JP6578971B2 - Manufacturing method of iron-based alloy fine powder containing rare earth element, iron-based alloy fine powder containing rare earth element - Google Patents

Manufacturing method of iron-based alloy fine powder containing rare earth element, iron-based alloy fine powder containing rare earth element Download PDF

Info

Publication number
JP6578971B2
JP6578971B2 JP2016018170A JP2016018170A JP6578971B2 JP 6578971 B2 JP6578971 B2 JP 6578971B2 JP 2016018170 A JP2016018170 A JP 2016018170A JP 2016018170 A JP2016018170 A JP 2016018170A JP 6578971 B2 JP6578971 B2 JP 6578971B2
Authority
JP
Japan
Prior art keywords
fine powder
iron
rare earth
alloy fine
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016018170A
Other languages
Japanese (ja)
Other versions
JP2017043832A (en
Inventor
石川 尚
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2017043832A publication Critical patent/JP2017043832A/en
Application granted granted Critical
Publication of JP6578971B2 publication Critical patent/JP6578971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、安定的に高い保磁力を有し、優れた耐候性を示す、希土類元素を含む鉄系合金微粉末の製造方法、及びその製造方法により得られる、希土類元素を含む鉄系合金微粉末に関する。   The present invention relates to a method for producing an iron-based alloy fine powder containing a rare earth element having a stable and high coercive force and excellent weather resistance, and an iron-based alloy fine powder containing a rare earth element obtained by the production method. Relates to powder.

従来から、フェライト磁石、アルニコ磁石、希土類磁石等が、モータをはじめとする種々の用途に用いられている。しかしながら、これらの磁石は、主に焼結法により製造されるために、一般に脆く、薄肉のものや複雑な形状のものを得ることが難しいという欠点を有している。またそれに加え、焼結時における収縮が15%〜20%と大きいために、寸法精度の高いものが得られず、精度を上げるには研磨等の後加工が必要であるという欠点も有している。   Conventionally, ferrite magnets, alnico magnets, rare earth magnets, and the like have been used for various applications including motors. However, since these magnets are mainly manufactured by a sintering method, they are generally brittle and have a drawback that it is difficult to obtain a thin or complicated shape. In addition, since the shrinkage during sintering is as large as 15% to 20%, a product with high dimensional accuracy cannot be obtained, and there is a disadvantage that post-processing such as polishing is necessary to increase the accuracy. Yes.

ボンド磁石は、これら焼結法の欠点を解決するとともに、新しい用途を開拓するために近年になって開発されたものである。このボンド磁石は、通常、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性樹脂をバインダーとして、これに磁性粉末を充填することにより製造される。   Bond magnets have been developed in recent years to solve the disadvantages of these sintering methods and to develop new applications. This bonded magnet is usually manufactured by filling a magnetic powder into a thermoplastic resin such as polyamide resin or polyphenylene sulfide resin as a binder.

しかしながら、こうしたボンド磁石の中でも、特に、希土類−鉄−窒素系磁性粉末のような、希土類元素を含む鉄系合金微粉末を用いたボンド磁石では、高温多湿雰囲気下での錆の発生や磁気特性の低下を起こし易い。そのため、例えば、成形体表面に熱硬化性樹脂等のコーティング膜を形成することで発錆を抑制したり、また成形体表面に燐酸塩含有塗料による被覆処理を施したりすることで発錆を抑制している(特許文献1参照)。ところが、成形体を構成する磁性粉末を被覆するわけではないため、発錆や、保磁力等の磁気特性の点で十分に満足できるものではない。   However, among these bonded magnets, in particular, in bonded magnets using iron-based alloy fine powders containing rare earth elements, such as rare earth-iron-nitrogen based magnetic powders, the occurrence of rust and magnetic properties in a high-temperature and high-humidity atmosphere. It is easy to cause the fall of. Therefore, for example, rusting is suppressed by forming a coating film such as a thermosetting resin on the surface of the molded body, or rusting is suppressed by coating the surface of the molded body with a phosphate-containing paint. (See Patent Document 1). However, since the magnetic powder constituting the compact is not coated, it is not satisfactory in terms of magnetic properties such as rusting and coercive force.

このような問題点に対して、希土類元素を含む鉄系合金粉末を粉砕する際に燐酸を添加することにより、粉砕と同時に燐酸による処理を受けるようにして、個々の磁石粉表面が燐酸との反応によって形成された皮膜によって保護し、耐候性を向上させた希土類−鉄−窒素系磁石粉の製造方法が提案されている(特許文献2参照)。しかしながら、この方法では、磁石粉の磁気特性、特に保磁力や、耐候性が製造ロット間でばらつくことがある。そのため、燐酸化合物による皮膜形成と乾燥処理を最適化して、耐候性に影響するリン、酸素、水素の組成を所定の範囲にコントロールすることで、ばらつきを低減する方法が提案されている(特許文献3参照)。   In order to solve such problems, by adding phosphoric acid when pulverizing the iron-based alloy powder containing rare earth elements, the surface of each magnet powder and phosphoric acid is treated with phosphoric acid simultaneously with the pulverization. There has been proposed a method for producing rare earth-iron-nitrogen based magnet powder which is protected by a film formed by reaction and has improved weather resistance (see Patent Document 2). However, with this method, the magnetic properties of the magnet powder, particularly the coercive force and weather resistance, may vary between production lots. For this reason, a method for reducing variation by optimizing film formation and drying treatment with a phosphoric acid compound and controlling the composition of phosphorus, oxygen, and hydrogen that affect weather resistance within a predetermined range has been proposed (Patent Literature). 3).

こうした状況下、近年では、二輪車や自動車用小型モータ等に用いられるボンド磁石において、機器の信頼性の要請から磁気特性が安定であるものが要求されている。しかしながら、従来の希土類元素を含む鉄系合金微粉末から得られるボンド磁石の磁気特性は、これらの用途に使用するには不十分であり、保磁力や耐候性のばらつきをさらに低減させることが望まれている。   Under these circumstances, in recent years, bond magnets used for motorcycles, small motors for automobiles, and the like have been required to have stable magnetic characteristics due to the requirement of device reliability. However, the magnetic properties of conventional bonded magnets obtained from iron-based alloy fine powders containing rare earth elements are insufficient for use in these applications, and it is hoped to further reduce variations in coercive force and weather resistance. It is rare.

特開2000−208321号公報JP 2000-208321 A 特開2002−124406号公報JP 2002-124406 A 特開2004−111515号公報JP 2004-111515 A

本発明は、上述した従来技術の問題点に鑑みて提案されたものであり、保磁力や耐候性のばらつきが低減され、安定して高い保磁力と優れた耐候性を示す、希土類元素を含む鉄系合金微粉末を製造する方法、及びその希土類元素を含む鉄系合金微粉末を提供する。   The present invention has been proposed in view of the above-described problems of the prior art, and includes a rare earth element that exhibits reduced high coercivity and excellent weather resistance with reduced variations in coercive force and weather resistance. A method for producing an iron-based alloy fine powder and an iron-based alloy fine powder containing the rare earth element are provided.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、希土類−鉄−窒素系合金微粉末において、その保磁力や耐候性のばらつきを生じさせている原因が、不可避不純物である水素にあることを見出した。そして、有機溶剤を含む溶媒中で原料とする合金粉末を粉砕するに際して、粉砕で生じた微粉末の新生破面が直ちに処理されるように燐酸を添加し、加熱処理する希土類元素を含む鉄系合金微粉末の製造方法において、表面に燐酸塩皮膜が形成された合金微粉末に対して、特定の酸素分圧の酸素を含む雰囲気中で、所定の温度で加熱処理を施すことにより、得られる合金微粉末の水素含有量を効果的に低減させて、安定的に、高い保磁力と優れた耐候性を示すものになることを見出し、本発明を完成させた。すなわち、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies in order to solve the above-described problems. As a result, it has been found that in the rare earth-iron-nitrogen alloy fine powder, hydrogen, which is an inevitable impurity, causes the variation in coercive force and weather resistance. And when pulverizing the alloy powder as a raw material in a solvent containing an organic solvent, phosphoric acid is added so that the newly fractured surface of the fine powder generated by pulverization is immediately treated, and the iron system containing a rare earth element to be heat-treated In the method for producing a fine alloy powder, the fine alloy powder having a phosphate film formed on the surface thereof is obtained by subjecting the fine alloy powder to a heat treatment at a predetermined temperature in an atmosphere containing oxygen at a specific oxygen partial pressure. The present inventors have found that the hydrogen content of the alloy fine powder is effectively reduced to stably exhibit high coercive force and excellent weather resistance, and the present invention has been completed. That is, the present invention provides the following.

(1)本発明の第1の発明は、有機溶剤を含む溶媒中で希土類元素を含む鉄系合金粉末を粉砕するとともに、該粉砕に際して燐酸化合物を添加し、表面が燐酸塩皮膜で被覆された微粉末を得る第1の工程と、得られた微粉末に対して所定の温度で加熱処理を施す第2の工程と、を有し、第2の工程では、得られる鉄系合金微粉末の水素含有量が0.2質量%以下となるように、分圧0.1kPa以上5.0kPa以下の酸素を含む雰囲気中で、100℃以上300℃以下の温度条件で加熱処理する希土類元素を含む鉄系合金微粉末の製造方法である。   (1) In the first invention of the present invention, an iron-based alloy powder containing a rare earth element is pulverized in a solvent containing an organic solvent, a phosphoric acid compound is added during the pulverization, and the surface is coated with a phosphate film. A first step of obtaining a fine powder and a second step of subjecting the obtained fine powder to a heat treatment at a predetermined temperature. In the second step, the obtained iron-based alloy fine powder is obtained. Contains a rare earth element that is heat-treated at a temperature of 100 ° C. to 300 ° C. in an atmosphere containing oxygen having a partial pressure of 0.1 kPa to 5.0 kPa so that the hydrogen content is 0.2 mass% or less. It is a manufacturing method of iron-based alloy fine powder.

(2)本発明の第2の発明は、第1の発明において、0.5時間以上20時間以下の条件で加熱処理する、希土類元素を含む鉄系合金微粉末の製造方法である。   (2) A second invention of the present invention is a method for producing an iron-based alloy fine powder containing a rare earth element, which is heat-treated in the first invention under the conditions of 0.5 hours or more and 20 hours or less.

(3)本発明の第3の発明は、第1又は第2の発明において、前記第1の工程では、粉砕前又は粉砕中に、前記溶媒に前記燐酸化合物を添加する、希土類元素を含む鉄系合金微粉末の製造方法である。   (3) According to a third aspect of the present invention, in the first or second aspect, in the first step, the phosphoric acid compound is added to the solvent before or during pulverization, and the iron containing a rare earth element is added. It is a manufacturing method of a system alloy fine powder.

(4)本発明の第4の発明は、燐酸塩皮膜で被覆された希土類元素を含む鉄系合金微粉末であって、水素含有量(H)がリン含有量(P)の1/10以下であり、酸素含有量(O)とリン含有量(P)の比であるO/Pが5以下である希土類元素を含む鉄系合金微粉末である。   (4) A fourth invention of the present invention is an iron-based alloy fine powder containing a rare earth element coated with a phosphate film, wherein the hydrogen content (H) is 1/10 or less of the phosphorus content (P). And an iron-based alloy fine powder containing a rare earth element in which O / P, which is the ratio of oxygen content (O) to phosphorus content (P), is 5 or less.

(5)本発明の第5の発明は、第4の発明において、X線回折における、ThZn17型では(113)回折線、ThNi17型では(112)回折線、TbCu型では(002)回折線の半値幅Bが、平均粒径D50(μm)から得られる0.25/D50の値よりも小さい、希土類元素を含む鉄系合金微粉末である。 (5) According to a fifth aspect of the present invention, in the fourth aspect, in the X-ray diffraction, the Th 2 Zn 17 type has a (113) diffraction line, the Th 2 Ni 17 type has a (112) diffraction line, and a TbCu 7 type. Then, it is an iron-based alloy fine powder containing a rare earth element, in which the half-width B of the (002) diffraction line is smaller than the value of 0.25 / D50 obtained from the average particle diameter D50 (μm).

本発明によれば、保磁力や耐候性のばらつきが低減されて、安定して高い保磁力と優れた耐候性を示す、希土類元素を含む鉄系合金微粉末を効率的に製造することができる。   According to the present invention, it is possible to efficiently produce an iron-based alloy fine powder containing a rare earth element, which shows a stable high coercive force and excellent weather resistance, with reduced variations in coercive force and weather resistance. .

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。   Hereinafter, a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention. In this specification, the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.

