JP2018174312A - R-T-B based sintered magnet - Google Patents

R-T-B based sintered magnet Download PDF

Info

Publication number
JP2018174312A
JP2018174312A JP2018055192A JP2018055192A JP2018174312A JP 2018174312 A JP2018174312 A JP 2018174312A JP 2018055192 A JP2018055192 A JP 2018055192A JP 2018055192 A JP2018055192 A JP 2018055192A JP 2018174312 A JP2018174312 A JP 2018174312A
Authority
JP
Japan
Prior art keywords
core
shell
main phase
sintered magnet
phase particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018055192A
Other languages
Japanese (ja)
Other versions
JP2018174312A5 (en
JP7035682B2 (en
Inventor
佳則 藤川
Yoshinori Fujikawa
佳則 藤川
将史 三輪
Masashi Miwa
将史 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US15/939,778 priority Critical patent/US10748686B2/en
Priority to CN201810293088.9A priority patent/CN108695034B/en
Publication of JP2018174312A publication Critical patent/JP2018174312A/en
Publication of JP2018174312A5 publication Critical patent/JP2018174312A5/ja
Application granted granted Critical
Publication of JP7035682B2 publication Critical patent/JP7035682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an R-T-B based sintered magnet which is low cost and enables the increase in residual magnetic flux density and coercive force.SOLUTION: An R-T-B based sintered magnet 1 comprises RTB crystal as primary-phase grains, where R represents one or more kinds of rare earth elements, including a heavy rare earth element RH as an essential element, T represents one or more kinds of transition metal elements, including Fe or Fe and Co as an essential element, and B represents boron. The primary-phase grains are partially composed of inverted core shell primary-phase grains 11. The inverted core shell primary-phase grains 11 each have a core part 11a and a shell part 11b. When a total RH concentration (at%) in the core part 11a is denoted by C, and a total RH concentration (at%) in the shell part 11b is denoted by C, C/C>1.0. The abundance rate of the inverted core shell primary-phase grains 11 at the grain boundaries 12 in a magnet surface layer portion is larger than that in a magnet center portion.SELECTED DRAWING: Figure 2

Description

本発明は、R−T−B系焼結磁石に関する。   The present invention relates to an RTB-based sintered magnet.

特許文献1に示されるように、R−T−B系焼結磁石は、優れた磁気特性を有することが知られている。現在では、さらなる磁気特性の向上が望まれている。   As shown in Patent Document 1, it is known that an RTB-based sintered magnet has excellent magnetic properties. At present, further improvement in magnetic properties is desired.

R−T−B系焼結磁石の磁気特性、特に保磁力を向上させる方法には、原料合金を作製する段階でRとして重希土類元素を含ませる方法(一合金法)が知られている。また、重希土類元素を含まない主相系合金と重希土類元素を含む粒界相系合金とを粉砕後に混合して焼結する方法(二合金法)がある。さらに、特許文献2に記載されているように、R−T−B系焼結磁石を作製した後に、表面に重希土類元素を付着させて加熱することにより、粒界を通じて重希土類元素を拡散させる方法(粒界拡散法)がある。   As a method for improving the magnetic properties, particularly the coercive force, of an RTB-based sintered magnet, a method (one alloy method) in which a heavy rare earth element is included as R at the stage of producing a raw material alloy is known. Further, there is a method (two alloy method) in which a main phase alloy containing no heavy rare earth element and a grain boundary phase alloy containing heavy rare earth element are mixed and sintered after pulverization. Furthermore, as described in Patent Document 2, after the RTB-based sintered magnet is manufactured, the heavy rare earth element is diffused through the grain boundary by attaching and heating the heavy rare earth element on the surface. There is a method (grain boundary diffusion method).

上記の一合金法は主相粒子中に重希土類元素が存在するため、最大エネルギー積が低下してしまう場合がある。二合金法では主相粒子中の重希土類元素を低減でき、最大エネルギー積の低下を抑制することができる。粒界拡散法では、主相粒子のうち粒界にごく近い領域のみ重希土類元素の濃度を高くでき、主相粒子内部の重希土類元素の濃度を低減できる。すなわち、一般的なコアシェル構造の主相粒子を得ることができる。一般的なコアシェル構造とは、コア部の重希土類元素の濃度がコア部を被覆するシェル部の重希土類元素の濃度よりも低い構造のことである。これにより、二合金法と比べて保磁力を高くし、最大エネルギー積の低下を抑制できる。さらに、高価な重希土類元素の使用量を抑制できる。   In the one alloy method described above, since the heavy rare earth element is present in the main phase particles, the maximum energy product may be reduced. In the two-alloy method, heavy rare earth elements in the main phase particles can be reduced, and a decrease in the maximum energy product can be suppressed. In the grain boundary diffusion method, the concentration of heavy rare earth elements can be increased only in a region very close to the grain boundary in the main phase particles, and the concentration of heavy rare earth elements inside the main phase particles can be reduced. That is, main phase particles having a general core-shell structure can be obtained. A general core-shell structure is a structure in which the concentration of heavy rare earth elements in the core portion is lower than the concentration of heavy rare earth elements in the shell portion covering the core portion. Thereby, it is possible to increase the coercive force as compared with the two-alloy method and suppress the decrease in the maximum energy product. Furthermore, the amount of expensive heavy rare earth elements used can be suppressed.

また、特許文献3には、従来のR−T−B系焼結磁石よりも保磁力を向上させるために、コア部の重希土類元素の濃度がシェル部の重希土類元素の濃度よりも高い主相粒子を含む技術が記載されている。   Patent Document 3 discloses that the concentration of heavy rare earth elements in the core portion is higher than the concentration of heavy rare earth elements in the shell portion in order to improve the coercive force as compared with the conventional RTB-based sintered magnet. Techniques involving phase particles are described.

特開昭59−46008号公報JP 59-46008 A 国際公開第2006/043348号International Publication No. 2006/043348 特開2016−154219号公報Japanese Patent Laid-Open No. 2006-154219

しかし、現在では、さらなる保磁力の向上およびコストの低減が求められている。   However, at present, there is a demand for further improvement in coercive force and cost reduction.

本発明は、磁気特性を向上させ、かつ、低コストであるR−T−B系焼結磁石を得ることを目的とする。   An object of this invention is to obtain the RTB type sintered magnet which improves a magnetic characteristic and is low-cost.

上記の目的を達成するために、本発明に係るR−T−B系焼結磁石は、
14B結晶からなる主相粒子を含むR−T−B系焼結磁石であって、
Rは重希土類元素RHを必須とする1種以上の希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、Bはホウ素であり、
前記主相粒子の一部が逆コアシェル主相粒子であり、
前記逆コアシェル主相粒子は、コア部およびシェル部を有し、
前記コア部における全RH濃度(at%)をCRC
前記シェル部における全RH濃度(at%)をCRSとした場合に、
RC/CRS>1.0であり、
前記逆コアシェル主相粒子の存在比率が、磁石中央部よりも磁石表層部の方が大きいことを特徴とする。
In order to achieve the above object, an RTB-based sintered magnet according to the present invention includes:
An RTB-based sintered magnet including main phase particles made of R 2 T 14 B crystal,
R is one or more rare earth elements essential for the heavy rare earth element RH, T is one or more transition metal elements essential for Fe or Fe and Co, and B is boron,
Some of the main phase particles are reverse core shell main phase particles,
The reverse core shell main phase particles have a core portion and a shell portion,
The total RH concentration (at%) in the core part is defined as C RC ,
All RH concentration at the shell portion (at%) in the case of the C RS,
C RC / C RS > 1.0,
The existence ratio of the reverse core shell main phase particles is larger in the magnet surface layer than in the magnet center.

本発明に係るR−T−B系焼結磁石は、上記の特徴を有することにより、磁気特性を向上させ、かつ、低コストな磁石となる。   The RTB-based sintered magnet according to the present invention has the above-described characteristics, thereby improving the magnetic characteristics and providing a low-cost magnet.

本発明に係るR−T−B系焼結磁石は、CRC/CRS>1.5であってもよい。 The RCTB sintered magnet according to the present invention may have CRC / CRS > 1.5.

本発明に係るR−T−B系焼結磁石は、
前記主相粒子の一部がコアシェル主相粒子であり、
前記コアシェル主相粒子は、コア部およびシェル部を有し、
前記コア部における全RH濃度(at%)をCNC
前記シェル部における全RH濃度(at%)をCNSとした場合に、
NC/CNS<1.0であってもよい。
The RTB-based sintered magnet according to the present invention is
Some of the main phase particles are core-shell main phase particles,
The core-shell main phase particles have a core part and a shell part,
The total RH concentration (at%) in the core part is represented by CNC ,
When the total RH concentration (at%) in the shell portion is C NS ,
C NC / C NS <1.0 may be sufficient.

本発明に係るR−T−B系焼結磁石は、
主に前記コアシェル主相粒子からなるコアシェル粒子層、および、主に前記逆コアシェル主相粒子からなる逆コアシェル粒子層を含んでいてもよい。
The RTB-based sintered magnet according to the present invention is
A core-shell particle layer mainly composed of the core-shell main phase particles and a reverse core-shell particle layer mainly composed of the reverse core-shell main phase particles may be included.

本発明に係るR−T−B系焼結磁石は、
磁石中央部から磁石表層部に向かって、前記コアシェル粒子層および前記逆コアシェル粒子層がこの順番に並んでいてもよい。
The RTB-based sintered magnet according to the present invention is
The core-shell particle layer and the reverse core-shell particle layer may be arranged in this order from the magnet center to the magnet surface layer.

本発明に係るR−T−B系焼結磁石は、
前記主相粒子の一部がコアシェル構造を有さない非コアシェル主相粒子であって、主に前記非コアシェル主相粒子からなる非コアシェル粒子層を含むR−T−B系焼結磁石であって、
磁石中央部から磁石表層部に向かって、前記非コアシェル粒子層、前記コアシェル粒子層および前記逆コアシェル粒子層がこの順番に並んでいてもよい。
The RTB-based sintered magnet according to the present invention is
A part of the main phase particles is a non-core shell main phase particle having no core-shell structure, and is an RTB-based sintered magnet including a non-core shell particle layer mainly composed of the non-core shell main phase particles. And
The non-core shell particle layer, the core shell particle layer, and the reverse core shell particle layer may be arranged in this order from the magnet center to the magnet surface layer.

本発明の一実施形態に係るR−T−B系焼結磁石の断面の概略図である。It is the schematic of the cross section of the RTB type sintered magnet which concerns on one Embodiment of this invention. 本発明の一実施形態に係るR−T−B系焼結磁石の断面の概略図である。It is the schematic of the cross section of the RTB type sintered magnet which concerns on one Embodiment of this invention. 本発明の一実施形態に係るR−T−B系焼結磁石の磁石表層部付近の断面の概略図である。It is the schematic of the cross section of magnet surface layer vicinity of the RTB system sintered magnet which concerns on one Embodiment of this invention.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

<R−T−B系焼結磁石>   <RTB-based sintered magnet>

本実施形態に係るR−T−B系焼結磁石1は、R14B結晶からなる主相粒子を含む。Rは重希土類元素RHを必須とする1種以上の希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、Bはホウ素である。さらに、Zrを含んでもよい。なお、Rとして含まれる希土類元素とは、長周期型周期表の第3族に属するScとYとランタノイド元素とのことをいう。また、重希土類元素RHとは、Gd,Tb,Dy,Ho,Er,Tm,Yb,Luのことをいう。 The RTB-based sintered magnet 1 according to this embodiment includes main phase particles made of R 2 T 14 B crystals. R is one or more rare earth elements essential for the heavy rare earth element RH, T is one or more transition metal elements essential for Fe or Fe and Co, and B is boron. Furthermore, Zr may be included. Note that the rare earth element contained as R means Sc, Y, and a lanthanoid element belonging to Group 3 of the long-period periodic table. The heavy rare earth element RH means Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

Rの含有量には特に制限はないが、25質量%以上35質量%以下であってもよく、好ましくは28質量%以上33質量%以下である。Rの含有量が25質量%以上であると、R−T−B系焼結磁石1の主相粒子となるR14B結晶の生成が十分に行われやすく、軟磁性を持つα−Feなどの析出を抑制し、磁気特性の低下を抑制しやすくなる。 Rの含有量が35質量%以下であると、R−T−B系焼結磁石1の残留磁束密度Brが向上する傾向にある。 Although there is no restriction | limiting in particular in content of R, 25 mass% or more and 35 mass% or less may be sufficient, Preferably it is 28 mass% or more and 33 mass% or less. When the content of R is 25% by mass or more, R 2 T 14 B crystals that are the main phase particles of the R-T-B-based sintered magnet 1 are sufficiently easily generated, and α- having a soft magnetism Precipitation of Fe or the like is suppressed, and deterioration of magnetic properties is easily suppressed. When the R content is 35% by mass or less, the residual magnetic flux density Br of the RTB-based sintered magnet 1 tends to be improved.

本実施形態に係るR−T−B系焼結磁石におけるBの含有量は、0.5質量%以上1.5質量%以下であってもよく、好ましくは0.8質量%以上1.2質量%以下であり、より好ましくは0.8質量%以上1.0質量%以下である。Bの含有量が0.5質量%以上であることにより保磁力Hcjが向上する傾向にある。また、Bの含有量が1.5質量%以下であることにより、残留磁束密度Brが向上する傾向にある。   The content of B in the RTB-based sintered magnet according to this embodiment may be 0.5% by mass or more and 1.5% by mass or less, and preferably 0.8% by mass or more and 1.2% or less. It is not more than mass%, more preferably not less than 0.8 mass% and not more than 1.0 mass%. When the content of B is 0.5% by mass or more, the coercive force Hcj tends to be improved. Moreover, when the B content is 1.5% by mass or less, the residual magnetic flux density Br tends to be improved.

Tは、Fe単独であってもよく、Feの一部がCoで置換されていてもよい。本実施形態に係るR−T−B系焼結磁石におけるFeの含有量は、R−T−B系焼結磁石において不可避的不純物,O,CおよびNを除いた場合の実質的な残部である。Coの含有量は0質量%以上4質量%以下であることが好ましく、0.1質量%以上2質量%以下であることがより好ましく、0.3質量%以上1.5質量%以下とすることが更に好ましい。FeまたはFe及びCo以外の遷移金属元素としては、特に限定はないが、例えば、Ti,V,Cr,Mn,Ni,Cu,Zr,Nb,Mo,Hf,Ta,Wなどが挙げられる。また、Tとして含まれる遷移金属元素の一部を、例えば、Al,Ga,Si,Bi,Snなどの元素に置換してもよい。   T may be Fe alone or a part of Fe may be substituted with Co. The content of Fe in the RTB-based sintered magnet according to the present embodiment is a substantial balance when the inevitable impurities, O, C, and N are removed from the RTB-based sintered magnet. is there. The Co content is preferably 0% by mass to 4% by mass, more preferably 0.1% by mass to 2% by mass, and 0.3% by mass to 1.5% by mass. More preferably. The transition metal element other than Fe or Fe and Co is not particularly limited, and examples thereof include Ti, V, Cr, Mn, Ni, Cu, Zr, Nb, Mo, Hf, Ta, and W. Further, a part of the transition metal element included as T may be replaced with an element such as Al, Ga, Si, Bi, Sn, for example.

