JPH09223617A - Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereof - Google Patents
Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereofInfo
- Publication number
- JPH09223617A JPH09223617A JP8336990A JP33699096A JPH09223617A JP H09223617 A JPH09223617 A JP H09223617A JP 8336990 A JP8336990 A JP 8336990A JP 33699096 A JP33699096 A JP 33699096A JP H09223617 A JPH09223617 A JP H09223617A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- corrosion resistance
- powder
- rare earth
- sintered magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、耐食性および磁
気特性にすぐれた希土類−B−Fe系焼結磁石に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties.
【0002】[0002]
【従来の技術】近年、従来のSm−Co系磁石に比べ
て、より高い磁気特性を有し、かつ資源的にも高価なS
mやCoを必ずしも含まない、Yを含む希土類元素のう
ち少なくとも1種(以上、Rで示す)、BおよびFeを
必須成分とするR−B−Fe系永久磁石が発明された。
このR−B−Fe系永久磁石は、その優れた磁気特性を
有する一方で、非常に腐食され易く、それに伴う磁気特
性の劣化が著しいという欠点を合わせ持っている。2. Description of the Related Art In recent years, S, which has higher magnetic characteristics and is more expensive in terms of resources, than conventional Sm-Co magnets.
An RB-Fe-based permanent magnet has been invented, which does not necessarily include m or Co and has at least one kind of rare earth element including Y (above, indicated by R), B and Fe as essential components.
While this RB-Fe-based permanent magnet has its excellent magnetic properties, it also has the drawback that it is very easily corroded and the magnetic properties are significantly deteriorated.
【0003】このR−B−Fe系永久磁石は、所定のR
−B−Fe系合金粉末を圧縮成形し、焼結することによ
り製造されるものであるが、このR−B−Fe系永久磁
石の組成は、図1に示されているように、R2 Fe14B
相:a、上記R2 Fe14B相の粒界部分に存在するRリ
ッチ相(R95Fe5 相、R75Fe25相などから構成され
ていると言われている):b、およびRFe4 B4 相か
らなるBリッチ相:cから主として構成されており、上
記腐食の原因は、主として粒界部分に存在するRリッチ
相:bが腐食されやすい相であるために、Rリッチ相:
bを介して粒界腐食が内部に進行することによるものと
言われている。This RB-Fe system permanent magnet has a predetermined R
It is produced by compressing and sintering a -B-Fe alloy powder, and the composition of this RB-Fe permanent magnet has a composition of R 2 as shown in FIG. Fe 14 B
Phase: a, R-rich phase (which is said to be composed of R 95 Fe 5 phase, R 75 Fe 25 phase, etc.) existing in the grain boundary portion of the R 2 Fe 14 B phase: b, and RFe It is mainly composed of a B-rich phase consisting of 4 B 4 phase: c, and the cause of the above-mentioned corrosion is that the R-rich phase: b existing mainly in the grain boundary portion is a phase that is easily corroded.
It is said that intergranular corrosion progresses inward through b.
【0004】これらの対策として、特開昭61−185
910号公報では、R−B−Fe系永久磁石の表面にZ
nの薄膜を拡散形成する方法、特開昭61−27030
8号公報では、R−B−Fe系永久磁石の表面層を除去
したのち、Alの薄膜を被着させる方法、さらに特開昭
63−77104号公報では、R−B−Fe系永久磁石
の表面にエポキシ樹脂、熱硬化型アクリル樹脂、アルキ
ド樹脂、メラミン樹脂、シリコン樹脂等の塗装用合成樹
脂等の耐酸化性樹脂を塗布する方法が開示されている。As a countermeasure against these problems, Japanese Patent Laid-Open No. 61-185 has been proposed.
In Japanese Patent Publication No. 910, Z is formed on the surface of the RB-Fe based permanent magnet.
Method for diffusively forming a thin film of n, JP-A-61-27030
No. 8 discloses a method of removing the surface layer of the R—B—Fe based permanent magnet and then depositing a thin film of Al. Further, in Japanese Laid-Open Patent Publication No. 63-77104, the R—B—Fe based permanent magnet is coated. A method of applying an oxidation resistant resin such as a coating synthetic resin such as an epoxy resin, a thermosetting acrylic resin, an alkyd resin, a melamine resin, and a silicone resin to the surface is disclosed.