≪1.希土類元素を含む鉄系合金微粉末≫
本実施の形態に係る希土類元素を含む鉄系合金微粉末は、希土類−遷移金属−窒素系磁性粉末(以下、「合金粉末」ともいう)の粉砕物であって、その表面が燐酸塩皮膜で被覆されており、特定の元素組成を持つものである。
<< 1. Ferrous alloy fine powder containing rare earth elements >>
The iron-based alloy fine powder containing a rare earth element according to the present embodiment is a pulverized product of a rare earth-transition metal-nitrogen based magnetic powder (hereinafter also referred to as “alloy powder”), and the surface thereof is a phosphate film. It is coated and has a specific elemental composition.

(1)合金粉末
燐酸塩皮膜で被覆される前の合金粉末は、ThZn17型、ThNi17型、又はTbCu型結晶構造を持つ。これらは、菱面体晶系、六方晶系の結晶構造を持つ金属間化合物であり、ThZn17型の合金粉末としては、例えば、SmFe17合金、NdFe17等が挙げられる。また、ThNi17型の合金粉末としては、例えば、GdFe17等が挙げられる。また、TbCu型の合金粉末としては、例えば、(Sm、Zr)(Fe、Co)10等が挙げられる。
(1) Alloy powder The alloy powder before being coated with the phosphate coating has a Th 2 Zn 17 type, Th 2 Ni 17 type, or TbCu 7 type crystal structure. These are intermetallic compounds having rhombohedral and hexagonal crystal structures. Examples of the Th 2 Zn 17 type alloy powder include Sm 2 Fe 17 N 3 alloy and Nd 2 Fe 17 N 3. Is mentioned. Examples of the Th 2 Ni 17 type alloy powder include Gd 2 Fe 17 N 3 and the like. Examples of the TbCu 7 type alloy powder include (Sm, Zr) (Fe, Co) 10 N x and the like.

希土類元素(R)としては、Sm、Nd、Pr、Y、La、Ce、Gd等が挙げられ、これらは単独でも、混合物でもよいが、その中でもSmが特に有効である。また、遷移金属元素(T)としては、鉄(Fe)が必須成分であり、この一部がCoで置換されたものであってもよい。具体的に、Feの20質量%以下の割合をCoで置換することにより、微粉末のキュリー温度や耐食性を向上させることができる。なお、以下では、Feが遷移金属として必須成分であることを踏まえ、「希土類−鉄−窒素系磁性粉末」と表記する。   Examples of the rare earth element (R) include Sm, Nd, Pr, Y, La, Ce, and Gd. These may be used alone or as a mixture. Among them, Sm is particularly effective. Further, as the transition metal element (T), iron (Fe) is an essential component, and a part thereof may be substituted with Co. Specifically, the Curie temperature and corrosion resistance of the fine powder can be improved by substituting 20% by mass or less of Fe with Co. In the following, it is expressed as “rare earth-iron-nitrogen based magnetic powder” in view of the fact that Fe is an essential component as a transition metal.

合金粉末には、C、Al、Si、Ca、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Re、Os、Ir、Pt、又はAuを含有することができる。これらの中には、遷移金属以外の元素も含まれているが、本実施の形態に係る鉄系合金微粉末では、それら全てを遷移金属元素(T)に準じて扱うものとする。合金粉末において、これら成分を3質量%以下、好ましくは0.05質量%〜0.5質量%の割合で添加することにより、この合金粉末の粉砕物である微粉末を用いて作製したボンド磁石の耐候性や耐熱性をさらに高めることができる。   Alloy powders include C, Al, Si, Ca, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Re, and Os. , Ir, Pt, or Au. These include elements other than transition metals, but the iron-based alloy fine powder according to the present embodiment handles all of them in accordance with the transition metal element (T). In the alloy powder, these components are added at a ratio of 3% by mass or less, preferably 0.05% by mass to 0.5% by mass, so that a bonded magnet produced by using a fine powder which is a pulverized product of the alloy powder. Can further improve the weather resistance and heat resistance.

これらの合金粉末は、例えば、還元拡散法や液体急冷法、HDDR(Hydrogenation Decomposition Desorption Recombination)法によって得られた希土類−鉄系合金粉末を、窒化熱処理することによって製造することができる。   These alloy powders can be produced, for example, by subjecting a rare earth-iron alloy powder obtained by a reduction diffusion method, a liquid quenching method, or an HDDR (Hydrogen Deposition Decomposition Recombination) method to a nitriding heat treatment.

(2)希土類元素を含む鉄系合金微粉末
本実施の形態に係る希土類元素を含む鉄系合金微粉末(以下、単に「鉄系合金微粉末」又は「合金微粉末」ともいう)は、上述した希土類−鉄−窒素系磁性粉末を粉砕し、その表面に燐酸塩皮膜を形成したものであって、この燐酸塩皮膜を含んだ磁性粉末全体を構成する各成分が特定の組成を有している。
(2) Iron-based alloy fine powder containing rare earth elements The iron-based alloy fine powder containing rare earth elements according to the present embodiment (hereinafter also simply referred to as “iron-based alloy fine powder” or “alloy fine powder”) The rare earth-iron-nitrogen based magnetic powder is pulverized to form a phosphate film on its surface, and each component constituting the entire magnetic powder including the phosphate film has a specific composition. Yes.

(平均粒径)
鉄系合金微粉末の平均粒径としては、例えば、1μm〜10μm程度である。
(Average particle size)
The average particle size of the iron-based alloy fine powder is, for example, about 1 μm to 10 μm.

(鉄系合金微粉末の組成)
希土類元素を含む鉄系合金微粉末の構成成分としては、合金粉末の成分である希土類元素(R)と、鉄を含む遷移金属元素(T)と、窒素(N)と、燐酸塩皮膜の成分であるリン(P)と、酸素(O)とを含む。そして、この鉄系合金微粉末では、製造過程において不可避的に混入する不純物として水素(H)があり、上述した元素の他に水素を含む。なお、上述したように、合金粉末の成分としてCo等の添加元素、燐酸塩皮膜の成分としてZn、Cu、Mn等の遷移金属元素(T)がさらに含まれていてもよい。
(Composition of iron alloy fine powder)
Components of the iron-based alloy fine powder containing rare earth elements include rare earth elements (R) which are components of alloy powder, transition metal elements (T) containing iron, nitrogen (N), and components of the phosphate film. And phosphorus (P) and oxygen (O). In this iron-based alloy fine powder, there is hydrogen (H) as an impurity inevitably mixed in the manufacturing process, and it contains hydrogen in addition to the elements described above. As described above, an additive element such as Co may be further included as a component of the alloy powder, and a transition metal element (T) such as Zn, Cu, or Mn may be further included as a component of the phosphate film.

これら各成分は、例えば、鉄系合金微粉末中に、Rが20質量%〜25質量%、Nが2.1質量%〜5.7質量%、Pが0.10質量%〜2.0質量%、Oが0.3質量%〜6.0質量%、残部がTという元素組成を有している。そして、本実施の形態に係る希土類元素を含む鉄系合金微粉末においては、上述したように不可避的不純物としてのHの含有量がPの含有量の1/10以下に低減されていることを特徴としている。   These components are, for example, in an iron-based alloy fine powder, R is 20% by mass to 25% by mass, N is 2.1% by mass to 5.7% by mass, and P is 0.10% by mass to 2.0%. It has an elemental composition of mass%, O being 0.3 mass% to 6.0 mass%, and the balance being T. And in the iron-based alloy fine powder containing rare earth elements according to the present embodiment, as described above, the H content as an inevitable impurity is reduced to 1/10 or less of the P content. It is a feature.

具体的に、Rの含有量に関して、20質量%未満であると微粉末の残留磁化と保磁力が低下する可能性があり、25質量%を超えると残留磁化と耐候性が低下する可能性がある。また、Nの含有量に関して、2.1質量%未満であるか5.7質量%を超えると、微粉末の残留磁化と保磁力が低下する可能性がある。また、燐酸塩皮膜の成分であるPの含有量に関しては、微粉末の形状や粒度分布(すなわち比表面積)に依存するものではあるが、0.1質量%未満であると微粉末の耐候性や耐熱性が劣る可能性があり、2.0質量%を超えるとその残留磁化が低下する可能性がある。   Specifically, regarding the content of R, if it is less than 20% by mass, the residual magnetization and coercive force of the fine powder may be reduced, and if it exceeds 25% by mass, the residual magnetization and weather resistance may be reduced. is there. Further, if the N content is less than 2.1% by mass or exceeds 5.7% by mass, the residual magnetization and coercive force of the fine powder may be reduced. The content of P, which is a component of the phosphate film, depends on the shape and particle size distribution (that is, the specific surface area) of the fine powder, but if it is less than 0.1% by mass, the weather resistance of the fine powder And the heat resistance may be inferior, and if it exceeds 2.0% by mass, the residual magnetization may be lowered.

また、Oの含有量に関しても、微粉末の比表面積に依存するものではあるが、0.3質量%未満では微粉末表面の燐酸塩皮膜が十分に形成されていないため、耐候性や耐熱性が劣るのに加えて、表面活性が高いため大気中で取り扱ったとき発火のおそれがある。一方で、6.0質量%を超えると残留磁化が低下する可能性がある。   Further, the content of O also depends on the specific surface area of the fine powder, but if it is less than 0.3% by mass, a phosphate film on the surface of the fine powder is not sufficiently formed. In addition to being inferior, there is a risk of ignition when handled in air due to its high surface activity. On the other hand, if it exceeds 6.0% by mass, the residual magnetization may be lowered.

なお、残部は微粉末の主成分である遷移金属元素(T)である。燐酸塩皮膜の成分としては、Zn、Cu、Mn等がさらに含まれてもよく、このようなことから、遷移金属元素(T)としては、Feの他に、Co、Zn、Cu、及びMnから選択される1種以上が含まれるものが好適といえる。   The balance is the transition metal element (T) which is the main component of the fine powder. As a component of the phosphate film, Zn, Cu, Mn and the like may further be included. Therefore, as the transition metal element (T), in addition to Fe, Co, Zn, Cu, and Mn One containing at least one selected from the above can be said to be suitable.

そして、本実施の形態に係る希土類元素を含む鉄系合金微粉末においては、不可避的に混入する水素(H)の含有量がPの含有量の1/10以下であり、好ましくは1/20以下である。燐酸塩皮膜に起因するP含有量が多くなると水素含有量も多くなる。本発明者は、希土類元素を含む鉄系合金微粉末において、その保磁力や耐候性のばらつきを生じさせる原因が、不可避不純物である水素にあることを見出した。つまり、合金微粉末におけるHの含有量がP含有量の1/10を超えると、耐候性が低下するとともに保磁力も低下する。また、その耐候性や保磁力にばらつきを生じさせる。本実施の形態に係る鉄系合金微粉末では、その不可避不純物であるHの含有量がP含有量の1/10以下であることにより、保磁力や耐候性のばらつきがなく、安定的に高い保磁力と優れた耐候性を示す。   And in the iron-based alloy fine powder containing rare earth elements according to the present embodiment, the content of hydrogen (H) inevitably mixed is 1/10 or less of the content of P, preferably 1/20. It is as follows. As the P content due to the phosphate film increases, the hydrogen content also increases. The present inventor has found that hydrogen, which is an inevitable impurity, causes a variation in coercive force and weather resistance in an iron-based alloy fine powder containing a rare earth element. That is, when the H content in the alloy fine powder exceeds 1/10 of the P content, the weather resistance is lowered and the coercive force is also lowered. In addition, the weather resistance and coercive force vary. In the iron-based alloy fine powder according to the present embodiment, the content of H, which is an inevitable impurity, is 1/10 or less of the P content, so that there is no variation in coercive force and weather resistance, and it is stably high. Shows coercive force and excellent weather resistance.

なお、この鉄系合金微粉末においては、主相である金属間化合物の表面近傍に拡散したHを低減させる加熱処理が過剰に行われると、合金微粉末が酸化されて、残留磁束密度Brや保磁力μHcが低下する。そこで、O含有量とP含有量の比であるO/Pとしては、5以下とする。O/Pが5を超える場合には、燐酸塩皮膜由来の酸素以外に、合金微粉末が酸化されたことによる酸素が含まれていることを意味している。 In this iron-based alloy fine powder, if the heat treatment for reducing H diffused in the vicinity of the surface of the intermetallic compound which is the main phase is excessively performed, the alloy fine powder is oxidized and the residual magnetic flux density Br or The coercive force μ 0 Hc decreases. Therefore, O / P which is a ratio of O content to P content is set to 5 or less. When O / P exceeds 5, it means that oxygen resulting from oxidation of the alloy fine powder is contained in addition to oxygen derived from the phosphate film.

