JP2002363607A - Rare earth based magnetic powder, its manufacturing method, and magnet using the same - Google Patents

Rare earth based magnetic powder, its manufacturing method, and magnet using the same

Info

Publication number
JP2002363607A
JP2002363607A JP2001177844A JP2001177844A JP2002363607A JP 2002363607 A JP2002363607 A JP 2002363607A JP 2001177844 A JP2001177844 A JP 2001177844A JP 2001177844 A JP2001177844 A JP 2001177844A JP 2002363607 A JP2002363607 A JP 2002363607A
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
earth magnetic
weight
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001177844A
Other languages
Japanese (ja)
Inventor
Atsushi Kawamoto
淳 川本
Koichi Yokozawa
公一 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001177844A priority Critical patent/JP2002363607A/en
Publication of JP2002363607A publication Critical patent/JP2002363607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare rare earth based magnetic powder with which corrosion resistance and weather resistance can be improved without deteriorating magnetic properties and also a bonded magnet, or the like, can be manufactured easily and efficiently without increasing the thickness of an oxidation-resistant film on the surface of the magnetic powder and further time deteriorations under its actual-use environment can be reduced, to provide its manufacturing method, and a magnet using the same. SOLUTION: The rare earth based magnetic powder is composed of an alloy or an intermetallic compound containing one or more kinds selected among rare-earth elements and one or more transition-metal elements selected from the group consisting of Fe, Co, Ni and Mn, and further, at least >=80% of the surface of the particle of this magnetic powder is coated with an aluminum oxide film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類系磁性粉
末、その製造方法及びこれを用いた磁石に関し、更に詳
しくは、磁気特性を低下させずに、耐食耐候性を向上で
き、磁性粉末表面の耐酸化性被膜を厚くせずに、簡単か
つ効率的にボンド磁石等が製造でき、かつその実用環境
下での経時劣化を低減することのできる希土類系磁性粉
末、その製造方法及びこれを用いた磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare-earth magnetic powder, a method for producing the same, and a magnet using the same. A rare earth magnetic powder capable of easily and efficiently producing a bonded magnet or the like without increasing the thickness of the oxidation-resistant coating, and capable of reducing deterioration over time in a practical environment, a method for producing the same, and a method for producing the same. About magnets.

【0002】[0002]

【従来技術】希土類磁石は、高磁気特性を有するため、
従来よりも形状を著しく小型化でき、今日では音響機
器、OA機器などエレクトロニクス製品に組み込む部品
として欠かせない材料となっている。特に、希土類ボン
ド磁石は、優れた形状加工性を有するだけでなく、薄肉
微小成形が可能なことから、年々、その用途を拡大させ
ている。代表的な希土類ボンド磁石材料として、SmC
o系、NdFeB系、及びSmFeN系などの材料が知
られている。しかし、これらの希土類磁石は、希土類元
素を成分とするため、空気中の酸素によって酸化されや
すい欠点があり、使用環境に長期間置かれた場合に、そ
の特性が徐々に低下するという問題があった。
2. Description of the Related Art Rare earth magnets have high magnetic properties.
The shape can be remarkably reduced as compared with the conventional one, and today it is an indispensable material as a component to be incorporated in electronic products such as audio equipment and OA equipment. In particular, rare-earth bonded magnets have been expanding their applications year by year because they have not only excellent shape workability but also enable thin-walled minute molding. A typical rare earth bonded magnet material is SmC
Materials such as o-based, NdFeB-based, and SmFeN-based are known. However, since these rare earth magnets contain a rare earth element as a component, they have a drawback that they are easily oxidized by oxygen in the air. Was.

【0003】このような希土類磁石の特性を改善し、使
用環境で酸素や水分への耐久性(耐酸化性、耐食性、或
いは耐食耐候性などという)を向上させるために、磁石
又はその磁性粉末の表面を様々な手段で処理する方法が
検討されている。例えば、特開昭62−152107号
公報では、希土類元素を含有する合成樹脂磁石用磁性粉
末の表面に、無水ケイ酸又はケイ酸塩の被膜を設けるこ
とによって、耐酸化性に優れ、比較的高温の環境下でも
磁気特性の低下を抑制しようとする手段が開示されてい
る。また、特開平2−265222号公報には、希土類
系磁石粉末に、亜鉛系金属及びシリカ粉を機械的に被着
させることで、耐食性を高めた高耐食性希土類系ボンド
磁石が開示されている。
[0003] In order to improve the characteristics of such rare earth magnets and to improve the durability against oxygen and moisture (referred to as oxidation resistance, corrosion resistance, or weather resistance) in a use environment, a magnet or its magnetic powder is used. Methods for treating the surface by various means are being studied. For example, in Japanese Patent Application Laid-Open No. Sho 62-152107, by providing a silicic acid anhydride or silicate coating on the surface of a magnetic powder for a synthetic resin magnet containing a rare earth element, it is excellent in oxidation resistance and relatively high temperature. Under these circumstances, means for suppressing a decrease in magnetic properties is disclosed. Japanese Patent Application Laid-Open No. 2-265222 discloses a highly corrosion-resistant rare earth-based bonded magnet having improved corrosion resistance by mechanically applying a zinc-based metal and a silica powder to a rare-earth-based magnet powder.

【0004】更に、特開平3−280404号公報に
は、磁石の表面に無機質微粒子が分散したガラス被覆を
設けることで、希土類−Fe−B系永久磁石の耐食性を
改善する方法が記載されている。該微粒子は分散材とし
て用いられ、フレーク状ステンレス鋼粉、鉛丹、亜酸化
鉛、シアナミド鉛、塩基性クロム酸鉛、ジンククロメー
ト、カーボンブラック、亜鉛華、酸化鉄、アルミナ及び
チタニアなどの耐酸化性物質、不透過性物質及び磁石表
面を不働態化する酸化剤などが例示されている。この方
法では、樹脂結合型磁石の表面に、比較的厚いガラス被
覆を設けることで、耐食性を改善しようとしているが、
磁石粉末への適用については記載がない。また、特開平
8−111306号公報には、エチルシリケートを用い
たゾル・ゲル反応、又はプラズマ化学蒸着法で、Nd−
Fe−B系磁石粉末表面に二酸化ケイ素の保護被膜を設
けることにより、耐食性の優れたボンド磁石粉末を得る
方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 3-280404 describes a method for improving the corrosion resistance of a rare earth-Fe-B-based permanent magnet by providing a glass coating in which inorganic fine particles are dispersed on the surface of a magnet. . The fine particles are used as a dispersant, and are resistant to oxidation such as flake stainless steel powder, lead tin, lead suboxide, cyanamide lead, basic lead chromate, zinc chromate, carbon black, zinc white, iron oxide, alumina, and titania. Examples include a permeable material, an impermeable material, and an oxidizing agent for passivating the magnet surface. This method attempts to improve the corrosion resistance by providing a relatively thick glass coating on the surface of the resin-bound magnet.
There is no description about application to magnet powder. Also, Japanese Patent Application Laid-Open No. H08-111306 discloses that a sol-gel reaction using ethyl silicate or a plasma
A method for obtaining a bonded magnet powder having excellent corrosion resistance by providing a protective coating of silicon dioxide on the surface of an Fe-B-based magnet powder is disclosed.