【0005】[0005]
【発明が解決しようとする課題】ところが、上記従来の
技術で述べられているR−B−Fe系永久磁石の防食方
法は、いずれも上記永久磁石の表面にZn,Al、また
は合成樹脂等の耐食性のある保護膜を被着させるもの
で、磁石の製造工程とは別の工程が必要となり、工程が
複雑化する上にコスト高となり、さらに、上記合成樹脂
保護膜は厚さがあるために特に小型磁石製品の寸法精度
を悪くする。いずれにしても上記防食方法は上記永久磁
石の外部を腐食等に対して保護するにすぎず、上記保護
膜がはく離したりまたは亀裂が生じたりした場合には、
それらの個所から内部に腐食が浸透し、内部的な腐食は
防止できず、それに伴って磁気特性も劣化するという問
題点があった。However, in any of the anticorrosion methods for the RB-Fe based permanent magnets described in the above-mentioned prior art, Zn, Al, or synthetic resin or the like is formed on the surface of the permanent magnet. Since a protective film with corrosion resistance is applied, a process different from the manufacturing process of the magnet is required, which complicates the process and increases the cost. Furthermore, since the synthetic resin protective film is thick, In particular, it deteriorates the dimensional accuracy of small magnet products. In any case, the anticorrosion method only protects the outside of the permanent magnet against corrosion and the like, and when the protective film peels off or cracks occur,
There is a problem that corrosion penetrates into the inside from these points, internal corrosion cannot be prevented, and magnetic properties are deteriorated accordingly.
【0006】[0006]
【課題を解決するための手段】そこで、本発明者等は、
耐食性にすぐれ、かつ磁気特性にもすぐれたR−B−F
e系焼結磁石を製造すべく研究を行った結果、R2 Fe
14B相(以下、主相という)と上記主相のまわりに存在
する粒界相とからなる組織を有するR−B−Fe系焼結
磁石であって、粒界相に、Ni,Co,Mn,Cr,T
i,V,Al,Ga,In,Zr,Hf,Ta,Nb,
Mo,Si,ReおよびWのうち少なくとも1種(以
下、Mという)が20〜90原子%を含有した粒界相を
有するR−B−Fe系焼結磁石は、すぐれた耐食性を有
する、という知見を得たのである。Means for Solving the Problems Accordingly, the present inventors have
R-B-F with excellent corrosion resistance and magnetic properties
As a result of conducting research to produce an e-based sintered magnet, R 2 Fe
14 B phase (hereinafter, main phase as) a R-B-Fe based sintered magnet having a tissue composed of a grain boundary phase present around the above main phase, the grain boundary phase, Ni, Co, Mn, Cr, T
i, V, Al, Ga, In, Zr, Hf, Ta, Nb,
An RB-Fe based sintered magnet having a grain boundary phase in which at least one of Mo, Si, Re and W (hereinafter referred to as M) contains 20 to 90 atom% has excellent corrosion resistance. I got the knowledge.
【0007】この発明は、かかる知見にもとづいてなさ
れたものであって、(1) 主相と粒界相からなるR−
B−Fe系焼結磁石において、上記粒界相は、 M:20〜90原子% を含む粒界相である耐食性および磁気特性にすぐれた希
土類−B−Fe系焼結磁石、に特徴を有するものであ
る。The present invention has been made on the basis of the above findings, and (1) R-comprising a main phase and a grain boundary phase.
In the B-Fe based sintered magnet, the grain boundary phase is characterized by being a grain boundary phase containing M: 20 to 90 atomic%, which is a rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties. It is a thing.
【0008】上記Mが粒界相に20原子%未満含まれて
いても十分な耐食性が得られず、一方、粒界相にMが9
0原子%を越えて含有させようとすると、製造中に上記
Mは主相にも拡散侵入するために耐食性は向上するが磁
気特性が大幅に低下するので好ましくない。Even if M is contained in the grain boundary phase in an amount of less than 20 atomic%, sufficient corrosion resistance cannot be obtained. On the other hand, M in the grain boundary phase is 9%.
If the content of M exceeds 0 atom%, the above M diffuses and penetrates into the main phase during the production, so that the corrosion resistance is improved, but the magnetic properties are significantly deteriorated, which is not preferable.
