JP2001200169A - Resin composite material compounded with ferromagnetic metal powder - Google Patents

Resin composite material compounded with ferromagnetic metal powder

Info

Publication number
JP2001200169A
JP2001200169A JP2000262322A JP2000262322A JP2001200169A JP 2001200169 A JP2001200169 A JP 2001200169A JP 2000262322 A JP2000262322 A JP 2000262322A JP 2000262322 A JP2000262322 A JP 2000262322A JP 2001200169 A JP2001200169 A JP 2001200169A
Authority
JP
Japan
Prior art keywords
metal powder
ferromagnetic metal
composite material
value
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000262322A
Other languages
Japanese (ja)
Inventor
Michitoshi Hirata
道利 平田
Shuji Akaiwa
修次 赤岩
Daisuke Matsuda
大輔 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATE KK
Original Assignee
MATE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATE KK filed Critical MATE KK
Priority to JP2000262322A priority Critical patent/JP2001200169A/en
Publication of JP2001200169A publication Critical patent/JP2001200169A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composite material causing slight reduction in strength even if preserved at a high humidity for a long period of time in a resin composite material compounded with ferromagnetic metal powder having heat resistance increased by phosphate coating treatment. SOLUTION: This resin composite material comprises ferromagnetic metal powder whose surface is coated with a thin film of an inorganic phosphate metal compound not containing an organic group and which is subjected to surface treatment so that the surface acidity is adjusted to a fixed value or smaller than it. The surface acidity of the ferromagnetic metal powder is characterized in that a supernatant liquid obtained by stirring distilled water with about 5 wt.% based on the weight of the distilled water of the ferromagnetic metal powder has pH >=6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、強磁性金属粉末を樹脂
材に混合し混練してなる、樹脂−強磁性金属粉末複合材
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-ferromagnetic metal powder composite material obtained by mixing and kneading a ferromagnetic metal powder with a resin material.

【0002】[0002]

【従来の技術】1種または2種以上の強磁性粉末を樹脂
に配合して加熱混練し、ぺレット或いはシート状の樹脂
複合材料とし、又はこれを射出成形して製品を形成し、
これに着磁してボンド磁石(プラスチック磁石)とするこ
とが実施されている。上記樹脂複合材料は、製造時に混
練機内で強磁性粉末と樹脂材を攪拌する際、摩擦によっ
て高熱が発生し、樹脂複合材料は非常な高温に曝され
る。強磁性粉末がストロンチウムフェライトなどの金属
酸化物であれば、熱的に十分に安定なため、混練中の発
生熱による磁気特性の劣化はほとんど問題にならない。
しかし、熱的安定性が十分でない強磁性金属粉末の場合
には、攪拌混練の工程で発生する熱が強磁性金属粉末の
耐熱温度を越えており、強磁性金属粉末の酸化が起こ
り、そのような樹脂複合材料を原料としたボンド磁石製
品は磁気特性を損なう問題があった。特に強磁性金属粉
末に耐熱処理が施されていない場合には、混練工程の高
温による酸化で強磁性金属粉末のダメージが甚だしく、
得られるボンド磁石の品質を低下させる。
2. Description of the Related Art One or more ferromagnetic powders are mixed with a resin and heated and kneaded to form a pellet or sheet-like resin composite material, or injection-molded to form a product.
This is magnetized to form a bond magnet (plastic magnet). When the ferromagnetic powder and the resin material are stirred in the kneader during the production of the resin composite material, high heat is generated due to friction, and the resin composite material is exposed to a very high temperature. If the ferromagnetic powder is a metal oxide such as strontium ferrite, it is thermally sufficiently stable, so that deterioration of magnetic properties due to heat generated during kneading hardly causes a problem.
However, in the case of a ferromagnetic metal powder having insufficient thermal stability, the heat generated in the stirring and kneading process exceeds the heat resistance temperature of the ferromagnetic metal powder, and oxidation of the ferromagnetic metal powder occurs. Bonded magnet products made of a resin composite material as a raw material have a problem of impairing magnetic properties. Especially when the heat-resistant treatment is not applied to the ferromagnetic metal powder, the ferromagnetic metal powder is significantly damaged by oxidation at a high temperature in the kneading step,
Decreases the quality of the resulting bonded magnet.

【0003】この問題に対処するため出願人は強磁性金
属粉末の耐熱処理方法を特許第2602883号で明ら
かにした。又、出願人は、ホットランナー成形の様に、
樹脂材料へ過大な熱負荷が加わって熱酸化し、品質劣化
し易い材料を用い成形に適した、強磁性金属粉末を含む
樹脂複合材料を特許第1906911号で開示した。後
者特許の樹脂複合材料は、強磁性金属粉末の表面を、有
機基を含まない無機燐酸金属化合物の薄膜によって一様
に覆い、さらにシリルイソシアネート系シラン化合物に
よって表面処理したものである。この樹脂複合材料は溶
融流動性が高いため加工性の点で優れているが、成形品
を長期間高湿中で保有した場合、成形品は強度低下を来
すという耐候性の点で問題があり、更なる改良が望まれ
た。
[0003] In order to address this problem, the applicant has disclosed a method for heat-treating ferromagnetic metal powder in Japanese Patent No. 2602883. Also, the applicant, like hot runner molding,
Japanese Patent No. 1906911 discloses a resin composite material containing a ferromagnetic metal powder, which is suitable for molding by using a material which easily undergoes thermal oxidation due to an excessive heat load applied to the resin material and which is easily deteriorated in quality. The resin composite material of the latter patent is obtained by uniformly covering the surface of a ferromagnetic metal powder with a thin film of an inorganic metal phosphate compound containing no organic group, and further treating the surface with a silyl isocyanate-based silane compound. This resin composite material is excellent in workability because of its high melt fluidity, but when the molded product is held in high humidity for a long period of time, there is a problem with the weather resistance that the molded product will lose its strength. Yes, further improvement was desired.

