミド前駆体
を含むペーストを提供する。
【0011】
本発明に用いられる磁性材料は、ナノ結晶磁性材料もしくは非晶質磁性材料が用いられる。
【0012】
本発明に用いられるナノ結晶磁性材料は組織が粒径100nm以下のナノ結晶粒を主成分とする磁性材料であり、非晶質合金を結晶化温度以上で熱処理し、ナノ結晶粒を析出させることで得られる。ナノ結晶磁性材料の組成としては、ナノ結晶磁性材料として代表的なFe−Cu−Nb−Si−Bでもよいが、最も望ましくは、一般式(Fe1−x100−a−b−c−dSiAlM’(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表わされる組成が望ましい。
【0013】
一方、同じく本発明に用いられる非晶質磁性材料は、熱処理後も非晶質構造を維持しており、非晶質磁性材料の組成としては、一般式(Fe1−x100−a−b− SiM’(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)が望ましい。
【0014】
【発明の実施の形態】
本発明の磁性複合材料は、磁性粉としては、ナノ結晶磁性材料、非晶質磁性材料とバインダーとしてポリイミド前駆体であるポリアミド酸からなるワニスを混合したワニスを加熱することで得られる。
【0015】
本発明に用いられる磁性粉の形状としては、扁平状、球状等目的に応じて選択されるが、複合磁性材料の磁気特性を考慮すると、磁性粉の厚み、粒径は厚み5ミクロン以下の扁平状の形状を有しているものが良く、更に望ましく、厚み5ミクロン以下、粒径300ミクロン以下が望ましい。更に望ましくは、厚み3ミクロン以下、粒径200ミクロン以下が望ましい。
【0016】
更に望ましくは、本発明に用いられる磁性粉の形状は、丸みを帯びた楕円状であって、角張った形状では無いものが良い。その寸法は長径方向の寸法が20〜500ミクロン、短径方向の寸法が10〜200ミクロン、長径/短径=1.0〜4.0であって、厚みが5ミクロン以下のものが良い。更に望ましくは、寸法は長径方向の寸法が50〜200ミクロン、短径方向の寸法が15〜60ミクロン、長径/短径=1.3〜3.5であって、厚みが3ミクロン以下である。
【0017】
本発明に用いられる磁性粉は、上記の扁平状磁性粉の単独でも良いが、球状磁性粉や他の形状の磁性粉と混合で用いても良い。
【0018】
本発明に用いられる磁性材料は、ナノ結晶磁性材料もしくは非晶質磁性材料が用いられる。
【0019】
本発明に用いられるナノ結晶磁性材料は組織が粒径100nm以下のナノ結晶粒を主成分とする磁性材料であり、非晶質合金を結晶温度以上で熱処理し、ナノ結晶粒を析出させることで得られる。ナノ結晶磁性材料の組成としては、ナノ結晶磁性材料として代表的なFe−Cu−Nb−Si−Bなどでもよいが、最も望ましくは、一般式(Fe1−x100−ab−cSiAlM’(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表わされる組成が望ましい。
【0020】
磁性材料に含まれるナノ結晶粒は、100nm以下、望ましくは50nm以下、更に望ましくは、30nm以下が望ましい。磁性材料にこれらナノ結晶粒が含まれることで、保磁力の低減等の軟磁気特性の向上が見られる。ナノ結晶粒は、実験的には、X線回折を測定し、、ピーク半値幅より結晶粒のサイズを測定することができる。
【0021】
一方、同じく本発明に用いられる非晶質磁性材料は、熱処理後も非晶質構造を維持しており、非晶質磁性材料の組成としては、これに制限を受けないが、一般式(Fe1−x100−a−b−cSiM’(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)が望ましい。
【0022】
本発明に用いられる磁性材料は、上記ナノ結晶材料、非晶質磁性材料それぞれ単独でも良いが、ナノ結晶磁性材料と非晶質金属材料とを混合させても良い。更に、他の磁性材料、例えば、フェライトやセンダストなどとの混合して用いても良い。
【0023】
本発明の磁性粉の製造方法としては公知の方法を用いる事ができるが、合金溶湯を急冷し得られた非晶質リボンを作成した後、粉砕し粉末を得る方法や水アトマイズ方法やガスアトマイズ方法により直接粉末を得てアトライターにより扁平化させる方法などを挙げる事ができるが、本発明においては、直接扁平粉が得られる特開平7−166212に基づいた方法で作製する事が望ましい。すなわち、磁性粉組成の合金を高周波溶解炉で溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯を金属の回転冷却体に衝突させ、楕円状扁平状磁性粉を作製することができる。
【0024】
また、本発明において用いられるポリイミド前駆体としては、ジアミンとしてp−フェニレンジアミン、m−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、
2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,1−ビス(3−アミノフェニル)−1−フェニルエタン、1,1−ビス(4−アミノフェニル)−1−フェニルエタン、1−(3−アミノフェニル)−1−(4−アミノフェニル)−1−フェニルエタン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、2,6−ビス(3−アミノフェノキシ)ベンゾニトリル、2,6−ビス(3−アミノフェノキシ)ピリジン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、
2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、
そして、テトラカルボン酸二無水物としてピロメリット酸ニ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ニ無水物、2,3’,3,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパンニ無水物、ビス(3,4−ジカルボキシフェニル)エーテルニ無水物、ビス(3,4−ジカルボキシフェニル)スルホンニ無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタンニ無水物、ビス(2,3−ジカルボキシフェニル)メタンニ無水物、ビス(3,4−ジカルボキシフェニル)メタンニ無水物、2,2−2ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンニ無水物、2,3,6,7−ナフタレンテトラカルボン酸ニ無水物、1,4,5,8−ナフタレンテトラカルボン酸ニ無水物、1,2,5,6−ナフタレンテトラカルボン酸ニ無水物、1,2,3,4−ベンゼンテトラカルボン酸ニ無水物、3,4,9,10−ぺリレンテトラカルボン酸ニ無水物、2,3,6,7−アントラセンテトラカルボン酸ニ無水物、1,2,7,8−フェナントレンテトラカルボン酸ニ無水物、2−2ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物等などを混合し得られるポリアミド酸を用い、加熱処理することにより、イミド化する。用いるジアミン、テトラカルボン酸二無水物としては、3,3’−ジアミノジフェニルエーテル、ビス(3、4−ジカルボキシルフェニル)エーテル二無水テトラメチルの組み合わせのものが最も好ましい。
