JP2000260616A - Ferromagnetic fine powder for plastic magnet and resin composite material - Google Patents

Ferromagnetic fine powder for plastic magnet and resin composite material

Info

Publication number
JP2000260616A
JP2000260616A JP6256999A JP6256999A JP2000260616A JP 2000260616 A JP2000260616 A JP 2000260616A JP 6256999 A JP6256999 A JP 6256999A JP 6256999 A JP6256999 A JP 6256999A JP 2000260616 A JP2000260616 A JP 2000260616A
Authority
JP
Japan
Prior art keywords
fine powder
ferromagnetic
metal nitride
ferromagnetic metal
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6256999A
Other languages
Japanese (ja)
Inventor
Daisuke Matsuda
大輔 松田
Shuji Akaiwa
修次 赤岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEITO KK
Original Assignee
MEITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEITO KK filed Critical MEITO KK
Priority to JP6256999A priority Critical patent/JP2000260616A/en
Publication of JP2000260616A publication Critical patent/JP2000260616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart an oxidation resistance by covering the surface of the ferromagnetic metal nitride fine powder with a thin film made of an inorganic phosphoric compound including no organic groups. SOLUTION: A ferromagnetic metal nitride is ground into fine powder in an inert gas atmosphere by a wet ball mill grinding method using a dispersion medium consisting of one kind of a hydrophobic organic solvent such as toluene, hexane, and benzene or a mixed solution of two or more kinds of such hydrophobic organic solvents. The average grain diameter of the ferromagnetic metal nitride fine powder is about 2 μm or below. Before applying an oxidation treatment to the ground ferromagnetic metal nitride fine powder, a treatment solution is brought into contact with the powder to remove the solvent in a drying process and evenly form a thin film made of an inorganic phosphoric compound including no organic groups on the surface of the powder. As for the treatment solution, phosphoric acid is mixed and dispersed in an organic solvent made of one kind of an alcoholic solvent such as methyl alcohol and ethyl alcohol or made of a mixture of two or more kinds of such alcohol solvents.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック材料と一
緒に混練し、成形していわゆるプラスチックマグネット
を製造するための強磁微粉末及び該微粉末を用いた樹脂
複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic fine powder for kneading and molding together with a plastic material to produce a so-called plastic magnet and a resin composite material using the fine powder.

【0002】[0002]

【従来の技術】近年プラスチックマグネット用原料とな
る強磁性材料には高特性化と同時に低コスト化が求めら
れており、できるだけ低コストで高特性を達成するため
に等方性強磁性材料であるNd−Fe−Co−B系合金
(商品名:MQP−B、会社名:マク゛ネクェンチ インターナショナル)
が最も広く採用されている。この強磁性材料は高特性を
実現することができる反面、その価格が高いため製品の
低コスト化には限界がある。また、さらに高特性を達成
するための強磁性材料としてSm−Co系合金も一部で
採用されているが、さらに高価であるため用途が非常に
限られており、広く普及するには至っていない。
2. Description of the Related Art In recent years, a ferromagnetic material as a raw material for a plastic magnet has been required to have high characteristics and at the same time low cost. In order to achieve high characteristics at the lowest possible cost, Nd- isotropic ferromagnetic material is required. Fe-Co-B-based alloy (trade name: MQP-B, company name: Mac Penquenchi International)
Is the most widely adopted. While this ferromagnetic material can achieve high characteristics, its high price limits the cost reduction of the product. Some Sm-Co alloys are also used as ferromagnetic materials to achieve higher characteristics, but their use is very limited due to their higher cost, and they have not yet become widespread. .

【0003】こうした状況の中で、Sm−Fe−N系金
属窒化物は、Co等の高価な元素を含まないために低コ
ストであり、Nd−Fe−Co−B系合金と同等以上の
磁気特性を有するために次世代の磁石として注目されて
いる。また、Sm−Fe−N系強磁性金属窒化物はNd
−Fe−Co−B系合金に比べて磁気特性が高いため
に、同じ重量の強磁性微粉末を樹脂に配合してもさらに
高特性が実現され、Nd−Fe−Co−B系合金を使用
して製造したプラスチックマグネットと同等の磁気特性
を得る場合には、例えばBHmaxが7.5MGOe程度の
磁気特性の場合では、必要な強磁性微粉末の重量が10
〜15%程度少なくて済む。更にNd−Fe−Co−B
系合金は原料価格が安いため、プラスチックマグネット
用樹脂複合材料の製造おけるコストパフォーマンスに優
れた強磁性材料である。
Under these circumstances, Sm-Fe-N-based metal nitrides are low in cost because they do not contain expensive elements such as Co, and have a magnetic property equal to or higher than that of Nd-Fe-Co-B-based alloys. Due to its properties, it is attracting attention as a next-generation magnet. Also, the Sm—Fe—N ferromagnetic metal nitride is Nd
-Since the magnetic properties are higher than those of Fe-Co-B-based alloys, even higher properties can be achieved even if the same weight of ferromagnetic fine powder is mixed with the resin, and Nd-Fe-Co-B-based alloys are used. When the magnetic properties equivalent to those of the plastic magnet manufactured by the above method are obtained, for example, when the BHmax is about 7.5 MGOe, the required weight of the ferromagnetic fine powder is 10%.
Approximately 15% less. Further, Nd-Fe-Co-B
Since the raw material price is low, the system alloy is a ferromagnetic material which is excellent in cost performance in manufacturing a resin composite material for a plastic magnet.

【0004】このSm−Fe−N系強磁性金属窒化物合
金は、単磁区に近い粒径になるまで粉砕することにより
磁気特性、特に保持力が向上することが知られており、
実用上平均粒径が2μm以下まで粉砕することが望まし
い。このため、特に樹脂複合材料に配合して射出成形に
より製品とした場合には、平均粒径が20μm以上であ
るNd−Fe−Co−B系合金を使用した場合に比べて
得られる製品の表面性が良く、製品表面上における磁気
特性のばらつきも非常に小さくなるという利点がある。
このように、Sm−Fe−N系強磁性金属窒化物は、プ
ラスチックマグネットの低コスト化、高特性化、高品質
化を同時に実現することが可能である優れた材料である
ことが分かっている。
[0004] It is known that the Sm-Fe-N ferromagnetic metal nitride alloy is improved in magnetic properties, particularly coercive force, by pulverizing it to a particle size close to a single magnetic domain.
Practically, it is desirable to grind to an average particle size of 2 μm or less. For this reason, especially in the case where a product is obtained by injection molding after being blended with a resin composite material, the surface of the product obtained compared with the case of using an Nd-Fe-Co-B-based alloy having an average particle diameter of 20 µm or more is used. This has the advantage that the property is good and the variation of the magnetic properties on the product surface is very small.
As described above, it has been found that the Sm—Fe—N ferromagnetic metal nitride is an excellent material that can simultaneously realize low cost, high characteristics, and high quality of a plastic magnet. .