R−T−B系焼結磁石1がAlおよびCuから選択される1種または2種を含有する場合、Al、Cuから選択される1種または2種の含有量は、それぞれ0.02質量%以上0.60質量%以下とすることが好ましい。AlおよびCuから選択される1種または2種を、それぞれ0.02質量%以上0.60質量%以下、含有することにより、R−T−B系焼結磁石1の保磁力および耐湿性が向上し、温度特性が改善される傾向にある。Alの含有量は0.03質量%以上0.40質量%以下が好ましく、0.05質量%以上0.25質量%以下がより好ましい。また、Cuの含有量は0質量%超0.30質量%以下が好ましく、0質量%超0.20質量%以下がより好ましく、0.03質量%以上0.15質量%以下が更に好ましい。   When the RTB-based sintered magnet 1 contains one or two selected from Al and Cu, the content of one or two selected from Al and Cu is 0.02 mass respectively. % Or more and 0.60% by mass or less is preferable. By containing one or two selected from Al and Cu in an amount of 0.02 to 0.60% by mass, the coercive force and moisture resistance of the RTB-based sintered magnet 1 can be improved. The temperature characteristic tends to be improved. The content of Al is preferably 0.03% by mass or more and 0.40% by mass or less, and more preferably 0.05% by mass or more and 0.25% by mass or less. Further, the Cu content is preferably more than 0% by mass and 0.30% by mass or less, more preferably more than 0% by mass and 0.20% by mass or less, and further preferably 0.03% by mass to 0.15% by mass.

R−T−B系焼結磁石1は、さらにZrを含むことができる。Zrの含有量は、0質量%超0.25質量%以下であってもよい。Zrを上記の範囲内で含有することにより、焼結磁石の製造過程、主に焼結工程において、主相粒子の異常成長を抑制することができる。そのため、得られる焼結体(R−T−B系焼結磁石1)の組織が均一且つ微細となり、得られる焼結体の磁気特性が向上する傾向にある。上記の効果をより良好に得るために、Zrの含有量は、0.03質量%以上0.25質量%以下であってもよい。   The RTB-based sintered magnet 1 can further contain Zr. The Zr content may be more than 0% by mass and 0.25% by mass or less. By containing Zr within the above range, abnormal growth of main phase particles can be suppressed in the manufacturing process of the sintered magnet, mainly in the sintering process. Therefore, the structure of the obtained sintered body (RTB-based sintered magnet 1) becomes uniform and fine, and the magnetic properties of the obtained sintered body tend to be improved. In order to obtain the above effects better, the content of Zr may be 0.03% by mass or more and 0.25% by mass or less.

また、R−T−B系焼結磁石1におけるCの含有量は、0.05質量%以上0.30質量%以下が好ましい。Cの含有量を0.05質量%以上とすることで、保磁力が向上する傾向にある。Cの含有量を0.30質量%以下とすることで、保磁力(Hcj)と、角形比(Hk/Hcj)が十分に高くなる傾向にある。Hkとは、磁気ヒステリシスループ(4πI−Hカーブ)の第2象限における磁化が残留磁束密度(Br)の90%となるときの磁界強度のことである。角形比は、外部磁界の作用や温度上昇による減磁のし易さを表すパラメータである。角形比が小さい場合には、外部磁界の作用や温度上昇による減磁が大きくなる。また、着磁に要する磁界強度が増大する。保磁力及び角形比をより良好に得るためには、Cの含有量を0.10質量%以上0.25質量%以下とすることが好ましい。   Further, the content of C in the RTB-based sintered magnet 1 is preferably 0.05% by mass or more and 0.30% by mass or less. When the C content is 0.05% by mass or more, the coercive force tends to be improved. When the C content is 0.30% by mass or less, the coercive force (Hcj) and the squareness ratio (Hk / Hcj) tend to be sufficiently high. Hk is the magnetic field strength when the magnetization in the second quadrant of the magnetic hysteresis loop (4πI-H curve) is 90% of the residual magnetic flux density (Br). The squareness ratio is a parameter representing the ease of demagnetization due to the action of an external magnetic field or temperature rise. When the squareness ratio is small, the demagnetization due to the action of the external magnetic field and the temperature rise increases. In addition, the magnetic field strength required for magnetization increases. In order to obtain a better coercive force and squareness ratio, the C content is preferably set to 0.10% by mass or more and 0.25% by mass or less.

また、R−T−B系焼結磁石1におけるOの含有量は、0.03質量%以上0.40質量%以下が好ましい。Oの含有量を0.03質量%以上とすることで、耐食性が向上する傾向にある。0.40質量%以下とすることで、焼結時に液相が十分に形成されやすくなり、保磁力が向上する傾向にある。耐食性および保磁力をより良好にするために、Oの含有量は、0.05質量%以上0.30質量%以下としてもよく、0.05質量%以上0.25質量%以下としてもよい。   Further, the content of O in the R-T-B system sintered magnet 1 is preferably 0.03% by mass or more and 0.40% by mass or less. When the content of O is 0.03% by mass or more, the corrosion resistance tends to be improved. When the content is 0.40% by mass or less, a liquid phase is easily formed during sintering, and the coercive force tends to be improved. In order to improve the corrosion resistance and the coercive force, the content of O may be 0.05% by mass or more and 0.30% by mass or less, or 0.05% by mass or more and 0.25% by mass or less.

また、R−T−B系焼結磁石1におけるNの含有量は、0質量%以上0.15質量%以下であることが好ましい。Nの含有量が0.15質量%以下であることにより、保磁力が十分に向上する傾向にある。   Further, the N content in the R-T-B system sintered magnet 1 is preferably 0% by mass or more and 0.15% by mass or less. When the N content is 0.15% by mass or less, the coercive force tends to be sufficiently improved.

R−T−B系焼結磁石1は、Mn,Ca,Ni,Cl,S,F等の不可避的不純物を、0.001質量%以上0.5質量%以下程度含んでいてもよい。   The RTB-based sintered magnet 1 may contain inevitable impurities such as Mn, Ca, Ni, Cl, S, and F in an amount of about 0.001% by mass to 0.5% by mass.

R−T−B系焼結磁石中の酸素量、炭素量、窒素量の測定方法は、従来から一般的に知られている方法を用いることができる。酸素量は、例えば、不活性ガス融解−非分散型赤外線吸収法により測定され、炭素量は、例えば、酸素気流中燃焼−赤外線吸収法により測定され、窒素量は、例えば、不活性ガス融解−熱伝導度法により測定される。   As a method for measuring the oxygen content, carbon content, and nitrogen content in the RTB-based sintered magnet, a conventionally known method can be used. The amount of oxygen is measured, for example, by an inert gas melting-non-dispersive infrared absorption method, the amount of carbon is measured, for example, by combustion in an oxygen stream-infrared absorption method, and the amount of nitrogen is, for example, an inert gas melting- Measured by thermal conductivity method.

14B結晶からなる主相粒子の粒径には特に制限はないが、通常は、1μm以上10μm以下である。 No particular limitation on the particle size of the main phase particles consisting of R 2 T 14 B crystal, but typically is 1μm or more 10μm or less.

Rの種類には特に制限はないが、好ましくはNd,Prを含む。さらに、重希土類元素RHの種類にも特に制限はないが、好ましくはDyおよびTbのいずれか一方または両方を含む。   The type of R is not particularly limited, but preferably includes Nd and Pr. Further, the type of heavy rare earth element RH is not particularly limited, but preferably includes one or both of Dy and Tb.

本実施形態に係るR−T−B系焼結磁石1は、図1Aおよび図2に示すように、主に逆コアシェル主相粒子11からなる逆コアシェル粒子層1a、および、主にコアシェル主相粒子13からなるコアシェル粒子層1bを有する。逆コアシェル主相粒子11およびコアシェル主相粒子13はR14B結晶からなる主相粒子である。また、各主相粒子間に粒界12が存在していてもよい。 As shown in FIG. 1A and FIG. 2, the RTB-based sintered magnet 1 according to this embodiment includes a reverse core-shell particle layer 1 a mainly composed of reverse core-shell main phase particles 11, and mainly a core-shell main phase. It has a core-shell particle layer 1b made of particles 13. The inverted core-shell main phase particles 11 and the core-shell main phase particles 13 are main phase particles made of R 2 T 14 B crystals. Moreover, the grain boundary 12 may exist between each main phase particle.

図2に示すように、逆コアシェル主相粒子11はコア部11aおよびコア部11aを被覆するシェル部11bを有する。また、コアシェル主相粒子13はコア部13aおよびコア部13aを被覆するシェル部13bを有する。なお、各主相粒子がコアシェル構造を有している粒子、すなわち逆コアシェル主相粒子11またはコアシェル主相粒子13であることは、SEMを用いて倍率1000倍以上10000倍以下で観察することにより確認できる。   As shown in FIG. 2, the reverse core shell main phase particle 11 has a core part 11a and a shell part 11b covering the core part 11a. The core-shell main phase particles 13 have a core portion 13a and a shell portion 13b that covers the core portion 13a. In addition, the fact that each main phase particle has a core-shell structure, that is, a reverse core-shell main phase particle 11 or a core-shell main phase particle 13 is observed by using a SEM at a magnification of 1000 to 10,000 times. I can confirm.

具体的には、本実施形態に係るR−T−B系焼結磁石1を切断して得られる断面を鏡面研磨してからSEMで反射電子像を撮影する。反射電子像にて生じる組成コントラストから各主相粒子がコアシェル主相粒子13であるか逆コアシェル主相粒子11であるかを判別できる。一般的に、組成コントラストは観察対象の平均原子番号が大きくなるほど明るく(白く)なる。また、重希土類元素RHはその他のR−T−B系焼結磁石1に含まれる元素と比較して原子番号が大きい。したがって、重希土類元素RHの濃度が相対的に高い領域は重希土類元素RHの濃度が相対的に低い領域と比較して平均原子番号が大きくなる。そして、反射電子像にて主相粒子内部でRH濃度が高い領域はRH濃度が低い領域と比較して明るく(白く)なる。以上より、主相粒子内部で明るい部分の位置によって各主相粒子がコアシェル主相粒子13であるか逆コアシェル主相粒子11であるかを判別できる。   Specifically, a cross-section obtained by cutting the RTB-based sintered magnet 1 according to the present embodiment is mirror-polished, and then a reflected electron image is taken with an SEM. From the composition contrast generated in the reflected electron image, it can be determined whether each main phase particle is the core-shell main phase particle 13 or the reverse core-shell main phase particle 11. In general, the composition contrast becomes brighter (whiter) as the average atomic number of the observation target increases. Further, the heavy rare earth element RH has a larger atomic number than the elements contained in the other RTB-based sintered magnet 1. Therefore, the region where the concentration of heavy rare earth element RH is relatively high has a higher average atomic number than the region where the concentration of heavy rare earth element RH is relatively low. In the reflected electron image, a region having a high RH concentration inside the main phase particle becomes brighter (whiter) than a region having a low RH concentration. From the above, it is possible to determine whether each main phase particle is the core-shell main phase particle 13 or the reverse core-shell main phase particle 11 based on the position of the bright part inside the main phase particle.

ここで、逆コアシェル主相粒子11は、前記R14B結晶からなる主相粒子であって、コア部11aにおける全RH濃度(at%)をCRC、シェル部11bにおける全RH濃度(at%)をCRSとした場合に、CRC/CRS>1.0である主相粒子である。 Here, the reverse core shell main phase particles 11 are main phase particles made of the R 2 T 14 B crystal, and the total RH concentration (at%) in the core portion 11a is C RC and the total RH concentration in the shell portion 11b ( the at%) in the case of the C RS, a main phase particles is a C RC / C RS> 1.0.

すなわち、逆コアシェル主相粒子11は、一般的に知られているコアシェル主相粒子とは逆に、シェル部11bにおける全RH濃度よりもコア部11aにおける全RH濃度の方が高い主相粒子である。   That is, the reverse core-shell main phase particle 11 is a main phase particle in which the total RH concentration in the core portion 11a is higher than the total RH concentration in the shell portion 11b, contrary to the generally known core-shell main phase particles. is there.

RCおよびCRSの測定箇所には、特に制限はない。例えば、以下の通りとすることができる。 There are no particular restrictions on the measurement locations of CRC and CRS . For example, it can be as follows.

まず、濃度を測定する逆コアシェル主相粒子11を透過型電子顕微鏡(TEM)で観察し、長さが最大となる直径を特定する。次に、当該直径と粒界との二つの交点を特定する。そして、当該二つの交点の中点を中心とする20nm×20nmの領域における全RH濃度を測定し、コア部における全RH濃度CRCとすることができる。 First, the reverse core-shell main phase particles 11 whose concentration is to be measured are observed with a transmission electron microscope (TEM), and the diameter having the maximum length is specified. Next, two intersections between the diameter and the grain boundary are specified. Then, it is possible to measure the total RH concentration in the region of 20 nm × 20 nm centered on the midpoint of the two points of intersection, the total RH concentration C RC in the core portion.

次に、当該二つの交点のうち一つの交点を選択する。そして、当該交点から前記長さが最大となる直径に沿って20nm、逆コアシェル主相粒子側に侵入した点を中心とする20nm×20nmの領域における全RH濃度を測定し、シェル部における全RH濃度CRSとすることができる。 Next, one intersection is selected from the two intersections. Then, the total RH concentration in a region of 20 nm × 20 nm centering on the point entering the reverse core shell main phase particle side is measured along the diameter having the maximum length from the intersection, and the total RH in the shell portion is measured. The concentration CRS can be set.

一方、コアシェル主相粒子13とは、前記R14B結晶からなる主相粒子であって、コア部13aにおける全RH濃度(at%)をCNC、シェル部13bにおける全RH濃度(at%)をCNSとした場合に、CNC/CNS<1.0である主相粒子である。 On the other hand, the core-shell main phase particle 13 is a main phase particle composed of the R 2 T 14 B crystal, and the total RH concentration (at%) in the core portion 13a is C NC and the total RH concentration (at) in the shell portion 13b. %) and when the C NS, a main phase particles is a C NC / C NS <1.0.

すなわち、コアシェル主相粒子13は、一般的に知られているコアシェル主相粒子と同様に、シェル部13bにおける全RH濃度よりもコア部13aにおける全RH濃度の方が低い主相粒子である。   That is, the core-shell main phase particles 13 are main-phase particles having a lower total RH concentration in the core portion 13a than in the total RH concentration in the shell portion 13b, as in the generally known core-shell main phase particles.