【0025】
本発明においてポリイミドは、ガラス転移温度Tgが420℃以下が良く、更に、望ましくは、200℃以上420℃以下のものが良い。
【0026】
本発明の磁性複合材料の作成方法としては、溶媒、例えば、ジメチルアセトアミドのような有機溶媒に樹脂を溶かし、磁性粉を混合し、ペーストを作成し、ドクターブレード法によりペースト膜を作り、乾燥させ磁性複合体を作製する。磁性粉末100重量部に対して熱可塑性樹脂は通常1〜900重量部、好ましくは5〜400重量部用いるのが好ましく、更に好ましくは、10〜70重量部用いるのが好ましい。
【0027】
本発明の磁性複合体は、磁性材料の応用分野、例えば、トランスやチョークコイルに用いられる磁気コア、磁気ヘッドなどの磁気記録用材料、電波吸収体、磁気シールド、透磁率、誘電率の制御が必要となる電子機器用の基板材料などに用いることができる。
【0028】
【実施例】
【0029】
【実施例1】Fe66NiSi14AlNbの合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Fe66NiSi14AlNb(at%)の組成を有する長径150ミクロン、短径55ミクロン、厚み2ミクロンの扁平状磁性粉を作製した。磁性粉の熱処理前のX線回折を測定した結果、磁性粉は典型的な非晶質のハローパターンを示し、完全な非晶質であることが明らかになった。得られた磁性粉を550℃で1時間熱処理を行った。磁性粉の熱処理後のX線回折を測定した結果、熱処理後の磁性粉は微結晶化しており、ピーク半値幅よりほぼ20nmの微結晶が析出していることが明らかになった。
【0030】
バインダーとして用いるポリイミドの前駆体として、ジアミンとして3、3’−ジアミノジフェニルエーテル、テトラカルボン酸二無水物にビス(3、4−ジカルボキシルフェニル)エーテル二無水物を窒素流下のフラスコ中、有機溶媒としてジメチルアセトアミドを用いて、一昼夜攪拌することにより得られた。更に、ジメチルアセトアミドを加え、ポリアミド酸 30wt%のポリアミド酸ワニスを作製した。
【0031】
得られたナノ結晶磁性粉と前記ポリアミド酸ワニスを混合し、ハイブリッドミキサー(キーエンス社製)を用いて10分攪拌し、ナノ結晶磁性複合粉80重量部、ポリアミド酸20重量部、ジメチルアセトアミド 80重量部からなるナノ結晶磁性複合粉入りポリアミド酸ワニスを作製した。作製されたナノ結晶磁性粉入りポリアミド酸ワニスをSUS基板上にバーコートをし、イナートオーブン中、150℃30分でDMACを揮発させ、更に、270℃30分でイミド化を行い、厚さ1mmTのナノ結晶磁性粉とポリイミドからなる磁性複合体を得た。この磁性複合体を270℃、15MPa、10分間熱プレスを行い、厚さ0.5mmの複合材シートを作製した。得られた磁性複合材料の弾性率、破壊点をTOYOSEIKI社製TROGRAPH引張り強度試験機を用いて測定した。その結果を表1に示す。
【0032】
【実施例2】実施例1と同様に、Co66FeNi14Si15の合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Co66FeNi14Si15(at%)の組成を有する長径70ミクロン、短径20ミクロン、厚み3ミクロンの扁平状磁性粉を作製した。
【0033】
バインダーとして用いるポリイミドの前駆体として、ジアミンとして3、3’−ジアミノジフェニルエーテル、テトラカルボン酸二無水物にビス(3、4−ジカルボキシルフェニル)エーテル二無水物を窒素流下のフラスコ中、有機溶媒としてジメチルアセトアミドを用いて、一昼夜攪拌することにより得られた。更に、ジメチルアセトアミドを加え、ポリアミド酸 30wt%のポリアミド酸ワニスを作製した。
【0034】
得られた非晶質磁性粉と前記ポリアミド酸ワニスを混合し、ハイブリッドミキサー(キーエンス社製)を用いて10分攪拌し、非晶質磁性複合粉80重量部、ポリアミド酸20重量部、ジメチルアセトアミド 80重量部からなる非晶質磁性複合粉入りポリアミド酸ワニスを作製した。作製された非晶質磁性粉入りポリアミド酸ワニスをSUS基板上にバーコートをし、イナートオーブン中、150℃30分でDMACを揮発させ、更に、270℃30分でイミド化を行い、厚さ1mmTの非晶質磁性粉とポリイミドからなる磁性複合体を得た。
【0035】
この磁性複合体を380℃、15MPa、10分間熱プレスを行い、非晶質磁性粉の熱処理とシート作製の成型が同時にできることが確認できた。厚さ0.5mmの複合材シートを作製し、得られた磁性複合材料の弾性率、破壊点をTOYOSEIKI社製TROGRAPH引張り強度試験機を用いて測定した。その結果を表1に示す。
【0036】
【実施例3】実施例1と同様に、Fe78Si9B13の合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Fe78Si9B13(at%)の組成を有する長径85ミクロン、短径30ミクロン、厚み3ミクロンの扁平状磁性粉を作製した。
【0037】
バインダーとして用いるポリイミドの前駆体として、ジアミンとして3、3’−ジアミノジフェニルエーテル、テトラカルボン酸二無水物にビス(3、4−ジカルボキシルフェニル)エーテル二無水物を窒素流下のフラスコ中、有機溶媒としてジメチルアセトアミドを用いて、一昼夜攪拌することにより得られた。更に、ジメチルアセトアミドを加え、ポリアミド酸 30wt%のポリアミド酸ワニスを作製した。
【0038】
得られた非晶質磁性粉と前記ポリアミド酸ワニスを混合し、ハイブリッドミキサー(キーエンス社製)を用いて10分攪拌し、非晶質磁性複合粉80重量部、ポリアミド酸20重量部、ジメチルアセトアミド 80重量部からなる非晶質磁性複合粉入りポリアミド酸ワニスを作製した。作製された非晶質磁性粉入りポリアミド酸ワニスをSUS基板上にバーコートをし、イナートオーブン中、150℃30分でDMACを揮発させ、更に、270℃30分でイミド化を行い、厚さ1mmTの非晶質磁性粉とポリイミドからなる磁性複合体を得た。
この磁性複合体を380℃、15MPa、10分間熱プレスを行い、非晶質磁性粉の熱処理とシート作製の成型が同時にできることが確認できた。厚さ0.5mmの複合材シートを作製し、得られた磁性複合材料の弾性率、破壊点をTOYOSEIKI社製TROGRAPH引張り強度試験機を用いて測定した。その結果を表1に示す。