【0009】上記Mを含有した粒界相は図1に示される
Rリッチ相よりも腐食しにくい相であり、この腐食しに
くい粒界相は焼結過程での結晶粒の成長を抑制し高密度
化させる作用を有するために耐食性および磁気特性が共
に優れたR−B−Fe系焼結磁石が得られるものと考え
られる。The grain boundary phase containing M is less likely to corrode than the R-rich phase shown in FIG. 1, and the grain boundary phase less likely to corrode suppresses the growth of crystal grains during the sintering process and has a high content. It is considered that an RB-Fe based sintered magnet excellent in both corrosion resistance and magnetic properties can be obtained because it has the function of densifying.
【0010】この発明の粒界相にM:20〜90原子%
を含む希土類−B−Fe系焼結磁石は、所定の組成を有
するR−B−Fe系合金粉末にMの超微粉末またはMの
水素化物粉末を0.0005〜3重量%配合し、混合し
て得られた混合粉末を、成形し、非酸化性雰囲気中、温
度:900〜1200℃で焼結することにより製造され
る。上記R−B−Fe系合金粉末に混合する粉末は、M
の超微粉末よりもMの水素化物粉末の方が好ましい。M
の超微粉末は焼結中にR2 Fe14B相に拡散するが、M
の水素化物粉末はR2 Fe14B相に拡散する量が少な
く、焼結中にMの水素化物の水素は放出され、Mのみが
粒界相に残留する。In the grain boundary phase of the present invention, M: 20 to 90 atomic%
The rare earth-B-Fe-based sintered magnet containing Rb-Fe-based alloy powder having a predetermined composition is mixed with 0.0005 to 3% by weight of M ultrafine powder or M hydride powder and mixed. The mixed powder thus obtained is molded and sintered at a temperature of 900 to 1200 ° C. in a non-oxidizing atmosphere. The powder mixed with the RB-Fe based alloy powder is M
The hydride powder of M is preferable to the ultrafine powder of. M
The ultra-fine powder of the above diffuses into the R 2 Fe 14 B phase during sintering,
The hydride powder of No. 2 diffuses little into the R 2 Fe 14 B phase, hydrogen of M hydride is released during sintering, and only M remains in the grain boundary phase.
【0011】このようにして製造された希土類−B−F
e系焼結磁石は、必要に応じて非酸化性雰囲気中、温
度:400〜700℃で熱処理してもよい。The rare earth-BF produced in this way
The e-based sintered magnet may be heat-treated at a temperature of 400 to 700 ° C. in a non-oxidizing atmosphere, if necessary.
【0012】[0012]
実施例1〜7および従来例 まず、15%Nd−8%B−残Fe(但し%は原子%)
となるように溶解し、合金インゴットを作製した。この
合金インゴットをアルゴン雰囲気中で温度:1050
℃、20時間保持の熱処理を行ったあと、粉砕し、平均
粒径:35μmのR−B−Fe系合金粉末を用意した。Examples 1 to 7 and Conventional Example First, 15% Nd-8% B-remaining Fe (however,% is atomic%).
It melt | dissolved so that it might become, and the alloy ingot was produced. This alloy ingot was heated in an argon atmosphere at a temperature of 1050.
After heat treatment at 20 ° C. for 20 hours, the powder was pulverized to prepare RB—Fe based alloy powder having an average particle diameter of 35 μm.
【0013】さらに添加粉末として、ZrH2 粉末(平
均粒径:1.3μm)、TaH2 粉末(平均粒径:1.
5μm)、TiH2 粉末(平均粒径:1.3μm)、N
bH 2 粉末(平均粒径:1.3μm)、VH粉末(平均
粒径:1.5μm)およびHfH2 粉末(平均粒径1.
3μm)を用意し、これら粉末を上記15%Nd−8%
B−残Fe(但し、%は、原子%)のR−B−Fe系合
金粉末と0.0005〜3重量%の範囲内の所定割合と
なるように配合し、混合して混合粉末とし、これら混合
粉末を成形圧:2t/cm2 で磁場中(14KOe)にて
成形し、たて:20mm×横:20mm×高さ:15mmの成
形体を作製した。これら成形体を真空中(10-5Torr)
で10℃/min の昇温速度にて加熱し、温度:1080
℃、2時間保持の条件で焼結し、100℃/min の冷却
速度で冷却した。Further, as an additive powder, ZrHTwoPowder (flat
Average particle size: 1.3 μm), TaHTwoPowder (average particle size: 1.
