JPH03223401A - Flaky fe-ni series alloy fine powder and manufacture thereof - Google Patents
Flaky fe-ni series alloy fine powder and manufacture thereofInfo
- Publication number
- JPH03223401A JPH03223401A JP2089705A JP8970590A JPH03223401A JP H03223401 A JPH03223401 A JP H03223401A JP 2089705 A JP2089705 A JP 2089705A JP 8970590 A JP8970590 A JP 8970590A JP H03223401 A JPH03223401 A JP H03223401A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- fine powder
- flat
- less
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 169
- 239000000956 alloy Substances 0.000 title claims abstract description 50
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000002245 particle Substances 0.000 claims abstract description 54
- 238000000137 annealing Methods 0.000 claims abstract description 50
- 238000010298 pulverizing process Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 22
- 239000012298 atmosphere Substances 0.000 claims abstract description 19
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 230000001590 oxidative effect Effects 0.000 claims abstract description 13
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 12
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 10
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 238000009692 water atomization Methods 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract 2
- 239000013590 bulk material Substances 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims 1
- 230000005389 magnetism Effects 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 11
- 229910052802 copper Inorganic materials 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 5
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 229920006395 saturated elastomer Polymers 0.000 abstract 2
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 230000003334 potential effect Effects 0.000 abstract 1
- 230000035699 permeability Effects 0.000 description 27
- 238000000227 grinding Methods 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- 230000002776 aggregation Effects 0.000 description 16
- 238000005054 agglomeration Methods 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910000889 permalloy Inorganic materials 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910000702 sendust Inorganic materials 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- -1 stearyl alcohol Chemical class 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 241001435619 Lile Species 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- KMJRBSYFFVNPPK-UHFFFAOYSA-K aluminum;dodecanoate Chemical compound [Al+3].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O KMJRBSYFFVNPPK-UHFFFAOYSA-K 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 229940098697 zinc laurate Drugs 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- GPYYEEJOMCKTPR-UHFFFAOYSA-L zinc;dodecanoate Chemical compound [Zn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O GPYYEEJOMCKTPR-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、平均粒径0.1〜30μm、平均厚さ2μm
以下、望ましくは平均粒径0.1〜20μm、平均厚さ
1μm以下の扁平状で軟磁性に優れたFe−Ni系合金
微粉末およびその製造方法に関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention has an average particle size of 0.1 to 30 μm and an average thickness of 2 μm.
Hereinafter, the present invention relates to a flat Fe-Ni alloy fine powder having preferably an average particle size of 0.1 to 20 μm and an average thickness of 1 μm or less and excellent soft magnetism, and a method for producing the same.
[従来の技術〕
近年銀行カード、クレジットカード等で代表される個人
の機密に関わる磁気カードの分野では、磁気シールドを
目的として、カード表層に高透磁率材料の微粉末からな
る塗布膜被覆を施すニーズが増大してきた。このような
塗布用粉末には、高透磁率で微粉であるとともに、粉末
形状が扁平状であることが求められる。これは、塗布の
し易さ塗布膜の表面平滑性の上から必要なばかりでなく
塗布の際の剪断力によって扁平状微粉末が最も反磁場係
数の低い扁平方向、すなわちカード基体方向に平行に整
列されることで、面内長手方向の高透磁率が得られる要
因からも不可欠のことである。[Prior art] In recent years, in the field of magnetic cards related to personal secrets such as bank cards and credit cards, a coating film made of fine powder of a high magnetic permeability material is applied to the surface of the card for the purpose of magnetic shielding. Needs have increased. Such a coating powder is required to have high magnetic permeability, be a fine powder, and have a flat powder shape. This is not only necessary from the viewpoint of ease of application and surface smoothness of the coating film, but also because the shear force during application causes the flat fine powder to be aligned in the flat direction with the lowest demagnetizing field coefficient, that is, parallel to the card substrate direction. This is essential because alignment allows high magnetic permeability in the in-plane longitudinal direction to be obtained.
本用途に対して具体的に要求される粉末の諸特性は、平
均粒径がo、i〜30μ暉、厚さ2μm以下で反磁場を
無視したランダムな集合状態での粉末の保持力が400
A/m以下、望ましくは240A/m以下というもので
ある。なお、粉末の厚さは、粉末を磁界中で扁平方向に
配向させつつ、樹脂粉末中に埋め込み固化させた後、こ
の埋め込み試料の断面を顕微鏡で検鏡して評価した値と
する。The specific characteristics of the powder required for this application are that the average particle size is o, i~30 μm, the thickness is 2 μm or less, and the coercive force of the powder in a random aggregation state ignoring the demagnetizing field is 400 μm.
A/m or less, preferably 240 A/m or less. The thickness of the powder is determined by embedding the powder in a resin powder and solidifying it while oriented in a flat direction in a magnetic field, and then examining the cross section of the embedded sample with a microscope.
このような粉末としては、材質的に高透磁率であるとと
もに塑性変形して扁平化し易いFe−Ni系合金の適用
が考えられる。しかしながら、Fe−Ni系合金におい
て前記粉末諸元および特性を得るための量産的手法はま
だ提示されていない。As such a powder, an Fe--Ni alloy may be used which has a high magnetic permeability and is easily plastically deformed and flattened. However, a mass production method for obtaining the above-mentioned powder specifications and properties in Fe-Ni alloys has not yet been proposed.
特開昭63〜35701号および特開昭63〜3570
6号では、厚さ2μm以下、厚さと直径の比率が111
0以下で、高透磁性の純金属または合金の材料からなる
鱗片状高透磁性金属粉を湿式ボールミル法によって製造
することが提案されており、具体的には44μmの篩を
バスした純鉄粉を96時間かけて粉砕し、25μmの篩
を98%通過する肉厚1.0μmの鱗片状粉末を、およ
び44μmの篩をバスしたセンダスト合金粉を96時間
かけて粉砕し、25μ白の篩を96%通過する肉$1.
0〜1.5μmの鱗片状粉末を得ている。JP-A-63-35701 and JP-A-63-3570
For No. 6, the thickness is 2 μm or less, and the ratio of thickness to diameter is 111.
It has been proposed to produce scale-like high magnetic permeability metal powder made of a pure metal or alloy material with a magnetic permeability of 0 or less using a wet ball milling method. Specifically, pure iron powder passed through a 44 μm sieve has been proposed. was ground for 96 hours to produce a scaly powder with a wall thickness of 1.0 μm that passed 98% through a 25 μm sieve, and Sendust alloy powder that had passed through a 44 μm sieve was ground for 96 hours and passed through a 25 μm white sieve. Meat that passes 96% $1.
A scaly powder with a size of 0 to 1.5 μm is obtained.
上記の方法は、確かに厚さ2μm以下の磁性材料粉末を
得ることは可能であるが、96時間もの長時間の粉砕を
必要とすること、平均粒径3oまたは20Itta以下
の微粉末を高い歩留で得ることは困難であることが間層
点であり、さらに得られた粉末の保磁力は、粉砕歪によ
って著しく劣化しており、保磁力Hcが高い。上記純F
e粉では、430e(3440A/+n)、センダスト
合金粉では90e(720A/m)が報告されている。Although it is certainly possible to obtain magnetic material powder with a thickness of 2 μm or less using the above method, it requires pulverization for as long as 96 hours, and it is difficult to produce fine powder with an average particle size of 3 o or 20 Itta or less at a high rate. The interlayer point is difficult to obtain by distillation, and the coercive force of the obtained powder is significantly degraded by crushing strain, and the coercive force Hc is high. Above pure F
For e powder, 430e (3440A/+n) and for sendust alloy powder, 90e (720A/m) have been reported.
またセンダスト合金の場合、特開昭62〜238305
号で、結晶粒径100μm以下となるよう水アトマイズ
によって粉末とし、高エネルギー密度を有する粉砕機に
より単結晶で長径l短径比が10以上の片状化粉末に粉
砕する方法が示されている。しかしながら、これら片状
粉末、扁平状粉末は、粉砕によって極めて大きな変形を
受けているため、粉砕歪に起因する高い保磁力を有する
まま供せられており、本願の主眼とする磁気カードの磁
気シールド用等の粉末の製造方法としては不十分なもの
である。In the case of Sendust alloy, JP-A-62-238305
No. 1, a method is shown in which the powder is made into powder by water atomization so that the crystal grain size is 100 μm or less, and then ground into a single crystal flake powder with a major axis to minor axis ratio of 10 or more using a crusher with high energy density. . However, these flaky powders and flat powders are subjected to extremely large deformations due to pulverization, so they are provided with high coercive force due to pulverization strain. This method is insufficient as a method for producing powder for use.
粉砕歪を除去する方法として、特開昭58−59268
号では、インゴットから多段階で粉砕すりつぶし工程を
繰り返し扁平状としたセンダスト粉を、必要により水素
雰囲気中で焼鈍を追加することが、その明細書の中で言
及されている。しかし、粉末の保磁力は規定されず、保
磁力を向上させるための具体的な焼鈍方法について知見
を与えるものではなく、やはり本願の対象の磁気カード
の磁気シールド用等の粉末製造法としては不十分である
。As a method for removing crushing distortion, Japanese Patent Application Laid-Open No. 58-59268
The specification mentions that sendust powder, which is formed from an ingot into a flattened form through repeated crushing and grinding processes in multiple stages, is additionally annealed in a hydrogen atmosphere if necessary. However, the coercive force of the powder is not specified, and it does not provide knowledge about a specific annealing method to improve the coercive force, so it is still inappropriate as a powder manufacturing method for magnetic shielding of magnetic cards, etc., which is the subject of this application. It is enough.
また、前述の各開示例はいずれも飽和磁歪定数に関して
一切言及していない。Furthermore, none of the above disclosed examples makes any mention of the saturation magnetostriction constant.