また、本実施の形態に係る希土類元素を含む鉄系合金微粉末においては、主相である金属間化合物の表面近傍に拡散したHが十分低減されているため、Hの拡散を反映した格子定数、特にc軸方向の格子定数が増大した部分が少なくなり、当該鉄系合金粉末のX線回折では、c面に相当する指数の回折線において半値幅Bが小さくなる。その指数としては、近接する回折線の有無、回折強度を考慮して、ThZn17型では(113)回折線、ThNi17型では(112)回折線、TbCu型では(002)回折線を用いる。 Further, in the iron-based alloy fine powder containing rare earth elements according to the present embodiment, H diffused in the vicinity of the surface of the intermetallic compound which is the main phase is sufficiently reduced, so that the lattice constant reflecting the diffusion of H is obtained. Particularly, the portion where the lattice constant in the c-axis direction is increased is reduced, and in the X-ray diffraction of the iron-based alloy powder, the half-value width B is reduced in the diffraction line having an index corresponding to the c-plane. As the index, considering the presence or absence of adjacent diffraction lines and the diffraction intensity, (113) diffraction lines for Th 2 Zn 17 type, (112) diffraction lines for Th 2 Ni 17 type, and (002) for TbCu 7 type. Use diffraction lines.

回折線の半値幅B(deg.)は、微粉砕時に導入される歪や欠陥、結晶子サイズ等に影響される。そこで、当該鉄系合金微粉末の平均粒径D50(μm)に対する関係で考えたとき、本実施の形態に係る鉄系合金微粉末においては、そのX線回折における回折線の半値幅Bが、0.25/D50で表される数値を下回るものになっている。その半値幅Bが0.25/D50を超える場合には、耐候性が低下するとともに保磁力も低下し、主相金属間化合物に拡散した水素の除去が十分でないと判断される。   The half-value width B (deg.) Of the diffraction line is affected by strain, defects, crystallite size, and the like introduced during pulverization. Therefore, when considered in relation to the average particle diameter D50 (μm) of the iron-based alloy fine powder, in the iron-based alloy fine powder according to the present embodiment, the half width B of the diffraction line in the X-ray diffraction is It is below the numerical value represented by 0.25 / D50. When the half-value width B exceeds 0.25 / D50, the weather resistance is lowered and the coercive force is also lowered, so that it is judged that removal of hydrogen diffused in the main phase intermetallic compound is not sufficient.

なお、X線回折における回折線の半値幅B(deg.)の算出にあたっては、測定したプロファイルからバックグラウンドを除去して得た半値幅b(deg.)に対して、X線回折装置の光学系に起因する半値幅b(deg.)を用いて、
B=(b−b 1/2
と補正して求める必要がある。ここでbは、NIST640c標準試料であるSi粉末のX線回折プロファイルから(111)、(220)、(311)、(400)、(331)回折線の半値幅を求め、それらの値から最小二乗法で得た半値幅の近似式b(2θ)に、合金微粉末の回折線に対応する2θを当てはめて求めた値である。
In calculating the half-value width B (deg.) Of a diffraction line in X-ray diffraction, the optical value of the X-ray diffractometer is used for the half-value width b (deg.) Obtained by removing the background from the measured profile. Using the half width b 0 (deg.) Due to the system,
B = (b 2 −b 0 2 ) 1/2
It is necessary to correct it. Here b 0 from X-ray diffraction profile of the Si powder is NIST640c standard sample (111), (220), (311), (400), the determined, from these values the half width of the (331) diffraction line This is a value obtained by applying 2θ corresponding to the diffraction line of the alloy fine powder to the approximate expression b (2θ) of the half width obtained by the least square method.

(燐酸塩皮膜)
合金微粉末の表面に被覆された燐酸塩皮膜の成分としては、例えば、燐酸鉄、燐酸サマリウム等の希土類燐酸塩、又はこれらの複合金属塩等により構成される。その中でも、主要な成分としては燐酸鉄であり、鉄/希土類元素比は8以上であることが好ましく、9以上であることがより好ましく、10以上であることがさらに好ましい。ここで、鉄/希土類元素比は、磁性粉末試料をArスパッタしながら、XPS(X線光電子分光法)にて得たFe、Smスペクトルの面積強度に、測定装置(VG Scientific社製,ESCALAB220i−XL)の感度係数を乗じて、Fe/Sm元素比を求めたものである。鉄/希土類元素比が好ましくは8以上であれば、水をある程度遮断するとともに樹脂バインダーとの結合力を高め、ボンド磁石の成形性を高めることができる。なお、鉄/希土類元素比が8未満であると、これらの効果が十分に得られない可能性がある。
(Phosphate film)
As a component of the phosphate film coated on the surface of the alloy fine powder, for example, a rare earth phosphate such as iron phosphate or samarium phosphate, or a composite metal salt thereof is used. Among them, the main component is iron phosphate, and the iron / rare earth element ratio is preferably 8 or more, more preferably 9 or more, and further preferably 10 or more. Here, the ratio of iron / rare earth element is determined by measuring the area intensity of Fe and Sm spectra obtained by XPS (X-ray photoelectron spectroscopy) while Ar sputtering a magnetic powder sample (manufactured by VG Scientific, ESCALAB220i- XL) is multiplied by the sensitivity coefficient to obtain the Fe / Sm element ratio. If the iron / rare earth element ratio is preferably 8 or more, water can be blocked to some extent, and the bond strength with the resin binder can be increased, thereby improving the formability of the bond magnet. If the iron / rare earth element ratio is less than 8, these effects may not be sufficiently obtained.

また、燐酸塩皮膜の厚さとしては、特に限定されないが、平均2nm〜50nm程度であることが好ましく、このような燐酸塩皮膜が微粉末の表面に均一に被覆されている。燐酸塩皮膜の厚みが2nm未満であると、微粉末の表面に被覆不良の箇所が発生しやすく、耐候性が不十分となる可能性がある。一方で、燐酸塩皮膜の厚みが50nmを超えると、磁気特性が悪化するおそれがある。なお、「微粉末の表面が均一に被覆されている」とは、微粉末表面において、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上の割合で燐酸塩皮膜が覆われていることをいう。   The thickness of the phosphate film is not particularly limited, but is preferably about 2 nm to 50 nm on average, and such a phosphate film is uniformly coated on the surface of the fine powder. When the thickness of the phosphate film is less than 2 nm, a poorly coated portion tends to occur on the surface of the fine powder, and the weather resistance may be insufficient. On the other hand, when the thickness of the phosphate film exceeds 50 nm, the magnetic properties may be deteriorated. Note that “the surface of the fine powder is uniformly coated” means that the phosphate coating covers the fine powder surface at a rate of preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more. It means that

(比表面積)
本実施の形態に係る希土類元素を含む鉄系合金微粉末は、特に限定されないが、体積基準の比表面積が7m/cm以下であることが好ましい。比表面積が7m/cmを超えると、耐候性が低下する可能性がある。
(Specific surface area)
The iron-based alloy fine powder containing rare earth elements according to the present embodiment is not particularly limited, but preferably has a volume-based specific surface area of 7 m 2 / cm 3 or less. When the specific surface area exceeds 7 m 2 / cm 3 , the weather resistance may be lowered.

≪2.希土類元素を含む鉄系合金微粉末の製造方法≫
次に、上述した希土類元素を含む鉄系合金微粉末の製造方法について説明する。本実施の形態に係る希土類元素を含む鉄系合金微粉末の製造方法は、先ず、原料とする合金粉末を燐酸化合物の存在下にて粉砕し、粉砕により生じた合金微粉末の表面に燐酸塩による皮膜を形成する第1の工程、粉砕して得られた合金微粉末を乾燥、加熱して表面の燐酸塩による皮膜を定着させる第2の工程と、を有する。
≪2. Manufacturing method of iron-based alloy fine powder containing rare earth elements >>
Next, a method for producing the iron alloy fine powder containing the rare earth element described above will be described. In the method for producing an iron-based alloy fine powder containing rare earth elements according to the present embodiment, first, an alloy powder as a raw material is pulverized in the presence of a phosphoric acid compound, and a phosphate is formed on the surface of the alloy fine powder generated by the pulverization. And a second step of fixing the surface phosphate film by drying and heating the fine alloy powder obtained by pulverization.

ボンド磁石に用いられる、希土類−鉄−窒素系合金微粉末(希土類元素を含む鉄系合金微粉末)としては、保磁力や耐候性にばらつきがなく、安定的に高い保磁力を有し、安定的に優れた耐候性を示すものが求められる。本発明者の研究により、合金微粉末において、その保磁力や耐候性のばらつきを生じさせている原因が、不可避不純物である水素(H)であることが見出された。   As rare earth-iron-nitrogen alloy fine powder (iron-based alloy fine powder containing rare earth elements) used for bonded magnets, there is no variation in coercive force and weather resistance, and it has a stable and high coercive force. In particular, those showing excellent weather resistance are required. According to the inventor's research, it has been found that the cause of variation in the coercive force and the weather resistance in the alloy fine powder is hydrogen (H) which is an inevitable impurity.

鉄系合金微粉末の製造方法においては、第1の工程として、原料とする合金粉末を粉砕するにあたって燐酸を添加し、粉砕後の合金微粉末の表面に燐酸塩皮膜を形成させる処理を行う。これにより、粉砕後の合金微粉末の酸化を防止することができる。ところが、この粉砕時に添加する燐酸が合金微粉末と反応することで発生した水素が、得られる合金微粉末の表面から合金中に侵入することが分かった。   In the method for producing an iron-based alloy fine powder, as a first step, phosphoric acid is added when pulverizing the alloy powder as a raw material, and a phosphate film is formed on the surface of the pulverized alloy fine powder. Thereby, the oxidation of the alloy fine powder after grinding can be prevented. However, it has been found that hydrogen generated by the reaction of phosphoric acid added during the pulverization with the alloy fine powder enters the alloy from the surface of the obtained alloy fine powder.

水素は原子半径が小さいため、合金微粉末の表面近傍に容易に拡散していき、合金微粉末の主相であるRFe17相あるいはRFe相(Rは希土類元素)の格子定数を増大させる。格子定数の変化は、結晶磁気異方性の大きさに影響し、多くの場合、格子定数の増大は磁気異方性を低下させ、その部分が逆磁区の芽となって保磁力を低下させるものと推察される。 Since hydrogen has a small atomic radius, it easily diffuses near the surface of the alloy fine powder, and the main phase of the alloy fine powder is an R 2 Fe 17 N 3 phase or an RFe 7 N x phase (R is a rare earth element). Increase the lattice constant. Changes in the lattice constant affect the magnitude of the magnetocrystalline anisotropy, and in many cases, increasing the lattice constant reduces the magnetic anisotropy, and that part becomes the bud of the reverse magnetic domain and reduces the coercive force. Inferred.

したがって、このことから、合金微粉末の表面や結晶粒界近傍に拡散した水素が保磁力や耐候性のばらつきを生じさせる原因となり、その水素を除去することが、安定的な保磁力や耐候性を実現するために必要となる。なお、例えば特許文献3に開示されている、不活性ガス中又は真空中における100℃〜300℃の温度条件での加熱処理では、合金微粉末に残留する水素量がばらついてしまい、安定的に工業生産するのが難しかった。   Therefore, hydrogen diffused on the surface of the alloy fine powder and in the vicinity of the grain boundary may cause variations in coercive force and weather resistance, and removal of the hydrogen can provide stable coercive force and weather resistance. It is necessary to realize. For example, in the heat treatment disclosed in Patent Document 3 under a temperature condition of 100 ° C. to 300 ° C. in an inert gas or in a vacuum, the amount of hydrogen remaining in the alloy fine powder varies, and the heat treatment is stable. It was difficult to produce industrially.

そこで、本実施の形態に係る製造方法においては、上述した第1の工程にて表面に燐酸塩皮膜を形成させて得られた合金微粉末に対して、第2の工程として、その合金微粉末の水素(H)含有量が0.2質量%以下となるように、合金微粉末を含むスラリーの乾燥時又は乾燥後に、分圧0.1kPa以上5.0kPa以下の酸素を含む雰囲気中で、100℃以上300℃以下の温度条件で加熱処理することを特徴としている。   Therefore, in the manufacturing method according to the present embodiment, the alloy fine powder is used as the second step for the alloy fine powder obtained by forming the phosphate film on the surface in the first step. In an atmosphere containing oxygen having a partial pressure of 0.1 kPa or more and 5.0 kPa or less at the time of or after drying the slurry containing the alloy fine powder so that the hydrogen (H) content of The heat treatment is performed under a temperature condition of 100 ° C. or higher and 300 ° C. or lower.