【0005】しかしSm−Fe−N系強磁性金属窒化物
合金は、金属窒化物とはいえ、粒子表面には金属元素も
露出しており、平均粒径が小さくなると表面積の増加に
伴い酸化が進行しやすくなる。例えば、平均粒径2〜3
μmの微粉末を大気中で扱うと容易に酸化が進行し、さ
らには工程中で起こりうる摩擦等により発火に至ること
があり、非常に危険である。さらに、製品にした後でも
雰囲気中の湿度により酸化を受けやすくなるため、実際
に製品とするには防錆用に表面コートを行うことが不可
欠となるため、原材料費が安くなっても最終製品にする
段階ではそのコストメリットが少なくなってしまうとい
う欠点がある。
[0005] However, although the Sm-Fe-N ferromagnetic metal nitride alloy is a metal nitride, the metal element is also exposed on the surface of the particles. It will be easier to progress. For example, an average particle size of 2-3
When handling a fine powder of μm in the air, oxidation easily proceeds, and furthermore, ignition may occur due to friction or the like that may occur in the process, which is extremely dangerous. Furthermore, even after it is made into a product, it becomes susceptible to oxidation due to the humidity in the atmosphere, so it is indispensable to apply a surface coat for rust prevention in order to actually make it into a product, so even if the raw material cost is low, the final product There is a disadvantage that the cost merit is reduced at the stage of making.

【0006】これに対して、金属窒化物微粉末表面にZ
n、Ni等のメッキ処理を行い、皮膜を形成することに
より酸化を防ぐ方法が知られているが、コストが高く実
用化には至っていない。
On the other hand, Z
There is known a method of preventing oxidation by plating a film of n, Ni or the like to form a film, but the cost is high and it has not been put to practical use.

【0007】[0007]

【発明が解決しようとする課題】強磁性金属窒化物微粉
末を樹脂に配合することで、プラスチックマグネット用
の複合材料を製造する際には、実用上、高保持力を得る
ために平均粒径2μm以下に粉砕することが望ましく、
その後に必要に応じてカップリング等の表面処理、混練
等の工程を経る。粉砕された強磁性金属窒化物微粉末は
非常に発火しやすいため不活性雰囲気下で取り扱う必要
があり、設備的に非常にコストがかかる。しかし、メッ
キ等の耐酸化処理はコストが高く現実的ではなく、低コ
ストで耐酸化性を付与する技術が実用上不可欠である。
When a composite material for a plastic magnet is produced by blending a ferromagnetic metal nitride fine powder with a resin, in order to obtain a high holding force in practical use, an average particle size is required. It is desirable to grind to 2 μm or less,
Thereafter, if necessary, a process such as surface treatment such as coupling and kneading is performed. Since the pulverized ferromagnetic metal nitride fine powder is very easily ignited, it has to be handled in an inert atmosphere, which is very costly in terms of equipment. However, oxidation-resistant treatment such as plating is costly and impractical, and a technique for imparting oxidation resistance at low cost is practically essential.

【0008】特に熱可塑性樹脂を配合して複合化する混
練工程や、得られた樹脂配合組成物を成形加工する工程
では、例えば200℃以上の高温に保持する必要が生じ
るが、この保持時間が長い場合には強磁性金属窒化物の
酸化により樹脂複合材料の溶融粘度が上昇するために混
練工程や成形工程が困難になり、ついには樹脂複合材料
が混練機や成形機内に詰まってしまうといったトラブル
を引き起こすことが大きな問題となる。また射出成形を
行う場合には、成形機内をパージさせて高温に加熱され
た樹脂複合材料を成形機外へ射出することが通常行われ
ているが、この際にも急激に強磁性金属窒化物の酸化が
促進されたことにより、パージ材が発火してしまうとい
う危険がある。
In particular, in the kneading step of compounding a thermoplastic resin to form a composite or the step of molding and processing the obtained resin compounded composition, it is necessary to maintain the temperature at a high temperature of, for example, 200 ° C. or higher. If the length is long, the melt viscosity of the resin composite material will increase due to oxidation of the ferromagnetic metal nitride, making the kneading and molding steps difficult, and eventually causing the resin composite material to become clogged in the kneader or molding machine. Is a major problem. In addition, when performing injection molding, it is common practice to purge the inside of the molding machine and inject the resin composite material heated to a high temperature out of the molding machine. There is a risk that the purge material will ignite due to the accelerated oxidation of the material.

【0009】さらに、成形製品とした後にも大気中の湿
度により複合材料中の強磁性金属窒化物が酸化を受けや
すく、酸化により引き起こされる磁力の低下を招くとい
う不具合が生じる。本発明は 鋭意研究の結果、プラス
チックマグネット用の強磁性微粉末と該微粉末を用いた
樹脂複合材料を完成したものであり、以下に明らかにす
る。
Further, even after forming the molded product, the ferromagnetic metal nitride in the composite material is easily oxidized due to the humidity in the air, which causes a problem that the magnetic force caused by the oxidation is reduced. As a result of intensive studies, the present invention has completed a ferromagnetic fine powder for a plastic magnet and a resin composite material using the fine powder, and will be clarified below.

【0010】[0010]

【目的】大気中での取扱中に発火しにくい安全な強磁性
微粉末を低コストで製造し、また樹脂に配合し加工する
混練工程、成形工程での熱酸化による粘度上昇により引
き起こされるトラブルを防止し、さらに錆びにくい樹脂
複合材料を提供することを目的とする。
[Purpose] To manufacture low-cost, safe ferromagnetic fine powder that is difficult to ignite during handling in the atmosphere, and to mix and mix with resin to reduce the trouble caused by viscosity increase due to thermal oxidation in the molding process. It is an object of the present invention to provide a resin composite material that prevents and further prevents rust.

【0011】[0011]

【課題を解決する手段】本発明のプラスチックマグネッ
ト用の強磁性微粉末は、強磁性金属窒化物微粉末を、有
機基を含まない無機燐酸化合物の薄膜によって表面を覆
うことにより、耐酸化性を付与したことを特徴とする。
The ferromagnetic fine powder for a plastic magnet of the present invention has a high oxidation resistance by covering the surface of a ferromagnetic metal nitride fine powder with a thin film of an inorganic phosphate compound containing no organic group. It is characterized by having been given.

【0012】本発明のプラスチックマグネット用の樹脂
複合材料は、上記強磁性微粉末を樹脂に配合している。
The resin composite material for a plastic magnet of the present invention contains the above ferromagnetic fine powder in a resin.

【0013】強磁性微粉末と、該強磁性微粉末とは特性
が異なる強磁性フェライト微粉末等の強磁性化合物粉末
を樹脂へ配合して樹脂複合材料とすることもできる。
A resin composite material may be prepared by mixing a ferromagnetic fine powder and a ferromagnetic compound powder such as a ferromagnetic ferrite fine powder having characteristics different from those of the ferromagnetic fine powder into a resin.