NCおよびCNSの測定箇所には、特に制限はないが、例えばCRCおよびCRSと同様に測定箇所を設定することができる。 Although there is no restriction | limiting in particular in the measurement location of CNC and CNS , For example, a measurement location can be set similarly to CRC and CRS .

また、逆コアシェル主相粒子11のコア部11aにおける全R濃度に対する全RH濃度には特に制限はないが、概ね原子比で30%以上80%以下程度である。逆コアシェル主相粒子11のシェル部11bにおける全R濃度に対する全RH濃度には特に制限はないが、概ね原子比で10%以上30%以下程度である。   The total RH concentration with respect to the total R concentration in the core portion 11a of the reverse core-shell main phase particle 11 is not particularly limited, but is generally about 30% to 80% in atomic ratio. The total RH concentration relative to the total R concentration in the shell portion 11b of the reverse core shell main phase particle 11 is not particularly limited, but is generally about 10% to 30% in terms of atomic ratio.

また、コアシェル主相粒子13のコア部13aにおける全R濃度に対する全RH濃度には特に制限はないが、概ね原子比で0%以上10%以下程度である。コアシェル主相粒子13のシェル部13bにおける全R濃度に対する全RH濃度には特に制限はないが、概ね原子比で10%以上30%以下程度である。   The total RH concentration relative to the total R concentration in the core portion 13a of the core-shell main phase particle 13 is not particularly limited, but is generally about 0% or more and 10% or less in terms of atomic ratio. The total RH concentration relative to the total R concentration in the shell portion 13b of the core-shell main phase particle 13 is not particularly limited, but is generally about 10% to 30% in terms of atomic ratio.

以上より、通常は、逆コアシェル主相粒子11のコア部11aが最も全R濃度に対する全RH濃度が高く、コアシェル主相粒子13のコア部13aが最も全R濃度に対する全RH濃度が低くなる。なお、逆コアシェル主相粒子11のシェル部11bとコアシェル主相粒子13のシェル部13bとでは、全R濃度に対する全RH濃度は大きく変化しない。   As described above, normally, the core portion 11a of the reverse core shell main phase particle 11 has the highest total RH concentration with respect to the total R concentration, and the core portion 13a of the core shell main phase particle 13 has the lowest total RH concentration with respect to the total R concentration. In addition, in the shell part 11b of the reverse core-shell main phase particle 11 and the shell part 13b of the core-shell main phase particle 13, the total RH concentration does not change greatly with respect to the total R concentration.

なお、図2では、逆コアシェル主相粒子11はコア部11aの表面全てをシェル部11bが覆っているが、コア部11aの表面全てをシェル部11bが覆う必要はなく、コア部11aの表面の60%以上を覆っていればよい。コア部11aおよびシェル部11bの区別はSEMにより行うことができる。コアシェル主相粒子13についても同様である。   In FIG. 2, the shell 11b covers the entire surface of the core portion 11a in the reverse core shell main phase particles 11, but the shell 11b does not need to cover the entire surface of the core 11a, and the surface of the core 11a. Of 60% or more. The core part 11a and the shell part 11b can be distinguished by SEM. The same applies to the core-shell main phase particles 13.

本実施形態に係るR−T−B系焼結磁石1は、逆コアシェル主相粒子11を含むことにより、重希土類元素の使用量を低減しても高い磁気特性を有する永久磁石となる。逆コアシェル主相粒子11を含むことにより上記の効果が得られるメカニズムは、以下に示すメカニズムであると考えられる。   The RTB-based sintered magnet 1 according to the present embodiment includes a reverse core shell main phase particle 11 and thus becomes a permanent magnet having high magnetic characteristics even when the amount of heavy rare earth elements is reduced. The mechanism by which the above effect is obtained by including the inverted core-shell main phase particles 11 is considered to be the following mechanism.

逆コアシェル主相粒子11は、シェル部11bと比較してより多くのRHを含むことにより、コア部11aにおいて異方性磁界が高くなる。そのため、逆コアシェル主相粒子11のコア部11aとシェル部11bとの界面において、異方性磁界が変化すると考えられる。上記の逆コアシェル主相粒子11内での異方性磁界の変化により、ピニング力が増加すると考えられる。したがって、逆コアシェル主相粒子11を含むR−T−B系焼結磁石1は保磁力が向上すると考えられる。   The reverse core shell main phase particles 11 contain more RH than the shell portion 11b, so that the anisotropic magnetic field is increased in the core portion 11a. Therefore, it is considered that the anisotropic magnetic field changes at the interface between the core portion 11 a and the shell portion 11 b of the reverse core shell main phase particle 11. It is considered that the pinning force increases due to the change of the anisotropic magnetic field in the above-described reverse core-shell main phase particles 11. Therefore, it is considered that the RTB-based sintered magnet 1 including the reverse core shell main phase particles 11 has improved coercive force.

また、図1Aおよび図2に示すように、全主相粒子に対する逆コアシェル主相粒子11の存在比率は、磁石中央部よりも磁石表層部の方が高い。そして、主に逆コアシェル主相粒子11からなる逆コアシェル粒子層1aが磁石表層部に存在していることが好ましい。   As shown in FIGS. 1A and 2, the abundance ratio of the reverse core shell main phase particles 11 with respect to all main phase particles is higher in the magnet surface layer than in the magnet center. And it is preferable that the reverse core-shell particle layer 1a mainly composed of the reverse core-shell main phase particles 11 exists in the magnet surface layer portion.

逆コアシェル主相粒子11はコア部11aにより多くの重希土類元素RHを含有する。そのため、逆コアシェル主相粒子11自体は残留磁束密度および飽和磁化が低い。逆コアシェル主相粒子11は飽和磁化が低いため、ある逆コアシェル主相粒子11が磁化反転しても、当該逆コアシェル主相粒子11に隣接する主相粒子の磁化反転に及ぼす影響が小さい。すなわち、主に逆コアシェル主相粒子11からなる逆コアシェル粒子層1aがR−T−B系焼結磁石1の磁石表層部に存在していることにより、磁石表面から発生する逆磁区の伝達が抑制される。したがって、逆コアシェル主相粒子11が磁石表層部により多く存在し、逆コアシェル粒子層1aが磁石表層部に存在していることにより、R−T−B系焼結磁石1は保磁力がさらに向上する。   The inverted core-shell main phase particle 11 contains a lot of heavy rare earth elements RH in the core portion 11a. Therefore, the reverse core shell main phase particles 11 themselves have low residual magnetic flux density and saturation magnetization. Since the reverse core shell main phase particle 11 has a low saturation magnetization, even if a certain reverse core shell main phase particle 11 is reversed in magnetization, the influence on the magnetization reversal of the main phase particle adjacent to the reverse core shell main phase particle 11 is small. That is, the reverse core-shell particle layer 1a mainly composed of the reverse core-shell main phase particles 11 is present in the magnet surface layer portion of the R-T-B system sintered magnet 1, thereby transmitting the reverse magnetic domain generated from the magnet surface. It is suppressed. Therefore, since the reverse core shell main phase particles 11 are present more in the magnet surface layer portion and the reverse core shell particle layer 1a is present in the magnet surface layer portion, the coercive force of the RTB-based sintered magnet 1 is further improved. To do.

本実施形態に係るR−T−B系焼結磁石1に含まれる逆コアシェル主相粒子11において、CRC/CRS>1.5であることが好ましく、CRC/CRS>3.0であることがより好ましい。逆コアシェル主相粒子11において、シェル部11bに対してコア部11aに重希土類元素RHがより多く存在するほど上記の効果が大きくなり、保磁力がさらに向上するため好ましい。 In the inverted core-shell main phase particles 11 included in the RTB-based sintered magnet 1 according to the present embodiment, C RC / C RS > 1.5 is preferable, and C RC / C RS > 3.0 It is more preferable that In the inverted core-shell main phase particles 11, the more the heavy rare earth element RH is present in the core portion 11a than in the shell portion 11b, the above effect is increased and the coercive force is further improved, which is preferable.

なお、本実施形態では、磁石表層部とは、磁石表面から磁石内部に向かって5μm以上150μm以下の領域を指す。磁石中央部とは、磁石表層部より内側にある部分を指す。また、逆コアシェル粒子層1aはR−T−B系焼結磁石1の全ての磁石表層部に存在している必要はなく、一部の磁石表層部のみに存在していてもよい。また、図2に示すように、逆コアシェル粒子層1aは逆コアシェル主相粒子11が存在している層を指す。また、コアシェル粒子層1bはコアシェル主相粒子13が存在し、逆コアシェル主相粒子11が存在していない層を指す。   In the present embodiment, the magnet surface layer portion refers to a region of 5 μm or more and 150 μm or less from the magnet surface toward the inside of the magnet. The magnet center portion refers to a portion inside the magnet surface layer portion. Moreover, the reverse core shell particle layer 1a does not need to exist in all the magnet surface layer parts of the RTB-based sintered magnet 1, and may exist only in a part of the magnet surface layer part. Further, as shown in FIG. 2, the reverse core shell particle layer 1 a indicates a layer in which the reverse core shell main phase particles 11 are present. The core-shell particle layer 1b is a layer in which the core-shell main phase particles 13 are present and the reverse core-shell main phase particles 11 are not present.

逆コアシェル粒子層1aの厚さには特に制限はない。10μm以上100μm以下とすることが好ましい。   There is no restriction | limiting in particular in the thickness of the reverse core shell particle layer 1a. The thickness is preferably 10 μm or more and 100 μm or less.

また、本実施形態に係るR−T−B系焼結磁石は、図1Aに示すように、磁石中央部から磁石表層部に向かってコアシェル粒子層1bおよび逆コアシェル粒子層1aがこの順番で並んでいても良い。また、逆コアシェル粒子層1aおよびコアシェル粒子層1bのみからなっていてもよい。   Further, in the RTB-based sintered magnet according to the present embodiment, as shown in FIG. 1A, the core-shell particle layer 1b and the reverse core-shell particle layer 1a are arranged in this order from the magnet central portion toward the magnet surface layer portion. You can leave. Moreover, you may consist only of the reverse core-shell particle layer 1a and the core-shell particle layer 1b.

<R−T−B系焼結磁石の製造方法>
次に、本実施形態に係るR−T−B系焼結磁石の製造方法を説明する。
<Method for producing RTB-based sintered magnet>
Next, the manufacturing method of the RTB system sintered magnet concerning this embodiment is explained.

なお、以下では、粉末冶金法で作製され、重希土類元素が粒界拡散されたR−T−B系焼結磁石を例に説明するが、本実施形態に係るR−T−B系焼結磁石の製造方法は、特に限定されるものではなく、他の方法も用いることができる。   In the following description, an RTB-based sintered magnet manufactured by powder metallurgy and having a heavy rare earth element diffused at grain boundaries will be described as an example. The method for manufacturing the magnet is not particularly limited, and other methods can be used.

本実施形態に係るR−T−B系焼結磁石の製造方法には、原料粉末を成形して成形体を得る成形工程と、前記成形体を焼結して焼結体を得る焼結工程と、前記焼結体を焼結温度よりも低い温度で一定時間保持する時効工程とを有する。   The manufacturing method of the R-T-B system sintered magnet according to the present embodiment includes a forming step of forming a raw material powder to obtain a formed body, and a sintering step of sintering the formed body to obtain a sintered body. And an aging step of holding the sintered body at a temperature lower than the sintering temperature for a certain period of time.

以下、R−T−B系焼結磁石の製造方法について詳しく説明していくが、特記しない事項については、公知の方法を用いればよい。   Hereinafter, although the manufacturing method of a RTB system sintered magnet is demonstrated in detail, what is necessary is just to use a well-known method about the matter which is not specified.

[原料粉末の準備工程]
原料粉末は、公知の方法により作製することができる。本実施形態では、主にR14B相からなる一種類の原料合金を用いる一合金法でR−T−B系焼結磁石を製造するが、二種類の原料合金を用いる二合金法により製造してもよい。ここで、原料合金の組成は、最終的に得るR−T−B系焼結磁石の組成となるように制御する。
[Preparation process of raw material powder]
The raw material powder can be produced by a known method. In this embodiment, an R-T-B system sintered magnet is manufactured by one alloy method using one kind of raw material alloy mainly composed of R 2 T 14 B phase, but a two alloy method using two kinds of raw material alloys. You may manufacture by. Here, the composition of the raw material alloy is controlled to be the composition of the finally obtained RTB-based sintered magnet.

まず、本実施形態に係る原料合金の組成に対応する原料金属を準備し、当該原料金属から本実施形態に対応する原料合金を作製する。原料合金の作製方法に特に制限はない。例えば、ストリップキャスト法にて原料合金を作製することができる。   First, a raw material metal corresponding to the composition of the raw material alloy according to the present embodiment is prepared, and a raw material alloy corresponding to the present embodiment is produced from the raw material metal. There is no restriction | limiting in particular in the preparation methods of raw material alloy. For example, a raw material alloy can be produced by a strip casting method.

原料合金を作製した後に、作製した原料合金を粉砕する(粉砕工程)。粉砕工程は、2段階で実施してもよく、1段階で実施してもよい。粉砕の方法には特に限定はない。例えば、各種粉砕機を用いる方法で実施される。例えば、粉砕工程を粗粉砕工程および微粉砕工程の2段階で実施し、粗粉砕工程は例えば水素粉砕処理を行うことが可能である。具体的には、原料合金に対して室温で水素を吸蔵させた後に、Arガス雰囲気下で400℃以上650℃以下、0.5時間以上2時間以下で脱水素を行うことが可能である。また、微粉砕工程は、粗粉砕後の粉末に対して、例えばオレイン酸アミド、ステアリン酸亜鉛などを添加したのちに、例えばジェットミル、湿式アトライター等を用いて行うことができる。得られる微粉砕粉末(原料粉末)の粒径には特に制限はない。例えば、粒径(D50)が1μm以上10μm以下の微粉砕粉末(原料粉末)となるように微粉砕を行うことができる。   After producing the raw material alloy, the produced raw material alloy is pulverized (grinding step). The pulverization process may be performed in two stages or in one stage. There is no particular limitation on the grinding method. For example, it is carried out by a method using various pulverizers. For example, the pulverization process is performed in two stages, a coarse pulverization process and a fine pulverization process, and the coarse pulverization process can be performed, for example, by hydrogen pulverization. Specifically, after hydrogen is stored in the raw material alloy at room temperature, dehydrogenation can be performed in an Ar gas atmosphere at 400 ° C. or higher and 650 ° C. or lower, 0.5 hour or longer and 2 hours or shorter. The fine pulverization step can be performed using, for example, a jet mill or a wet attritor after adding oleic acid amide, zinc stearate or the like to the coarsely pulverized powder. There is no restriction | limiting in particular in the particle size of the finely pulverized powder (raw material powder) obtained. For example, fine pulverization can be performed so that the particle diameter (D50) is a fine pulverized powder (raw material powder) having a particle size of 1 μm to 10 μm.