【0005】しかしながら、これら希土類系磁性粉末や
磁石の表面に、ガラスなどSi系の酸化膜を被覆する方
法では、(1)被覆や表面処理によって、磁性粉末がも
つ微細組織が変化してしまい磁気特性が低下する、
(2)被覆効果を十分発揮させるには、酸化膜を厚くし
なければならず、磁石の体積率が低下して、磁気特性が
大幅に低下する、(3)被覆や表面処理の工程が複雑で
あり、効率的ではない、などの問題点が指摘されてい
た。
However, in the method of coating the surface of the rare-earth magnetic powder or magnet with a Si-based oxide film such as glass, (1) the fine structure of the magnetic powder changes due to the coating or surface treatment, and the magnetic properties are changed. Characteristics deteriorate,
(2) In order to sufficiently exert the coating effect, the oxide film must be thickened, and the volume ratio of the magnet is reduced, and the magnetic characteristics are significantly reduced. (3) The process of coating and surface treatment is complicated However, problems such as inefficiency were pointed out.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前述
した従来技術の問題点に鑑み、磁気特性を低下させず
に、耐食耐候性を向上でき、磁性粉末表面の耐酸化性被
膜を厚くせずに、簡単かつ効率的にボンド磁石等が製造
でき、かつその実用環境下での経時劣化を低減すること
のできる希土類系磁性粉末、及びその製造方法、更には
これを用いた磁石を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve corrosion resistance and weather resistance without deteriorating magnetic properties and to increase the thickness of an oxidation-resistant coating on the surface of a magnetic powder in view of the above-mentioned problems of the prior art. Rare earth magnetic powder capable of easily and efficiently producing bonded magnets and the like and capable of reducing deterioration over time in a practical environment, and a method for producing the same, and a magnet using the same. Is to do.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、希土類系磁性粉末
の粒子表面を酸化アルミニウム膜で実質的に被覆する
と、経時劣化が著しく減少した磁性粉末が得られること
を見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, when the particle surface of the rare earth magnetic powder is substantially covered with an aluminum oxide film, the deterioration with time is remarkable. The inventors have found that reduced magnetic powder can be obtained, and have completed the present invention.

【0008】即ち、本発明の第1の発明によれば、希土
類元素から選択される1種又は2種以上と、Fe,C
o,Ni及びMnからなる群から選択される1種又は2
種以上の遷移金属元素とを含有する合金或いは金属間化
合物からなる希土類系磁性粉末において、該磁性粉末の
粒子表面の少なくとも80%以上が酸化アルミニウム膜
で覆われていることを特徴とする希土類系磁性粉末が提
供される。
That is, according to the first aspect of the present invention, one or more kinds selected from rare earth elements and Fe, C
one or two selected from the group consisting of o, Ni and Mn
A rare earth magnetic powder comprising an alloy or an intermetallic compound containing at least one or more transition metal elements, wherein at least 80% or more of the particle surface of the magnetic powder is covered with an aluminum oxide film. A magnetic powder is provided.

【0009】また、本発明の第2の発明によれば、第1
の発明において、希土類系磁性粉末の粒子表面を覆う酸
化アルミニウム膜の厚みが、5〜500nmであること
を特徴とする希土類系磁性粉末が提供される。
Further, according to the second aspect of the present invention, the first aspect
In the invention, a rare earth magnetic powder is provided, wherein the thickness of the aluminum oxide film covering the particle surface of the rare earth magnetic powder is 5 to 500 nm.

【0010】また、本発明の第3の発明によれば、第1
の発明において、希土類系磁性粉末の平均粒径が、1〜
10μmであることを特徴とする希土類系磁性粉末が提
供される。
According to the third aspect of the present invention, the first aspect is provided.
In the invention, the average particle size of the rare earth magnetic powder is 1 to
A rare earth magnetic powder having a thickness of 10 μm is provided.

【0011】また、本発明の第4の発明によれば、第1
の発明において、希土類元素が、Sm又はNdのいずれ
かであることを特徴とする希土類系磁性粉末が提供され
る。
According to the fourth aspect of the present invention, the first aspect is provided.
The present invention provides a rare earth magnetic powder, wherein the rare earth element is either Sm or Nd.

【0012】さらに、本発明の第5の発明によれば、第
1の発明において、希土類元素の含有量が、20〜50
重量%であることを特徴とする希土類系磁性粉末が提供
される。
Further, according to a fifth aspect of the present invention, in the first aspect, the content of the rare earth element is from 20 to 50.
The rare earth magnetic powder is provided by weight.

【0013】一方、本発明の第6の発明によれば、第1
又は第2の発明において、希土類元素から選択される1
種又は2種以上と、Fe,Co,Ni及びMnからなる
群から選択される1種又は2種以上の遷移金属元素とを
含有する合金或いは金属間化合物からなる希土類系磁性
粉末に、アルミニウムアルコキシドを添加、混合し、水
を加えて加水分解した後、加熱することにより、該磁性
粉末の粒子表面を酸化アルミニウム膜で覆うことを特徴
とする希土類系磁性粉末の製造方法が提供される。
On the other hand, according to the sixth aspect of the present invention, the first aspect
Or, in the second invention, 1 selected from rare earth elements
A rare earth magnetic powder made of an alloy or an intermetallic compound containing one or more kinds of transition metal elements and one or more kinds of transition metal elements selected from the group consisting of Fe, Co, Ni and Mn; Is added and mixed, water is added thereto, and the mixture is hydrolyzed and heated, whereby the surface of the particles of the magnetic powder is covered with an aluminum oxide film, thereby providing a method for producing a rare earth magnetic powder.

【0014】また、本発明の第7の発明によれば、第6
の発明において、アルミニウムアルコキシドが、希土類
系磁性粉末100重量部に対して0.1〜30重量部添
加されることを特徴とする希土類系磁性粉末の製造方法
が提供される。
According to a seventh aspect of the present invention, the sixth aspect is provided
The present invention provides a method for producing a rare earth magnetic powder, wherein 0.1 to 30 parts by weight of aluminum alkoxide is added to 100 parts by weight of the rare earth magnetic powder.

【0015】更に、本発明の第8の発明によれば、第6
の発明において、水が、希土類系磁性粉末とアルミニウ
ムアルコキシドの混合物に対して、該アルミニウムアル
コキシドの加水分解に必要とされる理論量の0.1〜1
00倍、加えられることを特徴とする希土類系磁性粉末
の製造方法が提供される。
Further, according to the eighth invention of the present invention, the sixth invention
In the invention, water is added to a mixture of the rare earth magnetic powder and the aluminum alkoxide in an amount of 0.1 to 1 of a stoichiometric amount required for hydrolysis of the aluminum alkoxide.
The present invention provides a method for producing a rare earth magnetic powder, which is added by a factor of 00.

【0016】一方、本発明の第9の発明によれば、第1
又は2の発明において、希土類系磁性粉末を、射出成形
法、圧縮成形法、押出成形法、または圧延成形法から選
ばれる少なくとも1種の成形法により成形してなる磁石
が提供される。
On the other hand, according to the ninth aspect of the present invention, the first
According to the second aspect of the present invention, there is provided a magnet formed by molding a rare earth magnetic powder by at least one molding method selected from an injection molding method, a compression molding method, an extrusion molding method, and a rolling molding method.