【0039】
【実施例4】実施例1と同様に、Fe66Co18B15Si1の合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Fe66Co18B15Si1(at%)の組成を有する長径85ミクロン、短径30ミクロン、厚み3ミクロンの扁平状磁性粉を作製した。
【0040】
バインダーとして用いるポリイミドの前駆体として、ジアミンとして3、3’−ジアミノジフェニルエーテル、テトラカルボン酸二無水物にビス(3、4−ジカルボキシルフェニル)エーテル二無水物を窒素流下のフラスコ中、有機溶媒としてジメチルアセトアミドを用いて、一昼夜攪拌することにより得られた。更に、ジメチルアセトアミドを加え、ポリアミド酸 30wt%のポリアミド酸ワニスを作製した。
【0041】
得られた非晶質磁性粉と前記ポリアミド酸ワニスを混合し、ハイブリッドミキサー(キーエンス社製)を用いて10分攪拌し、非晶質磁性複合粉80重量部、ポリアミド酸20重量部、ジメチルアセトアミド 80重量部からなる非晶質磁性複合粉入りポリアミド酸ワニスを作製した。作製された非晶質磁性粉入りポリアミド酸ワニスをSUS基板上にバーコートをし、イナートオーブン中、150℃30分でDMACを揮発させ、更に、270℃30分でイミド化を行い、厚さ1mmTの非晶質磁性粉とポリイミドからなる磁性複合体を得た。
この磁性複合体を380℃、15MPa、10分間熱プレスを行い、非晶質磁性粉の熱処理とシート作製の成型が同時にできることが確認できた。厚さ0.5mmの複合材シートを作製し、得られた磁性複合材料の弾性率、破壊点をTOYOSEIKI社製TROGRAPH引張り強度試験機を用いて測定した。その結果を表1に示す。
【0042】
【比較例1】
磁性粉として、Ni−Zn フェライト粉を用いた。
【0043】
実施例1と同様、バインダーとして用いるポリイミドの前駆体として、ジアミンとして3、3’−ジアミノジフェニルエーテル、テトラカルボン酸二無水物にビス(3、4−ジカルボキシルフェニル)エーテル二無水物を窒素流下のフラスコ中、有機溶媒としてジメチルアセトアミドを用いて、一昼夜攪拌することにより得られた。更に、ジメチルアセトアミドを加え、ポリアミド酸 30wt%のポリアミド酸ワニスを作製した。
Ni−Zn フェライトと前記ポリアミド酸ワニスを混合し、ハイブリッドミキサー(キーエンス社製)を用いて10分攪拌し、Ni−Zn フェライト80重量部、ポリアミド酸20重量部、ジメチルアセトアミド 80重量部からなるNi−Zn フェライト入りポリアミド酸ワニスを作製した。作製されたナノ結晶磁性粉入りNi−Zn フェライトをSUS基板上にバーコートをし、イナートオーブン中、150℃30分でDMACを揮発させ、更に、270℃30分でイミド化を行い、厚さ1mmTのNi−Zn フェライトとポリイミドからなる磁性複合体を得た。この磁性複合体を270℃、15MPa、10分間熱プレスを行い、厚さ0.5mmの複合材シートを作製した。得られた磁性複合材料の弾性率、破壊点をTOYOSEIKI社製TROGRAPH引張り強度試験機を用いて測定した。その結果を表1に示す。
【0044】
以上より、金属酸化物のようなセラミックスでは無く、金属合金粉末を用いたことで、強度が向上したことが確認できた。
【0045】
【表1】

Figure 2004111756
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention mainly belongs to a magnetic composite material used for an electronic component, particularly a magnetic composite material using an Fe-based soft magnetic alloy powder having good soft magnetic properties.
[0002]
[Industrial applications]
The present invention mainly belongs to a magnetic composite material used for an electronic component, particularly a magnetic composite material using an Fe-based soft magnetic alloy powder having good soft magnetic properties, and a method for producing the same.
[0003]
[Prior art]
Conventionally, amorphous alloys and nanocrystalline magnetic materials have been known as alloys having excellent soft magnetic properties, and their application to powders that can be easily processed has been attempted.
[0004]
The resin used as the binder needs to have mechanical strength, electric insulation and heat resistance, and polyimide having excellent properties is polyimide. As an application of the magnetic powder of polyimide to a binder, Japanese Patent Application Laid-Open No. 2000-21618 (Patent Document 1) discloses an application for a magnetic composite material using a soft magnetic alloy powder as a magnetic material and a thermoplastic resin such as polyimide as a binder. However, there is no specific description of the resin used as the binder, and the invention relating to the dust core is described, and there is no detailed description of the moldability of the flat magnetic powder.