【0004】強磁性金属粉末を燐酸被覆処理した場合に
は、粉末表面の酸性度が非常に高くなる。燐酸被覆処理
を行った強磁性金属粉末を含む樹脂複合材料を用いて製
造されたボンド磁石を高湿中で長期間保持すると、樹脂
の吸湿により樹脂複合材の内部へ水分が浸入する。浸入
した水分が強磁性金属粉末表面にまで達すると、強磁性
金属粉末の表面に存在する無機燐酸金属化合物が溶解
し、その水溶液は水素イオン濃度を示すpH値が低いた
めに樹脂の劣化を促進させ、結果的にボンド磁石の強度
低下を招来する。
When the ferromagnetic metal powder is coated with phosphoric acid, the acidity of the powder surface becomes very high. When a bonded magnet manufactured using a resin composite material containing a ferromagnetic metal powder that has been subjected to a phosphoric acid coating treatment is held for a long time in high humidity, moisture permeates into the resin composite material due to moisture absorption of the resin. When the infiltrated water reaches the surface of the ferromagnetic metal powder, the inorganic metal phosphate compound present on the surface of the ferromagnetic metal powder dissolves, and the aqueous solution has a low pH value indicating the hydrogen ion concentration, thereby accelerating the deterioration of the resin. As a result, the strength of the bonded magnet is reduced.

【0005】[0005]

【解決しようとする課題】本出願人は、強磁性金属粉末
を配合した樹脂複合材料を原料として成形したボンド磁
石について耐候性を研究したところ、その過程で、無機
燐酸金属化合物で覆われた強磁性金属粉末の表面pH値
を高くする処理をした場合、これを用いて製造したボン
ド磁石は高湿中での強度低下が抑制されることを見い出
した。本発明は、有機基を含まない燐酸被覆処理された
強磁性金属粉末を配合した樹脂複材料について高湿中で
の劣化を少なくし、耐候性のより高いボンド磁石用樹脂
複合材料を提供することを目的とする。
SUMMARY OF THE INVENTION The present applicant has studied the weather resistance of a bonded magnet formed from a resin composite material containing a ferromagnetic metal powder as a raw material. It has been found that when a treatment is performed to increase the surface pH value of the magnetic metal powder, the bond magnet manufactured using the same is suppressed from decreasing in strength in high humidity. An object of the present invention is to provide a resin composite material for bonded magnets which has less deterioration in high humidity and has higher weather resistance for a resin composite material containing a ferromagnetic metal powder coated with phosphoric acid which does not contain an organic group. With the goal.

【0006】[0006]

【課題を解決する手段】本発明の強磁性金属粉末を配合
した樹脂複合材料は、有機基を含まない無機燐酸金属又
は該無機燐酸金属化合物の薄膜によって強磁性金属粉末
の粒子表面が覆われ、且つ、その表面のpH値が間接測
定で一定値以上になるように表面処理を施した強磁性金
属粉末を含む樹脂複合材料であって、該強磁性金属粉末
の表面pH値は、該強磁性金属粉末を蒸留水に投入して
攪拌し、上澄み液又は濾液のpH値が6以上になること
を特徴とする。
In the resin composite material containing the ferromagnetic metal powder of the present invention, the particle surface of the ferromagnetic metal powder is covered with a thin film of an inorganic metal phosphate or an inorganic metal compound containing no organic group, Further, a resin composite material containing a ferromagnetic metal powder that has been subjected to a surface treatment so that the pH value of the surface thereof is equal to or more than a certain value by indirect measurement, wherein the surface pH value of the ferromagnetic metal powder is the ferromagnetic metal powder. The metal powder is put into distilled water and stirred, and the pH value of the supernatant or the filtrate is 6 or more.

【0007】[0007]

【作用】強磁性金属粉末を配合した樹脂複合材料は、該
金属粉末に対し有機基を含まない無機燐酸によって燐酸
被覆処理し、且つ表面が間接測定でpH6以上となる様
に表面処理した場合にのみ、特異的に樹脂複合材料の耐
候性が向上する。
The resin composite material containing the ferromagnetic metal powder is treated with a phosphoric acid coating treatment with an inorganic phosphoric acid containing no organic group on the metal powder, and the surface treatment is performed such that the surface has a pH of 6 or more by indirect measurement. Only, the weather resistance of the resin composite material is specifically improved.

【0008】[0008]

【効果】強磁性金属粉末を配合した樹脂複合材料を用い
た成形品の耐候性は著しく改善され、80℃、湿度90
%の雰囲気中に1000時間保持した場合の物性値(曲
げ強度)の低下率は、発明者らが以前に提案したシリル
イソシアネート系シラン化合物によって表面処理した樹
脂複合材料(特許第1906911号)を用いた成形品に
比べて大幅に減小した。
[Effect] The weather resistance of a molded article using a resin composite material containing a ferromagnetic metal powder is remarkably improved.
% Of the resin composite material (patent No. 1906911) surface-treated with a silyl isocyanate-based silane compound previously proposed by the inventors of the present invention, when the property value (flexural strength) is maintained in an atmosphere of 1000% for 1000 hours. It was greatly reduced compared to the molded product.

【0009】[0009]

【実施の形態】この出願において「強磁性金属粉末」と
は、例えばSm−Co系合金に代表されるRM5、R2
17(RはSm、Pr、Ce、 La等の稀土類元素、Mは
Fe,Ni,Co等の遷移金属元素)、Al−Ni−C
o系合金、強磁性鉄系合金など強磁性合金粉末、また、
Nd−Fe−B系、Sm−Fe−N系、Mn−Al−C
系など金属間化合物粉末、強磁性金属等から成る硬磁性
相とα鉄など高磁化の軟磁性相の2相からなる交換スプ
リング磁性粉末を含む。又、「燐酸」とは、燐酸(H3PO
4)のみでなく、無機の燐塩、その他の無機燐化合物を含
むものとする。又、樹脂としては、例えば、エポキシ樹
脂、フェノール樹脂、キシレン樹脂などの熱硬化性樹
脂、ポリアミド、ポリカーボネート、ポリフェニレンサ
ルファイド、液晶ポリマー等の熱可塑性樹脂、アクリロ
ニトリル−ブタジエンゴムなどの合成ゴムが挙げられる
が、本発明はこれらに限定されない。
[Embodiment] RM 5 is a "ferromagnetic metal powder" as used in this application, typified by example Sm-Co-based alloy, R 2 M
17 (R is a rare earth element such as Sm, Pr, Ce, La, etc., M is a transition metal element such as Fe, Ni, Co), Al-Ni-C
o-based alloys, ferromagnetic alloy powders such as ferromagnetic iron-based alloys,
Nd-Fe-B system, Sm-Fe-N system, Mn-Al-C
An exchange spring magnetic powder comprising two phases of a hard magnetic phase composed of an intermetallic compound powder such as a ferromagnetic metal and a soft magnetic phase having a high magnetization such as α-iron. “Phosphoric acid” refers to phosphoric acid (H 3 PO
4 ) In addition to inorganic phosphorus salts and other inorganic phosphorus compounds. Examples of the resin include thermosetting resins such as epoxy resin, phenol resin and xylene resin, thermoplastic resins such as polyamide, polycarbonate, polyphenylene sulfide and liquid crystal polymer, and synthetic rubbers such as acrylonitrile-butadiene rubber. However, the present invention is not limited to these.

【0010】強磁性金属粉末は、発明者が以前に特許第
2602979号公報で提案した方法或いは他の公知の
方法によって微粉砕し、平均粒径10μm、所望により
平均粒径1μmの超微粉とする。
The ferromagnetic metal powder is finely pulverized by a method previously proposed by the inventor in Japanese Patent No. 2602979 or another known method to obtain an ultrafine powder having an average particle diameter of 10 μm and, if desired, an average particle diameter of 1 μm. .

【0011】燐酸とアルコール溶剤とを混合した被覆処
理液と、前記微粉砕した強磁性金属粉末とを、不活性ガ
スの雰囲気中にて攪拌混合して金属粉末表面を燐酸被覆
する。
The surface of the metal powder is coated with phosphoric acid by stirring and mixing the coating solution obtained by mixing phosphoric acid and an alcohol solvent and the finely ground ferromagnetic metal powder in an inert gas atmosphere.

【0012】上記被覆処理液は、予め製造して準備する
のではなくて、金属粒を所望粒径に粉砕し被覆処理を行
う直前に、粒径に応じて決まる必要量の燐酸にアルコー
ル系溶剤を素早く攪拌混合して製り、燐酸のエステル化
を可及的に抑えたものである。
The coating solution is not manufactured and prepared in advance, but immediately before the metal particles are crushed to a desired particle size and the coating process is performed, a necessary amount of phosphoric acid determined according to the particle size is added to an alcohol-based solvent. Is rapidly stirred and mixed to suppress phosphoric acid esterification as much as possible.

【0013】燐酸が金属粉末に対して過剰であると、表
面処理後の乾燥工程中で、被覆処理液中の残留燐酸とア
ルコール系溶剤が反応してエステル化が進み、これが接
着作用を呈する様になり、金属粉末層が固化したり、取
扱中の容器に強固に付着して機器、容器の清掃に困難を
来す。従って処理される強磁性金属粉末の量と平均粒径
に応じて投入すべき燐酸量とを厳密に規定し、更にこの
燐酸を溶解すべきアルコール溶剤の量も、燐酸を均一分
散させるために必要な最小限度に制限することが重要で
ある。
If the phosphoric acid is excessive with respect to the metal powder, during the drying step after the surface treatment, the residual phosphoric acid in the coating solution and the alcohol-based solvent react to promote esterification, which exhibits an adhesive effect. And the metal powder layer solidifies or adheres strongly to the container being handled, making it difficult to clean equipment and containers. Therefore, the amount of the ferromagnetic metal powder to be treated and the amount of phosphoric acid to be added are strictly specified according to the average particle size, and the amount of the alcohol solvent in which the phosphoric acid is to be dissolved is also necessary for uniformly dispersing the phosphoric acid. It is important to limit to a minimum.

【0014】一般に燐酸は、平均粒径10μm前後の強
磁性金属粉末に対し、燐酸重量は0.3〜1.0重量%、
望ましくは0.4〜0.5重量%の添加によって所望の耐
酸化膜が得られ。この制限された添加量によって、燐酸
のエステル化に伴う前記トラブルは回避でき、乾燥上が
りの製品金属粉末はサラサラして極めて流動性が良いば
かりでなく、単分子層に近い燐酸系金属化合物を金属微
粉末の表面に形成することに留めることが出来、磁気特
性を向上できる。
In general, phosphoric acid has a phosphoric acid weight of 0.3 to 1.0% by weight based on a ferromagnetic metal powder having an average particle size of about 10 μm.
Desirably, a desired oxidation resistant film is obtained by adding 0.4 to 0.5% by weight. With this limited amount of addition, the above-mentioned troubles associated with the esterification of phosphoric acid can be avoided, and the product metal powder after drying is not only smooth and extremely fluid, but also a phosphoric metal compound close to a monomolecular layer can be metallized. It can be limited to the formation on the surface of the fine powder, and the magnetic properties can be improved.

【0015】次に燐酸被覆処理された強磁性金属粉末に
対して、後述する間接測定による表面pH値を上げる化
合物を接触させて、pH値上昇の表面処理を行う。pH
値上昇表面処理に用いる化合物(以下、「表面処理用化合
物」という)としては、例えば、アミノ系、ビニル系、エ
ポキシ系、メルカプト系などのシランカップリング剤、
チタネート系カップリング剤、アルミネート系カップリ
ング剤、尿酸基を含むシランカップリング剤などが挙げ
られるが、燐酸被覆処理された強磁性金属粉末のpH値
を6以上に調整することが可能であれば表面処理用化合
物の種類は問わない。
Next, the ferromagnetic metal powder coated with phosphoric acid is brought into contact with a compound for increasing the surface pH value by an indirect measurement described later to perform a surface treatment for increasing the pH value. pH
Compounds used in the surface treatment for increasing the value (hereinafter, referred to as “surface treatment compounds”) include, for example, amino-based, vinyl-based, epoxy-based, mercapto-based silane coupling agents,
Examples include titanate-based coupling agents, aluminate-based coupling agents, and silane coupling agents containing a uric acid group. However, it is possible to adjust the pH value of the ferromagnetic metal powder coated with phosphoric acid to 6 or more. The type of the compound for surface treatment is not limited.

【0016】燐酸被覆処理された1種または2種以上の
強磁性金属粉末の重量比100部に対して、表面処理用
化合物を0.1〜2部を用いる。該化合物の添加量が多
くなると、未反応のまま強磁性金属粉末表面へ残留する
量が多くなり、成形時にガス発生の原因となり、成形品
内部に微細な空隙が発生し易くなるため好ましくない。
表面処理用化合物はそのままでも使用できるが、アルコ
ール等の溶剤に希釈しても可い。
The surface treatment compound is used in an amount of 0.1 to 2 parts with respect to 100 parts by weight of one or more ferromagnetic metal powders subjected to the phosphoric acid coating treatment. If the amount of the compound increases, the amount of the compound remaining unreacted on the surface of the ferromagnetic metal powder increases, which causes gas generation at the time of molding and tends to generate fine voids inside the molded product, which is not preferable.
The surface treating compound can be used as it is, but may be diluted with a solvent such as alcohol.

【0017】pH値上昇表面処理方法は、加熱と振動の
機能を有する乾燥機に、上記燐酸被覆処理した強磁性金
属粉末を投入し、5〜30Hzの振動を続けながら、予
め溶剤に分散させておいた表面処理用化合物を添加し混
合する。100℃になるまで30分程度振動させた後、
振動を停止し、80〜120℃で乾燥させる。その際、
乾燥室内を真空ポンプで強制排気しても可い。
In the surface treatment method for increasing the pH value, the above-mentioned ferromagnetic metal powder coated with phosphoric acid is put into a drier having a function of heating and vibration, and is dispersed in a solvent in advance while continuing vibration at 5 to 30 Hz. Add the surface treating compound and mix. After vibrating for about 30 minutes until it reaches 100 ° C,
Stop vibration and dry at 80-120 ° C. that time,
The drying chamber may be evacuated by a vacuum pump.

【0018】次に上記工程で得られたpH値上昇処理済
みの強磁性金属粉末を、合成樹脂、合成ゴム等の樹脂材
料に対し5〜96重量%を配合して、150〜350℃
に加熱して混練する。この加熱混練の際、樹脂材料及び
ストロンチウムフェライトは熱的に安定であるから、上
記強磁性金属粉末との混合物とすることに問題はない。
Next, 5-96% by weight of the ferromagnetic metal powder obtained in the above step, which has been subjected to the pH raising treatment, is mixed with a resin material such as synthetic resin or synthetic rubber at 150-350 ° C.
And knead by heating. During this heating and kneading, the resin material and the strontium ferrite are thermally stable, so there is no problem in forming a mixture with the ferromagnetic metal powder.

【0019】加熱混練した後、押出機によって押出して
射出成形用のペレットに成形し、或いは加熱ローラによ
ってシート状の半製品に成形する。又は混練押出機によ
って混練すると共に所定形状に押出し成形する。成形方
法は上記に限らず、その他の成形方法を採用出来ること
は勿論であり、必要であれば磁場中にて成形することも
可能である。
After the heating and kneading, the mixture is extruded by an extruder and formed into pellets for injection molding, or formed into a sheet-like semi-finished product by a heating roller. Alternatively, the mixture is kneaded by a kneading extruder and extruded into a predetermined shape. The molding method is not limited to the above, and it goes without saying that other molding methods can be employed, and if necessary, molding can be performed in a magnetic field.

【0020】以下に、強磁性金属粉末の燐酸被覆処理方
法、pH値上昇表面処理方法、処理済み強磁性金属粉末
を配合した樹脂複合材料を用いた試料製造の具体例を示
す。磁性金属粉末に燐酸被覆処理をするには、次の2つ
の方法を実施した。燐酸被覆処理法その1 (強磁性金属粉末に燐酸アルコール溶液を散布攪拌する
方法)強磁性金属粉末500gを鋼球3kgと一緒にボー
ルミル内へ入れ、N2ガス(純度99.9%以上)でミル内
で十分にパージした後に100rpmで3時間乾式粉砕
し、平均粒径10μmの微粉末を得る。オルソ燐酸4.5
gとNPA(ノルマルプロピルアルコール)20gをスタ
ーラーで約1分間攪拌して調製した均一な燐酸アルコー
ル溶液を、前記平均粒径10μmの微粉末500gに散
布して攪拌し、排気ファン付き乾燥器中にて40〜90
℃で約1時間加熱乾燥する。有機基を含まない無機燐酸
金属化合物の薄膜によって被覆された強磁性金属粉末が
得られた。
The following are specific examples of the method of coating the ferromagnetic metal powder with phosphoric acid, the method of surface treatment for increasing the pH value, and the production of a sample using a resin composite material containing the treated ferromagnetic metal powder. To coat the magnetic metal powder with phosphoric acid, the following two methods were performed. Phosphoric acid coating treatment method 1 (Method of spraying and stirring a phosphoric acid alcohol solution on ferromagnetic metal powder) 500 g of ferromagnetic metal powder is put into a ball mill together with 3 kg of steel balls, and N 2 gas (purity of 99.9% or more) is added to the ball mill. After sufficiently purging in a mill, the mixture is dry-pulverized at 100 rpm for 3 hours to obtain a fine powder having an average particle size of 10 μm. Orthophosphoric acid 4.5
g of NPA (normal propyl alcohol) and 20 g of NPA (normal propyl alcohol) were stirred with a stirrer for about 1 minute, and a uniform phosphoric acid alcohol solution was sprayed on 500 g of the fine powder having an average particle size of 10 μm and stirred. 40-90
Heat and dry at about 1 hour. A ferromagnetic metal powder coated with a thin film of an inorganic metal phosphate compound containing no organic group was obtained.

【0021】燐酸被覆処理法その2 (強磁性金属粉末を収容した不活性ガス雰囲気の攪拌槽
に、不活性ガス雰囲気を維持したまま燐酸アルコール溶
液を注入する方法)鋼球3kgと、粉砕助剤としてn−ヘ
キサン400gとを投入しておいた攪拌槽に強磁性金属
粉末500gを投入し、密閉する。攪拌槽内をN2ガス
(純度99.9%以上)で約1分間パージを行った後、回
転数205rpmにて9分間湿式粉砕を行い、平均粒径1
0μmの微粉末を得る。オルソ燐酸4.5gとNPA(ノ
ルマルプロピルアルコール)20gをスターラーで約1
分間攪拌して調製した均一な燐酸アルコール溶液を処理
液タンクに容れて、該タンク内をN2ガス置換を行う。
前記の強磁性金属粉末の粉砕完了時に合わせて、攪拌槽
と処理液タンクを連通するパイプのバルブを開いて、N
2ガス圧(16.7Pa)をかけながらタンクから攪拌槽へ
燐酸アルコール溶液を注入する。攪拌槽は粉砕に引き続
き同一回転数(205rpm)で回転を持続し、強磁性金属
粉末と燐酸アルコール溶液を攪拌分散させ、45秒後に
回転を停止する。次に、攪拌槽から強磁性金属微粉末を
含んだ液体を流出させて容器に取り出し、上澄液を除去
した微粉末を排気ファン付き乾燥機内で、40〜90℃
で約1時間加熱乾燥する。有機基を含まない無機燐酸金
属化合物の薄膜によって被覆された強磁性金属粉末が得
られた。
Phosphoric Acid Coating Method 2 (Method of Injecting a Phosphoric Alcohol Solution into a Stirring Tank Containing Ferromagnetic Metal Powder in an Inert Gas Atmosphere While Maintaining the Inert Gas Atmosphere) 3 kg of steel balls and grinding aid Then, 500 g of ferromagnetic metal powder is charged into a stirring tank into which 400 g of n-hexane has been charged, and sealed. N 2 gas in the stirring tank
(Purity of 99.9% or more) for about 1 minute, and then wet pulverization at 205 rpm for 9 minutes to obtain an average particle size of 1
A fine powder of 0 μm is obtained. 4.5 g of orthophosphoric acid and 20 g of NPA (normal propyl alcohol) are stirred for about 1
The homogeneous phosphoric acid alcohol solution prepared by stirring for a minute is placed in a treatment liquid tank, and the inside of the tank is replaced with N 2 gas.
At the same time as the completion of the pulverization of the ferromagnetic metal powder, the valve of the pipe connecting the stirring tank and the processing liquid tank is opened, and N
2. Inject the phosphoric acid alcohol solution from the tank to the stirring tank while applying gas pressure (16.7 Pa). After the pulverization, the stirring tank continues to rotate at the same rotation speed (205 rpm) to stir and disperse the ferromagnetic metal powder and the phosphoric acid alcohol solution. After 45 seconds, the rotation is stopped. Next, the liquid containing the ferromagnetic metal fine powder is discharged from the stirring tank, taken out into a container, and the fine powder from which the supernatant liquid has been removed is placed in a dryer with an exhaust fan at 40 to 90 ° C.
For about 1 hour. A ferromagnetic metal powder coated with a thin film of an inorganic metal phosphate compound containing no organic group was obtained.

【0022】強磁性金属粉末のpH値上昇処理法及び樹
脂−金属粉末複合材による試料製造方法 表1は、1種類の強磁性金属粉末を用いた場合の、本発
明と比較例の製造諸条件及び強磁性金属粉末の表面pH
値と試料の耐候性試験の強度を示すものである。表1に
示す1種類の強磁性金属粉末(NdFeB)を含む場合に
於ける、本発明試料1〜10と、比較例51〜54の試
料の製造手順。工程1. 燐酸被覆処理を、上記処理法その1又はその
2に従って行った225g(電子天秤で精秤)の強磁性金
属粉末(以下「原料粉末」という)225g(100重量部)
を製る。2.25g(1.0重量部)の表面処理用化合物
([0015]参照)を25gの溶剤(メチルアルコール
又はキシレン)と一緒にスターラーで3分間混合する。
得られた表面処理液を、乳鉢の中で前記原料粉末と十分
に混ぜる(約3分間)。工程2. 表面処理液と混合された原料粉末をバットに拡
げて約80〜120℃で1時間程度オーブン乾燥させ
る。強磁性金属粉末のpH値上昇表面処理は終了した。工程3. 強磁性金属粉末のpH値上昇表面処理を終えた
原料粉末を、乳鉢でナイロン12等の樹脂バインダー2
0gと十分に混合する(約5分間)。工程4. 工程3で得られた混合物を245g精秤し、バ
ッチ式樹脂混合機により、280℃で約5分間混練す
る。出来た餅状のコンパウンドをカッターで切断して直
径2〜3mmのペレットを得る。工程5. 上記工程で得られたペレット980gを成形用
材料にして射出成形機で75mm(幅)×13mm(長さ)×3
mm(高さ)のテストピースを作り、強度測定用の試料とし
た。
Method for raising pH value of ferromagnetic metal powder and tree
Fat - sample preparation method Table 1 by the metal powder composite is one in the case of using a ferromagnetic metal powder, the surface pH of the preparation conditions and the ferromagnetic metal powder of Comparative Example with the present invention
It shows the value and the strength of the weather resistance test of the sample. Manufacturing procedure of samples 1 to 10 of the present invention and samples of comparative examples 51 to 54 when one kind of ferromagnetic metal powder (NdFeB) shown in Table 1 is included. Step 1. The phosphoric acid coating treatment was performed according to the above-mentioned treatment method 1 or 2, and 225 g (100 wt parts) of ferromagnetic metal powder (hereinafter referred to as “raw material powder”) of 225 g (accurately weighed by an electronic balance)
Is made. 2.25 g (1.0 parts by weight) of compound for surface treatment
(See [0015]) with 25 g of solvent (methyl alcohol or xylene) with a stirrer for 3 minutes.
The obtained surface treatment liquid is sufficiently mixed with the raw material powder in a mortar (about 3 minutes). Step 2. The raw material powder mixed with the surface treatment liquid is spread on a vat and oven-dried at about 80 to 120 ° C. for about 1 hour. The surface treatment for raising the pH value of the ferromagnetic metal powder has been completed. Step 3. The raw material powder, which has been subjected to the surface treatment for raising the pH value of the ferromagnetic metal powder, is put into a resin binder 2 such as nylon 12 in a mortar.
Mix well with 0 g (about 5 minutes). Step 4. 245 g of the mixture obtained in the step 3 is precisely weighed and kneaded at 280 ° C. for about 5 minutes by a batch type resin mixer. The resulting rice cake-like compound is cut with a cutter to obtain pellets having a diameter of 2 to 3 mm. Step 5. Using 980 g of the pellet obtained in the above process as a molding material, 75 mm (width) × 13 mm (length) × 3 with an injection molding machine.
A test piece of mm (height) was prepared and used as a sample for strength measurement.

【0023】[0023]

【表1】 [Table 1]

【0024】下記表2は、2種類の強磁性金属粉末を用
いた場合の、本発明と比較例の製造諸条件及び強磁性金
属粉末の表面pH値と試料の耐候性試験後の強度を示す
ものである。表2に示す如く、2種類の強磁性金属粉末
を含む場合に於ける、比較例55〜58と、本発明11
〜14の試料の製造手順は、表2に示す割合で燐酸被覆
処理した2種類の強磁性金属粉末を配合し、表1につい
て記載した方法と同様の工程で、pH値上昇表面処理及
び強度試験用の試料を製造した。
Table 2 below shows the production conditions of the present invention and the comparative example, the surface pH value of the ferromagnetic metal powder, and the strength of the sample after the weather resistance test when two kinds of ferromagnetic metal powders were used. Things. As shown in Table 2, when containing two types of ferromagnetic metal powders, Comparative Examples 55 to 58 and the present invention 11
The production procedures of the samples Nos. To 14 are as follows. Two kinds of ferromagnetic metal powders coated with phosphoric acid are blended at the ratios shown in Table 2 and the pH value is increased by the same process as described in Table 1. Samples were prepared.

【0025】[0025]

【表2】 [Table 2]

【0026】下記表3は、燐酸被覆処理及びpH値上昇
処理を施した1種類の強磁性金属粉末と、何れの処理も
施さない1種類の強磁性金属酸化物粉末(充填材)を用い
た場合の、比較例と本発明との製造諸条件と、pH値及
び強度の比較を示すものである。強磁性金属粉末(Nd
FeB、SmCo、AlNiCo又はMnAlC)と充
填材(実施例では、ストロンチウムフェライト)を含む場
合に於ける本発明15〜19と比較例59〜63の試料
の製造手順。燐酸被覆処理とpH値上昇処理を施した強
磁性金属粉末と、何れの処理も施していないストロンチ
ウムフェライトを表3に示す割合で配合し、上記同様の
方法で試料を得た。
Table 3 below shows one type of ferromagnetic metal powder subjected to the phosphoric acid coating treatment and the pH value increasing treatment, and one type of ferromagnetic metal oxide powder (filler) not subjected to any of the treatments. FIG. 4 shows a comparison of various production conditions of the comparative example and the present invention, and a pH value and strength. Ferromagnetic metal powder (Nd
The manufacturing procedure of the sample of this invention 15-19 and the comparative examples 59-63 in the case of containing FeB, SmCo, AlNiCo, or MnAlC) and a filler (strontium ferrite in an Example). Ferromagnetic metal powder that had been subjected to the phosphoric acid coating treatment and the pH value increasing treatment and strontium ferrite that had not been subjected to any of the treatments were blended in the ratio shown in Table 3, and a sample was obtained in the same manner as described above.

【0027】[0027]

【表3】 [Table 3]

【0028】表1乃至表3に於いて、強磁性金属粉末の
pH値は、強磁性金属粉末の表面pH値を直接測定する
ことはできないので、下記の方法で間接的に測定したも
のである。
In Tables 1 to 3, the pH value of the ferromagnetic metal powder is indirectly measured by the following method since the surface pH value of the ferromagnetic metal powder cannot be directly measured. .

【0029】強磁性金属粉末の表面pH値の測定方法 測定する1種又は2種以上の混合物からなり、上記燐酸
被覆処理及びpH値上昇表面処理を行った強磁性金属粉
末を、蒸留水に、該蒸留水の重量の約5%投入する。実
施例では、5.0gの粉末を、100gの蒸留水に入れ
て10分間攪拌し、上澄み液又は濾液のpHを測定す
る。このpH値を粉末の表面pH値として評価に用い
た。この上澄み液又は濾液のpH値が高いほど強磁性金
属粉末の表面pH値が高いことを示す。
Method for Measuring Surface pH Value of Ferromagnetic Metal Powder The ferromagnetic metal powder consisting of one or more mixtures to be measured and having been subjected to the above-mentioned phosphoric acid coating treatment and pH value raising surface treatment is added to distilled water. About 5% of the weight of the distilled water is introduced. In the examples, 5.0 g of powder is placed in 100 g of distilled water and stirred for 10 minutes, and the pH of the supernatant or filtrate is measured. This pH value was used for evaluation as the surface pH value of the powder. The higher the pH value of the supernatant or the filtrate, the higher the surface pH value of the ferromagnetic metal powder.

【0030】耐候性試験後の強度 試料毎にテストピースを20個づつ準備し、10個は耐
候性試験前に強度測定した。残り10個は耐候性試験を
行い、その後に強度測定を行なった。耐候性試験前の強
度値に対する試験後の相対的強度値を算出し、強度低下
の大きさを比較した。耐候性試験後の相対的強度値の数
値が低いほど強度低下の程度が大きいことを表す。 耐候試験条件: 試料を温度80℃、湿度90%の雰囲
気中で1000時間保持した。 強度測定: ASTM−D798の規格に基づき、曲げ
試験機にて曲げ強度測定を行った。
[0030] Twenty test pieces were prepared for each strength sample after the weather resistance test, and the strength of ten test pieces was measured before the weather resistance test. The remaining 10 pieces were subjected to a weather resistance test, and then the strength was measured. The relative strength value after the test with respect to the strength value before the weather resistance test was calculated, and the magnitude of the strength decrease was compared. The lower the numerical value of the relative strength value after the weather resistance test, the greater the degree of strength reduction. Weathering test conditions: The sample was kept in an atmosphere at a temperature of 80 ° C and a humidity of 90% for 1000 hours. Strength measurement: The bending strength was measured by a bending tester based on the standard of ASTM-D798.

【0031】試験結果 表1の比較例は、燐酸被覆処理を行った強磁性金属粉末
に、pH値上昇表面処理を施さない試料51、試料5
2、及びアミンでpH値上昇表面処理した試料53、イ
ソシアネート系シラン化合物でpH値上昇表面処理を行
った試料54は、何れも表面pH値が6よりも低い。耐
候試験後の相対強度値は、すべての比較例試料について
50%以下であり、強度低下が非常に大きいことが判
る。これに対して本発明の様に、燐酸被覆処理を行った
強磁性金属粉末に対して、表面pH値が6以上になるよ
うにpH値上昇表面処理することで、すべての試料1〜
10について耐候性試験による強度低下の程度が、比較
例に較べて1/2以下になる場合もあり、耐候性が著し
く改善されていることが明らかである。
Test Results The comparative examples shown in Table 1 show that the ferromagnetic metal powder which has been subjected to the phosphoric acid coating treatment is not subjected to the surface treatment for increasing the pH value of Sample 51 and Sample 5.
2, and the sample 53 subjected to the surface treatment for increasing the pH value with the amine and the sample 54 subjected to the surface treatment for increasing the pH value with the isocyanate-based silane compound have a surface pH value lower than 6. The relative strength values after the weathering test were 50% or less for all the comparative samples, indicating that the strength reduction was extremely large. On the other hand, as in the present invention, by subjecting the ferromagnetic metal powder that has been subjected to the phosphoric acid coating treatment to surface treatment for increasing the pH value so that the surface pH value becomes 6 or more, all the samples 1 to
In the case of No. 10, the degree of strength reduction by the weather resistance test may be 1 / or less as compared with the comparative example, and it is clear that the weather resistance is remarkably improved.

【0032】表2に示す様に、燐酸被覆処理を施した2
種類の強磁性金属粉末を含む場合でも、表面pH値が6
以上となるようにpH値上昇処理することによって、本
発明の場合強度低下の程度が比較例に比べて著しく小さ
くなっていることが明らかである。
As shown in Table 2, the phosphoric acid-coated 2
Surface pH value of 6
It is clear that the degree of strength decrease in the present invention is significantly smaller than that in the comparative example by performing the pH value increasing treatment as described above.

【0033】表3に示す如く、燐酸被覆処理を施した強
磁性金属粉末を、燐酸被覆処理を施していない充填材と
混合した場合でも、燐酸被覆処理を行った強磁性金属粉
末の表面pH値を6以上になるように表面処理すること
によって、耐候性試験による強度低下の程度が比較例に
比べて著しく小さくなっていることが判る。
As shown in Table 3, even when the phosphoric acid-coated ferromagnetic metal powder was mixed with a filler not subjected to the phosphoric acid coating treatment, the surface pH value of the phosphoric acid-coated ferromagnetic metal powder was mixed. It can be seen that by performing the surface treatment so as to be 6 or more, the degree of the strength decrease in the weather resistance test is significantly smaller than that of the comparative example.

【0034】表1の比較例の試料53のpH5.7と本
発明の試料8のpH6.2の夫々の耐候性試験後の強度
の比較から、表面pH値は6を境にして特異的に強度が
変わっている。このような効果は、燐酸被覆処理を施し
た強磁性金属粉末を単に塩基性化合物で処理しただけで
は達成できず、又、たとえ他の化合物による表面処理を
施したとしても、強磁性金属粉末の表面pH値が6より
小なる場合には耐候試験での強度低下の程度を小さくす
ることはできない。燐酸被覆処理した強磁性金属粉末の
表面pH値を6以上となるような適当な表面処理用化合
物を選択することで初めて達成できる顕著な効果であ
る。
From the comparison of the strength of the sample 53 of Comparative Example 53 at pH 5.7 and the sample 8 of the present invention at pH 6.2 after the weather resistance test, the surface pH value was specifically determined at the boundary of 6. The intensity has changed. Such an effect cannot be achieved by simply treating the ferromagnetic metal powder that has been subjected to the phosphoric acid coating treatment with a basic compound. If the surface pH value is smaller than 6, the degree of strength decrease in the weather resistance test cannot be reduced. This is a remarkable effect that can be achieved only by selecting an appropriate surface treatment compound so that the surface pH of the ferromagnetic metal powder coated with phosphoric acid becomes 6 or more.