このような加熱処理を施すことによって、合金微粉末に含まれる水素を効果的に除去することができ、H含有量がP含有量の1/10以下であり、O含有量とP含有量の比であるO/Pが5以下の鉄系合金微粉末を得ることができる。また、別の指標として、当該合金微粉末のX線回折における回折線の半値幅Bが、その平均粒径D50から算出される0.25/D50の値よりも小さい鉄系合金微粉末となる。このような鉄系合金微粉末では、保磁力や耐候性のばらつきが少なく、安定的に高い保磁力を有し、安定的に優れた耐候性を示す。以下、各工程について具体的に説明する。   By performing such heat treatment, hydrogen contained in the alloy fine powder can be effectively removed, the H content is 1/10 or less of the P content, and the O content and the P content are An iron-based alloy fine powder having an O / P ratio of 5 or less can be obtained. As another index, the iron alloy fine powder has a half-width B of the diffraction line in the X-ray diffraction of the alloy fine powder smaller than the value of 0.25 / D50 calculated from the average particle diameter D50. . Such an iron-based alloy fine powder has little variation in coercive force and weather resistance, stably has a high coercive force, and stably exhibits excellent weather resistance. Hereinafter, each step will be specifically described.

(1)第1の工程
第1の工程では、原料である合金粉末を、燐酸化合物を添加した有機溶媒中で粉砕するとともに、粉砕により生じた微粉末の表面に燐酸塩皮膜を被覆する。
(1) First Step In the first step, the alloy powder as a raw material is pulverized in an organic solvent to which a phosphoric acid compound is added, and the surface of the fine powder generated by the pulverization is coated with a phosphate film.

従来より、合金粉末の表面に燐酸塩の皮膜を被覆する処理が行われているが、合金粉末に対する粉砕終了後に燐酸塩等の処理剤を添加しているために、粉砕後の合金粉末がその磁力によって互いに凝集してしまい、合金粉末の接触面に燐酸塩皮膜で被覆されていない部分が少なくとも一部に発生する。   Conventionally, the surface of the alloy powder is coated with a phosphate coating, but after the grinding of the alloy powder, a treatment agent such as phosphate is added, so the ground alloy powder is They are aggregated with each other by magnetic force, and at least part of the contact surface of the alloy powder is not covered with the phosphate film.

そこで、本実施の形態においては、燐酸化合物を、磁性粉末の粉砕前又は粉砕中に添加し、粉砕により生じた微粉末の新生破面が直ちに燐酸化合物により処理されて燐酸塩皮膜が形成されるようにしている。   Therefore, in the present embodiment, a phosphoric acid compound is added before or during pulverization of the magnetic powder, and the newly broken surface of the fine powder generated by pulverization is immediately treated with the phosphoric acid compound to form a phosphate film. I am doing so.

(燐酸化合物の添加方法)
燐酸化合物の添加方法としては、特に限定されないが、例えば、媒体攪拌ミル等の粉砕機で合金粉末を粉砕するに際し、合金粉末を投入する溶媒として用いる有機溶剤中に燐酸化合物を添加する方法を挙げることができる。このとき、燐酸化合物の添加量としては、最終的に所望の燐酸濃度になればよく、粉砕開始前に一度に全量を添加してもよいが、溶媒中の燐酸濃度が一定となるように徐々に添加することがより好ましい。
(Method of adding phosphoric acid compound)
The method for adding the phosphoric acid compound is not particularly limited. For example, when the alloy powder is pulverized by a pulverizer such as a medium stirring mill, a method of adding the phosphoric acid compound to an organic solvent used as a solvent for charging the alloy powder is exemplified. be able to. At this time, the addition amount of the phosphoric acid compound may be finally a desired phosphoric acid concentration, and may be added all at once before the start of pulverization, but gradually, the phosphoric acid concentration in the solvent becomes constant. It is more preferable to add to.

(燐酸化合物)
燐酸化合物としては、合金微粉末の表面に燐酸塩皮膜を形成できるものであれば特に限定されるものではない。例えば、オルト燐酸をはじめ、亜燐酸、次亜燐酸、ピロ燐酸、直鎖状のポリ燐酸、環状のメタ燐酸等の燐酸系化合物が挙げられる。
(Phosphoric acid compound)
The phosphoric acid compound is not particularly limited as long as it can form a phosphate film on the surface of the alloy fine powder. Examples thereof include phosphoric acid compounds such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid, and cyclic metaphosphoric acid.

また、燐酸化合物として、燐酸アンモニウム、燐酸アンモニウムマグネシウム等、さらには、合金微粉末の表面で、ホパイト、フォスフォフェライト等の皮膜を形成する燐酸亜鉛系、ショルツァイト、フォスフォフィライト、ホパイト等の皮膜を形成する燐酸亜鉛カルシウム系、マンガンヒューリオライト、鉄ヒューリオライト等の皮膜を形成する燐酸マンガン系、ストレンナイト、ヘマタイト等の皮膜を形成する燐酸鉄系等の、金属燐酸系化合物を使用することができる。   In addition, as the phosphoric acid compound, ammonium phosphate, ammonium magnesium phosphate, etc., and zinc phosphate-based, scholzeite, phosphophyllite, hopite, etc. that form a film of hopite, phosphoferrite, etc. on the surface of the alloy fine powder Uses metal phosphate compounds such as zinc phosphates that form films, manganese phosphates that form films such as manganese huriolite, iron huriolites, iron phosphates that form films such as strenite and hematite can do.

これらの燐酸化合物のなかでも、特に、オルト燐酸を用いることが好ましい。その理由としては、オルト燐酸は、希土類系金属や鉄との反応性が大きく、合金微粉末の表面に燐酸塩皮膜を形成しやすいためである。   Among these phosphoric acid compounds, it is particularly preferable to use orthophosphoric acid. This is because orthophosphoric acid is highly reactive with rare earth metals and iron, and easily forms a phosphate film on the surface of the alloy fine powder.

これらの燐酸化合物は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、上述した、燐酸系化合物と金属燐酸系化合物とを組み合わせて用いてもよく、その場合には、燐酸系化合物を金属燐酸系化合物の1倍〜3倍の濃度として使用することが好ましい。なお、通常、これらの燐酸化合物は、キレート剤、中和剤等と混合して処理剤として使用される。   These phosphoric acid compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may use combining the phosphoric acid type compound and metal phosphoric acid type compound which were mentioned above, In that case, it is preferable to use a phosphoric acid type compound as 1 to 3 times the density | concentration of a metal phosphoric acid type compound. Usually, these phosphoric acid compounds are mixed with chelating agents, neutralizing agents and the like and used as treatment agents.

(燐酸化合物の添加量)
燐酸化合物の添加量は、粉砕後の合金微粉末の粒径や比表面積等に関係するため一概には言えないが、例えば、粉砕する合金粉末に対して、0.05mol/kg以上2.0mol/kg未満が好ましく、0.1mol/kg〜1.5mol/kgがより好ましく、0.15mol/kg〜0.6mol/kgがさらに好ましい。
(Addition amount of phosphoric acid compound)
The addition amount of the phosphoric acid compound is unclear because it is related to the particle size, specific surface area, etc. of the fine alloy powder after pulverization. For example, 0.05 mol / kg or more and 2.0 mol relative to the pulverized alloy powder / Kg is preferable, 0.1 mol / kg to 1.5 mol / kg is more preferable, and 0.15 mol / kg to 0.6 mol / kg is more preferable.

燐酸化合物の添加量が0.05mol/kg未満であると、合金微粉末に対する表面処理が十分に行われないために、耐候性が十分に改善されない可能性がある。また、大気中で取り扱うと、酸化・発熱して磁気特性が極端に低下する可能性がある。一方で、燐酸化合物の添加量が2.0mol/kg以上であると、合金微粉末との反応が激しく起こって溶解してしまう可能性がある。   When the addition amount of the phosphoric acid compound is less than 0.05 mol / kg, the surface treatment for the alloy fine powder is not sufficiently performed, so that the weather resistance may not be sufficiently improved. In addition, when handled in the atmosphere, there is a possibility that the magnetic properties will be extremely lowered due to oxidation and heat generation. On the other hand, when the addition amount of the phosphoric acid compound is 2.0 mol / kg or more, there is a possibility that the reaction with the alloy fine powder occurs vigorously and dissolves.

(有機溶媒)
有機溶媒としては、特に限定されず、例えば、エタノールやイソプロピルアルコール等のアルコール類、ケトン類、低級炭化水素類、芳香族類、又はこれらの混合物が用いられる。その中でも、特に、アルコール類を使用することが好ましい。
(Organic solvent)
The organic solvent is not particularly limited, and for example, alcohols such as ethanol and isopropyl alcohol, ketones, lower hydrocarbons, aromatics, or mixtures thereof are used. Among these, it is particularly preferable to use alcohols.

(粉砕処理と皮膜形成処理)
本実施の形態においては、有機溶媒中で合金粉末に対する粉砕にあたって、その粉砕前に又は粉砕中に、その有機溶媒中に燐酸化合物を添加して行う。すなわち、原料の合金粉末に対して粉砕処理を施す際に燐酸化合物を添加する。これにより、合金粉末の粉砕によって生じた合金微粉末の凝集粒子に新生面が生じても、瞬時に、その新生面と溶媒中の燐酸化合物とが反応し、粒子表面に燐酸塩皮膜が形成されるようになる。また、その後に、粉砕により得られた合金微粉末がその磁力や媒体によるせん断で凝集した場合でも、接触面には既に燐酸塩皮膜が形成されているため、解砕により腐食が生じることはない。
(Crushing and film formation)
In the present embodiment, the pulverization of the alloy powder in the organic solvent is performed by adding a phosphoric acid compound to the organic solvent before or during the pulverization. That is, the phosphoric acid compound is added when the raw alloy powder is pulverized. As a result, even if a new surface occurs in the aggregated particles of the alloy fine powder generated by grinding the alloy powder, the new surface and the phosphoric acid compound in the solvent react instantaneously to form a phosphate film on the particle surface. become. In addition, even when the alloy fine powder obtained by pulverization subsequently aggregates due to the magnetic force or shearing by the medium, a phosphate film is already formed on the contact surface, so that corrosion does not occur due to crushing. .

このような粉砕処理により、平均粒径が例えば10μm以上であった合金粉末も、粉砕が進むにつれて、その表面に薄い燐酸塩被膜が短時間で形成されるようになる。   By such pulverization treatment, an alloy powder having an average particle size of, for example, 10 μm or more also forms a thin phosphate film on the surface in a short time as pulverization proceeds.

なお、有機溶媒中での合金粉末に対する粉砕処理にあたって、湿式粉砕が可能なビーズミル等の媒体攪拌ミルを使用することが好ましい。   In the pulverization treatment of the alloy powder in the organic solvent, it is preferable to use a medium stirring mill such as a bead mill capable of wet pulverization.

ここで、ThZn17型結晶構造を持つ希土類元素−鉄−窒素系合金粉末では、粉砕により生じた合金微粉末の表面に、使用した燐酸化合物の種類に基づく構成元素の燐酸塩が生じ得るが、希土類元素は鉄に比べて著しく卑であるため、燐酸化合物の添加量や粉砕条件によっては希土類元素が優先的に溶出し、希土類元素と燐酸塩を形成する場合がある。 Here, in the rare earth element-iron-nitrogen based alloy powder having a Th 2 Zn 17 type crystal structure, a phosphate of a constituent element based on the type of the phosphoric acid compound used can be generated on the surface of the alloy fine powder generated by pulverization. However, since rare earth elements are remarkably base as compared with iron, depending on the addition amount of the phosphoric acid compound and the grinding conditions, the rare earth elements may elute preferentially and form rare earth elements and phosphates.

この場合でも、得られる合金微粉末の耐熱性には問題は生じないものの、耐候性の観点からすると、燐酸塩皮膜中における燐酸鉄の含有量が多い方が好ましくなる。燐酸鉄は、希土類元素の燐酸塩に比べて耐候性に優れており、また、希土類元素が優先的に溶出するような条件では、合金微粉末の表面のFe濃度が高くなり、磁気的性質が変化する可能性があるからである。   Even in this case, although there is no problem in the heat resistance of the obtained alloy fine powder, from the viewpoint of weather resistance, it is preferable that the content of iron phosphate in the phosphate film is large. Iron phosphate is superior in weather resistance compared to rare earth element phosphates, and under conditions where the rare earth element elutes preferentially, the Fe concentration on the surface of the alloy fine powder becomes high and the magnetic properties are low. It is possible to change.