[0005]
In addition, as an application of the inorganic material of polyimide, Japanese Patent Application Laid-Open No. 2001-176720 (Patent Document 2) describes a paste of an inorganic material and a polyimide precursor in Examples, and describes an example of an inorganic oxide of ferrite and barium titanate. However, there is no sufficient description about adaptation to an alloy powder having excellent soft magnetic properties.
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-21618
[Patent Document 2] Japanese Patent Application Laid-Open No. 2001-176720
[Problems to be solved by the invention]
An object of the present invention is to improve the strength of a magnetic composite material using a soft magnetic alloy powder, and particularly to improve the strength of a magnetic composite material using a nanocrystalline magnetic powder and an amorphous magnetic powder.
[0009]
[Means for Solving the Problems]
The present invention, as a result of intensive study of the improvement of the strength of the magnetic composite material of the soft magnetic alloy powder, to produce a paste of a soft magnetic alloy powder and a polyimide precursor mainly nanocrystalline magnetic material and amorphous magnetic material, The present inventors have found that the strength of a magnetic composite material of a soft magnetic alloy powder and a polyimide mainly composed of a nanocrystalline magnetic material and an amorphous magnetic material produced from this paste can be improved, and the present invention has been achieved.
[0010]
That is, the present invention
(A) An Fe-based or Co-based magnetic alloy powder (B) A paste containing a polyimide precursor is provided.
[0011]
As the magnetic material used in the present invention, a nanocrystalline magnetic material or an amorphous magnetic material is used.
[0012]
The nanocrystalline magnetic material used in the present invention is a magnetic material mainly composed of nanocrystalline grains having a grain size of 100 nm or less, and heat-treating an amorphous alloy at a crystallization temperature or higher to precipitate nanocrystalline grains. Is obtained. The composition of the nanocrystalline magnetic material may be Fe—Cu—Nb—Si—B, which is a typical nanocrystalline magnetic material, but is most preferably the general formula (Fe 1−xM x ) 100-ab− c-d Si a Al b B c M 'd ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd , Ru, Ga, Ge, C, P, represents one or more elements, x represents an atomic ratio, a, b, c, and d represent atomic%, and 0 ≦ x ≦ 0.5, 0, respectively. ≦ a ≦ 24, 1 ≦ b ≦ 20, 4 ≦ c ≦ 30, and 0 ≦ d ≦ 10).
[0013]
On the other hand, the amorphous magnetic material also used in the present invention maintains an amorphous structure even after the heat treatment, and the composition of the amorphous magnetic material is represented by the general formula (Fe 1−x M x ) 100− a-b- c Si a B b M 'c ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd , Ru, Ga, Ge, C, P, represents one or more elements, x represents an atomic ratio, a, b, and c represent atomic%, and 0 ≦ x <1, 0 ≦ a ≦ 24, respectively. 4 ≦ b ≦ 30 and 0 ≦ c ≦ 10).
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The magnetic composite material of the present invention can be obtained as a magnetic powder by heating a varnish obtained by mixing a varnish composed of a nanocrystalline magnetic material, an amorphous magnetic material, and a polyamic acid as a polyimide precursor as a binder.
[0015]
The shape of the magnetic powder used in the present invention is selected depending on the purpose, such as a flat shape and a spherical shape. However, in consideration of the magnetic properties of the composite magnetic material, the thickness and the particle size of the magnetic powder are not more than 5 μm. It is more preferable that it has a shape like a letter, and more desirably, the thickness is 5 μm or less and the particle diameter is 300 μm or less. More preferably, the thickness is 3 μm or less, and the particle size is 200 μm or less.
[0016]
More preferably, the shape of the magnetic powder used in the present invention is a rounded ellipse and not an angular shape. The size is preferably 20 to 500 microns in the major axis direction, 10 to 200 microns in the minor axis direction, 1.0 to 4.0 in the major axis / minor axis, and 5 microns or less in thickness. More preferably, the dimension in the major axis direction is 50 to 200 microns, the dimension in the minor axis direction is 15 to 60 microns, the major axis / minor axis is 1.3 to 3.5, and the thickness is 3 microns or less. .
[0017]
The magnetic powder used in the present invention may be the flat magnetic powder described above alone, or may be used as a mixture with a spherical magnetic powder or a magnetic powder having another shape.
[0018]
As the magnetic material used in the present invention, a nanocrystalline magnetic material or an amorphous magnetic material is used.
[0019]
The nanocrystalline magnetic material used in the present invention is a magnetic material mainly composed of nanocrystalline grains having a grain size of 100 nm or less, and is obtained by heat-treating an amorphous alloy at a crystal temperature or higher to precipitate nanocrystalline grains. can get. The composition of the nanocrystalline magnetic material may be Fe—Cu—Nb—Si—B, which is a typical example of the nanocrystalline magnetic material, but is most preferably the general formula (Fe 1−xM x ) 100- ab -c Si a Al b B c M 'd ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Represents one or more elements selected from Ru, Ga, Ge, C, and P. x represents an atomic ratio, a, b, c, and d represent atomic%, and 0 ≦ x ≦ 0.5 and 0 ≦, respectively. a ≦ 24, 1 ≦ b ≦ 20, 4 ≦ c ≦ 30, and 0 ≦ d ≦ 10).
[0020]
The nanocrystalline grains contained in the magnetic material are preferably 100 nm or less, preferably 50 nm or less, and more preferably 30 nm or less. By including these nanocrystal grains in the magnetic material, improvement in soft magnetic properties such as reduction in coercive force can be seen. The nanocrystal grains can be experimentally measured by X-ray diffraction, and the size of the crystal grains can be measured from the peak half width.