[成形工程]
成形工程では、粉砕工程により得られた微粉砕粉末(原料粉末)を所定の形状に成形する。成形方法には特に限定はないが、本実施形態では、微粉砕粉末(原料粉末)を金型内に充填し、磁場中で加圧する。
[Molding process]
In the forming step, the finely pulverized powder (raw material powder) obtained in the pulverizing step is formed into a predetermined shape. Although there is no limitation in particular in a shaping | molding method, in this embodiment, finely pulverized powder (raw material powder) is filled in a metal mold | die, and it pressurizes in a magnetic field.

成形時の加圧は、30MPa以上300MPa以下で行うことが好ましい。印加する磁場は、950kA/m以上1600kA/m以下であることが好ましい。微粉砕粉末(原料粉末)を成形して得られる成形体の形状は特に限定されるものではなく、例えば直方体、平板状、柱状等、所望とするR−T−B系焼結磁石の形状に応じて任意の形状とすることができる。   The pressing at the time of molding is preferably performed at 30 MPa or more and 300 MPa or less. The applied magnetic field is preferably 950 kA / m or more and 1600 kA / m or less. The shape of the molded body obtained by molding finely pulverized powder (raw material powder) is not particularly limited. For example, the shape of the RTB-based sintered magnet is a desired shape such as a rectangular parallelepiped, a flat plate, or a column. It can be made into an arbitrary shape accordingly.

[焼結工程]
焼結工程は、成形体を真空または不活性ガス雰囲気中で焼結し、焼結体を得る工程である。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、成形体に対して、例えば、真空中または不活性ガスの存在下、1000℃以上1200℃以下、1時間以上10時間以下で加熱する処理を行うことにより焼結する。これにより、高密度の焼結体(焼結磁石)が得られる。
[Sintering process]
A sintering process is a process of sintering a molded object in a vacuum or inert gas atmosphere, and obtaining a sintered compact. The sintering temperature needs to be adjusted depending on various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc., but for the molded body, for example, 1000 ° C. or higher and 1200 ° C. in vacuum or in the presence of an inert gas. It sinters by performing the process heated at 1 degreeC or less for 1 to 10 hours. Thereby, a high-density sintered body (sintered magnet) is obtained.

[時効処理工程]
時効処理工程は、焼結工程後の焼結体(焼結磁石)に対して、焼結温度よりも低い温度で加熱することにより行う。時効処理の温度および時間には特に制限はないが、例えば450℃以上900℃以下で0.2時間以上3時間以下、行うことができる。なお、この時効処理工程は省略してもよい。
[Aging process]
The aging treatment step is performed by heating the sintered body (sintered magnet) after the sintering step at a temperature lower than the sintering temperature. There is no particular limitation on the temperature and time of the aging treatment, but for example, it can be performed at 450 ° C. or higher and 900 ° C. or lower for 0.2 hours or longer and 3 hours or shorter. This aging treatment step may be omitted.

また、時効処理工程は1段階で行ってもよく、2段階で行ってもよい。2段階で行う場合には、例えば1段階目を700℃以上900℃以下で0.2時間以上3時間以下とし、2段階目を450℃以上700℃以下で0.2時間以上3時間以下としてもよい。また、1段階目と2段階目とを連続して行ってもよく、1段階目の後に一度室温近傍まで冷却してから再加熱して2段階目を行ってもよい。   Further, the aging treatment process may be performed in one stage or in two stages. When performing in two stages, for example, the first stage is 700 ° C. to 900 ° C. for 0.2 hours to 3 hours, and the second stage is 450 ° C. to 700 ° C. for 0.2 hours to 3 hours. Also good. Alternatively, the first stage and the second stage may be performed continuously, or after the first stage, the second stage may be performed by cooling to near room temperature and then reheating.

[逆コアシェル主相粒子生成工程]
本実施形態における逆コアシェル主相粒子の生成方法には特に制限がない。例えば、以下に示す分解工程、粒界拡散工程および再結晶化工程を経ることで逆コアシェル主相粒子を得ることができる。
[Reverse core shell main phase particle generation process]
There is no restriction | limiting in particular in the production | generation method of the reverse core shell main phase particle | grains in this embodiment. For example, reverse core-shell main phase particles can be obtained through the following decomposition step, grain boundary diffusion step, and recrystallization step.

[分解工程]
分解工程とは、主に磁石表層部に存在するR14B結晶からなる主相粒子を分解不均化する工程である。分解工程の条件は、主に磁石表層部に存在するR14B結晶からなる主相粒子を分解させることができれば特に制限はない。
[Disassembly process]
The decomposition step is a step of decomposing and disproportionating main phase particles mainly composed of R 2 T 14 B crystals present in the magnet surface layer portion. The conditions of the decomposition step are not particularly limited as long as the main phase particles mainly composed of R 2 T 14 B crystals existing in the magnet surface layer portion can be decomposed.

例えばHガス、COガスまたはNガスを含む不活性雰囲気中、600℃以上900℃以下程度で5分間以上60分間以下程度、加熱することで、主に磁石表層部に存在する主相粒子にH、COまたはNを吸蔵させて分解させ、不均化させることになる。 For example, the main phase particles mainly present in the surface layer of the magnet by heating at about 600 ° C. to 900 ° C. for about 5 minutes to about 60 minutes in an inert atmosphere containing H 2 gas, CO gas, or N 2 gas. Occludes H 2 , CO or N 2 to cause decomposition and disproportionation.

ガス、COガスまたはNガスの濃度、加熱温度および/または加熱時間を制御することで、主相粒子が不均化する領域の厚さを制御し、最終的に得られる逆コアシェル粒子層の厚さを制御することができる。 By controlling the concentration of H 2 gas, CO gas or N 2 gas, heating temperature and / or heating time, the thickness of the region where the main phase particles are disproportionated is controlled, and finally the reverse core-shell particles obtained The layer thickness can be controlled.

また、酸化性ガスを含む酸化性雰囲気中、300℃以上500℃以下程度で20分間以上60分間以下程度、加熱することでも、磁石表層部に存在する主相粒子を分解不均化させることができる。   Moreover, the main phase particles existing in the magnet surface layer part can be decomposed and disproportionated also by heating at about 300 ° C. to 500 ° C. for about 20 minutes to about 60 minutes in an oxidizing atmosphere containing an oxidizing gas. it can.

[拡散処理工程]
本実施形態では、分解工程に続いて、さらに重希土類元素を拡散させる拡散処理工程を有する。拡散処理は、重希土類元素を含む化合物等を、前記分解工程を行った焼結体の表面に付着させた後、熱処理を行うことにより、実施することができる。重希土類元素を含む化合物を付着させる方法には特に制限はなく、たとえば重希土類元素を含むスラリーを塗布することで付着させることができる。この場合には、スラリーの塗布量とスラリーに含まれる重希土類元素の濃度を制御することで、上記のCRC/CRSを制御することができる。
[Diffusion treatment process]
In this embodiment, following the decomposition step, there is further a diffusion treatment step for diffusing heavy rare earth elements. The diffusion treatment can be carried out by applying a heat treatment after attaching a compound containing a heavy rare earth element to the surface of the sintered body subjected to the decomposition step. There is no particular limitation on the method for attaching the compound containing heavy rare earth element, and for example, the compound can be attached by applying a slurry containing heavy rare earth element. In this case, the above-mentioned C RC / C RS can be controlled by controlling the application amount of the slurry and the concentration of the heavy rare earth element contained in the slurry.

ただし、前記重希土類元素を付着させる方法は特に制限は無い。例えば、蒸着、スパッタリング、電着、スプレー塗布、刷毛塗り、ジェットディスペンサ、ノズル、スクリーン印刷、スキージ印刷、シート工法等を用いる方法がある。   However, the method for attaching the heavy rare earth element is not particularly limited. For example, there are methods using vapor deposition, sputtering, electrodeposition, spray coating, brush coating, jet dispenser, nozzle, screen printing, squeegee printing, sheet construction method and the like.

重希土類化合物は粒子状であることが好ましい。また、平均粒径は100nm以上50μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。   The heavy rare earth compound is preferably particulate. The average particle diameter is preferably 100 nm or more and 50 μm or less, and more preferably 1 μm or more and 10 μm or less.

スラリーに用いる溶媒としては、重希土類化合物を溶解させずに均一に分散させ得るものが好ましい。例えば、アルコール、アルデヒド、ケトン等が挙げられ、なかでもエタノールが好ましい。   As the solvent used for the slurry, a solvent capable of uniformly dispersing the heavy rare earth compound without dissolving it is preferable. For example, alcohol, aldehyde, ketone and the like can be mentioned, and ethanol is particularly preferable.

スラリー中の重希土類化合物の含有量には特に制限はない。例えば、50重量%以上90重量%以下であってもよい。スラリーには、必要に応じて重希土類化合物以外の成分をさらに含有させてもよい。例えば、重希土類化合物粒子の凝集を防ぐための分散剤等が挙げられる。   There is no restriction | limiting in particular in content of the heavy rare earth compound in a slurry. For example, it may be 50% by weight or more and 90% by weight or less. The slurry may further contain components other than the heavy rare earth compound as necessary. For example, a dispersant for preventing aggregation of heavy rare earth compound particles can be used.

上記の拡散処理工程を、前記分解工程を行った焼結体に対して行うことにより、焼結体全体の粒界に加えて、磁石表層部に存在する主相粒子が分解不均化された領域においては融点の低下に伴い液相が生成し、重希土類元素RHが液相中に拡散することになる。そして、Rとして重希土類元素RHを含むR14B結晶はRとして重希土類元素RHを含まないR14B結晶よりも生成しやすいため、拡散した重希土類元素を含む液相が部分的にR14B結晶化し、主に最終的に得られる逆コアシェル主相粒子のコア部となる。 By performing the above diffusion treatment step on the sintered body subjected to the decomposition step, the main phase particles existing in the magnet surface layer portion are decomposed and disproportionated in addition to the grain boundaries of the entire sintered body. In the region, a liquid phase is generated as the melting point decreases, and the heavy rare earth element RH diffuses into the liquid phase. And since R 2 T 14 B crystal containing heavy rare earth element RH as R is easier to produce than R 2 T 14 B crystal not containing heavy rare earth element RH as R, the liquid phase containing diffused heavy rare earth element is partially Thus, R 2 T 14 B is crystallized and mainly becomes the core portion of the reverse core shell main phase particles finally obtained.

拡散処理工程の条件には特に制限はないが、650℃以上1000℃以下で1時間以上24時間以下、行うことが好ましい。上記の範囲内の温度および時間とすることで、液相に取り込まれる重希土類元素RHの割合を多くしやすくなる。また、拡散処理工程の際に、上記のHガス、COガス、Nガスまたは酸化性ガスに含まれる各成分が放出される。 The conditions for the diffusion treatment step are not particularly limited, but it is preferably performed at 650 ° C. to 1000 ° C. for 1 hour to 24 hours. By setting the temperature and time within the above ranges, it becomes easy to increase the ratio of the heavy rare earth element RH taken into the liquid phase. Further, during the diffusion treatment step, each component contained in the H 2 gas, CO gas, N 2 gas, or oxidizing gas is released.

[再結晶化工程]
拡散処理工程後に再結晶化工程を経ることにより、重希土類元素RHが取り込まれた液相のうち、粒界拡散工程で結晶化しなかった液相も結晶化され、R14B結晶となる。再結晶化工程は、例えば、50℃/分以上500℃/分以下の速度で急冷を行うことにより行われる。再結晶化工程により、拡散処理工程の際に結晶化された重希土類元素RHの含有量が多いR14B結晶の周囲に存在する液相も結晶化する。さらに、再結晶化工程においては、重希土類元素RHの含有量が多いR14B結晶から発生し始め、重希土類元素RHの含有量が少ないR14B結晶が重希土類元素RHの含有量が多いR14B結晶の周囲に形成される傾向にある。その結果、逆コアシェル主相粒子が形成される。冷却速度には特に制限はないが、冷却速度が速すぎると非晶質および副相を多く含んだ微結晶になる傾向にあり、冷却速度が遅すぎると逆コアシェル主相粒子11のコア部11aとシェル部11bとの界面が不明瞭になる傾向にある。
[Recrystallization process]
Through the recrystallization step after the diffusion treatment step, the liquid phase that has not been crystallized in the grain boundary diffusion step out of the liquid phase in which the heavy rare earth element RH is taken in is also crystallized to form R 2 T 14 B crystals. . The recrystallization step is performed, for example, by performing rapid cooling at a rate of 50 ° C./min to 500 ° C./min. By the recrystallization step, the liquid phase existing around the R 2 T 14 B crystal having a high content of the heavy rare earth element RH crystallized in the diffusion treatment step is also crystallized. Furthermore, in the recrystallization step, the heavy rare-earth element content RH begins to occur from more R 2 T 14 B crystal, the content of the heavy rare-earth element RH is less R 2 T 14 B crystal of the heavy rare-earth element RH It tends to be formed around R 2 T 14 B crystals having a high content. As a result, reverse core shell main phase particles are formed. There is no particular limitation on the cooling rate, but if the cooling rate is too high, it tends to be a microcrystal containing a large amount of amorphous and subphases. And the shell portion 11b tend to be unclear.

以上より、本実施形態に係るR−T−B系焼結磁石の製造方法としては、少なくとも、磁石表層部の主相粒子を分解不均化する分解工程、液相を生成し前記液相に重希土類元素を拡散させる粒界拡散工程、および部分的に結晶化したR14B結晶の周囲の液相を結晶化させる再結晶化工程がこの順で行われることが重要である。これにより、R−T−B系焼結磁石の磁石表層部に逆コアシェル主相粒子を発生させ、逆コアシェル粒子層を形成することができる。上記の分解工程、粒界拡散工程、および再結晶化工程の方法および条件はあくまでも例示である。分解工程は磁石表層部の主相粒子を分解不均化する工程であればよい。粒界拡散工程は液相を生成し、前記液相に重希土類元素を拡散させることができればよい。再結晶化工程は再結晶により逆コアシェル主相粒子を発生させ、逆コアシェル粒子層を形成させることができればよい。 As mentioned above, as a manufacturing method of the RTB system sintered magnet concerning this embodiment, at least a decomposition process which decomposes and disproportionates main phase particles of a magnet surface layer part, generates a liquid phase, and makes the liquid phase It is important that the grain boundary diffusion step for diffusing heavy rare earth elements and the recrystallization step for crystallizing the liquid phase around the partially crystallized R 2 T 14 B crystal are performed in this order. Thereby, a reverse core shell main phase particle can be generated in the magnet surface layer part of a RTB system sintered magnet, and a reverse core shell particle layer can be formed. The methods and conditions of the above decomposition step, grain boundary diffusion step, and recrystallization step are merely examples. The decomposition step may be a step for decomposing and disproportionating the main phase particles in the magnet surface layer portion. The grain boundary diffusion step only needs to generate a liquid phase and diffuse heavy rare earth elements into the liquid phase. The recrystallization step only needs to generate reverse core shell main phase particles by recrystallization and form a reverse core shell particle layer.