【0017】[0017]

【発明実施の形態】以下、本発明の希土類系磁性粉末、
その製造方法及びこれを用いた磁石について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a rare earth magnetic powder of the present invention,
The manufacturing method and the magnet using the same will be described in detail.

【0018】1.希土類系磁性粉末 本発明において対象とする希土類系磁性粉末は、組成中
に希土類元素から選択される1種又は2種以上の元素
と、Fe,Co,Ni及びMnからなる群から選択され
る1種又は2種以上の元素を含有する合金または金属間
化合物からなる希土類系磁性粉末である。
1. Rare earth magnetic powder The rare earth magnetic powder targeted in the present invention is one or more elements selected from rare earth elements in the composition and one selected from the group consisting of Fe, Co, Ni and Mn. Rare earth magnetic powder composed of an alloy or an intermetallic compound containing one or more kinds of elements.

【0019】希土類系磁性粉末の平均粒径は、1〜50
μmであることが必要である。好ましい平均粒径は2〜
30μm、さらに好ましくは3〜10μmである。1μ
m未満では磁石の活性が増大し、発火等の問題が生じや
すくなるため好ましくなく、逆に、50μmを超えると
粒子表面が酸化アルミニウム膜で覆われない部分が増
え、使用環境において、水分や酸素などを満足に遮断で
きない。
The average particle size of the rare earth magnetic powder is 1 to 50.
It needs to be μm. Preferred average particle size is 2 to
It is 30 μm, more preferably 3 to 10 μm. 1μ
If the particle size is less than 50 μm, the activity of the magnet is increased, and problems such as ignition are likely to occur. Cannot be shut off satisfactorily.

【0020】希土類元素としては、La,Ce,Gd,
Tb,Dy,Ho,Er,Sm,Nd,Pr及びYのい
ずれか1種、又は2種以上を組み合わせて使用する。好
ましい希土類元素は、Sm又はNdのいずれかである。
希土類元素の含有量は、20〜50重量%であり、特に
30〜40重量%であることが好ましい。
The rare earth elements include La, Ce, Gd,
Any one of Tb, Dy, Ho, Er, Sm, Nd, Pr and Y is used, or two or more are used in combination. Preferred rare earth elements are either Sm or Nd.
The content of the rare earth element is 20 to 50% by weight, particularly preferably 30 to 40% by weight.

【0021】遷移金属元素としては、Fe,Co,Ni
及びMnからなる群から選択される1種又は2種以上で
あって、これら以外にCr,V及びCuのいずれかを含
有してもよい。特に好ましい遷移金属元素は、Fe又は
Coのいずれかである。これら希土類元素と遷移金属元
素とが合金化し、或いはZr,Ga,Si,C、N又は
Bのいずれかを含有した元素と金属間化合物を形成する
ことで磁力が発生する。希土類元素と、遷移金属元素の
含有割合は重量比で、1〜5:9〜5、特に2〜4:8
〜6が好ましい。
The transition metal elements include Fe, Co, Ni
And one or more selected from the group consisting of Mn and Mn, and may further contain any of Cr, V and Cu. Particularly preferred transition metal elements are either Fe or Co. A magnetic force is generated by alloying the rare earth element and the transition metal element or by forming an intermetallic compound with an element containing any of Zr, Ga, Si, C, N or B. The content ratio of the rare earth element to the transition metal element is 1 to 5: 9 to 5, particularly 2 to 4: 8, by weight.
To 6 are preferable.

【0022】本発明で最大の特徴点は、これら希土類系
磁性粒子表面の少なくとも80%以上が、酸化アルミニ
ウム膜で覆われていることである。被覆状態は、該磁性
粉末の粒子を切断し、その断面を透過電子顕微鏡で観察
し、該粒子表面の外周(全長)と、酸化アルミニウム膜
で被覆された部分(被覆長さ)を計測し、その割合を計
算する(以下、これを被覆率と呼ぶことにする)。試料
となる粒子は、任意の箇所(略中央部が最適である)
を、FIB(フォーカスド・イオン・ビーム)を用い、
例えば、厚さ0.1μm程度の薄片状に加工する。な
お、複数の粒子が凝集体を形成している場合は、その凝
集体を構成している1次粒子の周囲を透過電子顕微鏡で
計測し、その平均値を被覆率とする。
The greatest feature of the present invention is that at least 80% or more of the surface of the rare earth magnetic particles is covered with an aluminum oxide film. The coated state is obtained by cutting the particles of the magnetic powder, observing the cross section with a transmission electron microscope, measuring the outer periphery (full length) of the particle surface, and the portion (coated length) covered with the aluminum oxide film, The ratio is calculated (hereinafter, this will be referred to as coverage). Sample particles can be placed at any location (approximately the center is optimal)
Using FIB (focused ion beam)
For example, it is processed into a flake shape having a thickness of about 0.1 μm. When a plurality of particles form an aggregate, the periphery of the primary particles constituting the aggregate is measured with a transmission electron microscope, and the average value is defined as the coverage.

【0023】本発明において、希土類系磁性粉末に耐食
耐候性を付与するには、該磁性粉末への酸化アルミニウ
ム膜の被覆率を80%以上とすることが必要である。好
ましくは被覆率83%以上、特に90%以上であり、磁
性粉末を実質的完全に被覆してしまうことが望ましい。
被覆率が80%未満であると、粒子表面が十分に覆われ
ていないために、水分、酸素などを遮断できず、磁性粉
末だけでなく、これを成形してボンド磁石とした場合
も、経時劣化が大きくなるという問題が生じる。一方、
被覆率が97%を超えると、耐食耐候性は十分確保され
るが、酸化アルミニウム膜が厚くなりすぎて、磁気特性
の低下を招く場合がある。
In the present invention, in order to impart corrosion resistance and weather resistance to the rare earth magnetic powder, it is necessary that the coverage of the magnetic powder with the aluminum oxide film is 80% or more. The coverage is preferably 83% or more, particularly 90% or more, and it is desirable that the magnetic powder be substantially completely covered.
If the coverage is less than 80%, the surface of the particles is not sufficiently covered, so that moisture, oxygen and the like cannot be blocked. There is a problem that deterioration is increased. on the other hand,
When the coverage exceeds 97%, the corrosion resistance and weather resistance are sufficiently ensured, but the aluminum oxide film becomes too thick, which may cause a decrease in magnetic properties.

【0024】前記希土類系磁性粉末の粒子表面を被覆す
る酸化アルミニウム膜は、5〜500nmの厚みであ
る。厚みは5〜250nm、特に5〜100nmである
ことが望ましい。厚みが5nm未満では耐食耐候性の改
善が顕著でなく、一方、500nmを超えると、磁石の
体積率が低下して、磁気特性は大幅に低下してしまう。
本発明の希土類系磁性粉末は、その粒子表面を酸化アル
ミニウム膜によって、上記厚みで被覆するため、実用環
境で保管、又は使用中に割れ、裂孔等が生じにくいとい
う特徴を有する。
The aluminum oxide film covering the surface of the rare earth magnetic powder has a thickness of 5 to 500 nm. It is desirable that the thickness be 5 to 250 nm, particularly 5 to 100 nm. When the thickness is less than 5 nm, the improvement in corrosion resistance and weather resistance is not remarkable. On the other hand, when the thickness exceeds 500 nm, the volume ratio of the magnet is reduced, and the magnetic properties are significantly reduced.
The rare earth magnetic powder of the present invention is characterized in that the surface of the particles is covered with the aluminum oxide film with the above-mentioned thickness, so that cracks, cracks and the like hardly occur during storage or use in a practical environment.