[0021]
On the other hand, the amorphous magnetic material also used in the present invention maintains an amorphous structure even after the heat treatment, and the composition of the amorphous magnetic material is not limited to this, but the general formula (Fe 1-x M x) 100- a-b-c Si a B b M 'c ( wherein, M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, Ti, V , Cr, Mn, Y, Pd, Ru, Ga, Ge, C, P, represents one or more elements, x represents an atomic ratio, a, b, and c represent atomic%, and 0 ≦ x each. <1, 0 ≦ a ≦ 24, 4 ≦ b ≦ 30, and 0 ≦ c ≦ 10) are desirable.
[0022]
The magnetic material used in the present invention may be the above-mentioned nanocrystalline material or amorphous magnetic material alone, or may be a mixture of the nanocrystalline magnetic material and the amorphous metal material. Further, it may be used in combination with another magnetic material, for example, ferrite or sendust.
[0023]
As a method for producing the magnetic powder of the present invention, a known method can be used.However, after an amorphous ribbon obtained by quenching a molten alloy is formed, a method of pulverizing and obtaining a powder, a method of water atomizing, and a method of gas atomizing are used. And the like, and a method in which the powder is directly flattened by an attritor, and the like. In the present invention, it is preferable to produce the powder by a method based on JP-A-7-166212 in which a flat powder can be directly obtained. That is, an alloy having a magnetic powder composition is melted in a high-frequency melting furnace, the molten metal is allowed to flow down through a nozzle attached to the bottom of the melting furnace, and the molten metal is atomized with a high-pressure gas from a gas atomizing section attached to the nozzle tip, and further atomized. The molten metal is caused to collide with a metal rotary cooling body to produce elliptical flat magnetic powder.
[0024]
The polyimide precursor used in the present invention includes, as diamines, p-phenylenediamine, m-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diamino Diphenyl sulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane , 2,2-bi (3-aminophenyl) propane, 2,2-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2,2-bis (3-aminophenyl ) -1,1,1,3,3,3-hexafluoropropane,
2,2-bis (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,2 1,3,3,3-hexafluoropropane, 1,1-bis (3-aminophenyl) -1-phenylethane, 1,1-bis (4-aminophenyl) -1-phenylethane, 1- (3 -Aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4 -Screw ( -Aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α -Ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2, 6-bis (3-aminophenoxy) pyridine, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl ] Ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- ( 3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether , 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophen) Phenoxy) phenyl] propane,
2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl]- 1,1,1,3,3,3-hexafluoropropane,
Pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 2,3 ′, 3,4′-benzophenonetetracarboxylic dianhydride as tetracarboxylic dianhydrides Product, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxy Phenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulphonic anhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride Product, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-2bis (3,4-dicarboxyphenyl)- , 1,1,3,3,3-hexafluoropropane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2 , 3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 2-2bis {4- (3,4-dicarboxyphenoxy) phenyl} propane Polyamic acid obtained by mixing dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride and the like Using By heat treatment, imidization is performed. As the diamine and tetracarboxylic dianhydride to be used, a combination of 3,3′-diaminodiphenyl ether and bis (3,4-dicarboxylphenyl) ether dianhydride tetramethyl is most preferable.
[0025]
In the present invention, the polyimide preferably has a glass transition temperature Tg of 420 ° C. or less, and more preferably 200 ° C. or more and 420 ° C. or less.
[0026]
As a method for preparing the magnetic composite material of the present invention, a solvent, for example, a resin is dissolved in an organic solvent such as dimethylacetamide, mixed with magnetic powder, a paste is prepared, a paste film is formed by a doctor blade method, and dried. Make a magnetic composite. The thermoplastic resin is generally used in an amount of usually 1 to 900 parts by weight, preferably 5 to 400 parts by weight, more preferably 10 to 70 parts by weight, based on 100 parts by weight of the magnetic powder.
[0027]
The magnetic composite of the present invention can be applied to the fields of application of magnetic materials, for example, magnetic cores used in transformers and choke coils, magnetic recording materials such as magnetic heads, radio wave absorbers, magnetic shields, magnetic permeability, and permittivity control. It can be used as a necessary substrate material for electronic devices.
[0028]
【Example】
[0029]
Example 1 An alloy of Fe 66 Ni 4 Si 14 B 9 Al 4 Nb 3 was melted at 1300 ° C. in a high-frequency melting furnace, the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace, and gas atomization attached to the nozzle tip part of the molten metal into fine particles in high-pressure gas 75 kg / cm @ 2 more, and further collide with the atomized melt was roll diameter 190 mm, cone angle 80 degrees, the rotary cooling body speed 7200rpm, Fe 66 Ni 4 Si 14 B 9 A flat magnetic powder having a composition of Al 4 Nb 3 (at%) having a major axis of 150 μm, a minor axis of 55 μm, and a thickness of 2 μm was prepared. As a result of measuring the X-ray diffraction of the magnetic powder before heat treatment, it was found that the magnetic powder showed a typical amorphous halo pattern and was completely amorphous. The obtained magnetic powder was heat-treated at 550 ° C. for 1 hour. As a result of measuring the X-ray diffraction of the magnetic powder after the heat treatment, it was revealed that the magnetic powder after the heat treatment was microcrystallized, and microcrystals having a peak half width of about 20 nm were precipitated.
[0030]
As a precursor of a polyimide used as a binder, 3,3′-diaminodiphenyl ether as a diamine, bis (3,4-dicarboxylphenyl) ether dianhydride in tetracarboxylic dianhydride and a flask under a nitrogen flow as an organic solvent It was obtained by stirring overnight using dimethylacetamide. Further, dimethylacetamide was added to prepare a polyamic acid varnish of 30% by weight of polyamic acid.