なお、分解工程にて分解不均化しなかった主相粒子については、粒界拡散工程において粒界拡散された重希土類元素RHによりシェル部が形成され、通常のコアシェル主相粒子となり、コアシェル粒子層を形成する。   For the main phase particles not decomposed and disproportionated in the decomposition step, a shell portion is formed by the heavy rare earth element RH diffused at the grain boundary in the grain boundary diffusion step, and becomes a normal core-shell main phase particle. Form.

[再時効処理工程]
再時効処理工程は、再結晶化工程後の焼結磁石に対して、拡散処理工程の最高温度よりも低い温度で加熱することにより行う。再時効処理の温度および時間には特に制限はないが、例えば450℃以上800℃以下で0.2時間以上3時間以下、行うことができる。
[Reaging process]
The reaging treatment step is performed by heating the sintered magnet after the recrystallization step at a temperature lower than the maximum temperature of the diffusion treatment step. There is no particular limitation on the temperature and time of the re-aging treatment, but for example, the re-aging treatment can be performed at 450 ° C. to 800 ° C. for 0.2 hours to 3 hours.

以上の工程により得られたR−T−B系焼結磁石は、めっきや樹脂被膜や酸化処理、化成処理などの表面処理を施してもよい。これにより、耐食性をさらに向上させることができる。   The RTB-based sintered magnet obtained by the above steps may be subjected to surface treatment such as plating, resin coating, oxidation treatment, or chemical conversion treatment. Thereby, corrosion resistance can further be improved.

さらに、本実施形態に係るR−T−B系焼結磁石を切断、分割して得られる磁石を用いることができる。   Furthermore, a magnet obtained by cutting and dividing the RTB-based sintered magnet according to this embodiment can be used.

具体的には、本実施形態に係るR−T−B系焼結磁石は、モータ、コンプレッサー、磁気センサー、スピーカ等の用途に好適に用いられる。   Specifically, the RTB-based sintered magnet according to the present embodiment is suitably used for applications such as a motor, a compressor, a magnetic sensor, and a speaker.

また、本実施形態に係るR−T−B系焼結磁石は、単独で用いてもよく、2個以上のR−T−B系焼結磁石を必要に応じて結合させて用いてもよい。結合方法に特に制限はない。例えば、機械的に結合させる方法や樹脂モールドで結合させる方法がある。   In addition, the RTB-based sintered magnet according to this embodiment may be used alone, or two or more RTB-based sintered magnets may be combined and used as necessary. . There is no particular limitation on the bonding method. For example, there are a mechanical bonding method and a resin mold bonding method.

2個以上のR−T−B系焼結磁石を結合させることで、大きなR−T−B系焼結磁石を容易に製造することができる。2個以上のR−T−B系焼結磁石を結合させた磁石は、特に大きなR−T−B系焼結磁石が求められる用途、例えば、IPMモータ、風力発電機、大型モータ等に好ましく用いられる。   By combining two or more RTB-based sintered magnets, a large RTB-based sintered magnet can be easily manufactured. A magnet in which two or more RTB-based sintered magnets are combined is preferable for applications requiring particularly large RTB-based sintered magnets, such as IPM motors, wind power generators, large motors, and the like. Used.

なお、本発明は、上述した実施形態のように、磁石中央部から磁石表層部に向かって、コアシェル粒子層1b、逆コアシェル粒子層1aの順番に並んでいる態様に限定されず、本発明の範囲内で種々に改変することができる。   Note that the present invention is not limited to the embodiment in which the core-shell particle layer 1b and the reverse core-shell particle layer 1a are arranged in this order from the magnet central portion toward the magnet surface layer portion as in the above-described embodiment. Various modifications can be made within the range.

例えば、図1Bに示すように、磁石中央部において、コアシェル粒子層1bに加えて、コアシェル構造を有さない非コアシェル主相粒子のみからなる非コアシェル粒子層1cが存在するR−T−B系焼結磁石10の実施形態が考えられる。そして、磁石中央部から磁石表層部に向かって、非コアシェル粒子層1c、コアシェル粒子層1b、逆コアシェル粒子層1aの順番に並んでいてもよい。また、逆コアシェル粒子層1a、コアシェル粒子層1bおよび非コアシェル粒子層1cのみからなっていてもよい。なお、主相粒子が「コアシェル構造を有さない」ことは、SEMを用いて倍率1000倍以上10000倍以下で観察した場合に、コアシェル構造が観察されないことにより確認できる。   For example, as shown in FIG. 1B, an R-T-B system in which a non-core-shell particle layer 1c composed only of non-core-shell main phase particles having no core-shell structure is present in the magnet central portion in addition to the core-shell particle layer 1b. Embodiments of the sintered magnet 10 are conceivable. And you may arrange in order of the non-core-shell particle layer 1c, the core-shell particle layer 1b, and the reverse core-shell particle layer 1a toward the magnet surface layer part from the magnet center part. Moreover, you may consist only of the reverse core-shell particle layer 1a, the core-shell particle layer 1b, and the non-core-shell particle layer 1c. In addition, it can confirm that main phase particle | grains do not have a core-shell structure when a core-shell structure is not observed, when observing by 1000-times or more magnification of 1000 times or less using SEM.

非コアシェル粒子層1cが存在する場合(図1B)には、非コアシェル粒子層1cが存在しない場合(図1A)と比べて残留磁束密度Brが高くなる傾向にある。   When the non-core shell particle layer 1c is present (FIG. 1B), the residual magnetic flux density Br tends to be higher than when the non-core shell particle layer 1c is not present (FIG. 1A).

非コアシェル粒子層1cを存在させる方法にも特に制限はない。例えば粒界拡散工程において重希土類元素の付着量を調整する方法、粒界拡散工程において拡散処理時間を短くする方法などがある。   There is no particular limitation on the method for allowing the non-core shell particle layer 1c to exist. For example, there are a method of adjusting the amount of heavy rare earth element deposited in the grain boundary diffusion step, and a method of shortening the diffusion treatment time in the grain boundary diffusion step.

次に、本発明を具体的な実施例に基づきさらに詳細に説明するが、本発明は、以下の実施例に限定されない。   Next, the present invention will be described in more detail based on specific examples, but the present invention is not limited to the following examples.

(焼結磁石作製工程)
原料金属として、Nd、電解鉄、低炭素フェロボロン合金を準備した。さらに、Al、Cu、Co、Zrを、純金属またはFeとの合金の形で準備した。
(Sintered magnet manufacturing process)
Nd, electrolytic iron, and a low carbon ferroboron alloy were prepared as raw materials. Further, Al, Cu, Co, and Zr were prepared in the form of a pure metal or an alloy with Fe.

前記原料金属に対し、ストリップキャスト法により、焼結磁石の組成が後述する表1の合金Aに示す組成となるように焼結体用合金(原料合金)を作製した。表1に示した各元素の含有量(重量%)はNd、B、Al、Cu、Co、ZrおよびFeの合計含有量を100重量%としたときの値である。また、前記原料合金の合金厚みは0.2mm以上0.6mm以下とした。   An alloy for a sintered body (raw material alloy) was prepared by strip casting for the raw material metal so that the composition of the sintered magnet became a composition shown in alloy A of Table 1 described later. The content (% by weight) of each element shown in Table 1 is a value when the total content of Nd, B, Al, Cu, Co, Zr and Fe is 100% by weight. Moreover, the alloy thickness of the raw material alloy was set to 0.2 mm or more and 0.6 mm or less.

次いで、前記原料合金に対して室温で1時間、水素ガスをフローさせて水素を吸蔵させた。次いで雰囲気をArガスに切り替え、450℃で1時間、脱水素処理を行い、原料合金を水素粉砕した。さらに、冷却後にふるいを用いて400μm以下の粒度の粉末とした。   Next, hydrogen was occluded by flowing hydrogen gas to the raw material alloy at room temperature for 1 hour. Next, the atmosphere was switched to Ar gas, dehydrogenation treatment was performed at 450 ° C. for 1 hour, and the raw material alloy was pulverized with hydrogen. Further, after cooling, a sieve having a particle size of 400 μm or less was obtained using a sieve.

次いで、水素粉砕後の原料合金の粉末に対し、重量比で0.1%のオレイン酸アミドを粉砕助剤として添加し、混合した。   Next, 0.1% oleic amide by weight was added as a grinding aid to the raw material alloy powder after hydrogen grinding and mixed.

次いで、衝突板式のジェットミル装置を用いて窒素気流中で微粉砕し、それぞれ平均粒径が4μm程度の微粉(原料粉末)とした。なお、前記平均粒径は、レーザ回折式の粒度分布計で測定した平均粒径D50である。   Subsequently, it was pulverized in a nitrogen stream using a collision plate type jet mill device to obtain fine powder (raw material powder) having an average particle diameter of about 4 μm. The average particle diameter is an average particle diameter D50 measured with a laser diffraction particle size distribution meter.

なお、表1に記載していない元素では、H、Si、Ca、La、Ce、Cr等が検出される場合がある。Siは主にフェロボロン原料および合金溶解時のるつぼから混入する。Ca、La、Ceは希土類の原料から混入する。また、Crは電解鉄から混入する可能性がある。   For elements not described in Table 1, H, Si, Ca, La, Ce, Cr, and the like may be detected. Si is mainly mixed from the ferroboron raw material and the crucible during melting of the alloy. Ca, La, and Ce are mixed from rare earth materials. Moreover, Cr may be mixed from electrolytic iron.

得られた微粉を磁界中で成形して成形体を作製した。このときの印加磁場は1200kA/mの静磁界である。また、成形時の加圧力は120MPaとした。なお、磁界印加方向と加圧方向とを直交させるようにした。この時点での成形体の密度を測定したところ、全ての成形体の密度が4.10Mg/m以上4.25Mg/m以下の範囲内であった。 The obtained fine powder was molded in a magnetic field to produce a molded body. The applied magnetic field at this time is a static magnetic field of 1200 kA / m. The pressing force during molding was 120 MPa. The magnetic field application direction and the pressurizing direction were orthogonal to each other. When the density of the molded body at this time was measured, the density of all the molded bodies was in the range of 4.10 Mg / m 3 or more and 4.25 Mg / m 3 or less.

次に、前記成形体を焼結し、焼結磁石を得た。焼結条件は、1060℃で4時間保持とした。焼結雰囲気は真空中とした。このとき焼結密度は7.50Mg/m以上7.55Mg/m以下の範囲にあった。その後、Ar雰囲気、大気圧中で、第一時効温度T1=900℃で1時間の第一時効処理を行い、さらに、第二時効温度T2=500℃で1時間の第二時効処理を行った。 Next, the compact was sintered to obtain a sintered magnet. The sintering conditions were held at 1060 ° C. for 4 hours. The sintering atmosphere was in a vacuum. At this time, the sintered density was in the range of 7.50 Mg / m 3 or more and 7.55 Mg / m 3 or less. Thereafter, a first aging treatment was performed for 1 hour at a first tempering temperature T1 = 900 ° C. in an Ar atmosphere and atmospheric pressure, and further a second aging treatment was performed for 1 hour at a second aging temperature T2 = 500 ° C. .

得られた焼結磁石の組成は蛍光X線分析で評価した。Bの含有量はICPで評価した。各試料における焼結磁石の組成が表2の通りであることを確認した。そして、得られた焼結磁石に対し、以下に示す各実施例1〜22および比較例1〜6の処理を行った。   The composition of the obtained sintered magnet was evaluated by fluorescent X-ray analysis. The content of B was evaluated by ICP. It was confirmed that the composition of the sintered magnet in each sample was as shown in Table 2. And the process of each Examples 1-22 and Comparative Examples 1-6 shown below was performed with respect to the obtained sintered magnet.

(実施例1)
上記の工程により得られた焼結磁石を、幅20mm、長さ20mm、配向方向の厚み5mmの直方体となるように加工した後、水素が5体積%、Arが95体積%である雰囲気ガス中、750℃で10分間保持し、主に磁石表層部に存在する主相粒子を分解不均化した。
Example 1
After processing the sintered magnet obtained by the above process into a rectangular parallelepiped having a width of 20 mm, a length of 20 mm, and a thickness of 5 mm in the orientation direction, in an atmosphere gas in which hydrogen is 5 vol% and Ar is 95 vol% And maintained at 750 ° C. for 10 minutes to decompose and disproportionate main phase particles mainly present in the surface layer of the magnet.

次いで、焼結磁石の全面に対し、TbH粒子(平均粒径D50=5μm)をエタノールに分散させたスラリーを、焼結磁石の重量に対するTbの重量が0.5重量%となるように塗布することでTbを付着させた。前記スラリーを塗布後に大気圧でArをフローしながら770℃で5時間の熱処理を実施し、続いて950℃で5時間の熱処理を施し、Tbを粒界拡散させた。 Next, a slurry in which TbH 2 particles (average particle diameter D50 = 5 μm) are dispersed in ethanol is applied to the entire surface of the sintered magnet so that the weight of Tb is 0.5% by weight with respect to the weight of the sintered magnet. To attach Tb. After applying the slurry, heat treatment was performed at 770 ° C. for 5 hours while flowing Ar at atmospheric pressure, and then heat treatment was performed at 950 ° C. for 5 hours to diffuse Tb at the grain boundaries.

前記熱処理後に冷却速度200℃/分で急冷し、液相からR14B結晶を再結晶化させた。 After the heat treatment, it was rapidly cooled at a cooling rate of 200 ° C./min to recrystallize R 2 T 14 B crystals from the liquid phase.

その後、Ar雰囲気、大気圧中で、500℃で1時間の再時効処理を行った。   Thereafter, re-aging treatment was performed at 500 ° C. for 1 hour in an Ar atmosphere and atmospheric pressure.

前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(実施例2)
上記の工程により得られた焼結磁石をCOが8体積%、Arが92体積%である雰囲気ガス中、700℃で10分間保持し、主に磁石表層部に存在する主相粒子を分解不均化した。
(Example 2)
The sintered magnet obtained by the above process is held at 700 ° C. for 10 minutes in an atmospheric gas containing 8% by volume of CO and 92% by volume of Ar, and main phase particles mainly present in the magnet surface layer are not decomposed. Leveled.