【0014】[0014]

【作用及び効果】本発明の強磁性微粉末は、無機の燐酸
化合物によって表面が覆われているため、耐酸化性が付
与され、又、耐酸性被覆膜中に有機系の成分は含まない
から、耐熱性が著しく向上する。処理条件を選ぶことで
500℃以上の高温に耐えることができ、大気中での取
り扱い時の発火はなくなり、その上樹脂を配合した樹脂
複合材料とする場合に必要となる、混練、成形等の高温
で加工する工程における強磁性金属窒化物微粉末の熱酸
化を防ぐことができるため、これにより引き起こさる溶
融粘度上昇が抑制され、樹脂複合材料の高流動性が実現
される。これにより、混練機、成形機の詰まり、パージ
材の発火といったトラブルを防ぐことができる。
Function and Effect The ferromagnetic fine powder of the present invention is provided with oxidation resistance because its surface is covered with an inorganic phosphate compound, and does not contain organic components in the acid-resistant coating film. Therefore, heat resistance is significantly improved. By selecting processing conditions, it can withstand high temperatures of 500 ° C. or more, eliminates ignition during handling in the air, and is required for kneading, molding, etc., which is necessary when a resin composite material containing a resin is added. Since the thermal oxidation of the ferromagnetic metal nitride fine powder in the step of processing at a high temperature can be prevented, an increase in melt viscosity caused by this can be suppressed, and high fluidity of the resin composite material is realized. Thereby, troubles such as clogging of the kneading machine and the molding machine and ignition of the purge material can be prevented.

【0015】また、耐酸化処理を施した強磁性微粉末に
おいては、表面を無機燐酸化合物が覆うことで、湿度等
による外部からの酸化に対して安定になるという効果が
見られる。このことは樹脂複合材料を製品とした場合、
通常必要となる防錆目的の塗装工程が省略できるという
利点がある。
Further, in the ferromagnetic fine powder which has been subjected to the oxidation-resistant treatment, an effect can be seen in that the surface is covered with the inorganic phosphoric acid compound, thereby stabilizing against external oxidation due to humidity or the like. This means that when a resin composite material is used as a product,
There is an advantage that a coating process for rust prevention, which is usually required, can be omitted.

【0016】[0016]

【実施例】強磁性金属窒化物を、不活性雰囲気下におい
てトルエン、ヘキサン、ベンゼンなどの疎水性の有機溶
媒の一種または二種以上の混合液からなる分散媒を使用
した湿式ボールミル粉砕を行って微粉末に粉砕する。上
記粉砕した強磁性金属窒化物粉末に酸化処理を行う直前
に、処理液を強磁性金属窒化物粉末に接触させ、乾燥工
程で溶媒を除去することにより表面に一様に燐酸化合物
からなる耐酸化膜を被覆させ、強磁性粉末を得る。
EXAMPLE A ferromagnetic metal nitride was subjected to wet ball milling using a dispersion medium comprising one or a mixture of two or more hydrophobic organic solvents such as toluene, hexane and benzene in an inert atmosphere. Crush into fine powder. Immediately before performing the oxidation treatment on the pulverized ferromagnetic metal nitride powder, the treatment liquid is brought into contact with the ferromagnetic metal nitride powder, and the solvent is removed in a drying step, so that the surface is uniformly made of a phosphoric acid compound. The film is coated to obtain a ferromagnetic powder.

【0017】処理液は、例えばメチルアルコール、エチ
ルアルコール等のアルコール系溶剤のうちの一種類また
は二種類以上の混合物からなる有機溶媒中に素早く強磁
性金属窒化物微粉末に対して0.1〜10重量%、好ま
しくは0.5〜5重量%の燐酸を混合分散させて調製し
たものである。
The treatment liquid is quickly added to the ferromagnetic metal nitride fine powder in an organic solvent comprising one or a mixture of two or more of alcohol solvents such as methyl alcohol and ethyl alcohol. It is prepared by mixing and dispersing 10% by weight, preferably 0.5 to 5% by weight of phosphoric acid.

【0018】最適な燐酸添加量は強磁性金属窒化物微粉
末の粒径、比表面積と相関があり、強磁性金属窒化物微
粉末の比表面積の小さい場合には、先に挙げた燐酸添加
量より少ない量でも同等の耐酸化効を得ることができ
る。また、処理液調製時に使用するアルコール系溶剤の
量についても、エステル化反応を進行させないようにす
るために、燐酸を十分に分散させるのに必要最小限の量
にとどめておくことが重要である。
The optimum amount of phosphoric acid has a correlation with the particle size and specific surface area of the ferromagnetic metal nitride fine powder. The same oxidation resistance can be obtained with a smaller amount. In addition, it is important to keep the amount of the alcohol solvent used at the time of preparing the treatment liquid to a minimum amount necessary for sufficiently dispersing the phosphoric acid in order to prevent the esterification reaction from proceeding. .

【0019】尚、本発明において「強磁性金属窒化物微
粉末」とは強磁性、例えば、RabFe(1-a-b-c-d-e)
cde(Rはイットリウムを含む希土類元素、MはN
i、V、Cr等の遷移金属元素の他、Nb、Mo、Ta、W、Ru、
Rh、Pd、Hf、Re、 Os、Ir等の金属元素の一種または2
種以上であり、a、b、c、dおよびeは、それぞれ0.
05≦a≦0.20、0≦b≦0.49、 0.10≦c≦0.25、0.000
1≦d≦0.05、0.0001≦e≦0.10を満たす数値である)
の組成を有する合金窒化物微粉末である。又、「燐酸」
とは燐酸(H3PO4)のみでなく、無機の燐酸塩、その
他無機燐化合物を含むものとする。又、「強磁性金属窒
化物微粉末とは異なる特性の強磁性化合物粉末」とは、
例えば、フェライト系酸化物、Sm−Co系合金、Nd
−Fe−B系合金、Al−Ni系合金、Mn−Al−C
系合金等の強磁性化合物の微粉末である。
In the present invention, the term "ferromagnetic metal nitride fine powder" means ferromagnetic, for example, R a M b Fe (1-abcde)
N c H d O e (R is a rare earth element including yttrium, M is N
In addition to transition metal elements such as i, V, and Cr, Nb, Mo, Ta, W, Ru,
One or two metal elements such as Rh, Pd, Hf, Re, Os, Ir
A, b, c, d and e are each 0.
05 ≦ a ≦ 0.20, 0 ≦ b ≦ 0.49, 0.10 ≦ c ≦ 0.25, 0.000
(1 ≦ d ≦ 0.05, 0.0001 ≦ e ≦ 0.10)
Alloy nitride fine powder having the following composition: Also, "phosphoric acid"
The term includes not only phosphoric acid (H 3 PO 4 ) but also inorganic phosphates and other inorganic phosphorus compounds. Also, "ferromagnetic compound powder having characteristics different from ferromagnetic metal nitride fine powder"
For example, ferrite-based oxide, Sm-Co-based alloy, Nd
-Fe-B alloy, Al-Ni alloy, Mn-Al-C
It is a fine powder of a ferromagnetic compound such as a system alloy.