Fe−Ni系合金のうち、パーマロイ系扁平状微粉末に
ついては、具体的が見出せず、本発明者は特願昭63〜
123494号により、水アトマイズによる平均粒径1
0μ山以下のFe−Ni系合金粉末を機械的に粉砕し、
平均粒径0.1〜10μm、厚さ1μm以下の扁平状微
粉末を得る方法を提案した。すなわちここでは、Fe−
Ni系合金は、塑性変形能が大で、展伸され易く、扁平
化は比較的容易であるが、微粉化には難があり、初期粉
末の粒径を小さくすることが、粉砕効率の上から重要な
ことを指摘した上記提案の方法によって、Fe−Ni系
合金の扁平状微粉化が容易になるが、初期粉末の粒径を
小さくすることは、アトマイズの面からは量産的方法と
言えない現状である。すなわち、水アトマイズ法はアト
マイズの中で最も量産的で、がっ粒径を細かくし易いプ
ロセスではあるが、平均粒径1107z以下にツイテは
、100100O/ad以上の水圧で溶湯を噴霧させね
ばならないため、高圧供給ポンプの設置や、配管等の設
備費が膨大となったり、維持管理が煩雑となること、溶
湯ビーム径を数閤φに絞る必要から、単位時間当りの出
湯量が少ないこと、および歩留よ<10μm以下を得る
ことに困難があることなどの問題があり、上記特願昭6
3〜123494号の方法は、原料粉末がらトータルし
て考えた場合、量産性に限度のある状況である。Among Fe-Ni alloys, we have not been able to find anything specific about permalloy flat fine powder, and the present inventors have
No. 123494, average particle size 1 by water atomization
Mechanically pulverize Fe-Ni alloy powder with a diameter of 0μ or less,
We proposed a method for obtaining flat fine powder with an average particle size of 0.1 to 10 μm and a thickness of 1 μm or less. That is, here, Fe-
Ni-based alloys have high plastic deformability, are easily stretched, and are relatively easy to flatten, but are difficult to pulverize, and reducing the particle size of the initial powder improves pulverization efficiency. The method proposed above, which points out important points from the above, facilitates the flat pulverization of Fe-Ni alloys, but reducing the particle size of the initial powder is a mass production method from the perspective of atomization. The current situation is that there is no such thing. In other words, the water atomization method is the most mass-producible atomization process and is the process that makes it easier to reduce the particle size, but in order to achieve an average particle size of 1107z or less, molten metal must be sprayed at a water pressure of 100100O/ad or more. Therefore, installation of high-pressure supply pumps, equipment costs such as piping are enormous, maintenance is complicated, and the molten metal beam diameter has to be narrowed down to a few φ, so the amount of hot water delivered per unit time is small. There are also problems such as difficulty in obtaining a yield of <10 μm or less.
The methods of Nos. 3 to 123494 have limitations in mass production when considering the total raw material powder.
本願が対象としている平均粒径0.1〜30μm、平均
厚さ2μm以下の扁平状微粉末は、微粉であることに加
えて甚だしい歪を受けており、通常のバルク材と同条件
で焼鈍すると、粉末粒子の凝集すなわち焼結現象が生じ
て、粉砕して得た扁平形状が損なわれてしまう。したが
って、実際の焼鈍は粉末の凝集が起こらない低温、すな
わち通常のバルク材の焼鈍温度の1100℃付近より大
幅に下げざるを得ず、扁平粒の保磁力は500A/mを
越える大きな値となっていた。The flat fine powder with an average particle size of 0.1 to 30 μm and an average thickness of 2 μm or less, which is the subject of this application, is not only a fine powder but also has undergone severe distortion, and when annealed under the same conditions as normal bulk materials. , agglomeration or sintering phenomenon of powder particles occurs, and the flat shape obtained by crushing is lost. Therefore, actual annealing has to be done at a low temperature at which powder agglomeration does not occur, that is, the annealing temperature of normal bulk materials, which is around 1100°C, must be significantly lowered, and the coercive force of flat grains is a large value exceeding 500 A/m. was.
本発明は、前記従来技術の問題点に留意してなされたも
のであり、平均粒径が0.1〜30μm、平均厚さ2μ
m以下で、かつ保磁力Hcが400A/m以下の扁平状
Fe−Ni系合金微粉末および該粉末を量産的に製造す
る方法を提供するものである。The present invention has been made in consideration of the problems of the prior art, and has an average particle size of 0.1 to 30 μm and an average thickness of 2 μm.
The present invention provides a flat Fe-Ni alloy fine powder having a coercive force Hc of 400 A/m or less and a method for mass-producing the powder.
[課題を解決するための手段〕
本発明はバルク材で測定される飽和磁歪定数λsが±1
5 X 10’以内である組成のFe−Ni系合金原料
を粉砕して、平均粒径0.1〜30μm、平均厚さ2μ
m以下となし、然る後非酸化性雰囲気中で、はぼ上記形
状(扁平状微粉末形状)を維持しつつ、焼鈍を施すこと
で、保磁力を400A/m以下とした微粉末、このうち
、特に、Ni70〜83%、Mo2〜6%、Cu 3〜
6%、Mn1−2%、C0,05%以下、残部が鉄およ
び付随的不純物よりなるもの、およびその製造方法であ
り、また特に、粉砕原料中に、B、P、As、Sb、B
i、S、Se、Teよりなる元素群のうち、一種または
二種以上を0.1〜2%添加して被粉砕性を向上するこ
とを含むものである。[Means for Solving the Problems] The present invention has a saturation magnetostriction constant λs measured in a bulk material of ±1.
A Fe-Ni alloy raw material with a composition within 5 x 10' is crushed to obtain an average particle size of 0.1 to 30 μm and an average thickness of 2 μm.
m or less, and then annealed in a non-oxidizing atmosphere while maintaining the above-mentioned shape (flat fine powder shape) to obtain a fine powder with a coercive force of 400 A/m or less. Among them, especially Ni70~83%, Mo2~6%, Cu 3~
6%, Mn 1-2%, CO 0.05% or less, the balance consisting of iron and incidental impurities, and the method for producing the same. In particular, B, P, As, Sb, B
This includes adding 0.1 to 2% of one or more of the element group consisting of i, S, Se, and Te to improve the pulverizability.
すなわち本発明は、バルク材で測定される飽和磁歪定数
λsが±15 X 10′以内である組成を有し。That is, the present invention has a composition in which the saturation magnetostriction constant λs measured in the bulk material is within ±15×10′.
平均粒径0.1〜30μm、平均厚さ2pm以下であり
、保磁力Hcが400A/m以下であることを特徴とす
る扁平状Fe−Ni系合金微粉末、このうち、前記特定
成分範囲のPCパーマロイとすることをよしとするもの
、ならびに、バルク材で測定される飽和磁歪定数λsが
±15X10′以内である組成を有する原料を粉砕によ
って、平均粒径0.1〜30μm、平均厚さ2μl以下
となし、然る後非酸化性雰囲気中でほぼ上記の扁平微粉
末状を維持しつつ焼鈍を施して、粉末の保磁力Hcを4
0OA/11以下とすることを特徴とする扁平状Fe−
Ni系合金微粉末の製造方法である。A flat Fe-Ni alloy fine powder having an average particle size of 0.1 to 30 μm, an average thickness of 2 pm or less, and a coercive force Hc of 400 A/m or less, among which the specified component range is By pulverizing raw materials suitable for use as PC permalloy and having a composition in which the saturation magnetostriction constant λs measured in the bulk material is within ±15X10', the average particle size is 0.1 to 30 μm and the average thickness is 2 μl. After that, the powder was annealed in a non-oxidizing atmosphere while maintaining the above-mentioned flat fine powder shape, and the coercive force Hc of the powder was increased to 4.
Flat Fe- characterized by having an OA/11 or less
This is a method for producing Ni-based alloy fine powder.
本発明の製造方法において、粉砕された粉末の焼鈍は、
粒子相互の凝集を防止しつつ高温処理するために、流動
層等流動ないし、移動させつつ行なうことが望ましい。In the manufacturing method of the present invention, annealing of the pulverized powder is performed by
In order to perform the high-temperature treatment while preventing mutual agglomeration of particles, it is desirable to perform the treatment while flowing or moving the particles, such as in a fluidized bed.
また、粉砕用原料として、B、P、As、Sb、Bi、
S、Se%Teよりなる元素群のうち、一種または二種
以上を0.1〜2%含むものを用いることが有利で、こ
の場合においては、特に粉砕に先立って、原料粉末を抑
制された酸素ポテンシャルを有する雰囲気下、つまり弱
酸化雰囲気下で加熱して酸化させること、さらに、原料
として合金溶湯を水アトマイズして得た不規則形状の粉
末を用いること、粉砕を粉砕助剤との共存下で行なうこ
と等が、粉砕能率向上の点から有効である。In addition, as raw materials for grinding, B, P, As, Sb, Bi,
It is advantageous to use a material containing 0.1 to 2% of one or more of the element group consisting of S, Se%Te, and in this case, in particular, prior to pulverization, the raw material powder is suppressed. It is possible to oxidize by heating in an atmosphere with oxygen potential, that is, in a weakly oxidizing atmosphere, to use irregularly shaped powder obtained by water atomizing molten alloy as a raw material, and to coexist with a grinding aid for grinding. It is effective to improve the grinding efficiency by performing the grinding at the bottom.
本発明において、平均粒径0.1〜30μ厘、平均厚さ
2μ日以下であって、反磁場を無視したランダムな集合
状態での粉末の保磁力を40OA/1以下とするための
方法は、合金組成としてそのバルク材で測定される飽和
磁歪定数が±15 X 10’以内となるようなFe−
Ni系合金を選定すること、粉砕後の焼鈍を粉末同志の
凝集を回避すべく、非酸化性雰囲気中で高温焼鈍するこ
と、より具体的に好ましくは粉末を流動ないし移動させ
つつ高温焼鈍すること、に要約される。In the present invention, the method for making the coercive force of the powder 40OA/1 or less in a randomly aggregated state ignoring the demagnetizing field with an average particle size of 0.1 to 30 μm and an average thickness of 2 μm or less is as follows. , the alloy composition is such that the saturation magnetostriction constant measured in the bulk material is within ±15
Selecting a Ni-based alloy; performing annealing at a high temperature in a non-oxidizing atmosphere to avoid agglomeration of powders after pulverization; and more specifically, performing high-temperature annealing while fluidizing or moving the powder. , is summarized in .
本願対象の扁平状微粉末は、粉砕の工程が不可避である
。溶湯から直接扁平粒を製造する手法も存在するが、溶
湯の表面張力の面で溶湯から直接製造される扁平粒の厚
さには限界があり、薄くても10μm程度までであり、
何らかの加工によって肉厚を減じ、扁平化しつつ粒径を
細かくしなければならない。それ故、平均粒径0.1〜
30μm、平均厚さ2μm以下なる粉末は極めて大きな
変形を受け、大きな歪を有しており、本来の軟磁性が甚
だしく損なわれた状態にある。すなわち、反磁場を無視
したランダムな集合状態での粉末の保磁力は、最小でも
500A/sを越える値になる。このように歪の大きい
微粉末の保磁力を低減するには、粉末の焼鈍が不可欠で
あるが、焼鈍後の保磁力を400A/m以下に低減する
には、素材成分の飽和磁歪定数が±15 X 10’以
内であることが必要なことを本発明者らは新たに知見し
た。この場合、飽和磁歪定数は、本発明対象の肉厚2μ
層以下の扁平粉末では、測定が困難であり、閣オーダー
以上の厚さを有する板材などで測定される値で代表する
。The flat fine powder that is the object of the present application requires a pulverization process. Although there is a method for producing flat grains directly from molten metal, there is a limit to the thickness of flat grains that can be produced directly from molten metal due to the surface tension of the molten metal, and the thickness is about 10 μm at the most.