【0025】2.希土類系磁性粉末の製造方法 本発明の希土類系磁性粉末は、原料となる該磁性粉末に
アルミニウムアルコキシドを添加、混合し、水で加水分
解して、該磁性粉末の粒子表面を酸化アルミニウム膜で
被覆して製造する。
2. Method for producing rare earth magnetic powder The rare earth magnetic powder of the present invention is obtained by adding an aluminum alkoxide to the magnetic powder as a raw material, mixing and hydrolyzing with water, and coating the particle surface of the magnetic powder with an aluminum oxide film. To manufacture.

【0026】原料となる希土類系磁性粉末は、SmCo
系、NdFeB系、SmFeN系などの磁性粉末であ
る。これら磁性粉末は、製造法によって粉砕磁性粉末、
液体急冷法による等方性磁性粉末、水素処理による異方
性磁性粉末などに分類される。希土類系磁性粉末を得る
方法は、特に限定されないが、SmFeN系粉末であれ
ば、高周波溶解法により鋳造したSmFe合金(Sm:
25重量%)を、アルゴンや窒素などの不活性ガス雰囲
気下、1000〜1200℃、20〜30時間熱処理
し、20〜60μmに粉砕した後、不活性ガス雰囲気
下、60〜80時間、400〜500℃で熱処理して、
これを粉砕すれば得ることができる。
The rare earth magnetic powder used as a raw material is SmCo
, NdFeB and SmFeN magnetic powders. These magnetic powders are pulverized magnetic powder,
It is classified into isotropic magnetic powder by liquid quenching method and anisotropic magnetic powder by hydrogen treatment. The method for obtaining the rare-earth magnetic powder is not particularly limited, but if it is an SmFeN-based powder, an SmFe alloy (Sm:
25% by weight) under an inert gas atmosphere such as argon or nitrogen at 1000 to 1200 ° C. for 20 to 30 hours, pulverize to 20 to 60 μm, and then under an inert gas atmosphere for 60 to 80 hours at 400 to 400 μm. Heat-treated at 500 ° C,
It can be obtained by grinding this.

【0027】アルミニウムアルコキシドとしては、特に
限定されず、アルミニウムエトキサイド、アルミニウム
イソプロピレート、アルミニウムイソプロピレートモノ
セカンダリーブチレート、アルミニウムセカンダリーブ
チレートなど公知の化合物が使用できる。なかでも、反
応速度、取扱い易さなどの観点から、アルミニウムイソ
プロピレート、アルミニウムイソプロピレートモノセカ
ンダリーブチレートが好ましい。アルミニウムアルコキ
シドは、アルコール(例えばエタノール、イソプロパノ
ール、ブタノ−ルなど)溶液として使用するのが便利で
ある。
The aluminum alkoxide is not particularly limited, and known compounds such as aluminum ethoxide, aluminum isopropylate, aluminum isopropylate monosecondary butyrate and aluminum secondary butylate can be used. Among them, aluminum isopropylate and aluminum isopropylate monosecondary butyrate are preferred from the viewpoints of reaction rate, ease of handling, and the like. The aluminum alkoxide is conveniently used as an alcohol (eg, ethanol, isopropanol, butanol, etc.) solution.

【0028】磁石粉末をアルミニウムアルコキシドのア
ルコール溶液に添加、混合し、一定時間攪拌する。混合
物が均一な溶液を形成してから、該磁性粉末に対して一
定量の水を加えて攪拌を続け、不活性ガス中、あるいは
真空中で加熱、乾燥する。アルミニウムアルコキシド
は、アルミニウムアルコキシドの種類にもよるが、希土
類系磁性粉末100重量部に対して、0.1〜30重量
部、好ましくは0.2〜20重量部の範囲内で添加する
ことが好ましい。0.1重量部未満では、被覆率が80
%以下となり耐食耐候性の改善効果が不十分であり、3
0重量部を超えると磁気特性が大きく低下する。
The magnet powder is added to an alcohol solution of aluminum alkoxide, mixed and stirred for a certain time. After the mixture forms a uniform solution, a certain amount of water is added to the magnetic powder, stirring is continued, and the powder is heated and dried in an inert gas or in a vacuum. The aluminum alkoxide is added in an amount of 0.1 to 30 parts by weight, preferably 0.2 to 20 parts by weight, based on 100 parts by weight of the rare earth magnetic powder, depending on the type of the aluminum alkoxide. . If the amount is less than 0.1 part by weight, the coverage is 80%.
% Or less, and the effect of improving corrosion resistance and weather resistance is insufficient.
If the amount exceeds 0 parts by weight, the magnetic properties are greatly reduced.

【0029】水は、希土類系磁性粉末とアルミニウムア
ルコキシド溶液の混合物に対し、該アルミニウムアルコ
キシドの加水分解に必要とされる理論量の0.1〜10
0倍、好ましくは0.3〜80倍、更に好ましくは0.
5〜40倍、加える。水の理論量は、磁性粉末100重
量部に対して、水0.001〜100重量部に相当す
る。水を理論量の0.1倍未満添加しても、磁性粉末へ
の酸化アルミニウム膜が薄く、被覆率が80%に達しな
いので、所望の耐食耐候性が得られない。また、水が理
論量の100倍を超えると、磁性粒子表面に、酸化アル
ミニウムが粒子として孤立、偏在する割合が多くなり、
良好な被膜を形成しにくい。
Water is added to a mixture of the rare earth magnetic powder and the aluminum alkoxide solution at a stoichiometric amount of 0.1 to 10 which is required for the hydrolysis of the aluminum alkoxide.
0 times, preferably 0.3 to 80 times, more preferably 0.1 times.
Add 5 to 40 times. The theoretical amount of water corresponds to 0.001 to 100 parts by weight of water with respect to 100 parts by weight of the magnetic powder. Even if water is added less than 0.1 times the theoretical amount, the aluminum oxide film on the magnetic powder is thin and the coverage does not reach 80%, so that desired corrosion resistance and weather resistance cannot be obtained. Further, when the amount of water exceeds 100 times the theoretical amount, the ratio of aluminum oxide isolated and unevenly distributed as particles on the surface of the magnetic particles increases,
It is difficult to form a good coating.

【0030】撹拌時間は、希土類系磁性粉末、アルミニ
ウムアルコキシドが充分均一に混合できる時間とし、通
常は1〜60分で、好ましくは3〜10分とする。加水
分解の際も同様である。撹拌装置は、特に限定されず、
例えば、リボンブレンダー、タンブラー、ナウターミキ
サー、ヘンシェルミキサー、スーパーミキサー、プラネ
タリーミキサー等の混合機、およびバンバリーミキサ
ー、ニーダー、ロール、ニーダールーダー、単軸押出
機、二軸押出機等の混練機を使用すればよい。
The stirring time is such that the rare earth magnetic powder and the aluminum alkoxide can be sufficiently uniformly mixed, and is usually 1 to 60 minutes, preferably 3 to 10 minutes. The same applies to the hydrolysis. The stirrer is not particularly limited,
For example, mixers such as ribbon blenders, tumblers, Nauter mixers, Henschel mixers, super mixers, planetary mixers, and kneaders such as Banbury mixers, kneaders, rolls, kneader ruders, single screw extruders, and twin screw extruders. Just use it.