5 μm), TiHTwoPowder (average particle size: 1.3 μm), N
bH TwoPowder (average particle size: 1.3 μm), VH powder (average
Particle size: 1.5 μm) and HfHTwoPowder (average particle size 1.
3 μm) is prepared, and these powders are mixed with the above 15% Nd-8%.
B-remaining Fe (however,% is atomic%) R-B-Fe system compound
Gold powder and a predetermined ratio within the range of 0.0005 to 3% by weight
And mix to obtain mixed powder, and mix these
Molding pressure of powder: 2t / cmTwoIn a magnetic field (14KOe)
Formed and vertically: 20 mm x width: 20 mm x height: 15 mm
A feature was made. In vacuum (10-FiveTorr)
At a heating rate of 10 ° C./min at a temperature of 1080
Sintered for 2 hours at ℃, cooled at 100 ℃ / min
Cooled at rate.
【0014】この焼結体を加熱速度:100℃/min で
加熱し、温度:620℃、2時間保持したのち、100
℃/min の冷却速度で冷却し熱処理した。This sintered body was heated at a heating rate of 100 ° C./min and maintained at a temperature of 620 ° C. for 2 hours, and then 100
It was cooled at a cooling rate of ° C / min and heat-treated.
【0015】この熱処理した焼結体の組織を調べたとこ
ろ、R2 Fe14B相および粒界相からなり、図1とほぼ
同一の組織を有しており、上記粒界相の組成を、STE
Mにより測定してその結果を表1に示した。さらに、上
記焼結体の磁気特性を測定し、この焼結体を温度:60
℃、湿度:90%の大気中に1000時間放置して耐食
試験を行なった後、再度、磁気特性を測定するとともに
錆の発生状況を目視により観察し、これらの結果を表1
に示した。表1において、耐食試験前に測定した磁気特
性の測定値を「耐食試験前」の欄に、耐食試験後に測定
した磁気特性の測定値を「耐食試験後」の欄に示した。When the structure of this heat-treated sintered body was examined, it was composed of the R 2 Fe 14 B phase and the grain boundary phase, and had a structure almost the same as that of FIG. STE
The results are shown in Table 1 as measured by M. Furthermore, the magnetic properties of the above-mentioned sintered body were measured, and the temperature of this sintered body was set to 60.
After carrying out a corrosion resistance test by leaving it in the atmosphere of 90 ° C. and humidity: 90% for 1000 hours, the magnetic characteristics were measured again and the rust generation state was visually observed, and these results are shown in Table 1.
It was shown to. In Table 1, the measured values of the magnetic properties measured before the corrosion resistance test are shown in the "before corrosion resistance test" column, and the measured values of the magnetic properties measured after the corrosion resistance test are shown in the "after corrosion resistance test" column.
【0016】[0016]
【表1】 表1の結果から、粒界相に金属元素の存在しない従来例
と比べて、粒界相に金属元素が存在しているこの発明の
希土類−B−Fe系焼結磁石は磁気特性に優れていると
ともに耐食性にもすぐれていることがわかる。[Table 1] From the results of Table 1, the rare earth-B-Fe based sintered magnet of the present invention in which the metal element exists in the grain boundary phase has excellent magnetic characteristics as compared with the conventional example in which the metal element does not exist in the grain boundary phase. It can be seen that it also has excellent corrosion resistance.
【0017】[0017]
【発明の効果】この発明のR−B−Fe系焼結磁石には
表面処理する必要がなく、また焼結磁石の磁気特性の劣
化が少ないので、この磁石を組み込んだ装置の性能の低
下が防止されるという産業上すぐれた効果を奏するもの
である。EFFECTS OF THE INVENTION The RB-Fe system sintered magnet of the present invention does not require surface treatment, and the magnetic characteristics of the sintered magnet are less deteriorated, so that the performance of the apparatus incorporating this magnet is deteriorated. It has an excellent industrial effect of being prevented.
【図面の簡単な説明】[Brief description of drawings]
【図1】R−B−Fe系焼結磁石の組織図である。FIG. 1 is a structural diagram of an RB-Fe based sintered magnet.