It is necessary to reduce the wall thickness through some kind of processing, flatten it, and make the particle size finer. Therefore, the average particle size is 0.1~
The powder, which has a diameter of 30 μm and an average thickness of 2 μm or less, undergoes extremely large deformation and has large strains, and its original soft magnetic properties are severely impaired. That is, the coercive force of the powder in a randomly aggregated state ignoring the demagnetizing field exceeds 500 A/s at the minimum. In order to reduce the coercive force of fine powder with such large strain, powder annealing is essential, but in order to reduce the coercive force after annealing to 400 A/m or less, the saturation magnetostriction constant of the material component must be ± The present inventors have newly found that it is necessary that the distance be within 15 x 10'. In this case, the saturation magnetostriction constant is the wall thickness 2μ of the object of the present invention.
It is difficult to measure flat powder with a thickness of less than a layer, so the value measured is representative of the value measured on a plate material with a thickness greater than the thickness of a cabinet.
より具体的には、FeNi、の規則格子生成領域および
この付近の組成の高透磁率合金、いわゆるPAパーマロ
イ、ならびに該規則格子の生成を抑制し、徐冷によって
も高透磁率が実現できるようF e−N i系にMOl
Cr、Cu、Nb、Mn等を添加した多元系パーマロイ
、いわゆるPCパーマロイとをその範噂に含む。これら
PA系ないしPC系のパーマロイは、溶製バルク材では
、飽和磁歪定数が零ないし零に近いこと、および磁気異
方性定数K、が零に近いことによって、高透磁率化する
ことが知られているが、本願対象の粉砕による扁平状微
粉末においては、その組成の有する飽和磁歪定数が±1
5 X 10’以内であれば、粉砕による著しい残留歪
は、引き続きなされる焼鈍によって開放され、目標の保
磁力Hcが40OA/m以下となることが見出された。More specifically, the ordered lattice formation region of FeNi, a high magnetic permeability alloy with a composition near this region, so-called PA permalloy, and the F MOl in the e-N i system
The range includes multi-component permalloy to which Cr, Cu, Nb, Mn, etc. are added, so-called PC permalloy. It is known that these PA-based or PC-based permalloys have high magnetic permeability in ingotten bulk materials because the saturation magnetostriction constant is zero or close to zero, and the magnetic anisotropy constant K is close to zero. However, in the flat fine powder obtained by pulverization, which is the subject of this application, the saturation magnetostriction constant of its composition is ±1.
It has been found that within 5 x 10', significant residual strain due to crushing is released by subsequent annealing, and the target coercive force Hc becomes 40 OA/m or less.
次に、本願が推奨するPCパーマロイ成分の限定理由を
述べる。Next, the reason for limiting the PC permalloy component recommended by this application will be described.
Fe−Ni合金は、Ni80%付近で高透磁率を示すこ
とが知られており、特に4%Moを含有するMoパーマ
ロイは広く利用されている。本発明の合金粉末は、前記
パーマロイ合金に磁性改善元素としてCu、Mn、Mo
を加え、透磁率を著しく高めたものである。Ni量は7
0%未滴では高透磁率を示さず、また83%を舐えると
飽和磁化が低下してしまうため70〜83%とする。C
u、Mn、Moは、軟磁性を向上させる目的で添加する
。Cuが3%末滴では、軟磁性の向上、特に保磁力Hc
を低下させる効果が小さい。また、Cuが6%を越える
と飽和磁束密度が低下し、かつ透磁率も低下する。MO
もCuと同様の効果を示し、Mo2%未満では、軟磁性
の向上、特に保磁力Hcを低下させる効果が小さく、ま
たMOが6%を越えると飽和磁束密度が低下し、かつ透
磁率も低下する。It is known that Fe-Ni alloy exhibits high magnetic permeability when Ni is around 80%, and Mo permalloy containing 4% Mo is particularly widely used. The alloy powder of the present invention contains Cu, Mn, and Mo as magnetism improving elements in the permalloy alloy.
It has a significantly increased magnetic permeability. The amount of Ni is 7
If 0% is left undropped, high magnetic permeability will not be exhibited, and if 83% is left undropped, the saturation magnetization will decrease, so it is set at 70 to 83%. C
U, Mn, and Mo are added for the purpose of improving soft magnetism. With 3% Cu powder droplets, the soft magnetism is improved, especially the coercive force Hc
The effect of reducing this is small. Moreover, when Cu exceeds 6%, the saturation magnetic flux density decreases and the magnetic permeability also decreases. M.O.
Also shows the same effect as Cu, and if Mo is less than 2%, the effect of improving soft magnetism, especially reducing coercive force Hc, is small, and if MO exceeds 6%, the saturation magnetic flux density and magnetic permeability decrease. do.
Mnが1%未満では、最大透磁率μmが低く、また2%
を越えると保磁力Hcが大きくなり、1〜2%の間で最
大透磁率の増加に効果がある。Cは合金中に固溶すると
合金の軟磁性を低下させるが、0.05%までの含有は
、粉末の軟磁性の特性上許容される。When Mn is less than 1%, the maximum magnetic permeability μm is low;
If it exceeds 1%, the coercive force Hc increases, and if it is between 1% and 2%, it is effective in increasing the maximum magnetic permeability. When C is dissolved in an alloy, it reduces the soft magnetic properties of the alloy, but its content up to 0.05% is permissible due to the soft magnetic properties of the powder.
残余は、鉄および付随不純物であるが、溶解時に脱酸剤
として使用されるSiは1%まで含有されても特性上問
題はない。The remainder is iron and accompanying impurities, but there is no problem in terms of properties even if Si, which is used as a deoxidizing agent during melting, is contained up to 1%.
前記飽和磁歪定数λsが±15 X 10−5以内とな
るF e−N i系合金の粉砕性を高めるためには、B
、P、As、Sb、Bi、S、Se、Teよりなる元素
群のうち、一種以上を0.1%以上、2%以下添加した
粉末が有効で、また、水アトマイズ法による不規則形状
粉末がより好ましいことが判明した。B、P、As、S
b、Bi、S、Se、Teは、主組成のNi富化Fe−
Ni系における溶解度がほとんどないため、添加分は粉
末製造中に、M、B、M、P、M、Sb、M、Sb1、
MBi、M、S、、MS。In order to improve the crushability of the Fe-Ni alloy whose saturation magnetostriction constant λs is within ±15
, P, As, Sb, Bi, S, Se, Te, etc. Powder containing 0.1% or more and 2% or less of one or more of the element group consisting of P, As, Sb, Bi, S, Se, and Te is effective. was found to be more preferable. B, P, As, S
b, Bi, S, Se, and Te are the main composition of Ni-enriched Fe-
Since it has almost no solubility in the Ni system, the additives are M, B, M, P, M, Sb, M, Sb1,
M.B.I., M.S., M.S.
M、SeいMTe、MTe、およびこれらの複合相など
脆弱な金属間化合物相として、結晶粒界に優先的に晶出
する。各々の化合物相は、溶融温度の高低はあるが、極
めて脆いために結晶粒界を脆くし、意図的にこれら元素
群を添加しない通常のFe−Ni系合金に比し容易に粉
砕されやすくする。すなわち、粒界脆化相の存在によっ
て粉砕初期における粒界単位の分割が促進されるため、
特に粒径微細化が早期に進行し、粉砕効率が向上する。M, Se, MTe, MTe, and composite phases of these crystallize preferentially at grain boundaries as fragile intermetallic compound phases. Although each compound phase has a high or low melting temperature, it is extremely brittle, which makes the grain boundaries brittle and makes it easier to crush compared to normal Fe-Ni alloys in which these elements are not intentionally added. . In other words, the presence of the grain boundary embrittlement phase promotes the division of grain boundary units at the initial stage of crushing.
In particular, particle size refinement progresses quickly, improving pulverization efficiency.
また、上記元素群の添加分のほとんどは、粒界の化合物
相に費やされ、マトリックス中にほとんど固溶しないの
で、基本的にそのマトリックス組成の飽和磁歪定数が±
15X10′以内であれば、目標である保磁力Hc≦4
00A/mを容易に達することができる。In addition, most of the addition of the above element groups is spent in the compound phase at the grain boundaries and is hardly dissolved in the matrix, so basically the saturation magnetostriction constant of the matrix composition is ±
If it is within 15X10', the target coercive force Hc≦4
00A/m can be easily reached.
上記粒界化合物相生成に費やされるB、P、As、Sb
、Bi、S、Se、Teの元素群は、単独でも複合的に
も添加し得るが、その総量は0.1%以上、2%以下が
適量である。0.1%未満−では意図的に添加しない場
合に比べ粉砕効率の目に見える効果は認められない。ま
た、P、As、Sb、Bi、S。B, P, As, and Sb consumed in the formation of the grain boundary compound phase.
, Bi, S, Se, and Te may be added singly or in combination, but the appropriate total amount is 0.1% or more and 2% or less. At less than 0.1%, no visible effect on grinding efficiency is observed compared to when it is not intentionally added. Also, P, As, Sb, Bi, S.
Se、Teなどでは、特にベース組成の溶解温度で蒸気
圧が高いため、実質的に総合で2%を越える添加は困難
であり、蒸気圧の低いBも2%を越えると保磁力Hcが
大きくなり好ましくない。したがって、総量で2%以下
の添加に留める。Since the vapor pressure of Se, Te, etc. is particularly high at the melting temperature of the base composition, it is practically difficult to add more than 2% in total, and even B, which has a low vapor pressure, has a large coercive force Hc if it exceeds 2%. I don't like it. Therefore, the total amount added should be limited to 2% or less.
このようにして添加される上記元素群が生成する粒界の
化合物相は、粉砕中の粒界単位の分割とともに粒界から
脱落し、マトリックス組成の粉末中に混合され、化合物
相自体としてさらに粉砕され、低融点のものは摩擦熱で
溶融、飛散したり、極く微細な残渣となり、引き続きな
される焼鈍中に溶融、飛散して、さらに低減し、磁気特
性を劣化させるほどに残らない。The compound phase at the grain boundary generated by the above element groups added in this way falls off from the grain boundary as the grain boundary units are divided during crushing, is mixed into the powder with the matrix composition, and is further crushed as the compound phase itself. Those with a low melting point melt and scatter due to frictional heat, or become extremely fine residues, which are melted and scattered during subsequent annealing, further reducing the amount, and do not remain to the extent that they deteriorate the magnetic properties.