【0031】磁性粉末の粒子表面が酸化アルミニウム膜
で覆われたことを確認して、最後に、100〜300
℃、好ましくは120〜180℃の温度に加熱し、磁性
粉末からアルコール、水などが揮発、蒸発して実質的に
除去されるまで乾燥する。この場合、前記と同様に窒
素、アルゴンなど不活性ガス雰囲気、あるいは真空中で
処理すれば効果的である。
After confirming that the particle surface of the magnetic powder was covered with the aluminum oxide film, finally, 100 to 300
The magnetic powder is dried until the alcohol, water and the like are volatilized and evaporated from the magnetic powder to be substantially removed. In this case, it is effective to perform the treatment in an atmosphere of an inert gas such as nitrogen or argon or in a vacuum as described above.

【0032】3.磁石 粒子表面が酸化アルミニウム膜で覆われた希土類系磁性
粉末は、各種磁石の製造、特にボンド磁石の製造にとっ
て好適な材料となる。該磁性粉末は熱可塑性樹脂、熱硬
化性樹脂、又はゴムと混合され、この混合物は射出成形
法、圧縮成形法、押出成形法、または圧延成形法から選
ばれる少なくとも1種の成形法により成形される。熱可
塑性樹脂としては、ナイロン、ポリエチレンテレフタレ
ート、ポリエチレン或いはポリフェニレンサルファイド
など、熱硬化性樹脂としては、エポキシ、不飽和ポリエ
ステル或いはビスマレイミド・トリアジンなど、ゴムと
しては、ニトリルゴム、ブチルゴムなどの合成ゴムが挙
げられる。希土類系磁性粉末の樹脂組成物には、必要に
より、希釈剤、変性剤、滑剤などを配合でき、用途に応
じた磁石製品を得ることが可能である。
3. Magnets Rare earth magnetic powders whose particle surfaces are covered with an aluminum oxide film are suitable materials for the production of various magnets, especially for the production of bonded magnets. The magnetic powder is mixed with a thermoplastic resin, a thermosetting resin, or rubber, and the mixture is molded by at least one molding method selected from an injection molding method, a compression molding method, an extrusion molding method, or a roll molding method. You. As the thermoplastic resin, nylon, polyethylene terephthalate, polyethylene or polyphenylene sulfide, etc., as the thermosetting resin, epoxy, unsaturated polyester or bismaleimide / triazine, etc., as the rubber, nitrile rubber, synthetic rubber such as butyl rubber, etc. Can be The resin composition of the rare earth magnetic powder can contain a diluent, a modifying agent, a lubricant, and the like, if necessary, so that a magnet product suitable for the intended use can be obtained.

【0033】希土類系磁性粉末を熱可塑性樹脂又はゴム
と混合し、これを射出成形法或いは圧延成形法により成
形し、また、希土類系磁性粉末を熱硬化性樹脂と混合
し、これを圧縮成形すればボンド磁石(可撓性ゴム磁石
ともいう)が製造できる。ボンド磁石では、カップリン
グ剤を用いて、予め磁性粉末の表面を処理する場合があ
り、本発明においても、かかるカップリング処理を行な
うことができる。
The rare-earth magnetic powder is mixed with a thermoplastic resin or rubber and molded by an injection molding method or a rolling molding method. The rare-earth magnetic powder is mixed with a thermosetting resin and compressed and molded. For example, a bonded magnet (also called a flexible rubber magnet) can be manufactured. In a bonded magnet, the surface of the magnetic powder may be treated in advance using a coupling agent. In the present invention, such a coupling treatment can be performed.

【0034】[0034]

【実施例】以下、本発明の具体的な構成を実施例により
詳しく説明するが、本発明はこれら実施例により何ら限
定されるものではない。なお、実施例、比較例における
測定は下記の方法に依った。
EXAMPLES Hereinafter, the specific structure of the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In addition, the measurement in the Example and the comparative example was based on the following method.

【0035】[1.酸化アルミニウム膜による被覆率]
酸化アルミニウム膜で被覆された希土類磁性粉末の粒
子を、イオンビーム(FIB)によって切断し、これを
透過電子顕微鏡で観察し、薄片状となった粒子表面の外
周(全長)、及び酸化アルミニウム膜で被覆された部分
(被覆長さ)を測定し、これらの数値から酸化アルミニ
ウム膜の被覆率を計算した。
[1. Coverage by aluminum oxide film]
The particles of the rare earth magnetic powder coated with the aluminum oxide film are cut by an ion beam (FIB), and observed by a transmission electron microscope. The coated portion (coating length) was measured, and the coverage of the aluminum oxide film was calculated from these values.

【0036】[2.磁気特性評価] 希土類磁性粉末を
試料とし、チオフィー型自記磁束計を用いて、常温で磁
気特性を測定した。この試料を80℃、90%RHの恒
温恒湿槽に24時間保持した後、同様にして常温で磁気
特性を測定した。
[2. Evaluation of Magnetic Properties] Rare earth magnetic powders were used as samples, and magnetic properties were measured at room temperature using a thiophy-type self-recording magnetometer. After keeping this sample in a constant temperature and humidity chamber of 80 ° C. and 90% RH for 24 hours, the magnetic properties were measured at room temperature in the same manner.

【0037】(実施例1)平均粒径約4μmのSmFe
N磁性粉末を原料として、これに10重量%アルミニウ
ムイソプロピレートのアルコール溶液(イソプロパノー
ル)を、溶液中のアルミニウムイソプロピレートが磁性
粉末に対して3重量部となるように定量、混合し、ミキ
サーで5分攪拌した。原料としたSmFeN磁性粉末
は、高周波溶解により鋳造したSmFe(Sm:25重
量%)合金に、アルゴンガス雰囲気下、1100℃で2
4時間の熱処理を行い、20〜60μmに粉砕後、窒素
ガス雰囲気下、480℃で72時間熱処理し、粉砕した
SmFeN粉末を用いた。撹拌後、磁性粉末100重量
部に対して水を1重量部の割合で加え、さらに5分間攪
拌した後、窒素中、150℃で乾燥した。得られた試料
の粒子断面を、透過電子顕微鏡で観察し、酸化アルミニ
ウム膜による被覆状態を計測し、被覆率を計算した。ま
た、試料の磁気特性の変化を測定した。その結果を表1
に示す。
Example 1 SmFe having an average particle size of about 4 μm
Using N magnetic powder as a raw material, an alcohol solution (isopropanol) of 10% by weight of aluminum isopropylate was quantified and mixed with the magnetic powder so that the amount of aluminum isopropylate in the solution was 3 parts by weight with respect to the magnetic powder. Minutes. The SmFeN magnetic powder used as a raw material was added to an SmFe (Sm: 25% by weight) alloy cast by high frequency melting at 1100 ° C. in an argon gas atmosphere.
Heat treatment was performed for 4 hours, and after pulverizing to 20 to 60 μm, heat treatment was performed at 480 ° C. for 72 hours in a nitrogen gas atmosphere, and the pulverized SmFeN powder was used. After stirring, water was added at a ratio of 1 part by weight to 100 parts by weight of the magnetic powder, and the mixture was further stirred for 5 minutes, and then dried at 150 ° C. in nitrogen. The particle cross section of the obtained sample was observed with a transmission electron microscope, the state of coverage with the aluminum oxide film was measured, and the coverage was calculated. Further, the change in the magnetic properties of the sample was measured. Table 1 shows the results.
Shown in