このため、燐酸塩皮膜に含まれるFeと希土類元素との元素比(Fe/希土類元素)が、燐酸化合物の添加量や混合時間等に基づいて、8以上となるように調整することが好ましい。また、合金微粉末の表面を保護する燐酸塩皮膜の厚さとしては、平均で2nm〜50nmとなるように調整することが好ましい。   For this reason, it is preferable to adjust so that the element ratio (Fe / rare earth element) of Fe and rare earth elements contained in the phosphate film is 8 or more based on the addition amount of the phosphoric acid compound, the mixing time, and the like. Moreover, it is preferable to adjust so that it may become 2-50 nm on average as thickness of the phosphate membrane | film | coat which protects the surface of alloy fine powder.

なお、予め、原料とする希土類元素−鉄−窒素系合金粉末の表面に、亜鉛を化学的に被覆させる亜鉛処理を施すことによって、合金微粉末の表面の軟磁性相や欠陥等を低減させておくことができる。これにより、合金微粉末の表面に対して燐酸塩皮膜を容易に形成することができ、耐候性のみならず耐熱性にも優れるものとなり、特に好適である。   In addition, the surface of the rare earth element-iron-nitrogen alloy powder used as a raw material is subjected to zinc treatment to chemically coat zinc, thereby reducing the soft magnetic phase and defects on the surface of the alloy fine powder. I can leave. Thereby, a phosphate film can be easily formed on the surface of the alloy fine powder, which is excellent not only in weather resistance but also in heat resistance, and is particularly suitable.

また、上述した燐酸塩皮膜を表面に被覆形成させるとともに、必要に応じて、さらにシラン系、アルミネート系、チタネート系等の各種のカップリング剤やアビエチン酸系化合物等から選択された1種以上からなる皮膜を被覆させるようにしてもよい。   In addition, the above-described phosphate coating is formed on the surface and, if necessary, one or more selected from various coupling agents such as silane, aluminate, titanate, abietic acid compounds, etc. You may make it coat | cover the film | membrane consisting of.

(2)第2の工程
第2の工程では、第1の工程にて得られた、表面に燐酸塩皮膜が形成された合金微粉末を含むスラリーに対して、所定の温度条件で加熱処理を施す。この第2の工程での加熱処理により、表面に被覆された燐酸塩皮膜が安定化して、ボンド磁石等に用いられる、希土類元素を含む鉄系合金微粉末が得られる。
(2) Second Step In the second step, the slurry containing the alloy fine powder having the phosphate film formed on the surface obtained in the first step is subjected to a heat treatment at a predetermined temperature condition. Apply. By the heat treatment in the second step, the phosphate coating coated on the surface is stabilized, and an iron-based alloy fine powder containing a rare earth element used for a bond magnet or the like is obtained.

このとき、本実施の形態においては、所定範囲の分圧に制御した酸素を含む雰囲気中で、100℃以上300℃以下の温度範囲の条件で加熱処理することを特徴としている。また、その加熱処理の処理時間としては、好ましくは、0.5時間以上20時間以下の条件とする。   At this time, in this embodiment mode, heat treatment is performed in a temperature range of 100 ° C. or higher and 300 ° C. or lower in an atmosphere containing oxygen controlled to have a partial pressure in a predetermined range. The heat treatment time is preferably 0.5 hours to 20 hours.

この加熱処理では、加熱雰囲気として酸素を含む雰囲気にて行っているため、その雰囲気中の酸素が、合金微粉末に含まれる水素とによって水になる反応が生じる。つまり、このような酸素を含む雰囲気下における加熱処理によって、合金微粉末に含まれる水素を効果的に除去することができる。   Since this heat treatment is performed in an atmosphere containing oxygen as the heating atmosphere, a reaction occurs in which oxygen in the atmosphere becomes water by hydrogen contained in the alloy fine powder. That is, hydrogen contained in the alloy fine powder can be effectively removed by such heat treatment in an atmosphere containing oxygen.

このような加熱処理は、合金微粉末を含むスラリーの液分を乾燥するとき、又は、液分を蒸発させた後(乾燥後)のいずれの段階でも可能であるが、液分を蒸発させた後の方が、合金微粉末の表面と酸素を含む雰囲気との接触確率が大きくなり、より効率的に且つより効果的に、合金微粉末中の水素を除去することができ、好ましい。   Such heat treatment can be performed at any stage of drying the slurry containing the alloy fine powder or after the liquid is evaporated (after drying), but the liquid is evaporated. The latter is preferable because the contact probability between the surface of the alloy fine powder and the atmosphere containing oxygen is increased, and hydrogen in the alloy fine powder can be removed more efficiently and more effectively.

なお、上述したようにこの加熱処理では、合金微粉末に含まれる水素と雰囲気中の酸素とを反応させることによって合金微粉末中に含まれる水素を除去しているが、そのためには、雰囲気中において、水素と反応する酸素が、少なくとも合金微粉末から除去する水素量との反応当量(水素1モルに対して酸素0.5モル)以上の割合で存在することが必要となる。しかしながら、酸素には支燃性があることから、熱処理雰囲気ガスとして導入する場合には、安全及び処理の均一性確保のために、窒素、アルゴン、ヘリウム等の不活性ガスに流量を制御しながら添加することが好ましい。また、減圧下で制御しながら酸素を導入してもよい。   As described above, in this heat treatment, hydrogen contained in the alloy fine powder is removed by reacting hydrogen contained in the alloy fine powder with oxygen in the atmosphere. In this case, it is necessary that the oxygen that reacts with hydrogen be present at a ratio of at least a reaction equivalent (0.5 mol of oxygen to 1 mol of hydrogen) with respect to the amount of hydrogen removed from the alloy fine powder. However, since oxygen has a flame-supporting property, when introduced as a heat treatment atmosphere gas, while controlling the flow rate to an inert gas such as nitrogen, argon, helium, etc. to ensure safety and uniformity of treatment, It is preferable to add. Further, oxygen may be introduced while controlling under reduced pressure.

(酸素分圧)
ここで、従来、燐酸による皮膜形成処理は、合金微粉末の表面酸化を防止するために行う処理であったため、加熱処理における雰囲気中に酸素が存在することは表面酸化防止の弊害になると考えられていた。しかしながら、予想に反し、加熱処理の雰囲気中に酸素を存在させることによる表面酸化の悪影響よりも、微量の酸素による水素除去効果が大きいことが、本発明者の検討により分かった。
(Oxygen partial pressure)
Here, conventionally, the film formation treatment with phosphoric acid has been a treatment to prevent the surface oxidation of the alloy fine powder, so that the presence of oxygen in the atmosphere in the heat treatment is considered to be an adverse effect of the surface oxidation prevention. It was. However, contrary to expectations, the inventors have found that the hydrogen removal effect by a small amount of oxygen is greater than the adverse effect of surface oxidation caused by the presence of oxygen in the heat treatment atmosphere.

本実施の形態に係る製造方法では、この第2の工程の加熱処理において、酸素を含む雰囲気中の酸素分圧を、0.1kPa以上5kPa以下とする。   In the manufacturing method according to the present embodiment, in the heat treatment in the second step, the oxygen partial pressure in the atmosphere containing oxygen is set to 0.1 kPa or more and 5 kPa or less.

雰囲気中の酸素分圧が5kPaを超えると、同時に起こる合金微粉末の酸化の影響が強くなり、加熱後の合金微粉末の保磁力や残留磁束密度が低下する。一方で、雰囲気中の酸素分圧が0.1kPa未満であると、反応当量をはるかに超える酸素を供給しても、合金微粉末に含まれる水素を除去する効果が十分に得られない。   When the oxygen partial pressure in the atmosphere exceeds 5 kPa, the effect of simultaneous oxidation of the alloy fine powder becomes strong, and the coercive force and residual magnetic flux density of the alloy fine powder after heating are reduced. On the other hand, if the oxygen partial pressure in the atmosphere is less than 0.1 kPa, the effect of removing hydrogen contained in the alloy fine powder cannot be sufficiently obtained even if oxygen far exceeding the reaction equivalent is supplied.

(加熱温度)
酸素を含む雰囲気中における加熱処理の温度(加熱温度)は、100℃以上300℃以下の範囲とする。また、好ましくは、100℃以上200℃以下の範囲とする。
(Heating temperature)
The temperature of the heat treatment (heating temperature) in an atmosphere containing oxygen is set to a range of 100 ° C. to 300 ° C. Moreover, Preferably, it is set as the range of 100 to 200 degreeC.

100℃未満の温度条件で加熱処理を施すと、酸素と水素との反応が十分進まず、得られる合金微粉末の水素含有量が低減されず、保磁力が向上しないとともにばらつきが大きいものとなる。一方で、300℃を超える温度条件で加熱処理を施すと、合金微粉末に対して強い熱的なダメージを与えてしまうためか、得られる合金微粉末の保磁力が低くなるという問題がある。   When heat treatment is performed under a temperature condition of less than 100 ° C., the reaction between oxygen and hydrogen does not proceed sufficiently, the hydrogen content of the obtained alloy fine powder is not reduced, the coercive force is not improved, and the variation becomes large. . On the other hand, when the heat treatment is performed under a temperature condition exceeding 300 ° C., there is a problem that the coercive force of the obtained alloy fine powder is lowered because the alloy fine powder is strongly damaged by heat.

(加熱処理時間)
加熱処理に要する時間としては、処理装置や処理量、酸素の供給量、加熱雰囲気や加熱温度等によって変わるため、特に限定されないが、0.5時間以上であればよく、1時間〜20時間、特に2時間〜10時間となるよう調整するのが好ましい。
(Heat treatment time)
The time required for the heat treatment varies depending on the treatment device, treatment amount, oxygen supply amount, heating atmosphere, heating temperature, and the like, and is not particularly limited, but may be 0.5 hours or more, and may be 1 hour to 20 hours. In particular, it is preferable to adjust to be 2 hours to 10 hours.

当然のことながら、酸素の供給総量は、合金微粉末から除去しようとする水素との反応に必要な量に対して1当量以上でなければならない。1当量を下回ると、合金微粉末内に水素が残留する。供給した酸素は、一般にその100%が反応に寄与するものではないため、酸素濃度や供給流量、処理装置内での合金微粉末の攪拌状態等に応じて、数当量から数10当量の供給量で供給する必要もある。ただし、酸素の供給当量が多い場合であっても、処理時間が0.5時間未満であると、水素との反応が十分に進まずに、水素含有量を低減させることができない。一方で、単位時間当たりの酸素供給量を小さくし長時間かけて処理することも可能であるが、20時間を超える処理時間では、経済性の面で好ましくない。   Of course, the total amount of oxygen supplied must be at least 1 equivalent to the amount required for reaction with the hydrogen to be removed from the alloy fines. When less than 1 equivalent, hydrogen remains in the alloy fine powder. Since 100% of the supplied oxygen generally does not contribute to the reaction, the supply amount of several equivalents to several tens equivalents depending on the oxygen concentration, the supply flow rate, the stirring state of the alloy fine powder in the processing apparatus, etc. It is also necessary to supply with. However, even when the supply equivalent of oxygen is large, if the treatment time is less than 0.5 hour, the reaction with hydrogen does not proceed sufficiently and the hydrogen content cannot be reduced. On the other hand, it is possible to reduce the oxygen supply amount per unit time and perform the treatment over a long time, but a treatment time exceeding 20 hours is not preferable in terms of economy.

以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(1)成分
原料として用いる希土類元素を含む鉄系合金粉末として、ThZn17型結晶構造を有するSm−Fe−N系合金粉末(住友金属鉱山株式会社製)を用いた。このSm−Fe−N系合金粉末の平均粒径は20μmであり、組成は、Smが23.1質量%〜24.5質量%(ICP発光分析法により分析)、Nが3.2質量%〜3.7質量%(不活性ガス融解−熱伝導度検出法により分析)で、残部はFeであるが、不純物としてCaが主相中に0.006質量%〜0.015質量%(EPMA定量分析により分析)、水素が0.002質量%〜0.008質量%(不活性ガス融解−赤外線吸収法により分析)含まれている。
(1) Component Sm—Fe—N alloy powder (manufactured by Sumitomo Metal Mining Co., Ltd.) having a Th 2 Zn 17 type crystal structure was used as an iron alloy powder containing rare earth elements used as a raw material. The average particle size of the Sm—Fe—N alloy powder is 20 μm, and the composition is such that Sm is 23.1% by mass to 24.5% by mass (analyzed by ICP emission spectrometry), and N is 3.2% by mass. ~ 3.7 mass% (inert gas melting-analyzed by thermal conductivity detection method), the balance being Fe, but Ca as an impurity is 0.006 mass% to 0.015 mass% (EPMA) in the main phase (Analyzed by quantitative analysis) and hydrogen is contained in an amount of 0.002 to 0.008 mass% (analyzed by inert gas melting-infrared absorption method).