上記粉砕促進添加元素を添加した粉砕原料の粉砕に際し
、抑制された酸素ポテンシャルを有する雰囲気で、加熱
処理を施すと、前述のB、P、As、Sb、Bi、S、
Se、Teよりなる群の添加による粉砕効率の向上がさ
らに促進される。上記元素群の添加により生成される脆
弱な粒界化合物相の存在は、粒界エネルギーを低下させ
ることにより、上記元素群を添加しない通常のFe−N
i系合金では認め難い選択的な粒界酸化を受は易い状態
にあると考えられる。粒界の酸化状態を定量化し得る段
階に至っていないが、抑制された酸素ポテンシャルを有
する雰囲気、たとえば、粉砕前加熱の雰囲気として、湿
水素中600℃で前加熱した場合に、加熱処理をしない
場合、および純水素中で加熱した場合に比べて粉砕効率
が向上する。雰囲気としては、湿水素に限らず、酸素ポ
テンシャルを含む弱酸化性雰囲気であれば、窒素のほか
、Ar等不活性ガス、NH,分解ガスなどでも使用可能
であり、特に限定されない。When pulverizing the pulverized raw material to which the above-mentioned pulverization-promoting additive elements are added, heat treatment is performed in an atmosphere with suppressed oxygen potential.
The improvement in grinding efficiency is further promoted by the addition of the group consisting of Se and Te. The presence of the brittle grain boundary compound phase generated by the addition of the above element groups lowers the grain boundary energy, thereby reducing the
It is considered that the alloy is in a state where it is easily susceptible to selective grain boundary oxidation, which is difficult to recognize in i-based alloys. Although the oxidation state of the grain boundaries has not yet reached the stage where it is possible to quantify it, when preheating is performed at 600°C in wet hydrogen in an atmosphere with a suppressed oxygen potential, for example, as an atmosphere for pre-pulverization heating, but no heat treatment is performed. , and the grinding efficiency is improved compared to when heated in pure hydrogen. The atmosphere is not limited to wet hydrogen, and may be any weakly oxidizing atmosphere containing oxygen potential, such as nitrogen, inert gas such as Ar, NH, decomposed gas, etc., and is not particularly limited.
温度は粉砕に供する粉末が凝集し始める範囲であっても
かまわないが、1000℃以上では相対密度が70%を
越え焼結体を生成することになり、かえって粉砕効率が
減少するので好ましくない。The temperature may be within a range where the powder to be pulverized begins to agglomerate, but if it exceeds 1000°C, the relative density will exceed 70% and a sintered body will be produced, which is not preferable because the pulverization efficiency will be reduced.
機械的粉砕は、スタンプミル、振動ミル、アトライター
などが適用できるが、本発明のB、P、As、Sb、B
i、S、Se、Teよりなる元素群のうち、一種以上を
0.1〜2%添加したFe−Ni系合金粉末の場合には
、前記粉砕機のうち最も投入エネルギーの高いアトライ
ターによって、10時間以内にほぼ100%の収率で目
標の粒度、厚さの扁平状粉末を得ることが可能である。For mechanical pulverization, a stamp mill, a vibration mill, an attritor, etc. can be applied, but B, P, As, Sb, B of the present invention
In the case of Fe-Ni alloy powder containing 0.1 to 2% of one or more of the element group consisting of i, S, Se, and Te, it is It is possible to obtain flat powder with a target particle size and thickness within 10 hours with a yield of approximately 100%.
上記粉末を添加しない通常のF e−N i系合金粉末
では粉砕後の平均厚さを望ましい1μm以下とするのに
10時間を越えて長時間の粉砕が必要となる。In the case of ordinary Fe--Ni based alloy powder without the addition of the above-mentioned powder, it is necessary to grind for a long time exceeding 10 hours in order to obtain the desired average thickness of 1 μm or less after grinding.
以上はアトライターによる場合であって、スタンプミル
、振動ミル等、より投入エネルギーの低い粉砕機では全
体として時間因子が長時間側にシフトするが、傾向とし
ては同様である。The above is a case using an attritor, and in crushers such as stamp mills and vibration mills that require lower input energy, the time factor shifts to the longer time side as a whole, but the tendency is the same.
また、粉砕原料はアトマイズ時の凝固速度が速いほど、
粉末の結晶粒度が小さくなること、および粒界化合物相
が均一微細に晶出することから、より容易に粉砕が進行
する。In addition, the faster the solidification rate of the pulverized raw material during atomization, the
Since the crystal grain size of the powder becomes smaller and the grain boundary compound phase crystallizes uniformly and finely, pulverization progresses more easily.
したがって、アトマイズ法としては、冷却速度の高い水
アトマイズ法が最適である。さらに、水アトマイズによ
れば、噴霧媒体の水の剪断力に。Therefore, as the atomization method, the water atomization method with a high cooling rate is most suitable. Furthermore, according to water atomization, due to the shear force of the water in the atomizing medium.
って、溶湯は界面の乱れた不規則形状のまま固イするか
ら、たとえばガスアトマイズなどの球状を末に比べ形状
的により粉砕され易い。Therefore, since the molten metal remains in an irregular shape with disordered interfaces, it is more likely to be pulverized due to its shape than the spherical shape produced by gas atomization, for example.
前記機械粉砕を適当な粉砕助剤を添加した中マ行なうこ
とによって扁平化をさらに促進できる。Flattening can be further promoted by performing the mechanical crushing in a medium to which a suitable crushing aid has been added.
粉砕助剤の有効性は、たとえば特願昭61−26213
4号においてアモルファス合金フレークの場合に伊示さ
れたごとく、粉砕の進行とともに活性化さjた粉末粒子
表面に吸着して粒子の凝集を抑制し、扁平化を促進させ
る効果が、本発明のFe−Ni系合金でも認められた。The effectiveness of grinding aids is known, for example, in Japanese Patent Application No. 61-26213.
As shown in the case of amorphous alloy flakes in No. 4, the Fe of the present invention has the effect of adsorbing to the surfaces of activated powder particles as pulverization progresses, suppressing agglomeration of particles, and promoting flattening. -It was also observed in Ni-based alloys.
効果的な固体助剤としてはステアリン酸、オレイン酸、
ラウリン酸、バルミチン酸等の高級脂肪酸、ステアリン
酸亜鉛、ステアリン酸カルシウム、ラウリン酸亜鉛、ラ
ウリン酸アルミニウム等の金属石けん、ステアリルアル
コール等、高級脂肪族アルコール類、エタノールアミン
、ステアリルアミンなどの高級脂肪酸アミン、およびポ
リエチレンワックスなどで、これらは単独ばかりでなく
2種以上加えてもよい。添加量は、通常0.1〜500
重量%である。また、液体の助剤には、アルコール、グ
リコール、エステル等の有機溶剤なども使用できる。Effective solid aids include stearic acid, oleic acid,
Higher fatty acids such as lauric acid and valmitic acid, metal soaps such as zinc stearate, calcium stearate, zinc laurate and aluminum laurate, higher fatty alcohols such as stearyl alcohol, higher fatty acid amines such as ethanolamine and stearylamine, and polyethylene wax, and these may be used alone or in combination of two or more. The amount added is usually 0.1 to 500
Weight%. Moreover, organic solvents such as alcohols, glycols, and esters can also be used as liquid auxiliaries.
粉砕された粉末は、必要に応じて分級し、大きな粒子を
取り除く。大きな粒子があると、カード等の基板上への
塗布がしにくいうえ、均一な塗布ができないため、特性
が不均一になる。平均粒径として30μm以下であれば
特性上の問題はない。The crushed powder is classified as necessary to remove large particles. If there are large particles, it will be difficult to coat onto a substrate such as a card, and the coating will not be uniform, resulting in non-uniform properties. If the average particle size is 30 μm or less, there will be no problem in terms of characteristics.
また、平均厚さが2μmより大きいと、扁平方向の反磁
場係数が大きくなるため、塗布後の軟磁性が低下する。Furthermore, if the average thickness is greater than 2 μm, the demagnetizing field coefficient in the flat direction increases, resulting in a decrease in soft magnetism after coating.
次に、本願対象の扁平状微粉末が粉砕ままでは、500
A/mを越える保磁力を有していることがら、焼鈍工程
は不可欠の処理となる。Next, if the flat fine powder that is the subject of this application is left as crushed, the
Since it has a coercive force exceeding A/m, an annealing process is an essential treatment.
このように歪の大きい微粉末のFe−Ni系合金を通常
のバルク材と同じ条件で焼鈍すると、粉末粒子の凝集、
すなわち焼結現象が生じて、機械的に粉砕して得た扁平
形状が損なわれてしまうという問題が生ずる。したがっ
て焼鈍は、粉末粒子の凝集を起させずに歪を解放し、軟
磁性を引き出せるような処理法でなければならない。When this highly strained fine powder Fe-Ni alloy is annealed under the same conditions as normal bulk materials, powder particles agglomerate,
That is, a problem arises in that a sintering phenomenon occurs and the flat shape obtained by mechanical crushing is lost. Therefore, annealing must be a treatment method that releases strain without causing agglomeration of powder particles and brings out soft magnetic properties.
従来公知の方法で凝集を防ぐには、焼鈍温度を通常のバ
ルク材の場合の1100℃付近より大幅に下げざるを得
ず、焼鈍後の粉末の保磁力を400A/m以下とするこ
とは不可能であった。粉砕歪を解放して軟磁性を得るた
めに焼鈍を施すことは、前述の特開昭58−59268
号に触れられているが、上記の凝集の問題を克服して軟
磁性を高める上で具体的な知見を与えるものではない。In order to prevent agglomeration using conventionally known methods, the annealing temperature must be significantly lowered from around 1100°C for normal bulk materials, and it is impossible to reduce the coercive force of the powder to 400 A/m or less after annealing. It was possible. The method of annealing to release crushing strain and obtain soft magnetic properties is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-59268.
However, it does not provide any concrete knowledge on how to overcome the above-mentioned agglomeration problem and improve soft magnetism.
本発明者らは、凝集防止と軟磁性向上を図るために、特
定成分範囲とすることにより、軟磁性を高めることによ
り焼鈍温度の上昇を防止し得ること、粉砕後の扁平状F
e−N i系合金微粉末を流動ないし移動させながら
、非酸化性雰囲気中で高温焼鈍し、焼鈍中の扁平状合金
微粉末の凝集を抑制しつつ、粉砕後の高い保磁力を大幅
に低減できることを知見した。In order to prevent agglomeration and improve soft magnetism, the present inventors have found that by setting specific component ranges, it is possible to prevent an increase in annealing temperature by increasing soft magnetism, and that flat F after crushing can be prevented by increasing soft magnetism.