【0038】(実施例2)実施例1に示したと同じSm
FeN磁性粉末に、10重量%アルミニウムイソプロピ
レートのアルコール溶液を、溶液中のアルミニウムイソ
プロピレートが磁性粉末100重量部に対して0.3重
量部となるように定量、混合し、ミキサーで5分間攪拌
した。その後、磁性粉末に対して水を0.01重量部加
えて、更に5分間攪拌後、窒素中150℃で乾燥した。
得られた試料の粒子断面を透過電子顕微鏡で観察し、酸
化アルミニウム膜の被覆状態を計測した。また、試料の
磁気特性の変化を測定した。結果を表1に示す。
(Embodiment 2) The same Sm as shown in Embodiment 1
An alcohol solution of 10% by weight of aluminum isopropylate was quantified and mixed with the FeN magnetic powder so that the amount of aluminum isopropylate in the solution was 0.3 parts by weight with respect to 100 parts by weight of the magnetic powder, and stirred with a mixer for 5 minutes. did. Thereafter, 0.01 parts by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes and dried at 150 ° C. in nitrogen.
The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured. Table 1 shows the results.

【0039】(実施例3)実施例1に示したと同じSm
FeN磁性粉末に、10重量%アルミニウムイソプロピ
レートのアルコール溶液を用い、溶液中のアルミニウム
イソプロピレートが磁性粉末100重量部に対して20
重量部となるように定量、混合し、ミキサーで5分間攪
拌した。その後、磁性粉末に対して水を80重量部加え
て、更に5分間攪拌後、窒素中150℃で乾燥した。得
られた試料の粒子断面を透過電子顕微鏡で観察し、酸化
アルミニウム膜の被覆状態を計測した。また、試料の磁
気特性の変化を測定した。結果を表1に示す。
(Embodiment 3) The same Sm as shown in Embodiment 1
For the FeN magnetic powder, an alcohol solution of 10% by weight of aluminum isopropylate was used.
The mixture was quantified and mixed so as to be parts by weight, and the mixture was stirred with a mixer for 5 minutes. Thereafter, 80 parts by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes and dried at 150 ° C. in nitrogen. The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured. Table 1 shows the results.

【0040】(比較例1)実施例1に示したと同じSm
FeN磁性粉末に、10重量%アルミニウムイソプロピ
レートのアルコール溶液を用い、溶液中のアルミニウム
イソプロピレートが磁性粉末100重量部に対して0.
1重量部となるように定量、混合し、ミキサーで5分間
攪拌した。その後、磁性粉末に対して水を0.003重
量部加えて、更に5分間攪拌後、窒素中、150℃で乾
燥した。得られた試料の粒子断面を透過電子顕微鏡で観
察し、酸化アルミニウム膜の被覆状態を計測した。ま
た、試料の磁気特性の変化を測定した。結果を表1に示
す。
Comparative Example 1 The same Sm as shown in Example 1
For the FeN magnetic powder, an alcohol solution of 10% by weight of aluminum isopropylate was used, and the aluminum isopropylate in the solution was added in an amount of 0.1% to 100 parts by weight of the magnetic powder.
The mixture was quantified and mixed so as to be 1 part by weight, and stirred with a mixer for 5 minutes. Then, 0.003 parts by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes and dried at 150 ° C. in nitrogen. The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured. Table 1 shows the results.

【0041】(比較例2)実施例1に示したと同じSm
FeN磁性粉末に、10重量%アルミニウムイソプロピ
レートのアルコール溶液を用い、溶液中のアルミニウム
イソプロピレートが磁性粉末100重量部に対して40
重量部となるように定量、混合し、ミキサーで5分間攪
拌した。その後、磁粉に対して水を200重量部加え
て、更に5分間攪拌後、窒素中、150℃で乾燥した。
得られた試料の粒子断面を透過電子顕微鏡で観察し、酸
化アルミニウム膜の被覆状態を計測した。また、試料の
磁気特性の変化を測定した。結果を表1に示す。これは
酸化アルミニウム膜が厚くなりすぎた例であり、初期特
性で磁化が低下してしまっていることを示す。
(Comparative Example 2) The same Sm as shown in Example 1
For the FeN magnetic powder, an alcohol solution of 10% by weight of aluminum isopropylate was used.
The mixture was quantified and mixed so as to be parts by weight, and the mixture was stirred with a mixer for 5 minutes. Thereafter, 200 parts by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes and dried at 150 ° C. in nitrogen.
The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured. Table 1 shows the results. This is an example in which the aluminum oxide film is too thick, and indicates that the magnetization is reduced in the initial characteristics.

【0042】(比較例3)実施例1に示したと同じSm
FeN磁性粉末を、1%酸素濃度中、80℃で1時間徐
酸化処理して、安定化させた。酸化アルミニウム膜で被
覆しなかったので、得られた試料を透過電子顕微鏡で観
察しなかった。試料の磁気特性の変化を測定し、その結
果を表1に示す。
Comparative Example 3 The same Sm as shown in Example 1 was used.
The FeN magnetic powder was stabilized by gradually oxidizing it at 80 ° C. for 1 hour in a 1% oxygen concentration. The resulting sample was not observed with a transmission electron microscope because it was not covered with an aluminum oxide film. The change in the magnetic properties of the sample was measured, and the results are shown in Table 1.

【0043】(実施例4)実施例1に示したと同じSm
FeN磁性粉末に、10重量%アルミニウムイソプロピ
レートモノセカンダリーブチレートのアルコール溶液を
用い、溶液中のアルミニウムイソプロピレートが磁性粉
末100重量部に対して3重量部となるように定量、混
合し、ミキサーで5分間攪拌した。その後、磁性粉末に
対して水を1重量部加えて、更に5分間攪拌後、窒素
中、150℃で乾燥した。得られた試料の粒子断面を透
過電子顕微鏡で観察し、酸化アルミニウム膜の被覆状態
を計測した。また、試料の磁気特性の変化を測定した。
結果を表1に示す。
(Embodiment 4) The same Sm as shown in Embodiment 1
Alcohol solution of 10 wt% aluminum isopropylate monosecondary butyrate was used for FeN magnetic powder, aluminum isopropylate in the solution was quantified and mixed so as to be 3 parts by weight with respect to 100 parts by weight of magnetic powder, and mixed with a mixer. Stir for 5 minutes. Thereafter, 1 part by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes and dried at 150 ° C. in nitrogen. The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured.
Table 1 shows the results.