次いで、焼結磁石の全面に対し、TbH粒子(平均粒径D50=5μm)をエタノールに分散させたスラリーを、焼結磁石の重量に対するTbの重量比が0.5重量%となるように塗布することでTbを付着させた。前記スラリーを塗布後に大気圧でArをフローしながら770℃で5時間の熱処理を実施し、続いて950℃で5時間の熱処理を施しTbを粒界拡散させた。 Next, a slurry in which TbH 2 particles (average particle diameter D50 = 5 μm) are dispersed in ethanol is applied to the entire surface of the sintered magnet so that the weight ratio of Tb to the weight of the sintered magnet is 0.5% by weight. Tb was made to adhere by application. After applying the slurry, heat treatment was performed at 770 ° C. for 5 hours while flowing Ar at atmospheric pressure, and then heat treatment was performed at 950 ° C. for 5 hours to diffuse Tb at the grain boundaries.

前記熱処理後に冷却速度200℃/分で急冷し、液相からR14B結晶を再結晶化させた。 After the heat treatment, it was rapidly cooled at a cooling rate of 200 ° C./min to recrystallize R 2 T 14 B crystals from the liquid phase.

その後、Ar雰囲気、大気圧中で、500℃で1時間の再時効処理を行った。   Thereafter, re-aging treatment was performed at 500 ° C. for 1 hour in an Ar atmosphere and atmospheric pressure.

前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(実施例3)
上記の工程により得られた焼結磁石をNが8体積%、Arが92体積%である雰囲気ガス中、650℃で30分間保持し、主に磁石表層部に存在する主相粒子を分解不均化した。
(Example 3)
The sintered magnet obtained by the above process is held at 650 ° C. for 30 minutes in an atmospheric gas containing 8% by volume of N 2 and 92% by volume of Ar, and main phase particles mainly present in the magnet surface layer part are decomposed. Disproportionated.

次いで、焼結磁石の全面に対し、TbH粒子(平均粒径D50=5μm)をエタノールに分散させたスラリーを、焼結磁石の重量に対するTbの重量比が0.5重量%となるように塗布することでTbを付着させた。前記スラリーを塗布後に大気圧でArをフローしながら770℃で5時間の熱処理を実施し、続いて950℃で5時間の熱処理を施しTbを粒界拡散させた。 Next, a slurry in which TbH 2 particles (average particle diameter D50 = 5 μm) are dispersed in ethanol is applied to the entire surface of the sintered magnet so that the weight ratio of Tb to the weight of the sintered magnet is 0.5% by weight. Tb was made to adhere by application. After applying the slurry, heat treatment was performed at 770 ° C. for 5 hours while flowing Ar at atmospheric pressure, and then heat treatment was performed at 950 ° C. for 5 hours to diffuse Tb at the grain boundaries.

前記熱処理後に冷却速度200℃/分で急冷し、液相からR14B結晶を再結晶化させた。 After the heat treatment, it was rapidly cooled at a cooling rate of 200 ° C./min to recrystallize R 2 T 14 B crystals from the liquid phase.

その後、Ar雰囲気、大気圧中で、500℃で1時間の再時効処理を行った。   Thereafter, re-aging treatment was performed at 500 ° C. for 1 hour in an Ar atmosphere and atmospheric pressure.

前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(実施例4)
上記の工程により得られた焼結磁石を水蒸気分圧200hPaに調整されたガスを含む酸化性雰囲気中、400℃で30分間保持し、主に磁石表層部に存在する主相粒子を分解不均化した。
Example 4
The sintered magnet obtained by the above process is held at 400 ° C. for 30 minutes in an oxidizing atmosphere containing a gas adjusted to a water vapor partial pressure of 200 hPa, and the main phase particles mainly present in the magnet surface layer portion are decomposed unevenly. Turned into.

次いで、焼結磁石の全面に対し、TbH粒子(平均粒径D50=5μm)をエタノールに分散させたスラリーを、焼結磁石の重量に対するTbの重量比が0.5重量%となるように塗布することでTbを付着させた。前記スラリーを塗布後に大気圧でArをフローしながら770℃で5時間の熱処理を実施し、続いて950℃で5時間の熱処理を施し、Tbを粒界拡散させた。 Next, a slurry in which TbH 2 particles (average particle diameter D50 = 5 μm) are dispersed in ethanol is applied to the entire surface of the sintered magnet so that the weight ratio of Tb to the weight of the sintered magnet is 0.5% by weight. Tb was made to adhere by application. After applying the slurry, heat treatment was performed at 770 ° C. for 5 hours while flowing Ar at atmospheric pressure, and then heat treatment was performed at 950 ° C. for 5 hours to diffuse Tb at the grain boundaries.

前記熱処理後に冷却速度200℃/分で急冷し、液相からR14B結晶を再結晶化させた。 After the heat treatment, it was rapidly cooled at a cooling rate of 200 ° C./min to recrystallize R 2 T 14 B crystals from the liquid phase.

その後、Ar雰囲気、大気圧中で、500℃で1時間の再時効処理を行った。   Thereafter, re-aging treatment was performed at 500 ° C. for 1 hour in an Ar atmosphere and atmospheric pressure.

前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(実施例5)
TbH粒子(平均粒径D50=5μm)を、TbH粒子(平均粒径D50=5μm)およびNdH粒子(平均粒径D50=5μm)をTb:Nd=80:20(原子数比)となるように混合させた粒子に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbおよびNdを付着させた。
(Example 5)
TbH 2 particles (average particle diameter D50 = 5 μm), TbH 2 particles (average particle diameter D50 = 5 μm) and NdH 2 particles (average particle diameter D50 = 5 μm) were converted to Tb: Nd = 80: 20 (atomic ratio). This was carried out in the same manner as in Example 1 except that the particles were mixed so as to be. Tb and Nd were attached so that the weight of Tb was 0.5% by weight with respect to the weight of the sintered magnet.

(実施例6)
TbH粒子(平均粒径D50=5μm)を、TbH粒子(平均粒径D50=5μm)およびNdH粒子(平均粒径D50=5μm)をTb:Nd=70:30(原子数比)となるように混合させた粒子に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbおよびNdを付着させた。
(Example 6)
TbH 2 particles (average particle diameter D50 = 5 μm), TbH 2 particles (average particle diameter D50 = 5 μm) and NdH 2 particles (average particle diameter D50 = 5 μm) were converted to Tb: Nd = 70: 30 (atomic ratio). This was carried out in the same manner as in Example 1 except that the particles were mixed so as to be. Tb and Nd were attached so that the weight of Tb was 0.5% by weight with respect to the weight of the sintered magnet.

(実施例7)
水素が5体積%、Arが95体積%である雰囲気ガス中での保持時間を20分間にした点以外は実施例1と同様に実施した。
(Example 7)
The same operation as in Example 1 was performed except that the holding time in an atmosphere gas containing 5% by volume of hydrogen and 95% by volume of Ar was set to 20 minutes.

(実施例8)
水素が5体積%、Arが95体積%である雰囲気ガス中での保持時間を30分間にした点以外は実施例1と同様に実施した。
(Example 8)
The same operation as in Example 1 was performed except that the holding time in an atmosphere gas containing 5% by volume of hydrogen and 95% by volume of Ar was set to 30 minutes.

(実施例9)
熱処理後の冷却速度を50℃/分にした点以外は実施例1と同様に実施した。
Example 9
The same procedure as in Example 1 was performed except that the cooling rate after the heat treatment was 50 ° C./min.

(実施例10)
熱処理後の冷却速度を500℃/分にした点以外は実施例1と同様に実施した。
(Example 10)
The same procedure as in Example 1 was performed except that the cooling rate after the heat treatment was 500 ° C./min.

(実施例11)
TbH粒子(平均粒径D50=5μm)を、TbH粒子(平均粒径D50=5μm)およびNdH粒子(平均粒径D50=5μm)をTb:Nd=30:70(原子数比)となるように混合させた粒子に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbおよびNdを付着させた。
(Example 11)
TbH 2 particles (average particle size D50 = 5 μm), TbH 2 particles (average particle size D50 = 5 μm) and NdH 2 particles (average particle size D50 = 5 μm) were converted to Tb: Nd = 30: 70 (atomic ratio). This was carried out in the same manner as in Example 1 except that the particles were mixed so as to be. Tb and Nd were attached so that the weight of Tb was 0.5% by weight with respect to the weight of the sintered magnet.

(実施例12)
TbH粒子(平均粒径D50=5μm)を、TbH粒子(平均粒径D50=5μm)およびNdH粒子(平均粒径D50=5μm)をTb:Nd=50:50(原子数比)となるように混合させた粒子に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbおよびNdを付着させた。
(Example 12)
TbH 2 particles (average particle size D50 = 5 μm), TbH 2 particles (average particle size D50 = 5 μm) and NdH 2 particles (average particle size D50 = 5 μm) were converted to Tb: Nd = 50: 50 (atomic ratio). This was carried out in the same manner as in Example 1 except that the particles were mixed so as to be. Tb and Nd were attached so that the weight of Tb was 0.5% by weight with respect to the weight of the sintered magnet.

(実施例13)
COが8体積%、Arが92体積%である雰囲気ガス中での保持温度を600℃にした点以外は実施例2と同様に実施した。
(Example 13)
The same operation as in Example 2 was performed except that the holding temperature in an atmospheric gas containing 8% by volume of CO and 92% by volume of Ar was set to 600 ° C.

(実施例14)
スラリーを塗布後に大気圧でArをフローしながら950℃で10時間の熱処理を一回のみ実施してTbを粒界拡散させた点以外は実施例1と同様に実施した。
(Example 14)
After applying the slurry, it was carried out in the same manner as in Example 1 except that the heat treatment at 950 ° C. for 10 hours was performed only once while flowing Ar at atmospheric pressure to diffuse Tb at the grain boundaries.

(実施例15)
TbH粒子(平均粒径D50=5μm)を、TbF粒子(平均粒径D50=5μm)に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbを付着させた。
(Example 15)
The same procedure as in Example 1 was performed except that TbH 2 particles (average particle size D50 = 5 μm) were replaced with TbF 3 particles (average particle size D50 = 5 μm). In addition, Tb was made to adhere so that the weight of Tb with respect to the weight of a sintered magnet might be 0.5 weight%.

(実施例16)
TbH粒子(平均粒径D50=5μm)を、Tb粒子(平均粒径D50=5μm)に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbを付着させた。
(Example 16)
The same operation as in Example 1 was performed except that TbH 2 particles (average particle diameter D50 = 5 μm) were replaced with Tb 2 O 3 particles (average particle diameter D50 = 5 μm). In addition, Tb was made to adhere so that the weight of Tb with respect to the weight of a sintered magnet might be 0.5 weight%.

(実施例17)
TbH粒子(平均粒径D50=5μm)を、Tb−Fe化合物[Tb:Fe=80:20(原子数比)](平均粒径D50=5μm)に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するTbの重量が0.5重量%となるようにTbを付着させた。
(Example 17)
Except for replacing TbH 2 particles (average particle diameter D50 = 5 μm) with a Tb—Fe compound [Tb: Fe = 80: 20 (atomic ratio)] (average particle diameter D50 = 5 μm), the same as in Example 1. Carried out. In addition, Tb was made to adhere so that the weight of Tb with respect to the weight of a sintered magnet might be 0.5 weight%.

(実施例18)
TbH粒子(平均粒径D50=5μm)を、DyH粒子(平均粒径D50=5μm)に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するDyの重量が0.5重量%となるようにDyを付着させた。
(Example 18)
TbH 2 particles (average particle diameter D50 = 5 [mu] m), except substituting the DyH 2 particles (average particle diameter D50 = 5 [mu] m) were carried out in the same manner as in Example 1. In addition, Dy was made to adhere so that the weight of Dy with respect to the weight of a sintered magnet might be 0.5 weight%.

(実施例19)
TbH粒子(平均粒径D50=5μm)を、DyF粒子(平均粒径D50=5μm)に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するDyの重量が0.5重量%となるようにDyを付着させた。
(Example 19)
The same procedure as in Example 1 was performed except that TbH 2 particles (average particle diameter D50 = 5 μm) were replaced with DyF 3 particles (average particle diameter D50 = 5 μm). In addition, Dy was made to adhere so that the weight of Dy with respect to the weight of a sintered magnet might be 0.5 weight%.

(実施例20)
TbH粒子(平均粒径D50=5μm)を、Dy−Fe化合物[Dy:Fe=80:20(原子数比)](平均粒径D50=5μm)に置き換える点以外は実施例1と同様に実施した。なお、焼結磁石の重量に対するDyの重量が0.5重量%となるようにDyを付着させた。
(Example 20)
Except that TbH 2 particles (average particle diameter D50 = 5 μm) are replaced with Dy—Fe compound [Dy: Fe = 80: 20 (atomic ratio)] (average particle diameter D50 = 5 μm), the same as in Example 1. Carried out. In addition, Dy was made to adhere so that the weight of Dy with respect to the weight of a sintered magnet might be 0.5 weight%.

(実施例21)
実施例21では、粒界拡散前の焼結磁石の組成が表1に示す組成となるようにした点以外は実施例1と同様に実施した。具体的には、原料合金Gを作製した。そして、実施例1と同様に粉砕、成形、焼結および時効処理を行い、表2に示す組成の焼結磁石を得た。その後、実施例1と同様に磁石表層部に存在する主相粒子を分解不均化させ、Tbの拡散処理を実施した。その後、実施例1と同様に再結晶化および再時効処理を施した。前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。
(Example 21)
Example 21 was carried out in the same manner as Example 1 except that the composition of the sintered magnet before grain boundary diffusion was the composition shown in Table 1. Specifically, a raw material alloy G was produced. Then, pulverization, molding, sintering and aging treatment were performed in the same manner as in Example 1 to obtain sintered magnets having the compositions shown in Table 2. Thereafter, in the same manner as in Example 1, the main phase particles present in the magnet surface layer portion were decomposed and disproportionated, and Tb diffusion treatment was performed. Thereafter, recrystallization and reaging treatment were performed in the same manner as in Example 1. The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(実施例22)
実施例22では、粒界拡散前の焼結磁石の組成が表1に示す組成となるようにした点以外は実施例1と同様に実施した。具体的には、原料合金Hを作製した。そして、実施例1と同様に粉砕、成形、焼結および時効処理を行い、表2に示す組成の焼結磁石を得た。その後、実施例1と同様に磁石表層部に存在する主相粒子を分解不均化させ、Tbの拡散処理を実施した。その後、実施例1と同様に再結晶化および再時効処理を施した。前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。
(Example 22)
Example 22 was carried out in the same manner as Example 1 except that the composition of the sintered magnet before grain boundary diffusion was the composition shown in Table 1. Specifically, a raw material alloy H was produced. Then, pulverization, molding, sintering and aging treatment were performed in the same manner as in Example 1 to obtain sintered magnets having the compositions shown in Table 2. Thereafter, in the same manner as in Example 1, the main phase particles present in the magnet surface layer portion were decomposed and disproportionated, and Tb diffusion treatment was performed. Thereafter, recrystallization and reaging treatment were performed in the same manner as in Example 1. The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(比較例1)
上記の焼結磁石作製工程により得られた焼結磁石全面に対し、TbH粒子(平均粒径D50=5μm)をエタノールに分散させたスラリーを、焼結磁石の重量に対するTbの重量が0.5重量%となるように塗布することでTbを付着させた。前記スラリーを塗布後に大気圧でArをフローしながら770℃で5時間の熱処理を実施し、続いて950℃で5時間の熱処理を施し、Tbを粒界拡散させた。そして、前記熱処理後に冷却速度200℃/分で急冷した。
(Comparative Example 1)
A slurry in which TbH 2 particles (average particle size D50 = 5 μm) are dispersed in ethanol is applied to the entire surface of the sintered magnet obtained by the above-described sintered magnet manufacturing step, and the weight of Tb relative to the weight of the sintered magnet is 0.00. Tb was made to adhere by applying to 5 wt%. After applying the slurry, heat treatment was performed at 770 ° C. for 5 hours while flowing Ar at atmospheric pressure, and then heat treatment was performed at 950 ° C. for 5 hours to diffuse Tb at the grain boundaries. And it cooled rapidly with the cooling rate of 200 degrees C / min after the said heat processing.