また、燐酸化合物には、85%オルト燐酸水溶液(商品名:「りん酸」、関東化学株式会社製)を用いた。   As the phosphoric acid compound, an 85% orthophosphoric acid aqueous solution (trade name: “phosphoric acid”, manufactured by Kanto Chemical Co., Inc.) was used.

(2)試験・評価方法
得られた希土類元素を含む鉄系合金微粉末の試料のリンについてはICP発光分析法により、酸素、水素については不活性ガス融解−赤外線吸収法により組成を分析した。
(2) Test / Evaluation Method The composition of the obtained iron-based alloy fine powder containing rare earth elements was analyzed for phosphorus by ICP emission analysis, and for oxygen and hydrogen by inert gas melting-infrared absorption.

また、レーザー回折式粒度分布測定装置(株式会社日本レーザー製,HELOS&RODOS)で測定した50%粒子径を試料の平均粒径(D50)とした。   Further, the 50% particle diameter measured with a laser diffraction particle size distribution analyzer (manufactured by Nippon Laser Co., Ltd., HELOS & RODOS) was used as the average particle diameter (D50) of the sample.

さらに、合金微粉末のX線回折については、Cuターゲットで加速電圧40kV、電流40mAとし、2θを2min./deg.でスキャンして測定した。また、回折線の半値幅Bは、測定したプロファイルからバックグラウンドを除去して得た半値幅b(deg.)をX線回折装置の光学系に起因する半値幅b(deg.)により、
B=(b−b 1/2
と補正して求めた。なお、bは、NIST640c標準試料であるSi粉末のX線回折プロファイルから(111)、(220)、(311)、(400)、(331)回折線の半値幅を求め、それらの値から最小二乗法で得た半値幅の近似式b(2θ)に、ThZn17型では(113)回折線、TbCu型では(002)回折線に対応する2θを当てはめて求めた値である。
Further, regarding the X-ray diffraction of the alloy fine powder, an acceleration voltage of 40 kV and a current of 40 mA were used with a Cu target, and 2θ was 2 min. / Deg. Scanned with and measured. Further, the half-value width B of the diffraction line is obtained by substituting the half-value width b (deg.) Obtained by removing the background from the measured profile by the half-value width b 0 (deg.) Resulting from the optical system of the X-ray diffraction apparatus.
B = (b 2 −b 0 2 ) 1/2
And corrected. Incidentally, b 0 is the X-ray diffraction profile of the Si powder is NIST640c standard sample (111), (220), (311), (400), the determined, from these values the half width of the (331) diffraction line This is a value obtained by applying 2θ corresponding to the (113) diffraction line for the Th 2 Zn 17 type and (002) diffraction line for the TbCu 7 type to the approximate expression b (2θ) of the half width obtained by the least square method. .

希土類元素を含む鉄系合金微粉末の試料の残留磁束密度Brと保磁力μHcついては、日本ボンド磁石工業協会ボンド磁石試験方法ガイドブックBMG−2002に従って、振動試料型磁力計により常温で測定した。ここで、「μ」は真空の透磁率であり、合金微粉末の密度を7.67g/cmとして換算した。 The residual magnetic flux density Br and coercive force μ 0 Hc of a sample of an iron-based alloy fine powder containing rare earth elements were measured at room temperature using a vibrating sample magnetometer according to the Bond Magnet Test Method Guidebook BMG-2002 of the Japan Bond Magnet Industry Association. . Here, “μ 0 ” is a vacuum magnetic permeability, and the density of the alloy fine powder was converted to 7.67 g / cm 3 .

[実施例1〜3、従来例1、比較例1〜4]
ビーズミルを用い、希土類元素を含む鉄系合金粉末0.5kgを1kgのイソプロピルアルコール中で平均粒径が2.1μmになるまで粉砕し、希土類元素を含む鉄系合金微粉末を作製した。なお、粉砕前に、イソプロピルアルコールに対して85%オルト燐酸水溶液11.5gを添加した。
[Examples 1 to 3, Conventional Example 1, Comparative Examples 1 to 4]
Using a bead mill, 0.5 kg of an iron-based alloy powder containing a rare earth element was pulverized in 1 kg of isopropyl alcohol until the average particle size became 2.1 μm to prepare an iron-based alloy fine powder containing a rare earth element. In addition, 11.5 g of 85% orthophosphoric acid aqueous solution was added to isopropyl alcohol before pulverization.

粉砕終了後、スラリーをヌッチェで濾過し、濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、130℃で2時間乾燥して冷却した。このようにして得られた鉄系合金微粉末を、従来例1の鉄系合金微粉末とした。   After the pulverization, the slurry was filtered with Nutsche, the cake remaining on the filter cloth was put into a mixer, the temperature was raised while reducing the pressure with a vacuum pump, dried at 130 ° C. for 2 hours and cooled. The iron-based alloy fine powder thus obtained was used as the iron-based alloy fine powder of Conventional Example 1.

従来例1の鉄系合金微粉末の残留磁束密度Brは1.35T、保磁力μHcは1.10Tであった。また、組成分析を行った結果、リンは0.51質量%、酸素は1.7質量%、水素は0.064質量%であった。さらに、X線回折測定による(113)回折線の半値幅Bは0.125deg.だった。 The residual magnetic flux density Br of the iron-based alloy fine powder of Conventional Example 1 was 1.35 T, and the coercive force μ 0 Hc was 1.10 T. As a result of composition analysis, phosphorus was 0.51% by mass, oxygen was 1.7% by mass, and hydrogen was 0.064% by mass. Furthermore, the half width B of the (113) diffraction line by X-ray diffraction measurement is 0.125 deg. was.

次に、この合金微粉末を再びミキサー内に入れ、空気30cm/minとNガス2.0L/minをフローしながら(酸素分圧0.3kPa)、下記表1に示す条件で加熱処理を施し、実施例1〜3及び比較例1〜4の希土類元素を含む鉄系合金微粉末を得た。なお、比較例4では、空気を混合せずにNガスフローのみで加熱した。 Next, this alloy fine powder is again put in the mixer and heated under the conditions shown in Table 1 below while flowing air 30 cm 3 / min and N 2 gas 2.0 L / min (oxygen partial pressure 0.3 kPa). The iron-based alloy fine powder containing the rare earth elements of Examples 1 to 3 and Comparative Examples 1 to 4 was obtained. In Comparative Example 4, heating was performed only with an N 2 gas flow without mixing air.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。なお、「P」、「O」、「H」は、それぞれ、リン、酸素、水素の含有量を示す(以下も同様である)。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown. “P”, “O”, and “H” indicate the contents of phosphorus, oxygen, and hydrogen, respectively (the same applies to the following).

[実施例4〜6、比較例5]
従来例1の微粉末をミキサー内に入れ、空気30cm/minとNガス250cm/minをフローしながら(酸素分圧2kPa)、下記表1に示す条件で加熱処理を施し、実施例4〜6及び比較例5の希土類元素を含む鉄系合金微粉末を得た。
[Examples 4 to 6, Comparative Example 5]
The fine powder of Conventional Example 1 was put in a mixer and subjected to heat treatment under the conditions shown in Table 1 below while flowing air 30 cm 3 / min and N 2 gas 250 cm 3 / min (oxygen partial pressure 2 kPa). Iron-based alloy fine powders containing rare earth elements 4 to 6 and Comparative Example 5 were obtained.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[実施例7]
従来例1と同様にして、希土類元素を含む鉄系合金粉末を粉砕し、濾過した。濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、135℃で1時間保持した。その後、冷却せずに減圧を継続したまま、空気を内部圧力が2kPa(酸素分圧0.4kPa)となるように流量を調整して導入し、さらに2時間保持して冷却した。
[Example 7]
In the same manner as in Conventional Example 1, iron-based alloy powder containing rare earth elements was pulverized and filtered. The cake remaining on the filter cloth was put into a mixer, heated while reducing pressure with a vacuum pump, and kept at 135 ° C. for 1 hour. Thereafter, air was introduced while adjusting the flow rate so that the internal pressure became 2 kPa (oxygen partial pressure 0.4 kPa) while continuing to reduce pressure without cooling, and further cooled for 2 hours.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[実施例8]
従来例1と同様にして、希土類元素を含む鉄系合金粉末を粉砕し、濾過した。濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、135℃で1時間保持した。その後、冷却せずにミキサー内を、Nガスと空気との混合ガス(酸素分圧2kPa)で大気圧に戻し、ミキサーの排気バルブを開放してNガス8L/min、空気1L/minでフローしながら(酸素分圧2kPa)、さらに2時間保持して冷却した。
[Example 8]
In the same manner as in Conventional Example 1, iron-based alloy powder containing rare earth elements was pulverized and filtered. The cake remaining on the filter cloth was put into a mixer, heated while reducing pressure with a vacuum pump, and kept at 135 ° C. for 1 hour. Thereafter, the inside of the mixer is returned to atmospheric pressure with a mixed gas of N 2 gas and air (oxygen partial pressure 2 kPa) without cooling, and the exhaust valve of the mixer is opened, and N 2 gas 8 L / min, air 1 L / min The mixture was further cooled for 2 hours while being flown (oxygen partial pressure 2 kPa).

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[比較例6]
空気流量を3L/min(酸素分圧5.5kPa)としたこと以外は、実施例8と同じ条件で加熱処理を施した。加熱処理中に試料温度が147℃まで上昇し、その後135℃に戻るのが観察された。
[Comparative Example 6]
The heat treatment was performed under the same conditions as in Example 8 except that the air flow rate was 3 L / min (oxygen partial pressure 5.5 kPa). During the heat treatment it was observed that the sample temperature rose to 147 ° C and then returned to 135 ° C.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[実施例9、従来例2]
ビーズミルを用い、希土類元素を含む鉄系合金粉末0.5kgを1kgのイソプロピルアルコール中で平均粒径が2.1μmになるまで粉砕し、希土類元素を含む鉄系合金微粉末を作製した。なお、粉砕前に、イソプロピルアルコールに対して85%オルト燐酸水溶液34.6gを添加した。
[Example 9, Conventional Example 2]
Using a bead mill, 0.5 kg of an iron-based alloy powder containing a rare earth element was pulverized in 1 kg of isopropyl alcohol until the average particle size became 2.1 μm to prepare an iron-based alloy fine powder containing a rare earth element. In addition, 34.6 g of 85% orthophosphoric acid aqueous solution was added to isopropyl alcohol before pulverization.

粉砕終了後、スラリーをヌッチェで濾過し、濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、130℃で2時間乾燥して冷却した。このようにして得られた微粉末を、従来例2の微粉末とした。   After the pulverization, the slurry was filtered with Nutsche, the cake remaining on the filter cloth was put into a mixer, the temperature was raised while reducing the pressure with a vacuum pump, dried at 130 ° C. for 2 hours and cooled. The fine powder thus obtained was used as the fine powder of Conventional Example 2.

次に、従来例2の合金微粉末をミキサー内に入れ、空気600cm/minとNガス2.0L/minをフローしながら(酸素分圧5kPa)、135℃で8時間の加熱処理を施した。加熱処理中にはミキサー排気口付近に結露が観察された。 Next, the alloy fine powder of Conventional Example 2 is put in a mixer, and heat treatment is performed at 135 ° C. for 8 hours while flowing air 600 cm 3 / min and N 2 gas 2.0 L / min (oxygen partial pressure 5 kPa). gave. During the heat treatment, condensation was observed near the mixer exhaust.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[実施例10、従来例3]
ビーズミルを用い、希土類元素を含む鉄系合金粉末0.5kgを1kgのイソプロピルアルコール中で平均粒径が1.5μmになるまで粉砕し、希土類元素を含む鉄系合金微粉末を作製した。なお、粉砕前に、イソプロピルアルコールに対して85%オルト燐酸水溶液23.1gを添加した。
[Example 10, Conventional Example 3]
Using a bead mill, 0.5 kg of an iron-based alloy powder containing a rare earth element was pulverized in 1 kg of isopropyl alcohol until the average particle size became 1.5 μm to prepare an iron-based alloy fine powder containing a rare earth element. In addition, 23.1 g of 85% orthophosphoric acid aqueous solution was added to isopropyl alcohol before pulverization.