【0044】(実施例5)平均粒径約8μmのSmCo
磁性粉末を原料として、10重量%アルミニウムイソ
プロピレートのアルコール溶液を用い、溶液中のアルミ
ニウムイソプロピレートが磁性粉末100重量部に対し
て2重量部となるように定量し混合し、ミキサーで5分
間攪拌した。原料としたSmCo磁性粉末は、高周波
溶解により鋳造したSmCo(Sm:34重量%)合
金を5〜10μmに粉砕して得た。撹拌後、磁性粉末に
対して水を2重量部加えて、更に5分間攪拌後、窒素
中、150℃で乾燥した。得られた試料の粒子断面を透
過電子顕微鏡で観察し、酸化アルミニウム膜の被覆状態
を計測した。また、試料の磁気特性の変化を測定した。
結果を表1に示す。
Example 5 SmCo having an average particle size of about 8 μm
5 Using a magnetic powder as a raw material, an alcohol solution of 10% by weight of aluminum isopropylate was used, and aluminum isopropylate in the solution was quantified and mixed so as to be 2 parts by weight with respect to 100 parts by weight of the magnetic powder. Stirred. The SmCo 5 magnetic powder as a raw material was obtained by pulverizing an SmCo 5 (Sm: 34% by weight) alloy cast by high frequency melting to 5 to 10 μm. After stirring, 2 parts by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes, and then dried at 150 ° C. in nitrogen. The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured.
Table 1 shows the results.

【0045】(比較例4)実施例5に示したと同じSm
Co磁性粉末を、これに酸化アルミニウム膜の被覆処
理を行わず、80℃、90%RHの恒温恒湿槽に24時
間保持し、保持前後の磁気特性の変化を測定した。結果
を表1に示す。
(Comparative Example 4) The same Sm as shown in Example 5
The Co 5 magnetic powder was kept in a thermo-hygrostat at 80 ° C. and 90% RH for 24 hours without coating the aluminum oxide film on the Co 5 magnetic powder, and the change in magnetic properties before and after the holding was measured. Table 1 shows the results.

【0046】(実施例6)市販のNd系粉末MQP−B
(マグネクエンチ・インターナショナル社製)磁性粉末
(Nd:30重量%、Fe:69重量%、B:1重量
%、平均粒径50μm)に、10重量%アルミニウムイ
ソプロピレートのアルコール溶液を、溶液中のアルミニ
ウムイソプロピレートが磁性粉末100重量部に対して
3重量部となるように定量、混合し、ミキサーで5分間
攪拌した。その後、磁性粉末に対して水を1重量部加え
て、更に5分間攪拌後、窒素中、150℃で乾燥した。
得られた試料の粒子断面を透過電子顕微鏡で観察し、酸
化アルミニウム膜の被覆状態を計測した。また、試料の
磁気特性の変化を測定した。その結果を表1に示す。
Example 6 Commercially available Nd-based powder MQP-B
(Magnequench International Co., Ltd.) A 10% by weight aluminum isopropylate alcohol solution was added to magnetic powder (Nd: 30% by weight, Fe: 69% by weight, B: 1% by weight, average particle size: 50 μm) in the solution. Aluminum isopropylate was quantified and mixed so as to be 3 parts by weight with respect to 100 parts by weight of the magnetic powder, and stirred for 5 minutes with a mixer. Thereafter, 1 part by weight of water was added to the magnetic powder, and the mixture was further stirred for 5 minutes and dried at 150 ° C. in nitrogen.
The particle cross section of the obtained sample was observed with a transmission electron microscope, and the covering state of the aluminum oxide film was measured. Further, the change in the magnetic properties of the sample was measured. Table 1 shows the results.

【0047】(比較例5)実施例6に示したと同じNd
系磁性粉末を用い、これに酸化アルミニウム膜の被覆処
理を行わず、80℃、90%RHの恒温恒湿槽に24時
間保持し、保持前後の磁気特性の変化を測定した。結果
を表1に示す。
(Comparative Example 5) Nd same as that shown in Example 6
A magnetic powder was used, and the aluminum oxide film was not coated thereon. The magnetic powder was kept in a thermo-hygrostat at 80 ° C. and 90% RH for 24 hours, and the change in magnetic properties before and after the holding was measured. Table 1 shows the results.