Claims (2)
元素のうち1種または2種以上)および上記R2 Fe14
B相のまわりに存在する粒界相とからなる組織を有する
R−B−Fe系焼結磁石であって、 上記粒界相は、Ni,Co,Mn,Cr,Ti,V,A
l,Ga,In,Zr,Hf,Ta,Nb,Mo,S
i,ReおよびWのうち少なくとも1種(以下、Mとい
う):20〜90原子%を含む粒界相であることを特徴
とする耐食性および磁気特性に優れた希土類−B−Fe
系焼結磁石。1. An R 2 Fe 14 B phase (R is one or more rare earth elements including Y) and the above R 2 Fe 14
An RB-Fe based sintered magnet having a structure composed of a grain boundary phase existing around a B phase, wherein the grain boundary phase is Ni, Co, Mn, Cr, Ti, V, A.
l, Ga, In, Zr, Hf, Ta, Nb, Mo, S
A rare earth-B-Fe excellent in corrosion resistance and magnetic properties, characterized in that it is a grain boundary phase containing at least one of i, Re and W (hereinafter referred to as M): 20 to 90 atomic%.
System sintered magnet.
はMの水素化物粉末を配合し、混合して混合粉末とし、
これら混合粉末を成形して成形体を作製し、これら成形
体を焼結することを特徴とする請求項1記載の耐食性お
よび磁気特性に優れた希土類−B−Fe系焼結磁石の製
造方法。2. An RB-Fe based alloy powder and M powder or M hydride powder are blended and mixed to obtain a mixed powder,
The method for producing a rare earth-B-Fe-based sintered magnet having excellent corrosion resistance and magnetic properties according to claim 1, characterized in that the mixed powder is molded into a molded body, and the molded body is sintered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8336990A JP2891215B2 (en) | 1996-12-17 | 1996-12-17 | Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8336990A JP2891215B2 (en) | 1996-12-17 | 1996-12-17 | Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1119991A Division JP2663626B2 (en) | 1989-05-12 | 1989-05-12 | Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09223617A true JPH09223617A (en) | 1997-08-26 |
JP2891215B2 JP2891215B2 (en) | 1999-05-17 |
Family
ID=18304458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8336990A Expired - Fee Related JP2891215B2 (en) | 1996-12-17 | 1996-12-17 | Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2891215B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004029999A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b based rare earth element permanent magnet |
WO2004029996A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b based rare earth element permanent magnet |
WO2004029997A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b based rare earth element permanent magnet and magnet composition |
EP1462531A2 (en) * | 2003-03-27 | 2004-09-29 | TDK Corporation | R-T-B system rare earth permanent magnet |
CN104078178A (en) * | 2013-03-28 | 2014-10-01 | Tdk株式会社 | Rare earth based magnet |
KR101535043B1 (en) * | 2011-08-23 | 2015-07-07 | 도요타지도샤가부시키가이샤 | Method for producing rare earth magnets, and rare earth magnets |
CN105118655A (en) * | 2015-09-16 | 2015-12-02 | 安徽万磁电子有限公司 | Method for preparing high-coercivity magnet by modifying nano zinc powder crystal boundary |
CN111326304A (en) * | 2020-02-29 | 2020-06-23 | 厦门钨业股份有限公司 | Rare earth permanent magnetic material and preparation method and application thereof |
WO2021169897A1 (en) * | 2020-02-29 | 2021-09-02 | 厦门钨业股份有限公司 | R-t-b system permanent magnet material, preparation method therefor and use thereof |
WO2021169895A1 (en) * | 2020-02-29 | 2021-09-02 | 厦门钨业股份有限公司 | Neodymium-iron-boron material and preparation method therefor and application thereof |
CN115359988A (en) * | 2022-08-24 | 2022-11-18 | 宁波爱维森材料研发科技有限公司 | High-performance cerium-containing rare earth permanent magnet and preparation method thereof |
-
1996
- 1996-12-17 JP JP8336990A patent/JP2891215B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100334659C (en) * | 2002-09-30 | 2007-08-29 | Tdk株式会社 | R-T-B based rare earth element permanent magnet |
WO2004029996A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b based rare earth element permanent magnet |
WO2004030000A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | Method for producing r-t-b based rare earth element permanent magnet |
WO2004029997A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b based rare earth element permanent magnet and magnet composition |
WO2004029995A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b rare earth permanent magnet |