[0031]
The obtained nanocrystalline magnetic powder and the polyamic acid varnish were mixed and stirred for 10 minutes using a hybrid mixer (manufactured by KEYENCE CORPORATION) to obtain 80 parts by weight of nanocrystalline magnetic composite powder, 20 parts by weight of polyamic acid, and 80 parts by weight of dimethylacetamide. A polyamic acid varnish containing a nanocrystalline magnetic composite powder was prepared. The prepared polyamic acid varnish containing nanocrystalline magnetic powder was bar-coated on a SUS substrate, and the DMAC was volatilized in an inert oven at 150 ° C. for 30 minutes, followed by imidization at 270 ° C. for 30 minutes, and a thickness of 1 mmT To obtain a magnetic composite comprising nanocrystalline magnetic powder and polyimide. The magnetic composite was hot-pressed at 270 ° C. and 15 MPa for 10 minutes to produce a composite sheet having a thickness of 0.5 mm. The elastic modulus and breaking point of the obtained magnetic composite material were measured using a TROGRAPH tensile strength tester manufactured by TOYOSEIKI. Table 1 shows the results.
[0032]
Example 2 In the same manner as in Example 1, an alloy of Co 66 Fe 4 Ni 1 B 14 Si 15 was melted at 1300 ° C. in a high-frequency melting furnace, and the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace. The molten metal is atomized with a high-pressure gas of 75 kg / cm 2 from the gas atomizing part attached earlier, and the atomized molten metal is caused to collide with a rotating cooling body having a roll diameter of 190 mm, a cone angle of 80 °, and a rotation speed of 7,200 rpm, to obtain Co 66 Fe. A flat magnetic powder having a composition of 4 Ni 1 B 14 Si 15 (at%) having a major axis of 70 μm, a minor axis of 20 μm, and a thickness of 3 μm was prepared.
[0033]
As a precursor of a polyimide used as a binder, 3,3′-diaminodiphenyl ether as a diamine, bis (3,4-dicarboxylphenyl) ether dianhydride in tetracarboxylic dianhydride and a flask under a nitrogen flow as an organic solvent It was obtained by stirring overnight using dimethylacetamide. Further, dimethylacetamide was added to prepare a polyamic acid varnish of 30% by weight of polyamic acid.
[0034]
The obtained amorphous magnetic powder and the polyamic acid varnish were mixed and stirred for 10 minutes using a hybrid mixer (manufactured by KEYENCE CORPORATION) to obtain 80 parts by weight of amorphous magnetic composite powder, 20 parts by weight of polyamic acid, and dimethylacetamide. A polyamic acid varnish containing 80 parts by weight of an amorphous magnetic composite powder was prepared. The prepared polyamic acid varnish containing amorphous magnetic powder was bar-coated on a SUS substrate, and the DMAC was volatilized at 150 ° C. for 30 minutes in an inert oven, and further imidized at 270 ° C. for 30 minutes. A magnetic composite comprising 1 mmT of amorphous magnetic powder and polyimide was obtained.
[0035]
This magnetic composite was hot-pressed at 380 ° C. and 15 MPa for 10 minutes, and it was confirmed that the heat treatment of the amorphous magnetic powder and the molding of the sheet production could be performed simultaneously. A composite sheet having a thickness of 0.5 mm was prepared, and the elastic modulus and the breaking point of the obtained magnetic composite material were measured using a TROGRAPH tensile strength tester manufactured by TOYOSEIKI. Table 1 shows the results.
[0036]
Example 3 In the same manner as in Example 1, an alloy of Fe78Si9B13 was melted at 1300 ° C. in a high-frequency melting furnace, and the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace. The melt is atomized with a high-pressure gas of cm 2, and the atomized melt is collided with a rotating cooling body having a roll diameter of 190 mm, a cone angle of 80 °, and a rotation speed of 7,200 rpm, and a long diameter of 85 μm having a composition of Fe78Si9B13 (at%). A flat magnetic powder having a short diameter of 30 microns and a thickness of 3 microns was prepared.
[0037]
As a precursor of a polyimide used as a binder, 3,3′-diaminodiphenyl ether as a diamine, bis (3,4-dicarboxylphenyl) ether dianhydride in tetracarboxylic dianhydride and a flask under a nitrogen flow as an organic solvent It was obtained by stirring overnight using dimethylacetamide. Further, dimethylacetamide was added to prepare a polyamic acid varnish of 30% by weight of polyamic acid.
[0038]
The obtained amorphous magnetic powder and the polyamic acid varnish were mixed and stirred for 10 minutes using a hybrid mixer (manufactured by KEYENCE CORPORATION) to obtain 80 parts by weight of amorphous magnetic composite powder, 20 parts by weight of polyamic acid, and dimethylacetamide. A polyamic acid varnish containing 80 parts by weight of an amorphous magnetic composite powder was prepared. The prepared polyamic acid varnish containing amorphous magnetic powder was bar-coated on a SUS substrate, and the DMAC was volatilized at 150 ° C. for 30 minutes in an inert oven, and further imidized at 270 ° C. for 30 minutes. A magnetic composite comprising 1 mmT of amorphous magnetic powder and polyimide was obtained.
This magnetic composite was hot-pressed at 380 ° C. and 15 MPa for 10 minutes, and it was confirmed that the heat treatment of the amorphous magnetic powder and the molding of the sheet production could be performed simultaneously. A composite sheet having a thickness of 0.5 mm was prepared, and the elastic modulus and the breaking point of the obtained magnetic composite material were measured using a TROGRAPH tensile strength tester manufactured by TOYOSEIKI. Table 1 shows the results.
[0039]
Example 4 In the same manner as in Example 1, an alloy of Fe66Co18B15Si1 was melted at 1300 ° C. in a high-frequency melting furnace, the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace, and 75 kg / m from a gas atomizing part attached to the nozzle tip. The melt is atomized with a high-pressure gas of cm 2, and the atomized melt is collided with a rotating cooling body having a roll diameter of 190 mm, a cone angle of 80 °, and a rotation speed of 7,200 rpm, and a long diameter of 85 μm having a composition of Fe66Co18B15Si1 (at%). A flat magnetic powder having a short diameter of 30 microns and a thickness of 3 microns was prepared.