【0048】以上の結果から、実施例のように、希土類
系磁性粉末の粒子表面の少なくとも80%以上を酸化ア
ルミニウム膜で覆えば、耐食耐候性が発揮されて磁気特
性を低下させないのに対して、比較例のように、酸化ア
ルミニウム膜による被覆が不十分であるか、膜が厚くな
りすぎると、磁気特性を低下させる。このことから、本
発明によれば、実用環境でも性能が劣化しない希土類系
磁性粉末を製造できることが分かる。
From the above results, when at least 80% or more of the surface of the particles of the rare earth magnetic powder is covered with the aluminum oxide film as in the embodiment, corrosion resistance and weather resistance are exhibited and the magnetic characteristics are not deteriorated. When the coating with the aluminum oxide film is insufficient or the film is too thick as in the comparative example, the magnetic properties are deteriorated. From this, it is understood that according to the present invention, it is possible to produce a rare earth magnetic powder whose performance does not deteriorate even in a practical environment.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】本発明によれば、希土類元素から選択さ
れる1種又は2種以上と、Fe,Co,Ni及びMnか
らなる群から選択される1種又は2種以上の遷移金属元
素とを含有する合金或いは金属間化合物からなる希土類
系磁性粉末において、該磁性粉末の粒子表面を酸化アル
ミニウム膜で実質的に覆うことで希土類系磁性粉末の磁
気特性を低下させずに、耐食耐候性を向上できる手段が
提供される。このため、希土類系磁性粉末を利用したボ
ンド磁石等の実用環境下での経時劣化を抑制でき、その
工業的価値は極めて大きい。
According to the present invention, one or more selected from rare earth elements and one or more transition metal elements selected from the group consisting of Fe, Co, Ni and Mn are used. In a rare earth magnetic powder comprising an alloy or an intermetallic compound containing, the surface of particles of the magnetic powder is substantially covered with an aluminum oxide film so that the magnetic properties of the rare earth magnetic powder are not reduced, and the corrosion resistance and weather resistance are improved. Means for improvement can be provided. For this reason, deterioration over time in a practical environment such as a bonded magnet using a rare earth magnetic powder can be suppressed, and its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 BA05 BA18 BC04 BC28 BC32 BD01 5E040 AA03 CA01 HB17 NN00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K018 BA05 BA18 BC04 BC28 BC32 BD01 5E040 AA03 CA01 HB17 NN00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素から選択される1種又は2種
以上と、Fe,Co,Ni及びMnからなる群から選択
される1種又は2種以上の遷移金属元素とを含有する合
金或いは金属間化合物からなる希土類系磁性粉末におい
て、該磁性粉末の粒子表面の少なくとも80%以上が酸
化アルミニウム膜で覆われていることを特徴とする希土
類系磁性粉末。
1. An alloy or metal containing one or more selected from rare earth elements and one or more transition metal elements selected from the group consisting of Fe, Co, Ni and Mn. A rare earth magnetic powder comprising a rare earth magnetic powder comprising an intermetallic compound, wherein at least 80% or more of the particle surface of the magnetic powder is covered with an aluminum oxide film.
【請求項2】 希土類系磁性粉末の粒子表面を覆う酸化
アルミニウム膜の厚みが、5〜500nmであることを
特徴とする請求項1に記載の希土類系磁性粉末。
2. The rare earth magnetic powder according to claim 1, wherein the thickness of the aluminum oxide film covering the particle surface of the rare earth magnetic powder is 5 to 500 nm.
【請求項3】 希土類系磁性粉末の平均粒径が、1〜5
0μmであることを特徴とする請求項1に記載の希土類
系磁性粉末。
3. The rare earth magnetic powder has an average particle size of 1 to 5
2. The rare earth magnetic powder according to claim 1, wherein the thickness is 0 μm.
【請求項4】 希土類元素が、Sm又はNdのいずれか
であることを特徴とする請求項1に記載の希土類系磁性
粉末。
4. The rare earth magnetic powder according to claim 1, wherein the rare earth element is one of Sm and Nd.
【請求項5】 希土類元素の含有量が、20〜50重量
%であることを特徴とする請求項1に記載の希土類系磁
性粉末。
5. The rare earth magnetic powder according to claim 1, wherein the content of the rare earth element is 20 to 50% by weight.
【請求項6】 希土類元素から選択される1種又は2種
以上と、Fe,Co,Ni及びMnからなる群から選択
される1種又は2種以上の遷移金属元素とを含有する合
金或いは金属間化合物からなる希土類系磁性粉末に、ア
ルミニウムアルコキシドを添加、混合し、水を加えて加
水分解した後、加熱することにより、該磁性粉末の粒子
表面を酸化アルミニウム膜で覆うことを特徴とする請求
項1又は2に記載の希土類系磁性粉末の製造方法。
6. An alloy or metal containing one or more selected from rare earth elements and one or more transition metal elements selected from the group consisting of Fe, Co, Ni and Mn. An aluminum alkoxide is added to a rare earth magnetic powder composed of an intermetallic compound, mixed, water is added thereto, and the mixture is hydrolyzed, followed by heating to cover the particle surface of the magnetic powder with an aluminum oxide film. Item 3. The method for producing a rare earth magnetic powder according to Item 1 or 2.
【請求項7】 アルミニウムアルコキシドが、希土類系
磁性粉末100重量部に対して0.1〜30重量部添加
されることを特徴とする請求項6に記載の希土類系磁性
粉末の製造方法。
7. The method for producing a rare earth magnetic powder according to claim 6, wherein the aluminum alkoxide is added in an amount of 0.1 to 30 parts by weight based on 100 parts by weight of the rare earth magnetic powder.
【請求項8】 水が、希土類系磁性粉末とアルミニウム
アルコキシドの混合物に対して、該アルミニウムアルコ
キシドの加水分解に必要とされる理論量の0.1〜10
0倍、加えられることを特徴とする請求項6に記載の希
土類系磁性粉末の製造方法。
8. Water is added to a mixture of the rare earth magnetic powder and the aluminum alkoxide in an amount of 0.1 to 10 of a theoretical amount required for hydrolysis of the aluminum alkoxide.
The method for producing a rare earth magnetic powder according to claim 6, wherein the rare earth magnetic powder is added 0 times.
【請求項9】 請求項1又は2に記載の希土類系磁性粉
末を、射出成形法、圧縮成形法、押出成形法、または圧
延成形法から選ばれる少なくとも1種の成形法により成
形してなる磁石。
9. A magnet obtained by molding the rare earth magnetic powder according to claim 1 or 2 by at least one molding method selected from an injection molding method, a compression molding method, an extrusion molding method, and a rolling molding method. .
JP2001177844A 2001-06-13 2001-06-13 Rare earth based magnetic powder, its manufacturing method, and magnet using the same Pending JP2002363607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177844A JP2002363607A (en) 2001-06-13 2001-06-13 Rare earth based magnetic powder, its manufacturing method, and magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177844A JP2002363607A (en) 2001-06-13 2001-06-13 Rare earth based magnetic powder, its manufacturing method, and magnet using the same

Publications (1)

Publication Number Publication Date
JP2002363607A true JP2002363607A (en) 2002-12-18

Family

ID=19018629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177844A Pending JP2002363607A (en) 2001-06-13 2001-06-13 Rare earth based magnetic powder, its manufacturing method, and magnet using the same

Country Status (1)

Country Link
JP (1) JP2002363607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506270A1 (en) * 2010-03-31 2012-10-03 Nitto Denko Corporation Permanent magnet and manufacturing method for permanent magnet
EP2763146A4 (en) * 2011-09-30 2015-08-26 Nitto Denko Corp Permanent magnet and production method for permanent magnet
EP2763147A4 (en) * 2011-09-30 2015-10-14 Nitto Denko Corp Rare earth permanent magnet and production method for rare earth permanent magnet
CN108122656A (en) * 2017-12-31 2018-06-05 周慧媛 A kind of rare earth permanent-magnetic material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506270A1 (en) * 2010-03-31 2012-10-03 Nitto Denko Corporation Permanent magnet and manufacturing method for permanent magnet
EP2506270A4 (en) * 2010-03-31 2012-11-07 Nitto Denko Corp Permanent magnet and manufacturing method for permanent magnet
US8480818B2 (en) 2010-03-31 2013-07-09 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
EP2763146A4 (en) * 2011-09-30 2015-08-26 Nitto Denko Corp Permanent magnet and production method for permanent magnet
EP2763147A4 (en) * 2011-09-30 2015-10-14 Nitto Denko Corp Rare earth permanent magnet and production method for rare earth permanent magnet
CN108122656A (en) * 2017-12-31 2018-06-05 周慧媛 A kind of rare earth permanent-magnetic material

Similar Documents

Publication Publication Date Title
JP4525425B2 (en) Fluoride coat film forming treatment liquid, fluoride coat film forming method and magnet
CN110853855A (en) R-T-B series permanent magnetic material and preparation method and application thereof
JP5499738B2 (en) Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet
JP2005183781A (en) Rare earth magnet and its manufacturing method
KR20080081935A (en) Oxide magnetic material
CN105825989B (en) A kind of preparation method of the Magnaglo of rare-earth transition metal containing N
JP2003158006A (en) Corrosion-resistant rare-earth magnet
JP2001076914A (en) Rare-earth based permanent magnet and manufacture thereof
EP1081724B1 (en) Process for producing rare earth metal-based permanent magnet having corrosion-resistant film
JP2009120442A (en) Oxide magnetic material, its producing method and sintered magnet
EP0255939B1 (en) Rare earth magnet and rare earth magnet alloy powder having high corrosion resistance
CN111261355B (en) Neodymium-iron-boron magnet material, raw material composition, preparation method and application
JP2001230108A (en) Method of manufacturing corrosion-resistant rare earth magnet
KR20000017659A (en) Fe-B-R BASED PERMANENT MAGNET HAVING CORROSION-RESISTANT FILM, AND PROCESS FOR PRODUCING THE SAME
CN112216460A (en) Nanocrystalline neodymium-iron-boron magnet and preparation method thereof
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP2002363607A (en) Rare earth based magnetic powder, its manufacturing method, and magnet using the same
JPS60144906A (en) Permanent magnet material
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
CN110760750A (en) Rare earth permanent magnet material, preparation method thereof and motor
CN108831648A (en) The method of spray drying preparation performance Nd Fe B sintered magnet
JP2004111515A (en) Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
JPH06116605A (en) Compacting assistant of rare-earth permanent magnet and its added alloy powder
CN112259314A (en) R (Fe, M)12Rare earth permanent magnetic material and preparation method thereof