その後、Ar雰囲気、大気圧中で、500℃で1時間の再時効処理を行った。   Thereafter, re-aging treatment was performed at 500 ° C. for 1 hour in an Ar atmosphere and atmospheric pressure.

前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(比較例2)
比較例2では、焼結磁石作製工程において、表1に示す組成となるように焼結体用合金(原料合金)BおよびCを作製した。表1に示す原料合金Bおよび原料合金Cを水素粉砕した後に、重量比で9:1となるように混合した。その後、実施例1と同様に微粉砕、成形、焼結および時効処理を行い、表2に示す組成を有する焼結磁石を得た。なお、当該焼結磁石の組成は、上記拡散処理後の実施例1〜4,7〜10および比較例1の焼結磁石の組成と同一になることを確認した。
(Comparative Example 2)
In Comparative Example 2, sintered body alloys (raw material alloys) B and C were prepared so as to have the compositions shown in Table 1 in the sintered magnet manufacturing process. The raw material alloy B and the raw material alloy C shown in Table 1 were pulverized with hydrogen and then mixed so that the weight ratio was 9: 1. Thereafter, pulverization, molding, sintering and aging treatment were performed in the same manner as in Example 1 to obtain sintered magnets having the compositions shown in Table 2. In addition, it confirmed that the composition of the said sintered magnet became the same as the composition of the sintered magnet of Examples 1-4, 7-10 and the comparative example 1 after the said diffusion process.

前記時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(比較例3)
比較例3では、ストリップキャスト法により、後述する表2に示す組成となるように焼結体用合金(原料合金)DおよびEを作製した。表2に示す原料合金Dおよび原料合金Eを水素粉砕した後に、重量比で9:1となるように混合した。その後、実施例1と同様に微粉砕、成形、焼結および時効処理を行い、表2に示す組成の焼結磁石を得た。
(Comparative Example 3)
In Comparative Example 3, sintered body alloys (raw material alloys) D and E were prepared by a strip casting method so as to have a composition shown in Table 2 to be described later. The raw material alloy D and the raw material alloy E shown in Table 2 were pulverized with hydrogen and then mixed so that the weight ratio was 9: 1. Thereafter, pulverization, molding, sintering and aging treatment were performed in the same manner as in Example 1 to obtain sintered magnets having the compositions shown in Table 2.

前記時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(比較例4)
比較例4では、最終的に得られる焼結磁石の組成が表1に示す組成となるようにした点以外は実施例1と同様に焼結体用合金(原料合金)を作製した。具体的には、原料合金Fを作製した。そして、実施例1と同様に粉砕、成形、焼結および時効処理を行い、表2に示す組成の焼結磁石を得た。
(Comparative Example 4)
In Comparative Example 4, a sintered body alloy (raw material alloy) was produced in the same manner as in Example 1 except that the composition of the finally obtained sintered magnet was the composition shown in Table 1. Specifically, the raw material alloy F was produced. Then, pulverization, molding, sintering and aging treatment were performed in the same manner as in Example 1 to obtain sintered magnets having the compositions shown in Table 2.

前記時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。   The sintered magnet after the aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

(比較例5)
拡散処理後の再結晶化工程における冷却速度を10℃/分にした点以外は実施例1と同様に実施した。
(Comparative Example 5)
The same procedure as in Example 1 was performed except that the cooling rate in the recrystallization step after the diffusion treatment was 10 ° C./min.

(比較例6)
比較例6では粒界拡散前の焼結磁石の組成が表1に示す組成となるようにして得られた焼結磁石全面に対し、DyH粒子(平均粒径D50=5μm)をエタノールに分散させたスラリーを、焼結磁石の重量に対するDyの重量が1.0重量%となるように塗布することでDyを付着させた。前記スラリーを塗布後に大気圧でArをフローしながら770℃で5時間の熱処理を実施し、続いて950℃で5時間の熱処理を施し、Dyを粒界拡散させた。そして、前記熱処理後に冷却速度200℃/分で急冷した。 その後、Ar雰囲気、大気圧中で、500℃で1時間の再時効処理を行った。前記再時効処理後の焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った。
(Comparative Example 6)
In Comparative Example 6, DyH 2 particles (average particle diameter D50 = 5 μm) were dispersed in ethanol over the entire surface of the sintered magnet obtained so that the composition of the sintered magnet before grain boundary diffusion was the composition shown in Table 1. The slurry was applied so that the weight of Dy with respect to the weight of the sintered magnet was 1.0% by weight, thereby attaching Dy. After applying the slurry, heat treatment was performed at 770 ° C. for 5 hours while flowing Ar at atmospheric pressure, and then heat treatment was performed at 950 ° C. for 5 hours to diffuse grain boundaries. And it cooled rapidly with the cooling rate of 200 degrees C / min after the said heat processing. Thereafter, re-aging treatment was performed at 500 ° C. for 1 hour in an Ar atmosphere and atmospheric pressure. The sintered magnet after the re-aging treatment was evaluated for magnetic properties (residual magnetic flux density Br, coercive force Hcj and squareness ratio Hk / Hcj) with a BH tracer.

表3には、焼結磁石の表層部に存在する主相粒子を分解する分解処理を行ったか、粒界拡散処理を行ったか、そして、粒界拡散後に急冷を行ったかのそれぞれについて記載した。各処理を行った場合には〇、各処理を行わなかった場合には×を付けた。   Table 3 shows each of whether the decomposition process for decomposing the main phase particles present in the surface layer portion of the sintered magnet, the grain boundary diffusion process, and the rapid cooling after the grain boundary diffusion were performed. A mark was given when each process was performed, and a mark was marked when each process was not performed.

各実施例および比較例のR−T−B系焼結磁石について、BHトレーサーで磁気特性(残留磁束密度Br、保磁力Hcjおよび角形比Hk/Hcj)の評価を行った結果を表3に示す。なお、残留磁束密度Brは1380mT以上を良好とし、1400mT以上をさらに良好とした。保磁力HcjはTbを粒界拡散させた場合には1800kA/m以上を良好とし、1830kA/m以上をさらに良好とした。Dyを粒界拡散させた場合には1600kA/m以上を良好とし、1620kA/m以上をさらに良好とした。角形比Hk/Hcjは0.90を超える場合を良好とし、0.95以上である場合をさらに良好とした。   Table 3 shows the results of evaluation of the magnetic properties (residual magnetic flux density Br, coercive force Hcj, and squareness ratio Hk / Hcj) for the RTB-based sintered magnets of the examples and comparative examples using a BH tracer. . The residual magnetic flux density Br was 1380 mT or more, and 1400 mT or more. The coercive force Hcj was 1800 kA / m or higher when Tb was diffused at grain boundaries, and 1830 kA / m or higher was further improved. When Dy was diffused at grain boundaries, 1600 kA / m or more was considered good, and 1620 kA / m or more was even better. The squareness ratio Hk / Hcj was determined to be good when it exceeded 0.90, and better when it was 0.95 or more.

また、各実施例および比較例のR−T−B系焼結磁石を任意の断面で切断し、当該断面を観察した。磁石表層部のうち、磁石表面から磁石内部に向かって20μmの部分における逆コアシェル主相粒子の存在割合を測定した。磁石表層部における逆コアシェル主相粒子の存在割合の測定は、磁石表層部のうち、磁石表面から磁石内部に向かって20μmの部分にある主相粒子からランダムに選んだ10個の主相粒子についてSEMおよびTEM−EDSを用いて行った。また、磁石中央部における逆コアシェル主相粒子の存在割合を測定した。磁石中央部における逆コアシェル主相粒子の存在割合の測定は、磁石中央部にある主相粒子の中からランダムに選んだ10個の主相粒子についてSEMおよびTEM−EDSを用いて行った。結果を表4に示す。   Moreover, the R-T-B system sintered magnets of the examples and comparative examples were cut in arbitrary cross sections, and the cross sections were observed. The abundance ratio of the reverse core shell main phase particles in the 20 μm portion from the magnet surface toward the inside of the magnet in the magnet surface layer was measured. The measurement of the existence ratio of the reverse core shell main phase particles in the magnet surface layer portion is performed on 10 main phase particles randomly selected from the main phase particles in the portion of 20 μm from the magnet surface toward the inside of the magnet. SEM and TEM-EDS were used. Moreover, the abundance ratio of the reverse core shell main phase particles in the magnet central part was measured. The abundance ratio of the reverse core shell main phase particles in the magnet central portion was measured using SEM and TEM-EDS for 10 main phase particles randomly selected from the main phase particles in the magnet central portion. The results are shown in Table 4.

さらに、各実施例において磁石表層部に存在する逆コアシェル主相粒子について、コア部における全RHの濃度CRCおよびシェル部におけるにおける全RHの濃度CRSを測定した。そして、各逆コアシェル主相粒子におけるCRC/CRS>1.5である粒子の割合およびCRC/CRS>3.0である粒子の割合をTEM−EDSを用いて算出した。結果を表4に示す。 Further, the reverse shell main phase particles present in the magnet surface part in each example was measured total RH concentration C RS in the concentration C RC and the shell of the entire RH in the core portion. And the ratio of the particle | grains which are CRC / CRS > 1.5 in each reverse core shell main phase particle | grain, and the ratio of the particle | grains which are CRC / CRS > 3.0 were computed using TEM-EDS. The results are shown in Table 4.

本実施例における逆コアシェル主相粒子11において、コア部11aにおける全RH濃度およびシェル部11bにおける全RH濃度の測定箇所は以下の通りとする。   In the reverse core-shell main phase particles 11 in this example, the measurement locations of the total RH concentration in the core portion 11a and the total RH concentration in the shell portion 11b are as follows.

まず、濃度を測定する逆コアシェル主相粒子11を透過型電子顕微鏡(TEM)で観察し、長さが最大となる直径を特定する。次に、当該直径と粒界との二つの交点を特定する。そして、当該二つの交点の中点を中心とする20nm×20nmの領域における全RH濃度を測定し、コア部における全RH濃度CRCとする。 First, the reverse core-shell main phase particles 11 whose concentration is to be measured are observed with a transmission electron microscope (TEM), and the diameter having the maximum length is specified. Next, two intersections between the diameter and the grain boundary are specified. Then, by measuring the total RH concentration in the region of 20 nm × 20 nm centered on the midpoint of the two points of intersection, the total RH concentration C RC in the core portion.

次に、当該二つの交点のうち一つの交点を選択する。そして、当該交点から前記長さが最大となる直径に沿って20nm、逆コアシェル主相粒子側に侵入した点を中心とする20nm×20nmの領域における全RH濃度を測定し、シェル部における全RH濃度CRSとする。 Next, one intersection is selected from the two intersections. Then, the total RH concentration in a region of 20 nm × 20 nm centering on the point entering the reverse core shell main phase particle side is measured along the diameter having the maximum length from the intersection, and the total RH in the shell portion is measured. Concentration CRS .

さらに、磁石表層部におけるコアシェル主相粒子の存在割合を測定した。磁石表層部におけるコアシェル主相粒子の存在割合は、磁石表層部のうち、磁石表面から磁石内部に向かって20μmの部分にある主相粒子の中からランダムに選んだ10粒子についてSEMおよびTEM−EDSを用いて測定した。また、磁石中央部におけるコアシェル粒子の存在割合を測定した。磁石中央部におけるコアシェル主相粒子の存在割合は、磁石中央部にある主相粒子の中からランダムに選んだ10粒子についてSEMおよびTEM−EDSを用いて測定した。結果を表4に示す。   Furthermore, the abundance ratio of the core-shell main phase particles in the magnet surface layer was measured. The existence ratio of the core-shell main phase particles in the magnet surface layer portion is determined by SEM and TEM-EDS for 10 particles randomly selected from the main phase particles in the portion of 20 μm from the magnet surface toward the inside of the magnet. It measured using. Moreover, the abundance ratio of the core-shell particles in the central part of the magnet was measured. The existence ratio of the core-shell main phase particles in the central part of the magnet was measured using SEM and TEM-EDS for 10 particles randomly selected from the main phase particles in the central part of the magnet. The results are shown in Table 4.

さらに、各実施例について、逆コアシェル粒子層の厚み、コアシェル粒子層の厚みおよび非コアシェル粒子層の厚みについて、SEMを用いて測定した。結果を表4に示す。なお、各層の厚みは1層あたりの厚みである。各層が2層以上存在する場合には、平均を算出して平均値を各層の厚みとした。   Furthermore, about each Example, the thickness of the reverse core-shell particle layer, the thickness of the core-shell particle layer, and the thickness of the non-core-shell particle layer was measured using SEM. The results are shown in Table 4. In addition, the thickness of each layer is the thickness per layer. When there were two or more layers, the average was calculated and the average value was taken as the thickness of each layer.

以下、上記の各層の厚みを測定する方法について、さらに具体的に説明する。各実施例および比較例のR−T−B系焼結磁石を配向方向と平行な断面で切断し、当該断面を鏡面研磨した後、電子顕微鏡(SEM)にて1000倍で観察した。SEM観察は配向方向に沿って、磁石表面から逆側の磁石表面まで連続的に行った。観察した視野の中で逆コアシェル粒子が観察され始めてから観察されなくなるまでの領域を主に逆コアシェル主相粒子からなる逆コアシェル粒子層とした。そして、逆コアシェル粒子層の厚みをSEM画像から概算した。また、観察した視野の中で逆コアシェル粒子が観察されなくなってからコアシェル粒子が観察されなくなるまでの領域を、主にコアシェル主相粒子からなるコアシェル粒子層とした。そして、コアシェル粒子相の厚みを概算した。さらに、観察した視野の中で逆コアシェル粒子およびコアシェル粒子が観察されない領域を非コアシェル主相粒子からなる非コアシェル粒子層とした。そして、非コアシェル粒子層の厚みを概算した。   Hereinafter, the method for measuring the thickness of each layer will be described more specifically. The RTB-based sintered magnets of each example and comparative example were cut in a cross section parallel to the orientation direction, the cross section was mirror-polished, and then observed with an electron microscope (SEM) at 1000 times. SEM observation was continuously performed from the magnet surface to the opposite magnet surface along the orientation direction. In the observed field of view, the region from when the reverse core-shell particles began to be observed until they were not observed was defined as the reverse core-shell particle layer mainly composed of the reverse core-shell main phase particles. And the thickness of the reverse core shell particle layer was estimated from the SEM image. Further, the region from the time when the reverse core-shell particles were not observed to the time when the core-shell particles were not observed in the observed visual field was defined as the core-shell particle layer mainly composed of the core-shell main phase particles. And the thickness of the core-shell particle phase was estimated. Further, a region where the reverse core-shell particles and the core-shell particles are not observed in the observed field of view is defined as a non-core-shell particle layer composed of non-core-shell main phase particles. And the thickness of the non-core shell particle layer was estimated.

Figure 2018174312
Figure 2018174312

Figure 2018174312
Figure 2018174312

Figure 2018174312
Figure 2018174312

Figure 2018174312
Figure 2018174312

表1〜表4より、焼結後に磁石表層部の主相粒子を分解不均化する工程、粒界拡散により液相を生成させ、液相にRHを取り込ませる工程、および、急冷によりRHが取り込まれた液相を再結晶化する工程を経た実施例1〜22のR−T−B系焼結磁石は逆コアシェル主相粒子が磁石表層部に生成して逆コアシェル粒子層を形成した。そして、残留磁束密度、保磁力および角形比が好ましい結果となった。   From Tables 1 to 4, the step of decomposing and disproportionating the main phase particles of the magnet surface layer after sintering, the step of generating a liquid phase by grain boundary diffusion and incorporating RH into the liquid phase, and the RH by rapid cooling In the RTB-based sintered magnets of Examples 1 to 22 that had undergone the step of recrystallizing the incorporated liquid phase, the reverse core-shell main phase particles were generated in the magnet surface layer portion to form the reverse core-shell particle layer. The residual magnetic flux density, coercive force, and squareness ratio were favorable results.

さらに、Tbを粒界拡散した実施例のうち、逆コアシェル粒子層の厚みが10μm以上60μm以下であり、CRC/CRS>1.5である逆コアシェル粒子が存在する実施例1〜7,9〜10,12〜17および21〜22は残留磁束密度がさらに好ましい結果となった。 Further, among the examples in which Tb was grain boundary diffused, the thickness of the reverse core shell particle layer was 10 μm or more and 60 μm or less, and there were reverse core shell particles having C RC / C RS > 1.5, 9 to 10, 12 to 17, and 21 to 22 had more preferable residual magnetic flux density.

これに対し、焼結後に磁石表層部の主相粒子を分解不均化する工程、粒界拡散により液相を生成させ、液相にRHを取り込ませる工程、および、急冷によりRHが取り込まれた液相を再結晶化する工程を経なかった比較例では、逆コアシェル主相粒子が生成しなかった。その結果、残留磁束密度、保磁力および/または角形比が実施例1〜22より劣る結果となった。   In contrast, the step of decomposing and disproportionating the main phase particles in the magnet surface layer after sintering, the step of generating a liquid phase by grain boundary diffusion and incorporating RH into the liquid phase, and the step of quenching RH were incorporated. In the comparative example in which the liquid phase was not recrystallized, the reverse core shell main phase particles were not generated. As a result, the residual magnetic flux density, coercive force and / or squareness ratio were inferior to those of Examples 1 to 22.

比較例1および6では焼結後に磁石表層部の主相粒子を分解不均化する工程を行わなかったため、粒界拡散および急冷を経ても逆コアシェル主相粒子が生成しなかった。比較例2では、2合金法により焼結磁石を作製したが、逆コアシェル主相粒子が生成しなかった。その結果、残留磁束密度および保磁力が実施例1〜17および21〜22より劣る結果となった。比較例3および4では、Tbの含有量を増加させた結果、保磁力は良好となったが残留磁束密度が実施例1〜17および21〜22よりも劣る結果となった。また、Tbの含有量が増加しているため、比較例3および4の焼結磁石は製造コストも実施例1〜17および21〜22の焼結磁石より高価となった。比較例5では、拡散処理後の再結晶化工程における冷却速度が低すぎたため、均一な主相粒子となってしまい、逆コアシェル主相粒子が生成しなかった。   In Comparative Examples 1 and 6, since the step of decomposing and disproportionating the main phase particles in the magnet surface layer portion after sintering was not performed, the reverse core shell main phase particles were not generated even after undergoing grain boundary diffusion and rapid cooling. In Comparative Example 2, a sintered magnet was produced by the two-alloy method, but no reverse core shell main phase particles were produced. As a result, the residual magnetic flux density and the coercive force were inferior to those of Examples 1-17 and 21-22. In Comparative Examples 3 and 4, as a result of increasing the Tb content, the coercive force was good, but the residual magnetic flux density was inferior to those of Examples 1-17 and 21-22. Moreover, since the Tb content was increased, the sintered magnets of Comparative Examples 3 and 4 were also more expensive to manufacture than the sintered magnets of Examples 1 to 17 and 21 to 22. In Comparative Example 5, since the cooling rate in the recrystallization step after the diffusion treatment was too low, uniform main phase particles were formed, and reverse core shell main phase particles were not generated.

1,10…R−T−B系焼結磁石
1a…逆コアシェル粒子層
1b…コアシェル粒子層
1c…非コアシェル粒子層
11…逆コアシェル主相粒子
11a…コア部(逆コアシェル主相粒子)
11b…シェル部(逆コアシェル主相粒子)
12…粒界
13…コアシェル主相粒子
13a…コア部(コアシェル主相粒子)
13b…シェル部(コアシェル主相粒子)
DESCRIPTION OF SYMBOLS 1,10 ... R-T-B system sintered magnet 1a ... Reverse core shell particle layer 1b ... Core shell particle layer 1c ... Non-core shell particle layer 11 ... Reverse core shell main phase particle 11a ... Core part (reverse core shell main phase particle)
11b ... Shell part (reverse core shell main phase particles)
12 ... Grain boundary 13 ... Core-shell main phase particles 13a ... Core part (core-shell main phase particles)
13b ... Shell part (core-shell main phase particles)

Claims (6)

14B結晶からなる主相粒子を含むR−T−B系焼結磁石であって、
Rは重希土類元素RHを必須とする1種以上の希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、Bはホウ素であり、
前記主相粒子の一部が逆コアシェル主相粒子であり、
前記逆コアシェル主相粒子は、コア部およびシェル部を有し、
前記コア部における全RH濃度(at%)をCRC
前記シェル部における全RH濃度(at%)をCRSとした場合に、
RC/CRS>1.0であり、
前記逆コアシェル主相粒子の存在比率が、磁石中央部よりも磁石表層部の方が大きいことを特徴とするR−T−B系焼結磁石。
An RTB-based sintered magnet including main phase particles made of R 2 T 14 B crystal,
R is one or more rare earth elements essential for the heavy rare earth element RH, T is one or more transition metal elements essential for Fe or Fe and Co, and B is boron,
Some of the main phase particles are reverse core shell main phase particles,
The reverse core shell main phase particles have a core portion and a shell portion,
The total RH concentration (at%) in the core part is defined as C RC ,
All RH concentration at the shell portion (at%) in the case of the C RS,
C RC / C RS > 1.0,
The RTB-based sintered magnet is characterized in that the abundance ratio of the reverse core shell main phase particles is larger in the magnet surface layer than in the magnet center.
RC/CRS>1.5である請求項1に記載のR−T−B系焼結磁石。 The R-T-B system sintered magnet according to claim 1, wherein C RC / C RS > 1.5. 前記主相粒子の一部がコアシェル主相粒子であり、
前記コアシェル主相粒子は、コア部およびシェル部を有し、
前記コア部における全RH濃度(at%)をCNC
前記シェル部における全RH濃度(at%)をCNSとした場合に、
NC/CNS<1.0であることを特徴とする請求項1または2に記載のR−T−B系焼結磁石。
Some of the main phase particles are core-shell main phase particles,
The core-shell main phase particles have a core part and a shell part,
The total RH concentration (at%) in the core part is represented by CNC ,
When the total RH concentration (at%) in the shell portion is C NS ,
C NC / C NS <1.0, The RTB -based sintered magnet according to claim 1 or 2 characterized by the above-mentioned.
主に前記コアシェル主相粒子からなるコアシェル粒子層、および、主に前記逆コアシェル主相粒子からなる逆コアシェル粒子層を含む請求項3に記載のR−T−B系焼結磁石。   The RTB-based sintered magnet according to claim 3, comprising a core-shell particle layer mainly composed of the core-shell main phase particles and a reverse core-shell particle layer mainly composed of the reverse core-shell main phase particles. 磁石中央部から磁石表層部に向かって、前記コアシェル粒子層および前記逆コアシェル粒子層がこの順番に並んでいる請求項4に記載のR−T−B系焼結磁石。   The RTB-based sintered magnet according to claim 4, wherein the core-shell particle layer and the reverse core-shell particle layer are arranged in this order from the magnet central portion toward the magnet surface layer portion. 前記主相粒子の一部がコアシェル構造を有さない非コアシェル主相粒子であって、主に前記非コアシェル主相粒子からなる非コアシェル粒子層を含むR−T−B系焼結磁石であって、
磁石中央部から磁石表層部に向かって、前記非コアシェル粒子層、前記コアシェル粒子層および前記逆コアシェル粒子層がこの順番に並んでいる請求項4に記載のR−T−B系焼結磁石。
A part of the main phase particles is a non-core shell main phase particle having no core-shell structure, and is an RTB-based sintered magnet including a non-core shell particle layer mainly composed of the non-core shell main phase particles. And
The RTB-based sintered magnet according to claim 4, wherein the non-core-shell particle layer, the core-shell particle layer, and the reverse core-shell particle layer are arranged in this order from the magnet center to the magnet surface layer.
JP2018055192A 2017-03-30 2018-03-22 RTB-based sintered magnet Active JP7035682B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/939,778 US10748686B2 (en) 2017-03-30 2018-03-29 R-T-B based sintered magnet
CN201810293088.9A CN108695034B (en) 2017-03-30 2018-03-30 R-T-B sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017069144 2017-03-30
JP2017069144 2017-03-30

Publications (3)

Publication Number Publication Date
JP2018174312A true JP2018174312A (en) 2018-11-08
JP2018174312A5 JP2018174312A5 (en) 2021-04-22
JP7035682B2 JP7035682B2 (en) 2022-03-15

Family

ID=64107608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055192A Active JP7035682B2 (en) 2017-03-30 2018-03-22 RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP7035682B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062849A (en) * 2018-11-27 2020-06-04 엘지이노텍 주식회사 Manufacturing method of rare earth magnet
JP2023511777A (en) * 2020-02-26 2023-03-22 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
JP2023511776A (en) * 2020-02-26 2023-03-22 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165012A (en) * 1990-10-29 1992-06-10 Shin Etsu Chem Co Ltd Production of anisotropic sintered permanent magnet based on rare earth element
JP2012099852A (en) * 2006-11-30 2012-05-24 Hitachi Metals Ltd R-Fe-B-BASED FINE CRYSTAL HIGH-DENSITY MAGNET
JP2013084890A (en) * 2011-09-29 2013-05-09 Hitachi Metals Ltd Manufacturing method for r-t-b-based sintered magnet
JP2016152246A (en) * 2015-02-16 2016-08-22 Tdk株式会社 Rare earth based permanent magnet
JP2016154219A (en) * 2015-02-16 2016-08-25 Tdk株式会社 Rare earth based permanent magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000988B1 (en) 1997-08-06 2005-03-30 Daikin Industries, Ltd. Water-based fluororubber coating composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165012A (en) * 1990-10-29 1992-06-10 Shin Etsu Chem Co Ltd Production of anisotropic sintered permanent magnet based on rare earth element
JP2012099852A (en) * 2006-11-30 2012-05-24 Hitachi Metals Ltd R-Fe-B-BASED FINE CRYSTAL HIGH-DENSITY MAGNET
JP2013084890A (en) * 2011-09-29 2013-05-09 Hitachi Metals Ltd Manufacturing method for r-t-b-based sintered magnet
JP2016152246A (en) * 2015-02-16 2016-08-22 Tdk株式会社 Rare earth based permanent magnet
JP2016154219A (en) * 2015-02-16 2016-08-25 Tdk株式会社 Rare earth based permanent magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062849A (en) * 2018-11-27 2020-06-04 엘지이노텍 주식회사 Manufacturing method of rare earth magnet
KR102561239B1 (en) * 2018-11-27 2023-07-31 엘지이노텍 주식회사 Manufacturing method of rare earth magnet
JP2023511777A (en) * 2020-02-26 2023-03-22 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
JP2023511776A (en) * 2020-02-26 2023-03-22 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
JP7470805B2 (en) 2020-02-26 2024-04-18 福建省金龍稀土股分有限公司 Neodymium Iron Boron Magnet Material
JP7470804B2 (en) 2020-02-26 2024-04-18 福建省金龍稀土股分有限公司 Neodymium iron boron magnet material, raw material composition, and manufacturing method

Also Published As

Publication number Publication date
JP7035682B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
US10748686B2 (en) R-T-B based sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
JP7251917B2 (en) RTB system permanent magnet
JP6493138B2 (en) R-T-B sintered magnet
JP5729051B2 (en) R-T-B rare earth sintered magnet
JP7251916B2 (en) RTB system permanent magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
US10734143B2 (en) R-T-B based sintered magnet
JP2022115921A (en) R-t-b based permanent magnet
JP2019102707A (en) R-t-b based permanent magnet
JP7035682B2 (en) RTB-based sintered magnet
JP7247670B2 (en) RTB permanent magnet and manufacturing method thereof
JP7035683B2 (en) RTB-based sintered magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP7424126B2 (en) RTB series permanent magnet
JP2018160669A (en) R-t-b based rare earth magnet
US10748685B2 (en) R-T-B based sintered magnet
JP2015122395A (en) Method for manufacturing r-t-b-based sintered magnet
JPWO2004029999A1 (en) R-T-B rare earth permanent magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP7143605B2 (en) RTB system sintered magnet
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2020155657A (en) Method for manufacturing r-t-b based sintered magnet
JP7256483B2 (en) RTB permanent magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150