High-temperature annealing is performed in a non-oxidizing atmosphere while flowing or moving the e-Ni alloy fine powder, suppressing agglomeration of the flat alloy fine powder during annealing and significantly reducing the high coercive force after crushing. I learned that it is possible.
後者の焼鈍用設備としては、均熱帯内で粉末粒子が互い
に凝集しないように動いていればよく、機械的もしくは
非酸化性ガスにより、扁平状合金微粉末を撹拌、分散さ
せつつ、所定温度に加熱し焼鈍を施す方式−切を含む。For the latter annealing equipment, it is sufficient that the powder particles move in a soaking zone so that they do not agglomerate with each other, and the flat alloy fine powder is stirred and dispersed mechanically or with non-oxidizing gas until it reaches a predetermined temperature. A method of heating and annealing - including cutting.
たとえば、円筒もしくは溝型容器中にその幅方向に設け
られた回転撹拌翼により、上部に空間を残して充填され
た粉末を撹拌状態下で、連続加熱するものが考えられ、
第1図はこの一例である。また、第2図に示すように、
内部にかき上げ翼を備えた傾斜回転円筒内に粉末と非酸
化性ガスを向流または並流に供給する方法でも良い。粉
末はかき上げられては、カーテン状に落下しながら加熱
された非酸化性ガスとの接触を繰返し焼鈍される。第3
図は振動流動層によるもので非酸化性ガスの吹き込みと
ともに、粉末を投入して、いわゆる流動層となした上で
、さらに流動底面を機械的に斜め振動させて、流動化を
促進し、かつ振動方向に粉末を移送するものである。底
板は多孔板、スクリーンなどが用いられる。なお、各図
の例では、特にヒーターの位置をを示していないが、内
部あるいは外部加熱により均熱帯を設定する。For example, a cylindrical or groove-shaped container may be used in which powder is filled with a space at the top and continuously heated under stirring using rotating stirring blades installed in the width direction of the container.
Figure 1 is an example of this. Also, as shown in Figure 2,
A method may also be used in which the powder and the non-oxidizing gas are supplied countercurrently or cocurrently into an inclined rotating cylinder equipped with scraping blades inside. The powder is stirred up and annealed by repeated contact with heated non-oxidizing gas while falling in a curtain shape. Third
The figure shows a vibrating fluidized bed, in which non-oxidizing gas is blown in and powder is added to form a so-called fluidized bed, and the bottom of the fluidized bed is mechanically vibrated obliquely to promote fluidization. It transports powder in the direction of vibration. As the bottom plate, a perforated plate, a screen, etc. are used. In the examples in each figure, although the position of the heater is not particularly shown, the soaking zone is set by internal or external heating.
実施例1
第1表に示す各種Fe−Ni系台金溶湯を水アトマイズ
して、平均粒径30〜37μmの粉末を得た。Example 1 Various Fe--Ni base metal melts shown in Table 1 were water atomized to obtain powders with an average particle size of 30 to 37 μm.
各組成の溶製バルク材で測定された飽和磁歪定数λsを
併せて表に示しである。これら6種の水アトマイズ粉を
アトライターによって粉砕した。The table also shows the saturation magnetostriction constant λs measured for the ingot bulk material of each composition. These six kinds of water atomized powders were pulverized using an attritor.
粉砕条件は、SUJ 2綱球と水アトマイズ粉末の重量
比を3対lとし、粉砕助剤としてイソプロピルアルコー
ルを水アトマイズ粉末と同重量添加して、毎分300回
転で、10時間粉砕した。得られた粉末は平均粒径13
〜16μ閣で平均厚さ0.7〜0.9μmの扁平状で、
見掛は密度はその相当成分の真密度の3〜6%であった
。The pulverization conditions were such that the weight ratio of SUJ 2 steel balls and water atomized powder was 3:1, the same weight of isopropyl alcohol as the water atomized powder was added as a pulverization aid, and pulverization was carried out at 300 revolutions per minute for 10 hours. The obtained powder has an average particle size of 13
It is flat with a thickness of ~16 μm and an average thickness of 0.7 to 0.9 μm,
The apparent density was 3-6% of the true density of the corresponding component.
粉砕ままの粉末の保磁力Hcを測定した後、水素気流中
で焼鈍した後のHcの変化と、粉末の形状を観察した。After measuring the coercive force Hc of the as-pulverized powder, the change in Hc and the shape of the powder after annealing in a hydrogen stream were observed.
焼鈍装置は第2図の如き並流式の回転筒タイプの炉を用
いた6結果を第4図に示す。図中、○は粉砕ままの形状
を維持していたもの、・は凝集が起こっているものを示
す。FIG. 4 shows six results using a co-current rotary cylinder type annealing apparatus as shown in FIG. 2. In the figure, ○ indicates that the shape as crushed was maintained, and . indicates that agglomeration has occurred.
すなわち、飽和磁歪定数が零より偏倚する度合いが大き
いほど、粉砕ままのHcが大音く、かつ焼鈍後のHcも
大きいという傾向が認められる。凝集が始まらない範囲
で600℃の焼鈍を行なった場合、Hcが望ましい24
0A/m以下となるのは、No、3.6.5の粉末に限
られ、この場合のそれぞれの飽和磁歪定数λsは、5x
10″’ 、 3X10’ 、 lX10=である。In other words, there is a tendency that the greater the deviation of the saturation magnetostriction constant from zero, the louder the as-pulverized Hc and the greater the Hc after annealing. When annealing is performed at 600°C within a range where agglomeration does not start, Hc is desirable 24
0A/m or less is limited to powder No. 3.6.5, and in this case, the saturation magnetostriction constant λs of each is 5x
10'', 3X10', lX10=.
第 1 表
実施例2
実施例1と全く同様にNo、1〜6の組成の粉末をアト
ライターにより粉砕した後、第3図に示す、振動流動層
タイプの炉で焼鈍を行なった。実施例1の場合は、粉体
の回転移動であったが、この場合は、均一流動化状態を
生成したため、700℃でも凝集することなく、Hcが
より低減できた。すなわち、No、2.4,3,6.5
の粉末で240A/m以下のHcを得た。しかし、No
、IではHC≦400A/w、も達成できなかった。Table 1 Example 2 In exactly the same manner as in Example 1, powders having compositions No. 1 to 6 were pulverized using an attritor, and then annealed in a vibrating fluidized bed type furnace as shown in FIG. In the case of Example 1, the powder was rotated, but in this case, since a uniform fluidized state was generated, Hc could be further reduced without agglomeration even at 700°C. That is, No, 2.4, 3, 6.5
An Hc of 240 A/m or less was obtained with the powder. However, no
, I could not achieve HC≦400A/w.
この場合、それぞれの飽和磁歪定数λsは、15XIO
’ −12X10’ 、5X104.3X10’、I
X 104である。したがって、±15 X 10”
のλsであれば目標のHcが得られる。In this case, each saturation magnetostriction constant λs is 15XIO
'-12X10', 5X104.3X10', I
It is X104. Therefore, ±15 X 10”
If λs is, the target Hc can be obtained.
実施例3
第2表の実施例3の欄に示す各種Fe−Ni糸金合金溶
湯を水アトマイズし、平均粒径31〜39μmの粉末を
得た。Example 3 Various Fe--Ni thread metal alloy melts shown in the column of Example 3 in Table 2 were water atomized to obtain powders with an average particle size of 31 to 39 μm.
これら粉末を、アトライターにより粉砕し、然る後、H
2気流中で焼鈍し、保磁力Hcの低減を図った。アトラ
イター粉砕は、5UJZ鋼球と水アトマイズ粉末の重量
比を3対1とし、粉砕助剤としてエタノールを水アトマ
イズ粉末と同重量添加し、毎分300回転で粉砕した。These powders are pulverized with an attritor, and then H
It was annealed in two air currents to reduce the coercive force Hc. In the attritor pulverization, the weight ratio of 5UJZ steel balls and water atomized powder was 3:1, ethanol was added in the same weight as the water atomized powder as a pulverization aid, and the powder was pulverized at 300 revolutions per minute.
途中5時間毎にサンプリングしつつ、平均厚さが1μm
以下となった時点で粉砕を中止し、350LIlesh
で篩下し、−350meshの収率と、その平均粒径を
測定した。また露点−60℃の水素雰囲気で600℃X
Ibrの焼鈍を施して、保磁力Hcを測定した。なお
、焼鈍前後の扁平状微粉末の形状を比較し、焼鈍による
形状変化がないことを確認した。While sampling every 5 hours, the average thickness was 1 μm.
Stop grinding when it reaches 350 LIles.
The yield of -350mesh and its average particle size were measured. Also, 600℃X in a hydrogen atmosphere with a dew point of -60℃
Ibr annealing was performed, and the coercive force Hc was measured. The shape of the flat fine powder before and after annealing was compared, and it was confirmed that there was no change in shape due to annealing.
焼鈍装置は、第2図の如き内部にかき上げ翼を備えた傾
斜回転内筒タイプで、水素ガスと粉末を並流す方式の炉
を用いた。The annealing apparatus used was a tilted rotary inner cylinder type equipped with scraping blades inside as shown in Fig. 2, and a furnace in which hydrogen gas and powder were flowed in parallel.
第2表の実施例3の欄には、供試材の不可避的不純物を
除く主成分と、その溶製バルク材で測定された飽和磁歪
定数λs、平均厚さ1μ−に到達した粉砕所要時間、−
350meshの収率、−350meshでの平均粒径
、焼鈍後の扁平状微粉末の保磁力Hcを示す。The column of Example 3 in Table 2 lists the main components of the sample material excluding unavoidable impurities, the saturation magnetostriction constant λs measured in the melted bulk material, and the time required for pulverization to reach an average thickness of 1μ. ,−
The yield of 350 mesh, the average particle size at -350 mesh, and the coercive force Hc of the flat fine powder after annealing are shown.
飽和磁歪定数λsの面から見ると±15XIO”以内で
あれば、平均粒径に種々差があっても、焼鈍後のHcは
目標の240A/+u以下が得られることがわかる。し
かし、λsが26X10″&では、Hc≦400A/m
を達することができない。From the perspective of the saturation magnetostriction constant λs, it can be seen that if the saturation magnetostriction constant λs is within ±15 26X10″&, Hc≦400A/m
cannot be reached.