WO2004029998A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | Method for producing r-t-b based rare earth element permanent magnet |
US7311788B2 (en) | 2002-09-30 | 2007-12-25 | Tdk Corporation | R-T-B system rare earth permanent magnet |
WO2004029999A1 (en) * | 2002-09-30 | 2004-04-08 | Tdk Corporation | R-t-b based rare earth element permanent magnet |
EP1860203A1 (en) * | 2003-03-27 | 2007-11-28 | TDK Corporation | R-T-B system rare earth permanent magnet |
US7199690B2 (en) | 2003-03-27 | 2007-04-03 | Tdk Corporation | R-T-B system rare earth permanent magnet |
EP1462531A3 (en) * | 2003-03-27 | 2005-03-30 | TDK Corporation | R-T-B system rare earth permanent magnet |
EP1462531A2 (en) * | 2003-03-27 | 2004-09-29 | TDK Corporation | R-T-B system rare earth permanent magnet |
KR101535043B1 (en) * | 2011-08-23 | 2015-07-07 | 도요타지도샤가부시키가이샤 | Method for producing rare earth magnets, and rare earth magnets |
CN104078178A (en) * | 2013-03-28 | 2014-10-01 | Tdk株式会社 | Rare earth based magnet |
CN105118655A (en) * | 2015-09-16 | 2015-12-02 | 安徽万磁电子有限公司 | Method for preparing high-coercivity magnet by modifying nano zinc powder crystal boundary |
CN111326304A (en) * | 2020-02-29 | 2020-06-23 | 厦门钨业股份有限公司 | Rare earth permanent magnetic material and preparation method and application thereof |
CN111326304B (en) * | 2020-02-29 | 2021-08-27 | 厦门钨业股份有限公司 | Rare earth permanent magnetic material and preparation method and application thereof |
WO2021169897A1 (en) * | 2020-02-29 | 2021-09-02 | 厦门钨业股份有限公司 | R-t-b system permanent magnet material, preparation method therefor and use thereof |
WO2021169894A1 (en) * | 2020-02-29 | 2021-09-02 | 厦门钨业股份有限公司 | Rare earth permanent magnet material, preparation method for same, and applications thereof |
WO2021169895A1 (en) * | 2020-02-29 | 2021-09-02 | 厦门钨业股份有限公司 | Neodymium-iron-boron material and preparation method therefor and application thereof |
CN115359988A (en) * | 2022-08-24 | 2022-11-18 | 宁波爱维森材料研发科技有限公司 | High-performance cerium-containing rare earth permanent magnet and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2891215B2 (en) | 1999-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4692634B2 (en) | Magnet manufacturing method | |
CN110168674B (en) | Magnet powder containing Sm-Fe-N crystal grains, sintered magnet produced from the magnet powder, and method for producing the magnet powder and the sintered magnet | |
JP6488976B2 (en) | R-T-B sintered magnet | |
CN107251176B (en) | The manufacturing method of R-T-B based sintered magnet | |
JP6813443B2 (en) | Rare earth magnet manufacturing method | |
US20200098496A1 (en) | Rare earth magnet and production method thereof | |
JP7168394B2 (en) | Rare earth magnet and manufacturing method thereof | |
JPH09223617A (en) | Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereof | |
JP3865180B2 (en) | Heat-resistant rare earth alloy anisotropic magnet powder | |
JP4179973B2 (en) | Manufacturing method of sintered magnet | |
JP2018174314A (en) | R-T-B based sintered magnet | |
CN105074852B (en) | RFeB systems method of manufacturing sintered magnet and RFeB systems sintered magnet | |
JP7247670B2 (en) | RTB permanent magnet and manufacturing method thereof | |
JP2020161704A (en) | Manufacturing method of rare earth magnet | |
JP3781094B2 (en) | Corrosion resistant rare earth magnet | |
JP2018174312A (en) | R-T-B based sintered magnet | |
JP2791659B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
JP2663626B2 (en) | Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties | |
US3892601A (en) | Coated air-stable cobalt-rare earth alloy particles and method | |
JPS63232304A (en) | Permanent magnet excellent in oxidation resistance and manufacture thereof | |
JP2600374B2 (en) | Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties | |
JP2720039B2 (en) | Rare earth magnet material with excellent corrosion resistance | |
JP2581179B2 (en) | Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance | |
JPS62256411A (en) | Permanent magnet with outstanding resistance to oxidation | |
JPH0644526B2 (en) | Rare earth magnet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990126 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |