JPH03181104A - Plastic-bonded magnet - Google Patents

Plastic-bonded magnet

Info

Publication number
JPH03181104A
JPH03181104A JP1318821A JP31882189A JPH03181104A JP H03181104 A JPH03181104 A JP H03181104A JP 1318821 A JP1318821 A JP 1318821A JP 31882189 A JP31882189 A JP 31882189A JP H03181104 A JPH03181104 A JP H03181104A
Authority
JP
Japan
Prior art keywords
pellets
magnet
rare earth
plastic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1318821A
Other languages
Japanese (ja)
Inventor
Yoshihiko Matsuyama
松山 芳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANETSUKUSU KK
Original Assignee
KANETSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANETSUKUSU KK filed Critical KANETSUKUSU KK
Priority to JP1318821A priority Critical patent/JPH03181104A/en
Publication of JPH03181104A publication Critical patent/JPH03181104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To form a magnet of a good characteristic by mixing ferrite plastic magnet pellets and rare earth plastic magnet pellets in an arbitrary ratio and performing magnetic isotropic compression molding or magnetic anisotropic compression molding. CONSTITUTION:The surfaces of oxide magnetic particles of strontium ferrite and barium ferrite and those of rare earth magnetic particles of Sm1Co, Sm2Co17, and Nd-Fe-B are finished separately with a coupling agent and the oxide and rare earth magnetic particles are kneaded separately with thermosetting resin such as epoxy resin and phenol resin, rubber, or other resin to obtain oxide pellets and rare earth pellets. A good magnetic characteristic is obtained without reducing the oxide pellets and oxidizing the rare earth pellets by compression molding of the oxide pellets and the rare earth pellets in the ratio needed for obtaining the required magnetic characteristic.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は安債にして、従来のフェライトプラスチック磁
石と稀土類プラスチック磁石との中間の磁気特性を持た
せると同時に、フェライト磁石、N d −F c −
B fa石の温度係数を改良し、さらに温度上Ylに対
して正の温度係数を持ったアラスチ・1クボンデット磁
石の提案とR械的強度が高く、錆を生じないプラスチッ
ク磁石の提案に閏する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a bond with magnetic properties intermediate between conventional ferrite plastic magnets and rare earth plastic magnets, and at the same time, ferrite magnets, N d - Fc-
B Improve the temperature coefficient of fa stone and further propose an Araste 1-k bonded magnet that has a positive temperature coefficient with respect to Yl, and R Propose a plastic magnet that has high mechanical strength and does not cause rust. .

r従来の技術] 促東、特開昭f)2−257703で公知のよつに、フ
ェライト磁石&!粉とN d−F e −D磁石&a粉
とを直に混合し 樹脂と混練して酸形しているため、磁
気特性が効果的に得られず a械的強度も得られず、防
釣効果もない、さらに磁気温度係数の改良効果に関する
記述もないまた 時開6O−2230Q5で、すでに公
知であるようにハードフェライト&Ii粉と稀−L類=
1バルト磁石磁粉とを各々所定量計量し、ボールミルな
とで乾式混合したものを樹脂と混練しそれぞれの&ll
粉の配合比を實えることでハードフェライトの温度係数
と稀土類コバルトの温度係数の作意の中間の鉋を示すこ
とが知られている。しかし、−0,03%、/ C以下
であるOから正の温度係数を取ることはできなかった。
rPrior art] Ferrite magnet &! Since the powder and Nd-Fe-D magnet &a powder are directly mixed and kneaded with resin to form an acid form, magnetic properties cannot be effectively obtained, mechanical strength cannot be obtained, and it is difficult to prevent fishing. There is no effect, and there is no description of the effect of improving the magnetic temperature coefficient.Also, as is already known, hard ferrite & Ii powder and rare-L type = Jikai 6O-2230Q5.
1 Weigh a predetermined amount of each Baltic magnet powder, dry mix it with a ball mill, knead it with the resin, and make each &ll.
It is known that by adjusting the blending ratio of powder, it is possible to achieve a temperature coefficient that is between the temperature coefficients of hard ferrite and rare earth cobalt. However, it was not possible to obtain a positive temperature coefficient from O which was below -0.03%/C.

しかもN d−F e −B磁粉を稀土類コバルト磁石
磁粉の代わりに持ちいることは所定の温度係数のものを
安定して得ることは困難としている次に特開昭63−2
74114で公知のようにハ    ド フ ェ ラ 
イ ト 磁 石 磁 粉 と Nd−Fe−Bd磁石磁
粉と配合混合した後、フェノール樹脂と混練するという
構成で記載されている。
Moreover, using N d -F e -B magnetic powder instead of rare earth cobalt magnet powder makes it difficult to stably obtain a predetermined temperature coefficient.
74114 known as Hado Fellatio
It is described that the composition is such that after mixing the magnetic powder of the magnet and the Nd-Fe-Bd magnet, the mixture is kneaded with the phenol resin.

本山ll1名は特願紹63−200844にて、プラス
チックボンデット磁石を提案しているが、本発明は特1
1163−200844をさらに、改良して提案するも
のである。
Motoyama II proposed a plastic bonded magnet in Patent Application No. 63-200844;
1163-200844 is further improved and proposed.

[発明が解決しようとする問題点] L述のように従来は、酸化され易い稀土類磁石と酸素を
持った酸化物系磁石(ストロンチュムフェライト、バリ
ウムフェライ)とを直接に、または表面処理をする程度
で混合したt1混線するために稀土類磁石が酸化され、
性能の劣化が見られ、特開昭60−223095に述べ
られた如<、a化物系磁石の磁粉とNd−Fe1)磁石
&f!粉との混合した時、指定の温度係数のものを得る
ことがl!Iffであるとしているがこの理山がら明瞭
に理解できる。
[Problems to be Solved by the Invention] As mentioned above, in the past, rare earth magnets that are easily oxidized and oxide magnets containing oxygen (strontium ferrite, barium ferrite) were used directly or through surface treatment. Rare earth magnets are oxidized due to mixed t1 crosstalk to the extent that
A deterioration in performance was observed, as described in JP-A-60-223095. When mixed with powder, it is possible to obtain a product with a specified temperature coefficient! Although it is said that it is If, it can be clearly understood from this rationale.

F問題を解決するための手段及び作用]その解決手段と
して、酸化物系(ストロンチュムフェライト、バリウム
フェライト)と稀土類系(S mlc O%+ S m
ic 01?、 N d −F C8)とを、それぞれ
別個に、それぞれの磁粉をカンプリング剤などで表面処
理を行ない、熱硬化W:A樹脂(エポキシ樹脂、フェノ
ールvA11)ゴノ、なとの樹脂で酸化物系と稀土類系
とをそれぞれ”1rIIlIllに混練することにより
、1I11化物系、稀土類系それぞれ別個のペレットが
得られる。
Means and action for solving the F problem] As a solution, oxide-based (strontium ferrite, barium ferrite) and rare earth-based (S mlc O% + S m
ic01? , N d -F C8), each magnetic powder is subjected to surface treatment with a camping agent, etc., and then oxidized with a thermosetting W:A resin (epoxy resin, phenol vA11). Separate pellets for the 1I11 compound and the rare earth compound can be obtained by kneading the compound compound and the rare earth compound to 1rIIllIll, respectively.

圧liI成形時にこれら酸化物系ペレットと稀土類系の
ペレ・!トを必要とする磁気特性に合わせた側合で酸形
することにより、酸化物系は還元されることなく、また
稀E類系も酸化されることなく 優れた磁気特性が得ら
れる。
During pressure molding, these oxide pellets and rare earth pellets! By converting the oxide into an acid form with a side combination tailored to the required magnetic properties, excellent magnetic properties can be obtained without reducing the oxide type or oxidizing the rare E type.

さらに、この構成で混合磁石を製作すると酸化物系磁粉
と稀土類系磁粉とは直1こ接触することがなく、間に非
磁性材料である樹脂が介在することになり、永久磁石の
理論より、磁気特性が向上し、温度係数も負の値が0に
なり、さらに正の蛸までになるものと考えられる。
Furthermore, if a mixed magnet is manufactured with this configuration, the oxide magnetic powder and the rare earth magnetic powder will not come into direct contact with each other, and a resin, which is a non-magnetic material, will be interposed between them, which is based on the theory of permanent magnets. It is thought that the magnetic properties will improve, and the temperature coefficient will go from a negative value to 0, and even to a positive value.

1実施例1 酸化物系磁石〈ストロンチュムフェライト異方性磁粉)
の磁粉を05〜]、5wt%のカップリング剤にて表面
処理を行なったt14wt%のエポキシ樹脂を混合し、
混練し、ストロンチュノ、フェライトプラスチック磁石
ペレットを加工する0次に1等方性Nd−Fe−88石
磁粉(2冷薄膜型、焼結、鋳造、アトマイズ装置により
製作したもの)を0.5〜1.5wt%のカップリング
剤にて表面処理を行なったf& 、さらにもう−度05
〜1.5wt%のカップリング剤にて表面処理を繰り返
してから、4wt%のエポキシ樹脂と混合し、ll練し
、 N d−F e−Bプラスチック磁石ペレットを製
作する。
1 Example 1 Oxide magnet (strontium ferrite anisotropic magnetic powder)
05~], mixed with t14wt% epoxy resin surface treated with 5wt% coupling agent,
Knead and process strontune and ferrite plastic magnet pellets. Zero-order one isotropic Nd-Fe-88 magnet powder (2-cold thin film type, produced by sintering, casting, atomization equipment) is 0.5~ f& which was surface treated with 1.5wt% coupling agent, and furthermore -05 degree
After repeating surface treatment with ~1.5 wt% of coupling agent, it is mixed with 4 wt% of epoxy resin and kneaded to produce Nd-Fe-B plastic magnet pellets.

酸化物系磁粉のペレツト化と、稀土類系磁粉のペレット
化との順序は、いずれが、先でも何等、問題はない ) je、、ス1−ロンチュムフェライト1li7iベ
レ7トにN +1− F e  IJ &1石ベレy 
+・を10wL%20wt%、30wt%、40wt%
、50*t%60 wt% 、 70 冑t% 、so
wt χ 、’)Qwt %1 ()Owt%を加えて
混合し、異方性加熱圧縮成形して試料を製作した。
There is no problem in the order of pelletizing the oxide magnetic powder and the pelletizing the rare earth magnetic powder. e IJ & 1 stone beret y
+・10wL%20wt%, 30wt%, 40wt%
, 50*t% 60 wt% , 70 t% , so
wt χ,')Qwt%1 ()Owt% was added and mixed, and a sample was manufactured by anisotropic heating compression molding.

第114に上記力性により製作した:IC料につき、I
I Htn:1x、 IJ rを測定した語基を示す。
No. 114: Manufactured by the above-mentioned strength: per IC material, I
I Htn: 1x, indicates the base for which IJ r was measured.

こ0枯果によるとストロンチュムフェライトプラスヂI
り磁石およびN d −F c −))プラスチック磁
石それぞれ111体の場合に比較してそれぞれを混^し
 異方付加熱法線したものは、異方性ストロンチュムフ
ェライト&!!粉の磁気特性とN d −F c −D
磁粉の磁気特性との磁気相乗効果により、試料の磁気特
性が向トしていることが:2められる。さらに、温度係
数について測定した桔里を第2U4に示す。
According to this dry fruit, Strontium Ferrite Plus I
Comparing the case of 111 pieces each of plastic magnets and N d -F c -)) plastic magnets, each is mixed and the normal to the anisotropic addition heat is anisotropic strontium ferrite &! ! Magnetic properties of powder and N d -F c -D
It can be concluded that the magnetic properties of the sample are improved due to the magnetic synergistic effect with the magnetic properties of the magnetic powder. Furthermore, the temperature coefficient measured is shown in 2nd U4.

これに−)いても、異なる磁粉の効果により表れる現1
で1テスラーと10テスラーのIdi場をがけた場合、
それぞれの励&Ii&Ii場により、磁粉ベレフトの混
合割合により、文化する温度係数をホしたものである。
Even if -) is present, the effect expressed by the effect of different magnetic particles1
If we cross the Idi fields of 1 Tesla and 10 Tesla,
The temperature coefficient to be cultured is determined by the mixing ratio of magnetic particle beleft by each excitation & Ii & Ii field.

】テスラーの場合は】0テスラーの場合に比較して特性
の変動が大きく、応用範囲が広いと判断される。
] In the case of Tesler, the variation in characteristics is larger than in the case of ]0 Tesler, and it is judged that the range of applications is wider.

1−記配合の試料を&IP4をかけない等方性F〔綿成
形した場合は+A方方性圧縮層形比較して特性の効果は
少ないが同様の傾向があることが認めらhた。
When the sample with the formulation 1- was molded into isotropic F (cotton) without applying &IP4, it was found that there was a similar tendency, although the effect on properties was smaller compared to the +A isotropic compressed layer.

さらに、マトリックスellFyとして、フェノ ル樹
脂、ゴムなどを用いたときも同様の効果が得られること
が判った。
Furthermore, it has been found that similar effects can be obtained when phenol resin, rubber, etc. are used as the matrix ellFy.

また、Sm−Co系の&11粉を表面処理したtトL記
方法でペレット化したSm−Co系磁石のベレフトと 
E記方法で得られたN d −F cn&1石ペレット
と、ストロンチュムフエライト磁石ペレットおよび、ま
たはバリウムフェライト磁石ペレットとを、それぞれ任
意の配合で混合し、成形しても上記で説明したと、同様
の効果がえられることを確認している。
In addition, the Sm-Co-based magnet Bereft is made by surface-treating Sm-Co-based &11 powder and pelletizing it by the method described in t-L.
Even if the N d -F cn & 1 stone pellets obtained by method E and the strontium ferrite magnet pellets and/or the barium ferrite magnet pellets are mixed in an arbitrary composition and molded, the same results as described above will be obtained. It has been confirmed that this effect can be obtained.

次に、混合するそれぞれのペレットの比重が異なるため
 成形品に混合したそれぞれの&!粉の分散が良好でな
い4合は、それぞれの磁粉と樹脂の配合比を変化させて
、上記それぞれのペレットの比重を同一にすることで均
一な分散が得/、れた、 さらに、比重の異なるそれぞれのペレットを任意の割合
で混合し、混練したtE混合ペレットを得ることでも、
均一に分散した成形品を得ることができた。
Next, since the specific gravity of each pellet to be mixed is different, each &! For the 4 cases where the powder dispersion was not good, uniform dispersion was obtained by changing the compounding ratio of each magnetic powder and resin and making the specific gravity of each of the above pellets the same. By mixing each pellet in an arbitrary ratio to obtain kneaded tE mixed pellets,
A molded article with uniform dispersion could be obtained.

F発明の効果1 以1−の1りな方法を取ることにより、酸化物系(ハ 
ドフェライト)&1!粉と酸化され易い稀土類系&li
粉とを安定に混合し混合磁石を製作することが可能にな
った。
Effect 1 of the F invention By taking the method 1-1 below, oxide-based (hazardous)
doferrite) &1! Rare earth elements that are easily oxidized with powder
It is now possible to stably mix powder and produce mixed magnets.

その結1次のような通常の磁石には見ることができない
効果が得られた。
As a result, effects that cannot be seen with ordinary magnets such as first-order magnets were obtained.

(1)高価な稀土類系磁石に慮価な酸化物系磁石を混合
するため、混合する割合に比例して、コストが低減する
(1) Since the expensive rare earth magnet is mixed with the expensive oxide magnet, the cost is reduced in proportion to the mixing ratio.

(2)&ll粉をエポキシ樹脂がカップリング剤を介し
て強く絡み込み、磁石を破断したとき、磁粉表面で割れ
ることなく、樹脂部で割れるため、機械強度は従末品の
/1〜5倍の値を示す。
(2) The &ll powder is strongly entangled with the epoxy resin via the coupling agent, and when the magnet is broken, the magnetic powder does not break on the surface, but breaks on the resin part, so the mechanical strength is 1 to 5 times that of conventional products. indicates the value of

(3)稀土類系磁粉(特にNd−Fe−B)をカップリ
ング剤でよく処理してがら、積土M磁粉単独でエポキシ
樹脂などで混練し、よく絡み込むために錆の発生が皆無
である。
(3) Rare earth magnetic powder (particularly Nd-Fe-B) is thoroughly treated with a coupling agent, and the earthen M magnetic powder alone is kneaded with epoxy resin, etc., so that it is well entangled, so no rust occurs. be.

従来、この磁石で錆の防止のため、&l1石にした後磁
石表面に防錆処理を施していた。
Conventionally, in order to prevent rust with this magnet, the surface of the magnet was treated with anti-rust treatment after being made into 1 stone.

このため、コストが低減した。Therefore, costs were reduced.

(4)lK+化物系〈ハードフェライト)磁粉ペレット
と稀土類系磁粉ペレットとを混合する割合により、磁気
特性の温度係数が温度上昇に対してnから正まで広範囲
にコントロールできることが判った。
(4) It has been found that the temperature coefficient of magnetic properties can be controlled over a wide range from n to positive with respect to temperature rise by changing the mixing ratio of lK+ compound type (hard ferrite) magnetic powder pellets and rare earth type magnetic powder pellets.

これは、磁気バブルなどへの応用に用いられるばかりで
なく、温度上昇に対して、正の温度係数を収ることがで
きるため、モータ Q電E3種アクチエータなとの温度
補償が可能になった。
This is not only used for applications such as magnetic bubbles, but also has a positive temperature coefficient against temperature increases, making it possible to compensate for the temperature of motors such as Q-E type 3 actuators. .

(5)Fill  化 物 系  (ハ     ド 
 )  ェ  ラ  イ  ト  )磁粉  と  、
稀り類系&ll粉をそれぞれ、&l粉の種類毎に、別々
に樹脂と混合、混練し ペレット化しているため 生産
管理が容易になり、コストの低下をもたらした。
(5) Fill compound type
) ferrite ) magnetic powder and
Each type of rare &l powder is mixed with resin and kneaded into pellets for each type of &l powder, making production management easier and reducing costs.

4 、14 面ノFJ Ql−な説明 第10:i本発明による稀土類系プラスチック磁石ベレ
・7トと酸化物系プラスチック磁石へレットとを各割合
で混合 磁場中加熱圧縮成形したときのn r 、  
BHIIaxの値を示す。
4, 14 Surface FJ Ql- Explanation No. 10: i When the rare earth plastic magnet beret according to the present invention and the oxide plastic magnet heel are mixed in various proportions and heated and compression molded in a magnetic field, n r ,
Indicates the value of BHIIax.

第21’71は本発明に上る桟上類系プラスチック磁石
ペレットと酸化物系プラスチック磁石へし/とを各別n
 T混合、磁場中加熱圧縮成形したときの温度係数を示
す、さらに、励Vi&l場1テスラ の場合と、10テ
スラーの場合につき、示したものである。
No. 21'71 separates the cross-type plastic magnet pellets and oxide-based plastic magnets according to the present invention.
It shows the temperature coefficient when T-mixed and heated and compression molded in a magnetic field, and is also shown for the case of an excitation Vi & I field of 1 Tesla and 10 Tesla.

台 (!]stand (!]

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物系磁石の磁粉の表面をカップリング剤で処
理し、該表面処理させた酸化物系磁粉に熱硬化性樹脂あ
るいは、ゴムを混練し、フェライトプラスチック磁石の
ペレットを製造し、Sm−Co系磁石および、または、
Nd−FeB磁石の磁粉の表面をカップリング剤で少な
くとも1回以上処理し、乾燥する工程を繰り返し、該1
回以上表面処理された稀土類プラスチック磁石磁粉に熱
硬化性樹脂、あるいはゴムを混練し、稀土類プラスチッ
ク磁石のペレットを製造し、該フェライトプラスチック
磁石のペレットと、該稀土類プラスチック磁石ペレット
とを任意の割合に混合し、磁気等方性圧縮成形または磁
気異方性圧縮成形を行なうことを特徴とするプラスチッ
クボンデット磁石。
(1) The surface of magnetic powder of an oxide magnet is treated with a coupling agent, and the surface-treated oxide magnetic powder is kneaded with a thermosetting resin or rubber to produce pellets of ferrite plastic magnet. -Co-based magnet and/or
Treating the surface of the magnetic powder of the Nd-FeB magnet with a coupling agent at least once and repeating the drying process,
Thermosetting resin or rubber is kneaded with rare earth plastic magnet powder that has been surface-treated at least once to produce rare earth plastic magnet pellets, and the ferrite plastic magnet pellets and the rare earth plastic magnet pellets are optionally mixed. 1. A plastic bonded magnet characterized by being mixed in a proportion of 1 to 1 and subjected to magnetic isotropic compression molding or magnetic anisotropic compression molding.
(2)表面処理した磁粉と樹脂との混合割合を調節して
、該フェライトプラスチック磁石のペレットの比重と、
該稀土類プラスチック磁石ペレットの比重とを、同じに
したことを特徴とする請求項1記載のプラスックボンデ
ット磁石(3)該フェライトプラスチック磁石ペレット
と、該稀土類プラスチック磁石ペレットとを、任意の割
合で混合し、混練し、ペレットを製造する請求項2記載
のプラスチックボンデット磁石
(2) By adjusting the mixing ratio of the surface-treated magnetic powder and resin, the specific gravity of the ferrite plastic magnet pellets can be adjusted.
3. The plastic bonded magnet according to claim 1, wherein the rare earth plastic magnet pellets have the same specific gravity. The plastic bonded magnet according to claim 2, wherein the plastic bonded magnet is mixed and kneaded to produce pellets.
JP1318821A 1989-12-11 1989-12-11 Plastic-bonded magnet Pending JPH03181104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318821A JPH03181104A (en) 1989-12-11 1989-12-11 Plastic-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318821A JPH03181104A (en) 1989-12-11 1989-12-11 Plastic-bonded magnet

Publications (1)

Publication Number Publication Date
JPH03181104A true JPH03181104A (en) 1991-08-07

Family

ID=18103329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318821A Pending JPH03181104A (en) 1989-12-11 1989-12-11 Plastic-bonded magnet

Country Status (1)

Country Link
JP (1) JPH03181104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118559A (en) * 2003-10-10 2005-05-12 General Electric Co <Ge> Magnetic material, passive shim and magnetic resonance imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118559A (en) * 2003-10-10 2005-05-12 General Electric Co <Ge> Magnetic material, passive shim and magnetic resonance imaging system

Similar Documents

Publication Publication Date Title
CN105482196B (en) A kind of calendering process for improving noise suppression piece magnetic conductivity
CN101577177A (en) Method for producing sintered magnet
JPS58142916A (en) Production of friction material
JPH03181104A (en) Plastic-bonded magnet
US20220362843A1 (en) Methods of producing bonded magnet and compound for bonded magnets
JPS62152107A (en) Magnetic powder for synthetic resin magnet
EP3203486A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
JPS59135705A (en) Resin magnet material
JP2001200169A (en) Resin composite material compounded with ferromagnetic metal powder
JPH0493002A (en) Manufacture of bond magnet molding material
US3846323A (en) Process for making a permanent magnet material
KR0177365B1 (en) Method of manufacturing strontium ferrite plastic magnet
JPH02110904A (en) Resin-bonded nd-fe-b magnet
JPH0617015B2 (en) Resin composite material containing ferromagnetic metal powder and its manufacturing method
JPS60113403A (en) Manufacture of rare earth resin magnet
JPS5994406A (en) Composition of plastic magnet
KR810002082B1 (en) Magnetic powder for rubber and plastic magnet
JP2000260616A (en) Ferromagnetic fine powder for plastic magnet and resin composite material
JP2017155259A (en) Method for producing iron-based alloy fine powder containing rare earth element
CN103329222A (en) Bonded magnet and motor provided with same
JPH03222303A (en) Corrosion-preventing method for plastic bonded magnet
JP2000100611A (en) Bond magnet composition, bond magnet, manufacture thereof and accessories
JPS63293806A (en) Manufacture of compound magnet
JP2719792B2 (en) Manufacturing method of composite magnet
JPH06318511A (en) High rust-proof rare earth metal bond magnet