粉砕効率の面からは、本発明の脆い粒界化合物相を生成
するNo、14.18,19,20,21.22,25
,26,27゜28.30の組成では5本粉砕条件では
10hrで十分であること、−350■eshの収率が
75%を越えること、平均粒径が20μm以下となるこ
とがわかる。特に、λsの同じ合金で本発明組成と通常
のFe−Ni合金組成との被粉砕性における差が顕著と
なっている。From the perspective of pulverization efficiency, No. 14.18, 19, 20, 21.22, 25, which generates the brittle grain boundary compound phase of the present invention,
, 26, 27°, 28.30, 10 hr is sufficient under 5-mill grinding conditions, the yield of -350 esh exceeds 75%, and the average particle size is 20 μm or less. In particular, the difference in pulverizability between the composition of the present invention and the usual Fe--Ni alloy composition is remarkable for alloys with the same λs.
これに対し、粉砕促進元素が少量しか添加されていない
No、16.17では、粉砕時間が15時間を要する。On the other hand, in No. 16.17, in which only a small amount of the crushing promoting element was added, the crushing time was 15 hours.
また、これらの元素を含まないNo、11.13゜15
.23.29は粉砕時間−350+5eshの収率の点
でやや不満がある。In addition, No. 11.13゜15 which does not contain these elements
.. No. 23.29 is somewhat unsatisfactory in terms of yield after grinding time -350+5esh.
実施例4
実施例3と同様に、本発明のNo、18とNo、25の
組成の水アトマイズ粉末を粉砕した。粉末は、アトライ
ター粉砕の前に露点30℃の湿水素中で700℃X l
hr加熱処理した1本処理によって粉末は、手でほぐせ
る程度の団粒となった。見掛の粒径は、約300μ■で
ある。Example 4 In the same manner as in Example 3, water atomized powders having compositions No. 18 and No. 25 of the present invention were pulverized. The powder was incubated at 700°C in wet hydrogen with a dew point of 30°C before attritor milling.
After one hr heat treatment, the powder became aggregates that could be loosened by hand. The apparent particle size is approximately 300μ.
上記団粒状粉末を実施例3と同一条件で、アトライター
により粉砕したところ、第2表の実施例4の欄の結果を
得た。すなわち、該加熱処理を施さない実施例1と比較
して、同一の10hr粉砕後の一350mesb収率が
各々9%、3%上昇し、到達平均粒径が双方とも3μm
低減した。なお、焼鈍後のHcは該加熱処理をしない場
合と同一レベルの値、すなわち各々200.140A/
mであった。When the above aggregated powder was pulverized using an attritor under the same conditions as in Example 3, the results shown in the column of Example 4 in Table 2 were obtained. That is, compared to Example 1 in which the heat treatment was not performed, the yield of -350mesb after the same 10-hour grinding increased by 9% and 3%, respectively, and the average particle size reached was 3 μm in both cases.
Reduced. In addition, the Hc after annealing is the same level as that without the heat treatment, that is, 200.140 A/
It was m.
実施例5
MO+ Cu + M nを添加した多元素パーマロイ
(PCパーマロイ)のうち、特に磁気シールドの分野で
の応用が期待される高透磁率を有する組成の合金の溶湯
を水アトマイズし、平均粒径29〜35μ印の粉末を得
た。これらの粉末を実施例3と同様にアトライターによ
り粉砕し、然る後、H8気流中で焼鈍し、保磁力Hcの
低減を図った。アトライター粉砕は、5UJZ鋼球と水
アトマイズ粉末の重量比を3対1とし、粉砕助剤として
イソプロパツールを水アトマイズ粉末と同重量添加し、
毎分300回転で粉砕した。粉砕時間は、実施例3と同
様に途中5時間毎にサンプリングしつつ、平均厚さが1
μm以下となった時点で粉砕を中止し、収率、平均粒径
を測定した。また、実施例3と同様の条件で焼鈍を行な
い保磁力Hcを測定した。第2表の実施例5の欄には、
供試材の不可避的不純物を除く主成分と測定結果を示す
。Example 5 Among multi-element permalloy (PC permalloy) added with MO + Cu + Mn, a molten metal of an alloy with a composition having a high magnetic permeability that is expected to be applied in the field of magnetic shielding was water atomized to reduce the average grain size. A powder with a diameter of 29 to 35 μm was obtained. These powders were pulverized using an attritor in the same manner as in Example 3, and then annealed in an H8 air stream to reduce the coercive force Hc. Attritor pulverization is carried out by setting the weight ratio of 5UJZ steel balls and water atomized powder to 3:1, adding isopropanol as a grinding aid in the same weight as the water atomized powder,
It was pulverized at 300 revolutions per minute. The grinding time was as same as in Example 3, with sampling every 5 hours, and the average thickness was 1.
Grinding was stopped when the particle size became .mu.m or less, and the yield and average particle size were measured. Further, annealing was performed under the same conditions as in Example 3, and the coercive force Hc was measured. In the column of Example 5 in Table 2,
The main components of the sample material excluding unavoidable impurities and the measurement results are shown.
本合金組成においても、実施例3と同様、脆い粒界化合
物相を生成するNo、32.33.35では、短時間で
扁平化が進み、−350meshの収率は、約90%以
上を越え、平均粒径が20μm以下となることがわかる
。In this alloy composition, as in Example 3, in No. 32, 33, and 35, which produce brittle grain boundary compound phases, flattening progresses in a short time, and the yield of -350 mesh exceeds about 90% or more. It can be seen that the average particle size is 20 μm or less.
実施例6
第3表に示す各種軟磁性合金の溶湯を水アトマイズし、
平均粒径25〜36μmの粉末を得た。Example 6 Molten metals of various soft magnetic alloys shown in Table 3 were water atomized,
A powder with an average particle size of 25 to 36 μm was obtained.
これら粉末をアトライターにより粉砕し、然る後、H8
気流中で焼鈍し、保磁力Rcの低減を図った。アトライ
ター粉末は、5UJZ鋼球と水アトマイズ粉末の重量比
を10対1とし粉砕助剤としてイソプロピルアルコール
を鋼球と同体積添加し、毎分300回転で粉砕した。粉
砕時間は5時間で行なった。粉砕後、500meshで
篩下し、その平均粒径を測定した0粒度分布の測定は、
レーザー回折法で測定した。These powders were pulverized with an attritor, and then H8
It was annealed in an air flow to reduce the coercive force Rc. The attritor powder was pulverized at 300 revolutions per minute with the weight ratio of 5UJZ steel balls and water atomized powder being 10:1, and the same volume of isopropyl alcohol as the steel balls added as a pulverizing aid. The grinding time was 5 hours. After crushing, it was sieved with 500 mesh and the average particle size was measured.
Measured by laser diffraction method.
また露点−60℃の水素雰囲気中静止状態のままで50
0℃X IHrの焼鈍を施して、保磁力Hcを測定した
。なお、焼鈍前後の扁平状微粉末の形状を比較し、焼鈍
による形状変化がないことを確認した。In addition, if the battery is kept stationary in a hydrogen atmosphere with a dew point of -60°C,
Annealing was performed at 0° C. and IHr, and the coercive force Hc was measured. The shape of the flat fine powder before and after annealing was compared, and it was confirmed that there was no change in shape due to annealing.
次に焼鈍後の粉末をアクリル酸系とウレタン系樹脂を混
合したバインダーを2:3の割合で混合し、ポリエステ
ル基板上に12〜14μmの厚さに塗布した。塗布した
基板の、基板面方向での保磁力Hcと最大透磁率μmを
測定した。Next, the annealed powder was mixed with a binder containing acrylic acid and urethane resins in a ratio of 2:3, and the mixture was applied onto a polyester substrate to a thickness of 12 to 14 μm. The coercive force Hc and maximum magnetic permeability μm in the substrate surface direction of the coated substrate were measured.
第3表には、供試材の不可避的不純物を除く主成分と、
その溶製バルク材で測定された飽和磁歪定数λs、保磁
力Hc、最大透磁率μm、8A/(2)の磁場を印加し
た時の磁束密度B1、−500meshでの平均粒径、
焼鈍後の扁平状微粉末の保磁力Hc、ポリエステル基板
上に塗布後の基板面内方向での保磁力)1c、最大透磁
率μmを示す。Table 3 lists the main components of the sample material excluding unavoidable impurities,
The saturation magnetostriction constant λs, coercive force Hc, maximum magnetic permeability μm, magnetic flux density B1 when applying a magnetic field of 8A/(2), average grain size at -500mesh, measured in the ingot bulk material,
The coercive force Hc of the flat fine powder after annealing, the coercive force (coercive force in the in-plane direction of the substrate after coating on a polyester substrate) 1c, and the maximum magnetic permeability μm are shown.
バルク材の磁気特性と扁平状微粉末および基板に塗布し
た後の磁気特性を比較すると、扁平状微粉末および基板
に塗布した後の軟磁性特性は、かなり低下していること
がわかる。これは、扁平状微粉末としたことで、形状磁
気異方性の効果が出たこと、粉砕工程での歪が500℃
という低温焼鈍では完全に除去することが困難であるこ
とに起因する。Comparing the magnetic properties of the bulk material with the magnetic properties after being applied to the flat fine powder and the substrate, it can be seen that the soft magnetic properties after being applied to the flat fine powder and the substrate are considerably reduced. This is due to the fact that the shape magnetic anisotropy effect was achieved by creating a flat fine powder, and the strain during the crushing process was 500°C.
This is due to the fact that it is difficult to completely remove it by low-temperature annealing.
しかし、バルク材での磁気特性が扁平状微粉末および基
板に塗布した後の磁気特性に反映していることは第3表
より明らかである。すなわち、バルク材において、優れ
た軟磁性を示す本発明合金の組成は、他の組成に比べ優
れた軟磁性を扁平状微粉末および基板に塗布した後にお
いても示す。However, it is clear from Table 3 that the magnetic properties in the bulk material are reflected in the magnetic properties after being applied to the flat fine powder and the substrate. That is, the composition of the alloy of the present invention that exhibits excellent soft magnetic properties in bulk material also exhibits superior soft magnetic properties compared to other compositions even after being applied to a flat fine powder and a substrate.