[0040]
As a precursor of a polyimide used as a binder, 3,3′-diaminodiphenyl ether as a diamine, bis (3,4-dicarboxylphenyl) ether dianhydride in tetracarboxylic dianhydride and a flask under a nitrogen flow as an organic solvent It was obtained by stirring overnight using dimethylacetamide. Further, dimethylacetamide was added to prepare a polyamic acid varnish of 30% by weight of polyamic acid.
[0041]
The obtained amorphous magnetic powder and the polyamic acid varnish were mixed and stirred for 10 minutes using a hybrid mixer (manufactured by KEYENCE CORPORATION) to obtain 80 parts by weight of amorphous magnetic composite powder, 20 parts by weight of polyamic acid, and dimethylacetamide. A polyamic acid varnish containing 80 parts by weight of an amorphous magnetic composite powder was prepared. The prepared polyamic acid varnish containing amorphous magnetic powder was bar-coated on a SUS substrate, and the DMAC was volatilized at 150 ° C. for 30 minutes in an inert oven, and further imidized at 270 ° C. for 30 minutes. A magnetic composite comprising 1 mmT of amorphous magnetic powder and polyimide was obtained.
This magnetic composite was hot-pressed at 380 ° C. and 15 MPa for 10 minutes, and it was confirmed that the heat treatment of the amorphous magnetic powder and the molding of the sheet production could be performed simultaneously. A composite sheet having a thickness of 0.5 mm was prepared, and the elastic modulus and the breaking point of the obtained magnetic composite material were measured using a TROGRAPH tensile strength tester manufactured by TOYOSEIKI. Table 1 shows the results.
[0042]
[Comparative Example 1]
Ni-Zn ferrite powder was used as the magnetic powder.
[0043]
As in Example 1, 3,3′-diaminodiphenyl ether as a diamine, bis (3,4-dicarboxylphenyl) ether dianhydride and tetracarboxylic dianhydride as a precursor of a polyimide used as a binder under a nitrogen flow were used. It was obtained by stirring all day and night in a flask using dimethylacetamide as an organic solvent. Further, dimethylacetamide was added to prepare a polyamic acid varnish of 30% by weight of polyamic acid.
The Ni-Zn ferrite and the polyamic acid varnish are mixed and stirred for 10 minutes using a hybrid mixer (manufactured by Keyence Corporation), and the Ni is composed of 80 parts by weight of Ni-Zn ferrite, 20 parts by weight of polyamic acid, and 80 parts by weight of dimethylacetamide. -Polyamide acid varnish containing Zn ferrite was produced. The prepared nanocrystalline magnetic powder-containing Ni-Zn ferrite was bar-coated on a SUS substrate, and in an inert oven, the DMAC was volatilized at 150 ° C for 30 minutes, and further imidized at 270 ° C for 30 minutes. A magnetic composite of 1 mmT Ni-Zn ferrite and polyimide was obtained. The magnetic composite was hot-pressed at 270 ° C. and 15 MPa for 10 minutes to produce a composite sheet having a thickness of 0.5 mm. The elastic modulus and breaking point of the obtained magnetic composite material were measured using a TROGRAPH tensile strength tester manufactured by TOYOSEIKI. Table 1 shows the results.
[0044]
From the above, it was confirmed that the strength was improved by using metal alloy powder instead of ceramics such as metal oxide.
[0045]
[Table 1]
Figure 2004111756

Claims (4)

(A)Fe基又はCo基含有磁性合金粉末
(B)ポリイミド前駆体
を含むペースト。
(A) Fe-based or Co-based magnetic alloy powder (B) Paste containing polyimide precursor.
請求項1記載のペーストから作製された磁性複合体。A magnetic composite made from the paste according to claim 1. 磁性材料が一般式(Fe1−c100−a−b−c−dSiAlM’(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表されることを特徴とする請求項1記載のペーストから作製された磁性複合材料。Magnetic materials 'in d (wherein, M is Co and / or Ni, M' formula (Fe 1-c M x) 100-a-b-c-d Si a Al b B c M is Nb, Mo, Represents one or more elements selected from Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, P. x represents an atomic ratio, a, b, c and d represent atomic%, and satisfy 0 ≦ x ≦ 0.5, 0 ≦ a ≦ 24, 1 ≦ b ≦ 20, 4 ≦ c ≦ 30, and 0 ≦ d ≦ 10, respectively. A magnetic composite material made from the paste according to claim 1. 磁性材料として一般式(Fe1−x100−a−b−cSiM’(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)で表されることを特徴とする請求項1記載のペーストから作製された磁性複合材料。Formula (Fe 1-x M x) ' of c (wherein, M is Co and / or Ni, M' 100-a- b-c Si a B b M as a magnetic material is Nb, Mo, Zr, W, At least one element selected from the group consisting of Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, and P. x represents an atomic ratio, and a, b, and c represent atomic%. And satisfies 0 ≦ x <1, 0 ≦ a ≦ 24, 4 ≦ b ≦ 30 and 0 ≦ c ≦ 10, respectively). Magnetic composite material.
JP2002274131A 2002-09-19 2002-09-19 Magnetic composite and magnetic composite material Pending JP2004111756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274131A JP2004111756A (en) 2002-09-19 2002-09-19 Magnetic composite and magnetic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274131A JP2004111756A (en) 2002-09-19 2002-09-19 Magnetic composite and magnetic composite material

Publications (1)

Publication Number Publication Date
JP2004111756A true JP2004111756A (en) 2004-04-08

Family

ID=32270693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274131A Pending JP2004111756A (en) 2002-09-19 2002-09-19 Magnetic composite and magnetic composite material

Country Status (1)

Country Link
JP (1) JP2004111756A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057230A (en) * 2003-08-06 2005-03-03 Amotech Co Ltd Method for producing fe-based amorphous metal powder, and method for manufacturing soft magnetic core using the same
JP2005064444A (en) * 2003-08-14 2005-03-10 Amotech Co Ltd Method for producing nano-scale grain metal powder having excellent high-frequency characteristic and method for manufacturing high-frequency soft magnetic core using the same
JP2007067177A (en) * 2005-08-31 2007-03-15 Nec Tokin Corp Coil component
KR100734433B1 (en) 2005-07-25 2007-07-03 연세대학교 산학협력단 Fe-Based Bulk Nano-eutectic Alloys With High Strength and Good Ductility
WO2008136383A1 (en) * 2007-04-26 2008-11-13 Toho Zinc Co., Ltd. Winding inductor and process for manufacturing the same
CN102637518A (en) * 2011-11-30 2012-08-15 同济大学 Method for preparing iron-based composite magnetic powder core
CN102881396A (en) * 2012-09-10 2013-01-16 虞雪君 Magnetic alloy powder material
US8686490B2 (en) 2006-12-20 2014-04-01 Sandisk Corporation Electron blocking layers for electronic devices
JP2019161183A (en) * 2018-03-16 2019-09-19 株式会社東芝 Multiple flat magnetic metal particles, compact material, and rotary electric machine
CN110993240A (en) * 2019-12-30 2020-04-10 华南理工大学 Iron-based amorphous soft magnetic alloy for anti-direct-current component transformer and preparation method thereof
US20210027924A1 (en) * 2018-03-22 2021-01-28 Agency For Science, Technology And Research Soft magnetic composites
JP2022043455A (en) * 2020-09-04 2022-03-16 株式会社東芝 Pressed powder material and rotary electric machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057230A (en) * 2003-08-06 2005-03-03 Amotech Co Ltd Method for producing fe-based amorphous metal powder, and method for manufacturing soft magnetic core using the same
JP2005064444A (en) * 2003-08-14 2005-03-10 Amotech Co Ltd Method for producing nano-scale grain metal powder having excellent high-frequency characteristic and method for manufacturing high-frequency soft magnetic core using the same
KR100734433B1 (en) 2005-07-25 2007-07-03 연세대학교 산학협력단 Fe-Based Bulk Nano-eutectic Alloys With High Strength and Good Ductility
JP2007067177A (en) * 2005-08-31 2007-03-15 Nec Tokin Corp Coil component
US8686490B2 (en) 2006-12-20 2014-04-01 Sandisk Corporation Electron blocking layers for electronic devices
US9214525B2 (en) 2006-12-20 2015-12-15 Sandisk Corporation Gate stack having electron blocking layers on charge storage layers for electronic devices
WO2008136383A1 (en) * 2007-04-26 2008-11-13 Toho Zinc Co., Ltd. Winding inductor and process for manufacturing the same
CN102637518A (en) * 2011-11-30 2012-08-15 同济大学 Method for preparing iron-based composite magnetic powder core
CN102881396A (en) * 2012-09-10 2013-01-16 虞雪君 Magnetic alloy powder material
JP2019161183A (en) * 2018-03-16 2019-09-19 株式会社東芝 Multiple flat magnetic metal particles, compact material, and rotary electric machine
JP2021100119A (en) * 2018-03-16 2021-07-01 株式会社東芝 Pressed powder material and rotary electric machine
JP7176021B2 (en) 2018-03-16 2022-11-21 株式会社東芝 Powder material and rotary electric machine
US11597010B2 (en) 2018-03-16 2023-03-07 Kabushiki Kaisha Toshiba Plurality of flaky magnetic metal particles, pressed powder material, and rotating electric machine
US20210027924A1 (en) * 2018-03-22 2021-01-28 Agency For Science, Technology And Research Soft magnetic composites
CN110993240A (en) * 2019-12-30 2020-04-10 华南理工大学 Iron-based amorphous soft magnetic alloy for anti-direct-current component transformer and preparation method thereof
JP2022043455A (en) * 2020-09-04 2022-03-16 株式会社東芝 Pressed powder material and rotary electric machine
JP7438900B2 (en) 2020-09-04 2024-02-27 株式会社東芝 Powder material and rotating electrical machinery

Similar Documents

Publication Publication Date Title
JP3771224B2 (en) Amorphous soft magnetic alloy powder and powder core and radio wave absorber using the same
JP3874744B2 (en) Small high sensitivity antenna
JP2004111756A (en) Magnetic composite and magnetic composite material
KR100899920B1 (en) Magnetic core and magnetic core-use adhesive resin composition
TWI577809B (en) Soft magnetic powder, dust core, and magnetic device
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
US8282745B2 (en) Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
KR101167492B1 (en) Antenna core and antenna
US20070258842A1 (en) Fe-based amorphous magnetic powder, magnetic powder core with excellent high frequency properties and method of making them
US20100034687A1 (en) Compound magnetic powder and magnetic powder cores, and methods for making them thereof
JP2002164224A (en) Magnetic substrate and method of manufacturing the same
JP2005307291A (en) Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
WO2020026949A1 (en) Soft magnetic powder, fe-based nano-crystal alloy powder, magnetic member, and dust core
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP2008294411A (en) Soft magnetism powder, manufacturing method for dust core, dust core, and magnetic component
US20190013129A1 (en) Dust core
JP2004063798A (en) Magnetic composite material
KR100721501B1 (en) Method for manufacturing a nano-sized crystalline soft-magnetic alloy powder core and a nano-sized crystalline soft-magnetic alloy powder core manufactured thereby
JPH0733875A (en) Highly crystalline polyimide powder and its production
CN112242220A (en) Nanocrystalline soft magnetic alloy material and magnetic component
Sharifikolouei et al. Soft Magnetic Properties and Electromagnetic Shielding Performance of Fe40Ni40B20 Microfibers
JP4574153B2 (en) Method for producing magnetic substrate
JP2005317937A (en) Dust core and method of producing the same
JP2002151316A (en) Magnetic substrate
JP2004179270A (en) Magnetic composite material for antenna tag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218