【0020】耐酸化処理を施した強磁性金属微粉末をカ
ップリング剤と接触させることによりカップリング処理
を行った後、万能混合機、ミキサー等で樹脂に配合し
て、樹脂複合材料組成物を得る。流動性の改善のために
ワックス等の滑剤を添加しても良い。ここでいう「カッ
プリング剤」としてはアミノシラン系、チタネート系、
アルミネート系のカップリング剤のうちの一種または二
種以上を組み合わせたものを含む。また、「樹脂」とし
ては、ポリエチレン、ポリアミド、エラストマー等の熱
可塑性樹脂、エポキシ等の熱硬化性樹脂、ゴム等を含
む。
After the coupling treatment is performed by bringing the oxidation-resistant ferromagnetic metal fine powder into contact with a coupling agent, the mixture is blended with the resin using a universal mixer, a mixer, or the like, to obtain a resin composite material composition. obtain. A lubricant such as wax may be added to improve the fluidity. As the "coupling agent" here, aminosilane-based, titanate-based,
Includes one or a combination of two or more of the aluminate-based coupling agents. The “resin” includes thermoplastic resins such as polyethylene, polyamide, and elastomer, thermosetting resins such as epoxy, and rubber.

【0021】得られた組成物をペレットまたはシート状
半製品に加工したのち、射出成形機、押出し成形機また
は圧縮成形機にて成形製品とする。また、樹脂複合材料
の配合組成物を直接に成形機に投入して成形製品を製造
することもできる。
After the obtained composition is processed into a pellet or a sheet-like semi-finished product, it is formed into a molded product by an injection molding machine, an extrusion molding machine or a compression molding machine. Further, the compounded composition of the resin composite material can be directly fed into a molding machine to produce a molded product.

【0022】[0022]

【具体例1】本発明で使用する被膜処理装置 図3は本発明方法の実施に用いる、強磁性金属窒化物微
粉末の酸化防止被覆処理装置を示しており、出願人が以
前に提案した特許第2602979号で開示した公知の
装置である。被膜処理装置は、金属粒を微粉末化する粉
砕装置を兼用しており、粉砕助剤として水を溶かさない
水不溶性不活性有機溶媒例えばトルエン、ヘキサン、ヘ
プタン等の炭化水素系溶剤を使用し、該粉砕助剤中にて
且つ不活性雰囲気下で湿式粉砕を行ない、金属粒を微粉
末化した後、直ちに被覆処理を行なうことが出来る。上
面が開口した筒状撹拌槽(1)に気密に蓋板(13)を被せ、
撹拌槽内に撹拌体(2)を垂下配備している。撹拌体(2)
は蓋(13)の中央部を回転自由に且つ気密に貫通した回転
軸(21)に撹拌槽(1)内にて半径方向に複数本の掻き棒(2
2)を突設して形成され、蓋板(13)から外方へ突出した軸
(21)上端に可変速回転駆動装置(23)が連繋される。撹拌
槽(1)は2重構造であり、内壁と外壁との間は冷却水充
填室(10)となっており、該室に冷却水供給口(11)及び排
出口(12)が接続されている。又、蓋板(13)を貫通して不
活性ガス供給管(4)及びガス圧力計(5)が接続されてい
る。
The [Example 1] film treatment apparatus Figure 3 for use in the present invention is used in the practice of the method of the present invention, shows an oxidation prevention coating apparatus of the ferromagnetic metal nitride fine powder, patent applicant previously proposed This is a known device disclosed in Japanese Patent No. 2602979. The coating apparatus also serves as a pulverizer for pulverizing metal particles, and uses a water-insoluble inert organic solvent that does not dissolve water, such as toluene, hexane, or a hydrocarbon solvent such as heptane, as a pulverization aid, After performing wet grinding in the grinding aid and under an inert atmosphere to pulverize the metal particles, a coating treatment can be immediately performed. A lid plate (13) is airtightly placed on the cylindrical stirring tank (1) having an open upper surface,
A stirrer (2) is suspended in the stirring tank. Stirrer (2)
A plurality of scrapers (2) are arranged in a stirring tank (1) in a radial direction on a rotating shaft (21) penetrating freely and airtightly through a central portion of a lid (13).
A shaft formed by projecting 2) and projecting outward from the lid plate (13)
(21) The variable speed rotation drive device (23) is connected to the upper end. The stirring tank (1) has a double structure, and a cooling water filling chamber (10) is provided between the inner wall and the outer wall. A cooling water supply port (11) and a discharge port (12) are connected to the chamber. ing. An inert gas supply pipe (4) and a gas pressure gauge (5) are connected through the cover plate (13).

【0023】撹拌槽(1)内に粉砕すべき金属粒、直径5
mm程度のスチールボール及びトルエン、ベンゼン、n−
ヘキサン、これ等の1種又は2種以上の混合液等の水不
溶性有機溶媒を粉砕助剤として投入して施蓋する。不活
性ガス供給管(4)からN2、Ar等の不活性ガスを撹拌
槽(1)内に充満させ、撹拌槽(1)内を大気圧より少し高
く維持して、外気の侵入を確実に防止し、この状態にて
撹拌体(2)を回転させる。スチールボールと金属粒が衝
突を繰り返し、金属粒が粉砕される。上記撹拌槽(1)内
に被覆処理液の供給管(61)が接続されている。蓋板(13)
を貫通して被覆処理液供給管(61)を撹拌槽(1)内に挿入
し、該供給管(61)に処理液タンク(6)を接続している。
タンク(6)の上面開口には気密に蓋(62)が取付けられ、
更に、タンク(6)の上部に不活性ガス充填管(63)が接続
され、タンク(6)の液面と蓋との間の気層部を常時不活
性ガスにて充満し大気圧以上に維持し、タンク(6)内へ
の外気の流入を確実に防止している。又、撹拌槽(1)内
の液の温度を計る液温計(7)が蓋板(13)を貫通して配備
されている。
Metal particles to be ground in a stirring tank (1), diameter 5
mm steel balls and toluene, benzene, n-
A water-insoluble organic solvent such as hexane or one or a mixture of two or more of them is charged as a grinding aid and covered. The agitation tank (1) is filled with an inert gas such as N2 or Ar from the inert gas supply pipe (4), and the agitation tank (1) is maintained at a slightly higher pressure than the atmospheric pressure to ensure the invasion of the outside air. The stirring body (2) is rotated in this state. The steel balls and metal particles repeatedly collide, and the metal particles are crushed. A supply pipe (61) for the coating treatment liquid is connected to the stirring tank (1). Cover plate (13)
, A coating liquid supply pipe (61) is inserted into the stirring tank (1), and the processing liquid tank (6) is connected to the supply pipe (61).
A lid (62) is hermetically attached to the upper opening of the tank (6),
Further, an inert gas filling pipe (63) is connected to the upper part of the tank (6), and the gas layer between the liquid surface of the tank (6) and the lid is always filled with the inert gas to maintain the pressure above the atmospheric pressure. It is maintained to prevent the outside air from flowing into the tank (6). Further, a liquid thermometer (7) for measuring the temperature of the liquid in the stirring tank (1) is provided so as to penetrate the cover plate (13).

【0024】表面処理液は、金属粒が所望粒径に粉砕さ
れ、被覆処理を行なう直前の約10分以内に、別の容器
中で、必要量の燐酸にアルコール系溶剤を素早く、撹拌
混合することにより、燐酸のエステル化を可及的に抑
え、これをタンク(6)へ移したものである。強磁性金属
窒化物微粉末の用途が、室温から200℃位の範囲で使
用される程度であれば、エステル化が進んだ処理液によ
って処理された強磁性金属窒化物微粉末でも、十分な耐
酸化特性を示す。しかし200℃以上の高温で樹脂と混
練され、成形される用途のためには、強磁性金属窒化物
微粉末は、前述の燐酸エステル化を避けた液で処理され
て無機燐酸塩系薄膜で覆われたものを使用しなければな
らない。
In the surface treatment solution, the metal particles are pulverized to a desired particle size, and the alcoholic solvent is rapidly mixed with the necessary amount of phosphoric acid in a separate container within about 10 minutes immediately before the coating treatment is performed. Thus, the esterification of phosphoric acid was suppressed as much as possible, and this was transferred to the tank (6). If the ferromagnetic metal nitride fine powder is used in a range from room temperature to about 200 ° C., even if the ferromagnetic metal nitride fine powder treated with the processing solution with advanced esterification has sufficient acid resistance, It shows chemical properties. However, for the purpose of being kneaded with a resin at a high temperature of 200 ° C. or more and being molded, the ferromagnetic metal nitride fine powder is treated with a solution avoiding the above-mentioned phosphoric esterification and covered with an inorganic phosphate thin film. Must be used.

【0025】処理方法 平均粒径約20μmのSm-Fe-N系の強磁性金属窒化
物微粉末(住友金属鉱山株式会社製)を250g、n-ヘ
キサンを500gそれぞれ秤量して、直径約5mmのスチ
ールボール3kgを、上記処理装置の攪拌槽(1)に投入
し、液面と蓋(13)との間の気層部を窒素置換した後に1
時間粉砕し、平均粒径が2μm以下の強磁性金属窒化物
微粉末とした。
Treatment Method 250 g of Sm-Fe-N ferromagnetic metal nitride fine powder (manufactured by Sumitomo Metal Mining Co., Ltd.) and 500 g of n-hexane having an average particle size of about 20 μm were weighed, and a powder having a diameter of about 5 mm was obtained. 3 kg of a steel ball is put into the stirring tank (1) of the above-mentioned processing apparatus, and the gas layer between the liquid surface and the lid (13) is purged with nitrogen.
It was pulverized for an hour to obtain a ferromagnetic metal nitride fine powder having an average particle diameter of 2 μm or less.

【0026】耐酸化処理を行う直前の10分以内に所定
量の燐酸を20gのメタノールに混合分散させて調製
し、調製した耐酸化処理液を、窒素置換を行った処理装
置へ投入し、窒素雰囲気中で30秒間撹拌することで耐
酸化処理を行った。処理された強磁性金属窒化物微粉末
と溶剤からなるスラリー状混合物を、真空乾燥器を用い
て真空中ポンプで排気しながら60〜100℃に保持す
ることで溶媒を除去して、耐熱処理強磁性微粉末を得た
(試料No1〜試料No7、試料No1は比較例)。
A predetermined amount of phosphoric acid is mixed and dispersed in 20 g of methanol within 10 minutes immediately before the oxidation-resistant treatment, and the prepared oxidation-resistant treatment solution is charged into a treatment apparatus which has been purged with nitrogen. The oxidation-resistant treatment was performed by stirring for 30 seconds in an atmosphere. The solvent is removed by maintaining the slurry-like mixture composed of the treated ferromagnetic metal nitride fine powder and the solvent at 60 to 100 ° C. while evacuating with a vacuum pump using a vacuum dryer to remove the solvent. Magnetic fine powder was obtained (sample No. 1 to sample No. 7, sample No. 1 is a comparative example).

【0027】第1表は、耐酸化処理のために添加した燐
酸の量を変えた場合の試料重量と酸化開始温度をまとめ
たものである。酸化開始温度の評価は、乾燥空気流通下
(20ml/min)おいて試料を5℃/minの速度で昇温した際
に試料重量が初期値の0.5%増加した時の温度をもっ
て酸化開始温度とした。この温度が高いほど熱酸化に対
して安定であるということが言える。
Table 1 summarizes the sample weight and the oxidation initiation temperature when the amount of phosphoric acid added for the oxidation resistance treatment was changed. The oxidation start temperature was evaluated at the temperature at which the sample weight increased by 0.5% of the initial value when the sample was heated at a rate of 5 ° C / min under a flow of dry air (20 ml / min). Temperature. It can be said that the higher this temperature is, the more stable it is against thermal oxidation.

【0028】耐酸化処理時に必要な燐酸添加量は、被処
理物の比表面積と必要な耐熱温度により決まり、例え
ば、平均粒径が約2μmの強磁性金属窒化物微粉末に対
して1〜10重量%の範囲で酸化開始温度が200℃以
上の耐酸化膜が得られた。試料No7の様に、試料25
0gに対して燐酸添加量をその10%である25gとす
れば、酸化開始温度は512°にも達する。添加する燐
酸の量が多いと(例えば、15%の場合)、処理後の乾
燥工程において過剰な燐酸とアルコール系溶剤の間でエ
ステル化反応が進行し、生成したエステルが接着効果を
発揮するため、強磁性金属窒化物微粉末の固化、容器へ
の付着等の不具合を生じさせる。また、例えば試料No
3に示す様に、耐酸化処理時に添加する燐酸の量が、
0.1%と少ない場合でも、燐酸の添加量が多い試料に
比べると酸化開始温度は低くなるが、大気中での取り扱
いにおける発火を防ぐには十分の効果が認められた。
The amount of phosphoric acid added during the oxidation-resistant treatment is determined by the specific surface area of the object to be treated and the required heat-resistant temperature, and is, for example, 1 to 10 with respect to a ferromagnetic metal nitride fine powder having an average particle size of about 2 μm. An oxidation-resistant film having an oxidation start temperature of 200 ° C. or more was obtained in the range of weight%. Like sample No. 7, sample 25
If the addition amount of phosphoric acid is 25%, which is 10% of 0 g, the oxidation start temperature reaches 512 °. If the amount of phosphoric acid to be added is large (for example, 15%), the esterification reaction proceeds between the excess phosphoric acid and the alcoholic solvent in the drying step after the treatment, and the produced ester exerts an adhesive effect. This causes problems such as solidification of the ferromagnetic metal nitride fine powder and adhesion to the container. In addition, for example, sample No.
As shown in FIG. 3, the amount of phosphoric acid added during the oxidation resistance treatment is
Even when the amount is as small as 0.1%, the oxidation onset temperature is lower than that of the sample to which a large amount of phosphoric acid is added, but a sufficient effect was observed to prevent ignition in handling in the air.

【0029】粉砕工程と耐酸化処理を別に行った場合に
も、耐酸化効果が得られることについて確認した。上記
工程と同様に窒素雰囲気下で1時間粉砕を行い、耐熱処
理を行わずに真空乾燥機で乾燥を行った。取り出しの際
に発火を防ぐため、十分に室温まで冷却したのち、まず
窒素で置換してから徐々に大気置換した後に取り出し
た。続いて得られた強磁性金属窒化物微粉末を、予め被
覆処理を行う直前の10分以内に、所定量の燐酸を20
gのメタノール中に混合分散させて調製した耐酸化処理
液と一緒に処理装置へ投入し、窒素雰囲気下で30秒間
撹拌することで耐酸化処理を行った。得られたスラリー
状混合物の乾燥は上記の方法で行い、耐熱処理強磁性微
粉末を得た(試料No8)。
It was confirmed that an oxidation-resistant effect was obtained even when the pulverizing step and the oxidation-resistant treatment were performed separately. Pulverization was performed in a nitrogen atmosphere for 1 hour in the same manner as in the above step, and drying was performed using a vacuum dryer without performing heat treatment. In order to prevent ignition at the time of taking out, after sufficiently cooling to room temperature, it was first replaced with nitrogen and then gradually replaced with air, and then taken out. Subsequently, a predetermined amount of phosphoric acid was added to the obtained ferromagnetic metal nitride fine powder within 10 minutes immediately before the coating treatment.
g of methanol was added to a treatment apparatus together with an oxidation-resistant treatment liquid prepared by mixing and dispersing in methanol, and the mixture was stirred for 30 seconds under a nitrogen atmosphere to perform an oxidation-resistant treatment. The obtained slurry mixture was dried by the above method to obtain a heat-resistant ferromagnetic fine powder (Sample No. 8).

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【具体例2】具体例1で製造した耐酸化処理強磁性微粉
末のうち試料No1と試料No4を用いて、樹脂配合複
合材料を作製した。耐酸化処理強磁性微粉末100重量
部に対して、アミノシランカップリング剤を1重量部、
ポリアミド12を10.1重量部添加して万能混合機内
で3分間混合撹拌することにより樹脂複合材料組成物を
得た。得られた樹脂複合材料組成物を単軸押し出し機
(シリンダー部設定温度250℃)でペレット状に加工
し、続いてペレットを射出成形機(シリンダー部温度2
60℃、金型設定温度100℃)にて射出成形を行い、
テストピース(10×10×7mm)を作製し、評価に
用いた。
[Specific Example 2] Among the oxidation-resistant ferromagnetic fine powders produced in Specific Example 1, samples No. 1 and No. 4 were used to prepare a resin-containing composite material. 1 part by weight of an aminosilane coupling agent with respect to 100 parts by weight of the oxidation-resistant ferromagnetic fine powder,
Polyamide 12 was added in an amount of 10.1 parts by weight and mixed and stirred in a universal mixer for 3 minutes to obtain a resin composite material composition. The obtained resin composite material composition is processed into pellets by a single-screw extruder (cylinder section set temperature: 250 ° C.), and then the pellets are injected into an injection molding machine (cylinder section temperature: 2).
Injection molding is performed at 60 ° C, mold set temperature 100 ° C)
A test piece (10 × 10 × 7 mm) was prepared and used for evaluation.

【0032】図1は80℃90%RH中で保持したとき
のテストピース表面の磁気特性の変化を調べた結果であ
る。磁気特性の評価は、上記の条件下にて所定の時間保
持した後に試験槽から取り出し、30分以上経過して十
分に温度が下がった後にテストピース表面のフラックス
値を測定することにより行った。
FIG. 1 shows the results of examining the change in the magnetic characteristics of the test piece surface when the test piece was held at 80 ° C. and 90% RH. The evaluation of the magnetic properties was carried out by keeping the above condition for a predetermined time and then taking out the test chamber, and measuring the flux value on the test piece surface after 30 minutes or more and the temperature was sufficiently lowered.

【0033】[0033]

【具体例3】具体例1で製造した耐酸化処理強磁性微粉
末のうち試料No4をストロンチウムフェライトと1:
1の重量比率で配合し、この混合微粉末100重量部に
対して、アミノシランカップリング剤を1重量部、ポリ
アミド12を11重量部添加して万能混合機内で3分間
混合撹拌することにより樹脂複合材料組成物を得た。こ
うして得た樹脂複合材料組成物を実施例2の方法により
テストピース(10×10×7mm)を作製し、同様の
評価を行った。
EXAMPLE 3 Sample No. 4 of the oxidation-resistant ferromagnetic fine powder produced in Example 1 was mixed with strontium ferrite at 1:
1 part by weight, 1 part by weight of aminosilane coupling agent and 11 parts by weight of polyamide 12 were added to 100 parts by weight of the mixed fine powder, and mixed and stirred in a universal mixer for 3 minutes to obtain a resin composite. A material composition was obtained. A test piece (10 × 10 × 7 mm) was prepared from the resin composite material composition thus obtained by the method of Example 2, and the same evaluation was performed.

【0034】図2は、試料No4の強磁性微粉末とスト
ロンチウムフェライトを1:1で樹脂に配合して作製し
た樹脂複合材料を用いて作製したテストピースを80℃
90%RH中で保持したときの磁気特性の変化を調べた
結果である。図中の比較例は、試料No1の強磁性微粉
末を使用して同様に作製したテストピースの測定結果で
ある。
FIG. 2 shows a test piece made of a resin composite material prepared by mixing the ferromagnetic fine powder of sample No. 4 and strontium ferrite in a resin at a ratio of 1: 1 at 80 ° C.
It is the result of investigating the change of the magnetic characteristic when holding in 90% RH. The comparative example in the figure is a measurement result of a test piece similarly manufactured using the ferromagnetic fine powder of Sample No. 1.

【0035】第1表から明らかなように、平均粒径が
2.0μm以下の微粉末の場合、燐酸添加量が 0.1
%以上で、酸化開始温度が比較例に比べて高くなってお
り、熱酸化に対する耐酸化性が向上したことがわかる。
As is clear from Table 1, in the case of fine powder having an average particle size of 2.0 μm or less, the amount of phosphoric acid added was 0.1%.
%, The oxidation start temperature was higher than that of the comparative example, which indicates that the oxidation resistance to thermal oxidation was improved.

【0036】粉砕工程と耐酸化処理を別に行った場合
は、燐酸の添加量が同じでも粉砕と耐酸化処理を同時に
行った場合に比べて酸化開始温度が低く、得られる耐酸
化効果が小さいが、耐酸化処理による効果は認められ
た。これは、粉砕後の乾燥工程において既に強磁性微粉
末表面の一部が酸化されており、熱により容易に進行す
る酸化を止めるために、より厚い燐酸化合物皮膜が必要
となるためである。
When the pulverizing step and the oxidation-resistant treatment are performed separately, even though the amount of phosphoric acid added is the same, the oxidation onset temperature is lower than in the case where the pulverization and the oxidation-resistant treatment are performed simultaneously, but the obtained oxidation-resistant effect is small. The effect of the oxidation resistance treatment was recognized. This is because a part of the surface of the ferromagnetic fine powder has already been oxidized in the drying step after the pulverization, and a thicker phosphoric acid compound film is required to stop the oxidation which easily proceeds by heat.

【0037】比較例として耐酸化処理を施さなかった試
料No1では金属窒化物を窒素雰囲気下で粉砕した後、
大気中での強磁性金属窒化物微粉末取り扱い中に発火が
見られたため、粉砕後の取り扱いを窒素雰囲気下で行う
必要が生じた。これに対して本発明の耐酸化処理を施し
た試料No2〜試料No8の全ての試料について、大気
中での樹脂との配合工程、混練工程、射出成形工程にお
ける強磁性微粉末の発火、成形詰まり、パージ゛材の発
火といった、酸化により引き起こされるトラブルは見ら
れなかった。
As a comparative example, in sample No. 1 which was not subjected to the oxidation resistance treatment, the metal nitride was pulverized in a nitrogen atmosphere,
Since ignition occurred during handling of the ferromagnetic metal nitride fine powder in the atmosphere, it became necessary to handle the powder after pulverization under a nitrogen atmosphere. On the other hand, with respect to all of the samples No. 2 to No. 8 subjected to the oxidation resistance treatment of the present invention, ignition of the ferromagnetic fine powder and clogging of the molding in the compounding step, kneading step, and injection molding step in the air. There were no problems caused by oxidation, such as ignition of the purged material.

【0038】耐酸化処理を施さなかった試料No1は混
練工程中において溶融した樹脂複合材料の粘度が高いた
めに混練機内の圧力が高くなるために発熱が起こり、最
終的には混練機設定温度よりも30〜40℃も高い温度
になっていた。さらに、得られた樹脂複合材料を射出成
形する際にも、流動性が低いために成形温度が250℃
では金型内に樹脂複合材料を充填することが出来ず、2
70℃まで上げる必要が生じた。このように樹脂複合材
料を不必要に高温にさらすことは樹脂に熱的なダメージ
を与え、樹脂の劣化による強度低下等の製品品質に悪影
響を与えるので避けるべきである。これに対して、耐酸
化処理を行った試料No2〜No8では混練中の材料温
度は約255〜260℃の範囲で終始安定しており、さ
らに射出成形においても成形温度250℃にて十分成形
が可能であるため、樹脂複合材料に与える熱的ダメージ
を最小限にとどめることができ、品質低下を避けること
ができる。
Sample No. 1, which had not been subjected to the oxidation resistance treatment, generated heat due to an increase in the pressure in the kneader due to the high viscosity of the molten resin composite material during the kneading process, and finally the temperature exceeded the set temperature of the kneader. Was also as high as 30-40C. Furthermore, when the obtained resin composite material is injection-molded, the molding temperature is set to 250 ° C. due to low fluidity.
Can not be filled with resin composite material in the mold
It was necessary to raise the temperature to 70 ° C. Unnecessarily exposing the resin composite material to a high temperature in this way should be avoided because it causes thermal damage to the resin and adversely affects product quality such as a decrease in strength due to deterioration of the resin. On the other hand, in the samples No. 2 to No. 8 subjected to the oxidation resistance treatment, the material temperature during the kneading is stable throughout the range of about 255 to 260 ° C., and the injection molding is sufficiently performed at the molding temperature of 250 ° C. Since it is possible, thermal damage to the resin composite material can be minimized, and quality deterioration can be avoided.

【0039】また、図1の試料1と試料4を比較して明
白なように、試料1では耐久試験開始20時間後の測定
からテストピース表面のフラックス値が急激に低下して
おり、500時間後には初期値の58%まで減磁してい
た。これに対して耐酸化処理を施した強磁性微粉末を用
いて作製した樹脂複合材料である試料4では、試験開始
から終了まではほとんど低下が見られず、試験開始50
0時間後で初期値のたかだか95%までしか低下してお
らず、樹脂複合材料成形品において湿度による酸化に対
する耐酸化効果が得られることがわかる。
As is clear from comparison between Sample 1 and Sample 4 in FIG. 1, the flux value on the surface of the test piece of Sample 1 sharply decreased from the measurement 20 hours after the start of the endurance test, and it was 500 hours. Later, it was demagnetized to 58% of the initial value. On the other hand, in the case of Sample 4, which is a resin composite material manufactured using the ferromagnetic fine powder subjected to the oxidation resistance treatment, there is almost no decrease from the start to the end of the test, and the test start 50
After 0 hour, the initial value was reduced to only 95% of the initial value, indicating that the molded article of the resin composite material has an oxidation resistance effect against oxidation due to humidity.

【0040】図2からわかるように、比較例では耐久試
験開始20時間後の測定からテストピース表面のオープ
ンフラックス値が急激に低下しており、500時間後に
は初期値の67%まで減磁していた。これに対して耐酸
化処理を施した強磁性微粉末を用いて作製した樹脂複合
材料である本発明では、試験開始から終了まではほとん
ど低下が見られず、試験開始500時間後で初期値のた
かだか96%までしか低下しておらず、強磁性フェライ
ト微粉末と混合した場合にも樹脂複合材料成形品におい
て同等の耐酸化効果が得られることがわかる。
As can be seen from FIG. 2, in the comparative example, the open flux value on the test piece surface sharply decreased from the measurement 20 hours after the end of the endurance test, and demagnetized to 67% of the initial value after 500 hours. I was On the other hand, in the present invention, which is a resin composite material prepared using the ferromagnetic fine powder subjected to the oxidation resistance treatment, the decrease is hardly observed from the start to the end of the test, and the initial value is 500 hours after the start of the test. It is only reduced to 96% at most, and it is understood that the same oxidation resistance effect can be obtained in the resin composite material molded article even when mixed with the ferromagnetic ferrite fine powder.

【0041】以上の結果から、前記耐酸化処理を施すこ
とで強磁性金属窒化物微粉末自身の酸化に対する安定性
が著しく向上しただけでなく、これを樹脂に単独または
強磁性フェライト微粉末と混合して樹脂に配合した樹脂
複合材料を成形して得られた製品においても耐酸化性が
著しく向上したことがわかる。
From the above results, it can be seen that not only the stability of the ferromagnetic metal nitride fine powder itself against oxidation was significantly improved by performing the anti-oxidation treatment, but also that the ferromagnetic metal nitride fine powder was used alone or mixed with the ferromagnetic ferrite fine powder. It can be seen that the oxidation resistance of the product obtained by molding the resin composite material mixed with the resin was significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料No1と試料No4の強磁性微粉末を用い
て作製したテストピースを80℃90%RH中に入れた
時の磁気特性変化を示すグラフである。
FIG. 1 is a graph showing a change in magnetic properties when a test piece manufactured using ferromagnetic fine powders of Sample No. 1 and Sample No. 4 is placed in 80 ° C. and 90% RH.

【図2】強磁性微粉末とストロンチウムフェライトを
1:1で樹脂に配合して作製した樹脂複合材料用いて作
製したテストピースを80℃90%RH中で保持したと
きの磁気特性の変化を示すグラフである。
FIG. 2 shows a change in magnetic properties when a test piece manufactured using a resin composite material manufactured by mixing ferromagnetic fine powder and strontium ferrite in a resin at a ratio of 1: 1 is maintained at 80 ° C. and 90% RH. It is a graph.

【図3】被覆処理装置の断面図である。FIG. 3 is a sectional view of a coating apparatus.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/10 H01F 1/10 Fターム(参考) 4J002 BB031 CD001 CL001 DF016 FB076 5E040 AA01 AA03 AA06 AA09 AA19 AB03 BB03 BC01 CA01 NN01 NN06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/10 H01F 1/10 F term (Reference) 4J002 BB031 CD001 CL001 DF016 FB076 5E040 AA01 AA03 AA06 AA09 AA19 AB03 BB03 BC01 CA01 NN01 NN06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 強磁性金属窒化物微粉末を、有機基を含
まない無機燐酸化合物の薄膜によって表面を覆うことに
より耐酸化性を付与したことを特徴とするプラスチック
マグネット用の強磁性微粉末。
1. A ferromagnetic fine powder for a plastic magnet, wherein the ferromagnetic metal nitride fine powder is provided with oxidation resistance by covering the surface with a thin film of an inorganic phosphate compound containing no organic group.
【請求項2】 強磁性金属窒化物微粉末の平均粒径は2
μm以下である請求項1に記載のプラスチックマグネッ
ト用の強磁性微粉末。
2. The ferromagnetic metal nitride fine powder has an average particle size of 2
The ferromagnetic fine powder for a plastic magnet according to claim 1, which has a size of not more than μm.
【請求項3】 強磁性金属窒化物微粉末を、有機基を含
まない無機燐酸化合物の薄膜によって表面を覆うことに
より耐酸化性を付与した微粉末を樹脂に配合したことを
特徴とするプラスチックマグネット用樹脂複合材料。
3. A plastic magnet characterized in that the ferromagnetic metal nitride fine powder is coated with a fine powder provided with oxidation resistance by covering the surface with a thin film of an inorganic phosphate compound containing no organic group. For resin composite materials.
【請求項4】 強磁性金属窒化物微粉末を、有機基を含
まない無機燐酸化合物の薄膜によって表面を一様に覆う
ことにより耐酸化性を付与した強磁性微粉末と、該強磁
性微粉末とは特性が異なる強磁性フェライト微粉末等の
強磁性化合物微粉末を樹脂へ配合したことを特徴とする
プラスチックマグネット用樹脂複合材料。
4. A ferromagnetic fine powder which is provided with oxidation resistance by uniformly covering the surface of a ferromagnetic metal nitride fine powder with a thin film of an inorganic phosphate compound containing no organic group; A resin composite material for a plastic magnet, characterized in that a ferromagnetic compound fine powder such as a ferromagnetic ferrite fine powder having different properties from the above is blended in a resin.
【請求項5】 強磁性金属窒化物微粉末の平均粒径は2
μm以下である請求項3又4記載のプラスチックマグネ
ット用の強磁性微粉末。
5. The ferromagnetic metal nitride fine powder has an average particle size of 2
5. The ferromagnetic fine powder for a plastic magnet according to claim 3, which has a size of not more than μm.
JP6256999A 1999-03-10 1999-03-10 Ferromagnetic fine powder for plastic magnet and resin composite material Pending JP2000260616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6256999A JP2000260616A (en) 1999-03-10 1999-03-10 Ferromagnetic fine powder for plastic magnet and resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6256999A JP2000260616A (en) 1999-03-10 1999-03-10 Ferromagnetic fine powder for plastic magnet and resin composite material

Publications (1)

Publication Number Publication Date
JP2000260616A true JP2000260616A (en) 2000-09-22

Family

ID=13204070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6256999A Pending JP2000260616A (en) 1999-03-10 1999-03-10 Ferromagnetic fine powder for plastic magnet and resin composite material

Country Status (1)

Country Link
JP (1) JP2000260616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111515A (en) * 2002-09-17 2004-04-08 Sumitomo Metal Mining Co Ltd Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
JP2009057524A (en) * 2007-09-04 2009-03-19 Unitika Ltd Plastic-magnet composition
JP2009209404A (en) * 2008-03-04 2009-09-17 Sumitomo Metal Mining Co Ltd Method for producing rare earth-iron-nitrogen based magnet powder for bond magnet
WO2010090229A1 (en) 2009-02-03 2010-08-12 戸田工業株式会社 Surface treated rare earth magnetic powder, bonded magnet resin composition that includes the rare earth magnetic powder, and bonded magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111515A (en) * 2002-09-17 2004-04-08 Sumitomo Metal Mining Co Ltd Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
JP2009057524A (en) * 2007-09-04 2009-03-19 Unitika Ltd Plastic-magnet composition
JP2009209404A (en) * 2008-03-04 2009-09-17 Sumitomo Metal Mining Co Ltd Method for producing rare earth-iron-nitrogen based magnet powder for bond magnet
WO2010090229A1 (en) 2009-02-03 2010-08-12 戸田工業株式会社 Surface treated rare earth magnetic powder, bonded magnet resin composition that includes the rare earth magnetic powder, and bonded magnet

Similar Documents

Publication Publication Date Title
EP0111331B1 (en) Plastic magnets impregnated with a dye-coated metallic magnet powder
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
CN1938115B (en) Method for producing raw material powder for rare earth sintered magnet, method for producing rare earth sintered magnet, granule and sintered article
JP2000260616A (en) Ferromagnetic fine powder for plastic magnet and resin composite material
US6063322A (en) Method for manufacturing shaped bodies from hard ferrites
WO1989008516A1 (en) Fine metal powder and method of producing same
JP2004111515A (en) Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
JP2602979B2 (en) Production method of heat-resistant metal fine powder
JP2001200169A (en) Resin composite material compounded with ferromagnetic metal powder
JP2018014341A (en) Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP4063005B2 (en) Rare earth-transition metal-nitrogen based magnet powder and method for producing the same
JPH0617015B2 (en) Resin composite material containing ferromagnetic metal powder and its manufacturing method
JPH07278602A (en) High temperature-resistant fine metal powder
US4376726A (en) Method of manufacturing composition for bonded magnets
JP3840893B2 (en) Bond magnet manufacturing method and bond magnet
JP6512135B2 (en) Method of producing iron-based alloy fine powder containing rare earth element
JPH1012472A (en) Manufacture of rare-earth bond magnet
JP2010001545A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP2017155259A (en) Method for producing iron-based alloy fine powder containing rare earth element
CN1215493C (en) Manufacturing method of oxide magnetic material based permanent magnet
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it
JPH1032133A (en) Manufacture of rare-earth sintered permanent magnet
JPH06318511A (en) High rust-proof rare earth metal bond magnet
JPH0963822A (en) Composition for resin magnet and its manufacture