第3表から、低温(500℃)での静止状態での焼鈍で
も、組成によってはHc≦240A/mの保磁力を満足
可能であること、Hc≦400A/iは、いずれも満足
することがわかる。また、No、45.46よりNi量
70〜83%の範囲外では最大透磁率μmが、バルク材
、塗布後ともやや低くなること、No、48よりCuの
量が3%より少ないと、バルク材、粉末、塗布後とも保
磁力Hcが高くなり、最大透磁率においてもやや劣化す
ること、N o、 47よりCu量が6%より多いと最
大透磁率μmが、バルク材、塗布後とも著しく低下する
ことがそれぞれわかる。また、No、49より、Mn量
が1%より少ないと最大透磁率μのがいずれも低く、か
つ保磁力も高く、またNo、50よりMn量が2%より
多いと保磁力Hcが大きく、最大透磁率μmも低く、ま
たNo、51より、Cu無添加では、μmがいずれの状
態でも低くなり、これらはこの低温焼鈍では本発明の保
磁力Hcの好ましい目標Hc≦240A/mを満足でき
ないことがわかる。しかし、Hc≦400A/mは滴足
しテいル。From Table 3, it is possible to satisfy the coercive force of Hc≦240A/m depending on the composition even when annealing in a static state at a low temperature (500°C), and that both Hc≦400A/i can be satisfied. Recognize. In addition, from No. 45.46, the maximum magnetic permeability μm is slightly lower when the Ni amount is outside the range of 70 to 83%, both in the bulk material and after coating. From No. 48, when the Cu amount is less than 3%, the bulk material No. 47 shows that the coercive force Hc becomes high regardless of the material, powder, or after coating, and the maximum magnetic permeability slightly deteriorates.No. It can be seen that each decreases. Further, from No. 49, when the Mn amount is less than 1%, the maximum magnetic permeability μ is low and the coercive force is high, and from No. 50, when the Mn amount is more than 2%, the coercive force Hc is large. The maximum magnetic permeability μm is also low, and according to No. 51, without Cu addition, μm is low in any state, and this low temperature annealing cannot satisfy the preferred target Hc≦240A/m of the coercive force Hc of the present invention. I understand that. However, if Hc≦400A/m, it is necessary to add drops.
以上より、本発明が推奨する成分範囲の扁平モ微粉末N
o、41〜44は、基板に塗布した後も、保磁力Hc、
最大透磁率μlなどの軟磁性特性において優れており、
良好な磁気シールド特性を示すこ之かわかる。From the above, flat fine powder N with the component range recommended by the present invention.
o, 41 to 44, even after coating on the substrate, the coercive force Hc,
It has excellent soft magnetic properties such as maximum permeability μl,
It can be seen that it exhibits good magnetic shielding characteristics.
校
実施例7
実施例6のNo、41と同じ水アトマイズ粉末をアトラ
イターにより粉砕した。Example 7 The same water atomized powder as No. 41 of Example 6 was pulverized with an attritor.
アトライター粉末は、SUJ Z鋼球と水アトマイズ粉
末の重量比を10対lとし粉砕助剤としてイソプロピル
アルコールを鋼球と同体積添加し、毎分300回転で粉
砕した。粉砕時間は、粉末の肉厚、平均粒径を変化させ
る目的で、1,3,5.20時間の条件で行なった。粉
砕後、350meshあるいは500meshで筒下し
、粒度分布、粉末肉厚を測定した。The attritor powder was pulverized at 300 revolutions per minute with the weight ratio of SUJ Z steel balls and water atomized powder being 10:l, and the same volume of isopropyl alcohol as the steel balls added as a pulverizing aid. The grinding time was set to 1, 3, and 5.20 hours in order to change the wall thickness and average particle size of the powder. After pulverization, the powder was crushed through 350 mesh or 500 mesh, and the particle size distribution and powder wall thickness were measured.
得られた粉末は実施例6と同様の条件で、H1中で焼鈍
した後、保磁力Hcを測定し、基板上に塗布した後、基
板面方向での保磁力Hcと最大透磁率μmを測定した。The obtained powder was annealed in H1 under the same conditions as in Example 6, then the coercive force Hc was measured, and after being coated on a substrate, the coercive force Hc and maximum magnetic permeability μm in the direction of the substrate surface were measured. did.
第4表に、アトライター粉砕の時間、−350IIes
h、500meshでの平均粒度、平均肉厚、焼鈍後の
扁平状微粉末の保磁力Hc、ポリエステル基板上に塗布
後の基板面内方向での保磁力Hc、最大透磁率μmを示
す。Table 4 shows the time of attritor crushing, -350IIes
h, average particle size at 500 mesh, average wall thickness, coercive force Hc of the flat fine powder after annealing, coercive force Hc in the in-plane direction of the substrate after coating on a polyester substrate, and maximum magnetic permeability μm.
第4表No、52より、肉厚が1μmより厚いと、扁平
方向の反磁場係数が大きいため、塗布後の保磁力Hcが
高く、最大透磁率μmも低く、また、粉末の好ましい保
磁力Hc≦240A/mも満足できなくなる傾向がある
ことがわかる。From Table 4 No. 52, when the wall thickness is thicker than 1 μm, the demagnetizing field coefficient in the flat direction is large, so the coercive force Hc after coating is high, the maximum magnetic permeability μm is also low, and the preferable coercive force Hc of the powder is It can be seen that ≦240 A/m also tends to become unsatisfactory.
平均粒径が30μmより大きいNo、54では、平均的
な磁気特性は良好であったが、基板上に均一に塗布する
ことが困難であり、塗布膜も不均一になった。No. 54, which had an average particle size larger than 30 μm, had good average magnetic properties, but it was difficult to uniformly coat the substrate, and the coated film also became non-uniform.
以上、実施例にも示したごとく、飽和磁歪定数λsが±
15 X 10′以内のFe−Ni系合金であれば、平
均粒径0.1〜30μl、平均厚さ2μm以下と著しい
扁平状微粉末であっても、焼鈍を施すことによって保磁
力Hcを400A/I11以下とすることが可能である
。また、この焼鈍の際に粉末の凝集を防ぐべく粉末を撹
拌、分散すること(流動、移動)によって、焼鈍温度を
高くすることができ、−層の効果を上げることができる
。また、成分を特定することにより、凝集を生じない低
温焼鈍でも、粉末および塗布膜での要求磁気特性を満足
することができる。As shown in the examples above, the saturation magnetostriction constant λs is ±
If it is a Fe-Ni alloy within 15 x 10', even if it is a very flat fine powder with an average particle size of 0.1 to 30 μl and an average thickness of 2 μm or less, the coercive force Hc can be increased to 400 A by annealing. /I11 or less is possible. Furthermore, by stirring and dispersing the powder (fluidization, movement) to prevent agglomeration of the powder during this annealing, the annealing temperature can be increased and the effect of the -layer can be increased. Furthermore, by specifying the components, the required magnetic properties of the powder and coating film can be satisfied even during low-temperature annealing that does not cause agglomeration.
このように本発明によれば、軟磁性の優れた扁平状微粉
末を得ることが可能で、その工業的価値が大である。As described above, according to the present invention, it is possible to obtain a flat fine powder with excellent soft magnetic properties, which has great industrial value.
また、実施例にも示したごとく、本発明の飽和磁歪定数
λsが±15 X 10′以内である組成に、B、P、
As% Sb、Bi、S、Se、Teよりなる元素群の
うち、一種以上を0.1%以上、2%以下添加したF
e−N i系合金粉末を粉砕に供することにより、平均
粒径0.1〜30μm、平均厚さ2μm以下で、かつ保
磁力Hcが400A/+以下の扁平状軟磁性微粉末を効
率的に製造することができ、その工業的価値が大である
。Furthermore, as shown in the examples, B, P,
As% F containing 0.1% or more and 2% or less of one or more of the element group consisting of Sb, Bi, S, Se, and Te.
By subjecting e-Ni alloy powder to pulverization, flat soft magnetic fine powder with an average particle size of 0.1 to 30 μm, an average thickness of 2 μm or less, and a coercive force Hc of 400 A/+ or less can be efficiently produced. It can be manufactured and has great industrial value.
第1図〜第3図は、本発明を実施するための焼鈍装置例
を示す図、第4図は本発明に関わる粉砕粉の保磁力と焼
鈍温度の関係を示した図である。
2:粉末供給口、3:ガス入口、5:粉末出口、第
図
第
図
第
図
焼
鈍
度
(0C)
第4図
手
続
補
正
書(自
発)
平成
年2.7月17
日
事
件
の
表示
平成2年
特許願
第89705号
補正をする者
補
正
の
対
象
明細書の発明の詳細な説明の欄。
補正の内容
明細書の発明の詳細な説明の欄を以下の通り補正する。
(1)明細書第4頁第4行の「厚さ2μ−以下」の記載
を「平均厚さ2μ畿以下」に訂正する。
(2)明細書第6頁第18行の「具体的が見出せず、」
の記載を「具体例が見出せず、」に訂正する。
(4)明細書第18頁第9行の「望ましい1μm以下と
するのに」の記載を「望ましい2μm以下とするのに」
に訂正する。
(5)明細書第30頁第8行の「インプロパツールJの
記載を[イソプロピルアルコール」に訂正する。
(6)明細書第35頁の第3表を添付第3表と差し替え
る。
以上1 to 3 are diagrams showing an example of an annealing apparatus for carrying out the present invention, and FIG. 4 is a diagram showing the relationship between coercive force and annealing temperature of pulverized powder related to the present invention. 2: Powder supply port, 3: Gas inlet, 5: Powder outlet, Figure Annealing degree (0C) Figure 4 Procedural amendment (voluntary) February 1998. Display of the July 17 incident, 1990. Patent Application No. 89705: Detailed description of the invention of the specification to be amended by the person making the amendment. Contents of the Amendment The Detailed Description of the Invention column of the specification is amended as follows. (1) The statement "thickness 2μ or less" on page 4, line 4 of the specification is corrected to "average thickness 2μ or less." (2) “No specifics found” on page 6, line 18 of the specification
The statement in the following is corrected to "No specific example found." (4) On page 18, line 9 of the specification, the statement "desirably 1 μm or less" should be changed to "desirably 2 μm or less"
Correct. (5) The description of "Improper Tool J" on page 30, line 8 of the specification is corrected to [isopropyl alcohol]. (6) Replace Table 3 on page 35 of the specification with the attached Table 3. that's all
Claims (1)
10^−^5以内である組成を有し、平均粒径0.1〜
30μm、平均厚さ2μm以下であり、保磁力Hcが4
00A/m以下であることを特徴とする扁平状Fe−N
i系合金微粉末。 2 Ni70〜83%、Mo2〜6%、Cu3〜6%、
Mn1〜2%、C0.05%以下、残部が鉄および付随
的不純物よりなることを特徴とする請求項1に記載の扁
平状Fe−Ni系合金微粉末。 3 バルク材で測定される飽和磁歪定数λsが±15×
10^−^5以内である組成を有する原料を粉砕によっ
て、平均粒径0.1〜30μm、平均厚さ2μm以下と
なし、然る後非酸化性雰囲気中でほぼ上記の扁平微粉末
状を維持しつつ焼鈍を施して、粉末の保磁力Hcを40
0A/m以下とすることを特徴とする扁平状Fe−Ni
系合金微粉末の製造方法。 4 粉砕される原料は、バルク材で測定される飽和磁歪
定数λsが±15×10^−^5以内で、B、P、As
、Sb、Bi、S、Se、Teよりなる元素群のうち、
一種または二種以上を0.1%以上、2%以下含むもの
であることを特徴とする扁平状Fe−Ni系合金微粉末
の製造方法。 5 粉砕に先立ち、粉砕に供する原料粉末に抑制された
酸素ポテンシャルを有する雰囲気下で、加熱処理を施す
ことを特徴とする請求項4に記載の扁平状Fe−Ni系
合金微粉末の製造方法。 6 焼鈍は、粉末を流動ないし移動させつつ行なうもの
であることを特徴とする請求項3,4または5に記載の
扁平状Fe−Ni系合金微粉末の製造方法。 7 粉砕される原料は、合金溶湯を水アトマイズ法によ
って噴霧して得られた不規則形状の合金粉末であること
を特徴とする請求項3,4,5または6に記載の扁平状
Fe−Ni系合金微粉末の製造方法。 8 機械的粉砕は粉砕助剤との共存下で行なうことを特
徴とする請求項3,4,5,6または7に記載の扁平状
Fe−Ni系合金微粉末の製造方法。[Claims] 1. The saturation magnetostriction constant λs measured in bulk material is ±15×
It has a composition within 10^-^5 and an average particle size of 0.1~
30 μm, average thickness is 2 μm or less, and coercive force Hc is 4
00A/m or less flat Fe-N
I-based alloy fine powder. 2 Ni70-83%, Mo2-6%, Cu3-6%,
2. The flat Fe-Ni alloy fine powder according to claim 1, characterized in that Mn is 1 to 2%, C is 0.05% or less, and the balance is iron and incidental impurities. 3 Saturation magnetostriction constant λs measured in bulk material is ±15×
A raw material having a composition within 10^-^5 is pulverized into an average particle size of 0.1 to 30 µm and an average thickness of 2 µm or less, and then crushed into approximately the above flat fine powder form in a non-oxidizing atmosphere. Annealing is performed while maintaining the coercive force Hc of the powder to 40
Flat-shaped Fe-Ni characterized by being 0A/m or less
A method for producing alloy fine powder. 4 The raw material to be crushed has a saturation magnetostriction constant λs measured as a bulk material within ±15×10^-^5, and contains B, P, and As.