【0035】本発明は、上記実施例の構成に限定される
ことはなく、特許請求の範囲に記載の範囲で種々の変形
が可能である。
The present invention is not limited to the configuration of the above embodiment, and various modifications are possible within the scope of the claims.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 大輔 岡山県和気郡佐伯町佐伯526番地の3 株 式会社メイト内 Fターム(参考) 4J002 AA001 AC071 CC031 CD001 CE001 CG001 CL001 CN011 DC006 FB076 FB086 FD016 FD206 GQ00 4K018 BA04 BA05 BA18 BC28 BD01 KA46 4K026 AA01 AA23 BA03 BB10 CA03 DA06 DA11 5E040 AA04 AA09 AA14 AA19 BB03 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Daisuke Matsuda F-term (reference) 4M002 AA001 AC071 CC031 CD001 CE001 CG001 CL001 CN011 DC006 FB076 FB086 FD016 FD206 GQ00 4K018 BA04 BA05 BA18 BC28 BD01 KA46 4K026 AA01 AA23 BA03 BB10 CA03 DA06 DA11 5E040 AA04 AA09 AA14 AA19 BB03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機基を含まない無機燐酸金属又は該無
機燐酸金属化合物の薄膜によって表面が覆われ、且つ、
表面のpH値が間接測定で一定値以上になるように表面
処理が施された強磁性金属粉末と樹脂との複合材料であ
って、該強磁性金属粉末の表面pH値は、該強磁性金属
粉末を蒸留水に投入して攪拌し、上澄み液又は濾液のp
H値が6以上であることを特徴とする強磁性金属粉末を
配合した樹脂複合材料。
Claims: 1. An inorganic metal phosphate containing no organic group or a surface thereof is covered with a thin film of the inorganic metal phosphate compound, and
A composite material of a ferromagnetic metal powder and a resin that has been subjected to a surface treatment so that the surface pH value is equal to or higher than a certain value in an indirect measurement, wherein the surface pH value of the ferromagnetic metal powder is The powder is poured into distilled water and stirred, and the supernatant or filtrate
A resin composite material containing a ferromagnetic metal powder having an H value of 6 or more.
JP2000262322A 1999-11-09 2000-08-31 Resin composite material compounded with ferromagnetic metal powder Withdrawn JP2001200169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262322A JP2001200169A (en) 1999-11-09 2000-08-31 Resin composite material compounded with ferromagnetic metal powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31858999 1999-11-09
JP11-318589 1999-11-09
JP2000262322A JP2001200169A (en) 1999-11-09 2000-08-31 Resin composite material compounded with ferromagnetic metal powder

Publications (1)

Publication Number Publication Date
JP2001200169A true JP2001200169A (en) 2001-07-24

Family

ID=26569419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262322A Withdrawn JP2001200169A (en) 1999-11-09 2000-08-31 Resin composite material compounded with ferromagnetic metal powder

Country Status (1)

Country Link
JP (1) JP2001200169A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007521A (en) * 2000-11-13 2003-01-10 Sumitomo Metal Mining Co Ltd High weather-resistant magnet powder and magnet using the same
JP2005154676A (en) * 2003-11-28 2005-06-16 Uchiyama Mfg Corp Magnetic rubber composition
CN106191836A (en) * 2016-08-03 2016-12-07 北方工业大学 Preparation method of magnesium alloy reinforced chemical conversion film
CN106544657A (en) * 2015-09-22 2017-03-29 中国科学院宁波材料技术与工程研究所 Improve coating liquid, method and its application of material surface modifying layer performance
EP3706436B1 (en) * 2017-11-01 2023-09-27 FUJIFILM Corporation Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007521A (en) * 2000-11-13 2003-01-10 Sumitomo Metal Mining Co Ltd High weather-resistant magnet powder and magnet using the same
JP2005154676A (en) * 2003-11-28 2005-06-16 Uchiyama Mfg Corp Magnetic rubber composition
CN106544657A (en) * 2015-09-22 2017-03-29 中国科学院宁波材料技术与工程研究所 Improve coating liquid, method and its application of material surface modifying layer performance
CN106544657B (en) * 2015-09-22 2019-03-05 中国科学院宁波材料技术与工程研究所 Improve coating liquid, the method and its application of material surface modifying layer performance
CN106191836A (en) * 2016-08-03 2016-12-07 北方工业大学 Preparation method of magnesium alloy reinforced chemical conversion film
CN106191836B (en) * 2016-08-03 2018-10-23 北方工业大学 Preparation method of magnesium alloy reinforced chemical conversion film
EP3706436B1 (en) * 2017-11-01 2023-09-27 FUJIFILM Corporation Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method

Similar Documents

Publication Publication Date Title
JP5499738B2 (en) Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet
TWI363098B (en) Corrosion resistant rare earth magnets and making methods
JP7502137B2 (en) Manufacturing method of bonded magnets and compounds for bonded magnets
JP2020056101A (en) Method for producing rare earth magnetic powder
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
JP2022109276A (en) Manufacturing method of magnetic powder
JP2001200169A (en) Resin composite material compounded with ferromagnetic metal powder
JP7335515B2 (en) Manufacturing method of compound for bonded magnet
JP6780693B2 (en) Manufacturing method of bond magnets and compounds for bond magnets
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
JPH0617015B2 (en) Resin composite material containing ferromagnetic metal powder and its manufacturing method
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it
JP2006286903A (en) Method of manufacturing rare-earth bond magnet
JP2000260616A (en) Ferromagnetic fine powder for plastic magnet and resin composite material
JP4411840B2 (en) Method for producing oxidation-resistant rare earth magnet powder
JPH01102901A (en) Surface treatment of magnetic powder for nd-fe-b-based anisotropic bonded magnet
JPH06302418A (en) Bond-type permanent magnet and its manufacture
Li et al. Liquid coated melt-spun Nd–Fe–B powders for bonded magnets
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
DE10055314A1 (en) Composite material comprises a ferromagnetic metal powder surface treated such that the surface pH is increased to not below 6 and coated with a thin inorganic metal phosphate film
JP2001335802A (en) Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same
JP4433800B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JPH03181104A (en) Plastic-bonded magnet
JP2001335803A (en) Rare earth magnet alloy powder having excellent oxidation resistance and bonded magnet using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106