粉砕終了後、スラリーをヌッチェで濾過し、濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、130℃で2時間乾燥して冷却した。このようにして得られた微粉末を、従来例3の微粉末とした。   After the pulverization, the slurry was filtered with Nutsche, the cake remaining on the filter cloth was put into a mixer, the temperature was raised while reducing the pressure with a vacuum pump, dried at 130 ° C. for 2 hours and cooled. The fine powder thus obtained was used as the fine powder of Conventional Example 3.

次に、従来例3の合金微粉末をミキサー内に入れ、空気500cm/minとNガス4.0L/minをフローしながら(酸素分圧2kPa)、135℃で2時間の加熱処理を施した。加熱処理中にはミキサー排気口付近に結露が観察された。 Next, the alloy fine powder of Conventional Example 3 is put in a mixer, and heat treatment is performed at 135 ° C. for 2 hours while flowing air of 500 cm 3 / min and N 2 gas of 4.0 L / min (oxygen partial pressure of 2 kPa). gave. During the heat treatment, condensation was observed near the mixer exhaust.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[実施例11、従来例4]
ビーズミルを用い、希土類元素を含む鉄系合金粉末0.5kgを1kgのイソプロピルアルコール中で平均粒径が7.4μmになるまで粉砕し、希土類元素を含む鉄系合金微粉末を作製した。なお、粉砕前に、イソプロピルアルコールに対して85%オルト燐酸水溶液23.1gを添加した。
[Example 11, Conventional Example 4]
Using a bead mill, 0.5 kg of an iron-based alloy powder containing a rare earth element was pulverized in 1 kg of isopropyl alcohol until the average particle size became 7.4 μm to prepare an iron-based alloy fine powder containing a rare earth element. In addition, 23.1 g of 85% orthophosphoric acid aqueous solution was added to isopropyl alcohol before pulverization.

粉砕終了後、スラリーをヌッチェで濾過し、濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、140℃で1時間乾燥して冷却した。このようにして得られた微粉末を、従来例4の微粉末とした。   After completion of the pulverization, the slurry was filtered with Nutsche, the cake remaining on the filter cloth was put into a mixer, the temperature was raised while reducing the pressure with a vacuum pump, dried at 140 ° C. for 1 hour and cooled. The fine powder thus obtained was used as the fine powder of Conventional Example 4.

次に、従来例4の合金微粉末をミキサー内に入れ、減圧しながら145℃に昇温し、減圧を継続したまま、空気を内部圧力が1kPa(酸素分圧0.2kPa)となるように流量を調整して導入し、さらに2時間保持して冷却した。   Next, the alloy fine powder of Conventional Example 4 is put in a mixer, and the temperature is raised to 145 ° C. while reducing the pressure, and the internal pressure of the air is 1 kPa (oxygen partial pressure 0.2 kPa) while continuing the reduced pressure. The flow rate was adjusted and introduced, and further cooled for 2 hours.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

[実施例12、従来例5]
原料として、液体急冷法により製造した、TbCu型の結晶構造を有する(Sm0.75Zr0.25)(Fe0.7Co0.310合金粉末0.5kgを用い、ビーズミルにより1kgのイソプロピルアルコール中で平均粒径が9.2μmになるまで粉砕し、希土類元素を含む鉄系合金微粉末を作製した。なお、粉砕前に、イソプロピルアルコールに対して85%オルト燐酸水溶液4.0gを添加した。
[Example 12, Conventional Example 5]
A bead mill using 0.5 kg of TbCu 7 type crystal structure (Sm 0.75 Zr 0.25 ) (Fe 0.7 Co 0.3 ) 10 N x alloy powder produced by a liquid quenching method as a raw material Was then pulverized in 1 kg of isopropyl alcohol until the average particle size became 9.2 μm to prepare an iron-based alloy fine powder containing a rare earth element. In addition, 4.0 g of 85% orthophosphoric acid aqueous solution was added to isopropyl alcohol before pulverization.

粉砕終了後、スラリーをヌッチェで濾過し、濾布上に残ったケーキをミキサーに入れ、真空ポンプで減圧しながら昇温し、145℃で1時間乾燥して冷却した。このようにして得られた微粉末を、従来例5の鉄系合金微粉末とした。   After completion of the pulverization, the slurry was filtered with Nutsche, the cake remaining on the filter cloth was put into a mixer, the temperature was raised while reducing the pressure with a vacuum pump, and the mixture was dried at 145 ° C. for 1 hour and cooled. The fine powder thus obtained was used as the iron-based alloy fine powder of Conventional Example 5.

次に、従来例5の合金微粉末をミキサー内に入れ、減圧しながら150℃に昇温し、減圧を継続したまま、空気を内部圧力が1kPa(酸素分圧0.2kPa)となるように流量を調整して導入し、さらに1時間保持して冷却した。   Next, the alloy fine powder of Conventional Example 5 is put in a mixer, heated to 150 ° C. while reducing the pressure, and the air is kept at 1 kPa (oxygen partial pressure 0.2 kPa) while continuing the reduced pressure. The flow rate was adjusted and introduced, and the mixture was further cooled for 1 hour.

下記表2に、冷却後に回収された希土類元素を含む鉄系合金微粉末の、残留磁束密度Brと保磁力μHc、リン(P)、酸素(O)、水素(H)の組成分析値、合金微粉末の平均粒径D50、(113)回折線の半値幅B、「H−P/10」、「O/P」、「B−0.25/D50」の値を示す。 Table 2 below shows compositional analysis values of residual magnetic flux density Br and coercive force μ 0 Hc, phosphorus (P), oxygen (O), and hydrogen (H) of the iron-based alloy fine powder containing rare earth elements recovered after cooling. The average particle diameter D50 of the alloy fine powder, (113) half-value width B of the diffraction line, “HP / 10”, “O / P”, and “B-0.25 / D50” are shown.

なお、実施例1〜12、従来例1〜5、比較例1〜6にて得られた各合金微粉末を樹脂に埋め込み、FIB加工して薄片化した後、透過型電子顕微鏡(TEM)により燐酸塩被膜の厚みを観察したところ、いずれにおいても4nm〜10nmの厚みを有しており、欠損部なく被覆されていることが確認できた。   In addition, after embedding each alloy fine powder obtained in Examples 1-12, Conventional Examples 1-5, and Comparative Examples 1-6 in a resin and performing FIB processing to obtain a thin piece, the transmission electron microscope (TEM) was used. When the thickness of the phosphate coating was observed, it had a thickness of 4 nm to 10 nm in any case, and it was confirmed that it was coated without a defect.

Figure 0006578971
Figure 0006578971

Figure 0006578971
Figure 0006578971

実施例1〜3は、空気中の酸素分圧を0.3kPaに調整して用いた例であり、減圧乾燥のみの従来例1や、空気を導入しないでNガスのみで加熱処理した比較例4で得られた合金微粉末の保磁力μHcが1.10Tであるのに対して、1.19T〜1.21Tに向上した。また、H分析値も、P分析値の1/10を下回り、「H−P/10」の値は負となっていた。さらに、O分析値とP分析値の比である「O/P」は5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D25を下回り、「B−0.25/D50」の値は負となっていた。 Examples 1 to 3 are examples in which the oxygen partial pressure in the air was adjusted to 0.3 kPa, and compared with the conventional example 1 in which only drying under reduced pressure was performed and heat treatment only with N 2 gas without introducing air. The coercive force μ 0 Hc of the alloy fine powder obtained in Example 4 was 1.10T, but improved to 1.19T to 1.21T. Also, the H analysis value was less than 1/10 of the P analysis value, and the value of “H−P / 10” was negative. Furthermore, “O / P”, which is the ratio between the O analysis value and the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D25 obtained from D50, and the value of “B−0.25 / D50” was negative.

一方で、加熱処理を行っていない従来例1や、空気を用いた場合であって、加熱温度が100℃を下回る場合(比較例1)や保持時間が0.5時間より短い場合(比較例3)、加熱雰囲気として酸素を含まない窒素雰囲気である場合(比較例4)では、水素が低減されていないために保磁力の改善が見られず、「H−P/10」、「B−0.25/D50」の値が正となることが分かった。また、比較例2の結果に示されるように、加熱温度が300℃を超えると、H分析値が低くなり、「H−P/10」及び「B−0.25/D50」の値は負であったものの、O分析値とP分析値の比である「O/P」が12.2となり5を超え、合金微粉末が酸化して保磁力が大きく劣化することが分かった。   On the other hand, in the case of Conventional Example 1 in which heat treatment is not performed or when air is used, the heating temperature is lower than 100 ° C. (Comparative Example 1) or the holding time is shorter than 0.5 hours (Comparative Example) 3) In the case of a nitrogen atmosphere containing no oxygen as the heating atmosphere (Comparative Example 4), the coercive force is not improved because hydrogen is not reduced, and “HP / 10”, “B— The value of “0.25 / D50” was found to be positive. Further, as shown in the result of Comparative Example 2, when the heating temperature exceeds 300 ° C., the H analysis value becomes low, and the values of “HP / 10” and “B-0.25 / D50” are negative. However, “O / P”, which is the ratio of the O analysis value to the P analysis value, was 12.2 and exceeded 5, and it was found that the fine alloy powder was oxidized and the coercive force was greatly deteriorated.

実施例4〜6は、酸素分圧を2kPaに調整して熱処理した例であり、酸素を導入することで保磁力μHcが1.16T〜1.23Tに向上し、H分析値はP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」は5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Examples 4 to 6 are examples in which the oxygen partial pressure was adjusted to 2 kPa and heat treated, and by introducing oxygen, the coercive force μ 0 Hc was improved to 1.16 T to 1.23 T, and the H analysis value was P It was less than 1/10 of the analytical value. Furthermore, “O / P”, which is the ratio between the O analysis value and the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

一方で、比較例5の結果に示されるように、加熱時間が20時間を超えると、保磁力μHcは1.20Tと従来例より向上し、H分析値も低下して、「H−P/10」及び「B−0.25/D50」の値は負であったものの、O分析値とP分析値の比である「O/P」が6.6となり5を超え、時間の経過とともに残留磁束密度Brが低下し、保磁力μHcは熱処理8〜16時間でほぼ飽和した。 On the other hand, as shown in the result of Comparative Example 5, when the heating time exceeds 20 hours, the coercive force μ 0 Hc is 1.20 T, which is improved from the conventional example, and the H analysis value is also reduced. Although the values of “P / 10” and “B-0.25 / D50” were negative, the ratio of the O analysis value to the P analysis value “O / P” was 6.6, exceeding 5, The residual magnetic flux density Br decreased with the lapse of time, and the coercive force μ 0 Hc was almost saturated after 8 to 16 hours of heat treatment.

実施例7は、酸素分圧が0.4kPaとなるよう空気をフローさせながら減圧下で熱処理した例であり、空気フローしない従来例1で得られた合金微粉末の保磁力μHcが1.10Tであるのに対して、減圧しながらの空気フローでも1.26Tと向上した。また、H分析値もP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」が5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Example 7 is an example of heat treatment under reduced pressure while flowing air so that the oxygen partial pressure becomes 0.4 kPa, and the coercive force μ 0 Hc of the alloy fine powder obtained in Conventional Example 1 without air flow is 1. Compared to .10T, the air flow with reduced pressure also improved to 1.26T. The H analysis value was also less than 1/10 of the P analysis value. Furthermore, “O / P”, which is the ratio of the O analysis value to the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

実施例8は、酸素分圧2kPaでNガスと空気とをフローさせながら熱処理した例であり、実施例7と同様に、従来例1で得られた合金微粉末の保磁力μHcが1.10Tであるのに対して、1.25Tと向上した。また、H分析値もP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」が5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Example 8 is an example of heat treatment while flowing N 2 gas and air at an oxygen partial pressure of 2 kPa. As in Example 7, the coercive force μ 0 Hc of the alloy fine powder obtained in Conventional Example 1 is Compared to 1.10T, it improved to 1.25T. The H analysis value was also less than 1/10 of the P analysis value. Furthermore, “O / P”, which is the ratio of the O analysis value to the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

一方で、酸素分圧が5kPaを超えている比較例6では、酸化と思われる大きな発熱が観察され、その保磁力μHcは1.01Tまで低下した。また、H分析値は低減し、「H−P/10」及び「B−0.25/D50」の値は負であったものの、O分析値とP分析値の比である「O/P」が7.6となり5を超えており、酸化を裏付けていることが分かった。 On the other hand, in Comparative Example 6 in which the oxygen partial pressure exceeds 5 kPa, a large heat generation that seems to be oxidation was observed, and the coercive force μ 0 Hc decreased to 1.01 T. In addition, the H analysis value decreased, and the values of “HP / 10” and “B-0.25 / D50” were negative, but the ratio of the O analysis value to the P analysis value was “O / P”. Was 7.6 and exceeded 5, indicating that the oxidation was supported.

実施例9は、酸素分圧を5kPaに調整して熱処理した例であり、減圧乾燥のみの従来例2に比べて、その保磁力μHcが1.20Tと大幅に向上し、H分析値もP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」が5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Example 9 is an example in which the oxygen partial pressure was adjusted to 5 kPa and heat-treated, and its coercive force μ 0 Hc was significantly improved to 1.20 T compared to Conventional Example 2 only under reduced pressure drying, and the H analysis value Was less than 1/10 of the P analysis value. Furthermore, “O / P”, which is the ratio of the O analysis value to the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

実施例10は、微粉末の平均粒径D50を1.5μmとして空気中の酸素分圧を2kPaに調整して用いた例であり、減圧乾燥のみの従来例3で得られた合金微粉末の保磁力μHcが1.37Tであるのに対して、1.52Tに向上した。また、H分析値もP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」は5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Example 10 is an example in which the average particle diameter D50 of the fine powder was 1.5 μm and the oxygen partial pressure in the air was adjusted to 2 kPa, and the alloy fine powder obtained in Conventional Example 3 only under reduced pressure drying was used. The coercive force μ 0 Hc was 1.37T, but was improved to 1.52T. The H analysis value was also less than 1/10 of the P analysis value. Furthermore, “O / P”, which is the ratio between the O analysis value and the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

実施例11は、微粉末の平均粒径D50を7.4μmとして酸素分圧が0.2kPaとなるよう空気をフローさせながら減圧下で熱処理した例であり、減圧乾燥のみの従来例4で得られた合金微粉末の保磁力μHcが0.28Tであるのに対して、0.32Tに向上した。また、H分析値もP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」は5以下であった。また、X線回折における(113)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Example 11 is an example in which the average particle diameter D50 of the fine powder was 7.4 μm and heat treatment was performed under reduced pressure while flowing air so that the oxygen partial pressure was 0.2 kPa. The coercive force μ 0 Hc of the obtained alloy fine powder was 0.28T, but improved to 0.32T. The H analysis value was also less than 1/10 of the P analysis value. Furthermore, “O / P”, which is the ratio between the O analysis value and the P analysis value, was 5 or less. In addition, the half width B of the (113) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

実施例12は、TbCu型の結晶構造を有する希土類元素を含む鉄系合金微粉末として、(Sm0.75Zr0.25)(Fe0.7Co0.310合金粉末であって平均粒径D50を9.2μmとしたものを用い、酸素分圧が0.2kPaとなるよう空気をフローさせながら減圧下で熱処理した例であり、減圧乾燥のみの従来例5で得られた合金微粉末の保磁力μHcが1.03Tであるのに対して、1.15Tに向上した。また、H分析値もP分析値の1/10を下回っていた。さらに、O分析値とP分析値の比である「O/P」は5以下であった。また、X線回折における(002)回折線の半値幅Bは、D50から求めた0.25/D50を下回り、「B−0.25/D50」の値は負になっていた。 Example 12 is an (Sm 0.75 Zr 0.25 ) (Fe 0.7 Co 0.3 ) 10 N x alloy powder as an iron-based alloy fine powder containing a rare earth element having a TbCu 7 type crystal structure. In this example, the average particle diameter D50 is 9.2 μm, and heat treatment is performed under reduced pressure while flowing air so that the oxygen partial pressure becomes 0.2 kPa. The coercive force μ 0 Hc of the alloy fine powder was 1.03T, but improved to 1.15T. The H analysis value was also less than 1/10 of the P analysis value. Furthermore, “O / P”, which is the ratio between the O analysis value and the P analysis value, was 5 or less. In addition, the half width B of the (002) diffraction line in X-ray diffraction was less than 0.25 / D50 determined from D50, and the value of “B−0.25 / D50” was negative.

ここで、従来例1及び実施例8の条件で、それぞれ10回ずつ、希土類元素を含む鉄系合金微粉末の作製を行った。下記表3に、得られた合金微粉末の作製直後の保磁力μHc(0)の平均値と標準偏差σを示す。また、これら合金微粉末を大気中において80℃、90%RHの環境下に300時間放置した後の保磁力μHc(300)を評価し、耐候性の指標として、μHc(300)とμHc(0)との比「Hc(300)/Hc(0)」を求めた。下記表3に、その比の平均値と標準偏差σも示す。 Here, iron-based alloy fine powders containing rare earth elements were prepared 10 times each under the conditions of Conventional Example 1 and Example 8. Table 3 below shows the average value and standard deviation σ of the coercive force μ 0 Hc (0) immediately after the production of the obtained alloy fine powder. Further, 80 ° C. These alloy fine powder in the air, to evaluate the coercive force μ 0 Hc (300) after leaving for 300 hours in an environment of 90% RH, as an index of weather resistance, mu 0 Hc (300) And the ratio “Hc (300) / Hc (0)” of μ 0 Hc (0) was obtained. Table 3 below also shows the average value of the ratio and the standard deviation σ.

Figure 0006578971
Figure 0006578971

表3に示すように、従来例1の条件で作製した合金微粉末では、作製直後の保磁力μHc(0)と耐候性指標Hc(300)/Hc(0)とのばらつきσが、それぞれ0.034T、0.014(1.4%)であったのに対して、実施例8の条件で作製した合金微粉末では、それぞれのばらつきσが、0.012T、0.005(0.5%)と小さくなっているのが分かる。また、それぞれの平均値も、実施例8の条件で製造した合金微粉末の方が優れていることが分かる。 As shown in Table 3, in the alloy fine powder produced under the conditions of Conventional Example 1, the variation σ between the coercive force μ 0 Hc (0) immediately after production and the weather resistance index Hc (300) / Hc (0) is Whereas they were 0.034T and 0.014 (1.4%), respectively, in the alloy fine powder produced under the conditions of Example 8, the respective variations σ were 0.012T and 0.005 (0 .5%). Moreover, it turns out that the average value of each is excellent in the alloy fine powder manufactured on the conditions of Example 8. FIG.

Claims (3)

有機溶剤を含む溶媒中で希土類元素を含む鉄系合金粉末を粉砕するとともに、該粉砕に際して燐酸化合物を添加し、表面が燐酸塩皮膜で被覆された微粉末を得る第1の工程と、
得られた微粉末に対して所定の温度で加熱処理を施す第2の工程と、を有し、
第2の工程では、
得られる鉄系合金微粉末の水素含有量が0.2質量%以下となるように、分圧0.1kPa以上5.0kPa以下の酸素を含む雰囲気中で、100℃以上300℃以下の温度条件で0.5時間以上20時間以下の条件で加熱処理する
希土類元素を含む鉄系合金微粉末の製造方法。
A first step of pulverizing an iron-based alloy powder containing a rare earth element in a solvent containing an organic solvent, adding a phosphoric acid compound during the pulverization, and obtaining a fine powder having a surface coated with a phosphate film;
A second step of subjecting the obtained fine powder to a heat treatment at a predetermined temperature,
In the second step,
Temperature conditions of 100 ° C. or more and 300 ° C. or less in an atmosphere containing oxygen having a partial pressure of 0.1 kPa or more and 5.0 kPa or less so that the hydrogen content of the obtained iron-based alloy fine powder is 0.2% by mass or less. The method for producing a ferrous alloy fine powder containing a rare earth element , wherein the heat treatment is performed at 0.5 to 20 hours .
前記第1の工程では、
粉砕前又は粉砕中に、前記溶媒に前記燐酸化合物を添加する
請求項1に記載の希土類元素を含む鉄系合金微粉末の製造方法。
In the first step,
During grinding before or grinding method for producing a powder ferrous alloy powder containing a rare earth element according to claim 1, adding the phosphoric acid compound in the solvent.
燐酸塩皮膜で被覆された希土類元素を含む鉄系合金微粉末であって、
水素含有量(H)がリン含有量(P)の1/10以下であり、
酸素含有量(O)とリン含有量(P)の比であるO/Pが5以下であり、
X線回折における、Th Zn 17 型では(113)回折線、Th Ni 17 型では(112)回折線、TbCu 型では(002)回折線の半値幅B(deg.)が、平均粒径D50(μm)から得られる0.25/D50の値よりも小さい
希土類元素を含む鉄系合金微粉末。
An iron-based alloy fine powder containing a rare earth element coated with a phosphate film,
The hydrogen content (H) is 1/10 or less of the phosphorus content (P),
The ratio Der O / P is 5 or less which is the oxygen content and (O) phosphorus content (P) is,
In the X-ray diffraction, the half-width B (deg.) Of the (113) diffraction line for the Th 2 Zn 17 type, the (112) diffraction line for the Th 2 Ni 17 type, and the (002) diffraction line for the TbCu 7 type is the average grain size. An iron-based alloy fine powder containing a rare earth element smaller than a value of 0.25 / D50 obtained from a diameter D50 (μm) .
JP2016018170A 2015-08-25 2016-02-02 Manufacturing method of iron-based alloy fine powder containing rare earth element, iron-based alloy fine powder containing rare earth element Active JP6578971B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165741 2015-08-25
JP2015165741 2015-08-25

Publications (2)

Publication Number Publication Date
JP2017043832A JP2017043832A (en) 2017-03-02
JP6578971B2 true JP6578971B2 (en) 2019-09-25

Family

ID=58209219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018170A Active JP6578971B2 (en) 2015-08-25 2016-02-02 Manufacturing method of iron-based alloy fine powder containing rare earth element, iron-based alloy fine powder containing rare earth element

Country Status (1)

Country Link
JP (1) JP6578971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203739A1 (en) * 2019-04-05 2020-10-08 国立研究開発法人産業技術総合研究所 Sm-fe-n-based magnet powder, sm-fe-n-based sintered magnet, and production method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043109A (en) * 2000-07-19 2002-02-08 Nichia Chem Ind Ltd Surface treatment method of rare earth-iron-nitrogen magnetic power and plastic magnet formed of the same
JP4135447B2 (en) * 2002-09-17 2008-08-20 住友金属鉱山株式会社 High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
EP2110823B1 (en) * 2007-05-30 2017-03-01 Shin-Etsu Chemical Co., Ltd. Process for producing highly anticorrosive rare earth permanent magnet and method of using the same
JP5974975B2 (en) * 2012-06-20 2016-08-23 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnet fine powder and method for producing the same

Also Published As

Publication number Publication date
JP2017043832A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
CN106024253B (en) R-Fe-B sintered magnet and preparation method thereof
CN108885930B (en) Magnetic material and method for producing the same
JP4692634B2 (en) Magnet manufacturing method
JP7174962B2 (en) Magnet powder containing Sm--Fe--N system crystal particles, sintered magnet produced therefrom, and production method thereof
CN107039135B (en) R-T-B system sintered magnet
US11732336B2 (en) Magnetic material and method for producing same
US6811620B2 (en) R-T-B system rare earth permanent magnet
JP6142794B2 (en) Rare earth magnets
JP5499738B2 (en) Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet
US20180182518A1 (en) R-t-b-based sintered magnet and method for producing same
JP6845491B2 (en) Samarium-iron-nitrogen magnet powder and its manufacturing method
JP2015142119A (en) Method for manufacturing rare earth magnet
EP3690071A1 (en) Magnetic material and method for producing same
JP2020123735A (en) Rare earth magnets
JP6142793B2 (en) Rare earth magnets
JP6578971B2 (en) Manufacturing method of iron-based alloy fine powder containing rare earth element, iron-based alloy fine powder containing rare earth element
JP6171922B2 (en) Rare earth-iron-nitrogen based magnetic alloy and method for producing the same
JP2018174312A (en) R-T-B based sintered magnet
EP3588517B1 (en) Magnetic material and process for manufacturing same
US20040187969A1 (en) R-T-B system rare earth permanent magnet
JPH09223617A (en) Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereof
JP7168394B2 (en) Rare earth magnet and manufacturing method thereof
JP2016149397A (en) R-t-b-based sintered magnet
JP6406172B2 (en) Method for producing fine powder of iron-based alloy containing rare earth element
WO2023119908A1 (en) Rare-earth magnetic powder, method for manufacturing same, and bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R150 Certificate of patent or registration of utility model

Ref document number: 6578971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150