, Sb, Bi, S, Se, Te,
1. A method for producing a flat Fe--Ni alloy fine powder, characterized in that it contains one or more kinds in an amount of 0.1% or more and 2% or less. 5. The method for producing a flat Fe-Ni alloy fine powder according to claim 4, characterized in that, prior to pulverization, the raw material powder to be pulverized is subjected to heat treatment in an atmosphere having a suppressed oxygen potential. 6. The method for producing flat Fe-Ni alloy fine powder according to claim 3, 4 or 5, wherein the annealing is performed while the powder is fluidized or moved. 7. The flat Fe-Ni according to claim 3, 4, 5 or 6, wherein the raw material to be crushed is an irregularly shaped alloy powder obtained by spraying a molten alloy by a water atomization method. A method for producing alloy fine powder. 8. The method for producing a flat Fe-Ni alloy fine powder according to claim 3, 4, 5, 6 or 7, characterized in that the mechanical crushing is carried out in the coexistence of a crushing aid.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08970590A JP3184201B2 (en) | 1989-04-26 | 1990-04-04 | Flat Fe-Ni-based alloy fine powder and method for producing the same |
US07/619,448 US5135586A (en) | 1989-12-12 | 1990-11-29 | Fe-Ni alloy fine powder of flat shape |
US08/019,657 US5352268A (en) | 1989-12-12 | 1993-02-19 | Fe-Ni alloy fine powder of flat shape |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10651489 | 1989-04-26 | ||
JP11039989 | 1989-04-28 | ||
JP1-110399 | 1989-12-12 | ||
JP1-322365 | 1989-12-12 | ||
JP32236589 | 1989-12-12 | ||
JP1-106514 | 1989-12-12 | ||
JP08970590A JP3184201B2 (en) | 1989-04-26 | 1990-04-04 | Flat Fe-Ni-based alloy fine powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03223401A true JPH03223401A (en) | 1991-10-02 |
JP3184201B2 JP3184201B2 (en) | 2001-07-09 |
Family
ID=27467660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08970590A Expired - Fee Related JP3184201B2 (en) | 1989-04-26 | 1990-04-04 | Flat Fe-Ni-based alloy fine powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3184201B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257722A (en) * | 2002-03-06 | 2003-09-12 | Daido Steel Co Ltd | Soft magnetic powder and dust core using it |
JP2008181905A (en) * | 2007-01-23 | 2008-08-07 | Tohoku Univ | Composite magnetic body, manufacturing method thereof, circuit board using composite magnetic body, and electronic equipment using composite magnetic body |
JP2008263098A (en) * | 2007-04-13 | 2008-10-30 | Tohoku Univ | Compound magnetic body, circuit substrate using the same, and electronic equipment using the same |
JP2008311255A (en) * | 2007-06-12 | 2008-12-25 | Tohoku Univ | Compound magnetic substance and its manufacturing method |
US7575645B2 (en) | 2003-08-05 | 2009-08-18 | Mitsubishi Materials Corporation | Fe-Ni-Mo soft magnetic flaky powder and magnetic composite material containing soft magnetic powder |
WO2012153544A1 (en) * | 2011-05-12 | 2012-11-15 | 中電レアアース株式会社 | Alloy piece production device and production method for raw material alloy piece for rare earth magnet, using same |
KR20130083408A (en) | 2012-01-12 | 2013-07-22 | 가부시키가이샤 고베 세이코쇼 | Iron-based soft magnetic powder and production method thereof |
CN115074579A (en) * | 2022-07-25 | 2022-09-20 | 西安钢研功能材料股份有限公司 | Cryogenic low-temperature permalloy and preparation method of strip thereof |
-
1990
- 1990-04-04 JP JP08970590A patent/JP3184201B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257722A (en) * | 2002-03-06 | 2003-09-12 | Daido Steel Co Ltd | Soft magnetic powder and dust core using it |
US7575645B2 (en) | 2003-08-05 | 2009-08-18 | Mitsubishi Materials Corporation | Fe-Ni-Mo soft magnetic flaky powder and magnetic composite material containing soft magnetic powder |
JP2008181905A (en) * | 2007-01-23 | 2008-08-07 | Tohoku Univ | Composite magnetic body, manufacturing method thereof, circuit board using composite magnetic body, and electronic equipment using composite magnetic body |
JP2008263098A (en) * | 2007-04-13 | 2008-10-30 | Tohoku Univ | Compound magnetic body, circuit substrate using the same, and electronic equipment using the same |
JP2008311255A (en) * | 2007-06-12 | 2008-12-25 | Tohoku Univ | Compound magnetic substance and its manufacturing method |
WO2012153544A1 (en) * | 2011-05-12 | 2012-11-15 | 中電レアアース株式会社 | Alloy piece production device and production method for raw material alloy piece for rare earth magnet, using same |
US10022793B2 (en) | 2011-05-12 | 2018-07-17 | Santoku Corporation | Alloy flake production apparatus and production method for raw material alloy flakes for rare earth magnet using the apparatus |
KR20130083408A (en) | 2012-01-12 | 2013-07-22 | 가부시키가이샤 고베 세이코쇼 | Iron-based soft magnetic powder and production method thereof |
US9589712B2 (en) | 2012-01-12 | 2017-03-07 | Kobe Steel, Ltd. | Iron-based soft magnetic powder and production method thereof |
CN115074579A (en) * | 2022-07-25 | 2022-09-20 | 西安钢研功能材料股份有限公司 | Cryogenic low-temperature permalloy and preparation method of strip thereof |
CN115074579B (en) * | 2022-07-25 | 2023-11-14 | 西安钢研功能材料股份有限公司 | Preparation method of cryogenic low Wen Pomo soft magnetic alloy and strip thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3184201B2 (en) | 2001-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders | |
DE69431096T2 (en) | Manufacture of a permanent magnet | |
Mishra et al. | Design and development of Co35Cr5Fe20− xNi20+ xTi20 High Entropy Alloy with excellent magnetic softness | |
JP2702757B2 (en) | Flat Fe-based soft magnetic alloy fine powder and method for producing the same | |
Loudjani et al. | Phase formation and magnetic properties of nanocrytalline Ni70Co30 alloy prepared by mechanical alloying | |
JPH03223401A (en) | Flaky fe-ni series alloy fine powder and manufacture thereof | |
TW201917225A (en) | Fe-based alloy, crystalline fe-based alloy atomized powder, and magnetic core | |
JP2002249802A (en) | Amorphous soft magnetic alloy compact, and dust core using it | |
Şimşek et al. | A comparison of magnetic, structural and thermal properties of NiFeCoMo high entropy alloy produced by sequential mechanical alloying versus the alloy produced by conventional mechanical alloying | |
US5135586A (en) | Fe-Ni alloy fine powder of flat shape | |
TWI820323B (en) | Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core and method for manufacturing nanocrystalline alloy dust core | |
US5352268A (en) | Fe-Ni alloy fine powder of flat shape | |
JPH01294801A (en) | Production of flat fine fe-ni alloy powder | |
Sharma et al. | Structural ordering at magnetic seeds with twins at boundaries of a core–shell alloy Mn60Bi40 and tailored magnetic properties | |
JPH05335129A (en) | Fe-based soft magnetic alloy particle and manufacturing method thereof | |
JP2816362B2 (en) | Powder for magnetic shielding, magnetic shielding material and powder manufacturing method | |
JPH11260616A (en) | Manufacture of soft magnetic material foil | |
JP2735615B2 (en) | Flat Fe-Ni-based alloy fine powder and method for producing the same | |
JPH01294802A (en) | Production of flat fine fe-ni-al alloy powder | |
JP3474684B2 (en) | High performance R-Fe-BC system magnet material with excellent corrosion resistance | |
JP2574174B2 (en) | Amorphous alloy soft magnetic powder and magnetic shielding material | |
KR100549041B1 (en) | The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of | |
JP4282002B2 (en) | Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet | |
JPH0413801A (en) | Manufacture of high flattened powder | |
KR20050111457A (en) | The fe-based nano-alloy powders and the method there of |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |