JP3473677B2 - Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet - Google Patents

Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet

Info

Publication number
JP3473677B2
JP3473677B2 JP19376298A JP19376298A JP3473677B2 JP 3473677 B2 JP3473677 B2 JP 3473677B2 JP 19376298 A JP19376298 A JP 19376298A JP 19376298 A JP19376298 A JP 19376298A JP 3473677 B2 JP3473677 B2 JP 3473677B2
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
bonded magnet
resin
earth bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19376298A
Other languages
Japanese (ja)
Other versions
JP2000012316A (en
Inventor
尚 石川
和俊 石坂
真一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16313394&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3473677(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19376298A priority Critical patent/JP3473677B2/en
Publication of JP2000012316A publication Critical patent/JP2000012316A/en
Application granted granted Critical
Publication of JP3473677B2 publication Critical patent/JP3473677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、R(Rは希土類元
素)と、FeまたはFe並びにCoと、Nを主構成成分
とする希土類ボンド磁石用磁性粉末、この磁性粉末と樹
脂バインダーを主成分とする希土類ボンド磁石用組成
物、および、この組成物を磁石形状に成形して成る希土
類ボンド磁石に係り、特に、不可逆減磁率の小さな耐熱
性に優れた希土類ボンド磁石用磁性粉末と希土類ボンド
磁石用組成物および希土類ボンド磁石の改良に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder for a rare earth bonded magnet, which contains R (R is a rare earth element), Fe or Fe and Co, and N as main constituents, and the magnetic powder and a resin binder as main components. The present invention relates to a composition for a rare earth bond magnet, and a rare earth bond magnet formed by molding the composition into a magnet shape. Particularly, a magnetic powder for a rare earth bond magnet having a small irreversible demagnetization rate and excellent heat resistance, and a rare earth bond magnet. And a rare earth bonded magnet.

【0002】[0002]

【従来の技術】近年、菱面体晶系または六方晶系の結晶
構造をもつ金属間化合物に窒素を導入させたR−Fe−
N(Rは希土類元素)系磁性材料が、特に永久磁石材料
として優れた磁気特性をもつことから注目されている。
例えば、特開平2−57663号公報では、六方晶系あ
るいは菱面体晶系の結晶構造をもつR−Fe−N−H
(R:イットリウムを含む希土類元素のうちの少なくと
も一種)で表される磁気異方性材料を開示している。
2. Description of the Related Art In recent years, R-Fe- produced by introducing nitrogen into an intermetallic compound having a rhombohedral or hexagonal crystal structure.
N (R is a rare earth element) -based magnetic material has attracted attention because it has excellent magnetic properties, especially as a permanent magnet material.
For example, in Japanese Patent Laid-Open No. 2-57663, R-Fe-N-H having a hexagonal or rhombohedral crystal structure.
A magnetic anisotropic material represented by (R: at least one of rare earth elements including yttrium) is disclosed.

【0003】このR−Fe−N系磁性粉末と樹脂バイン
ダーとから成る希土類ボンド磁石として、樹脂バインダ
ーにポリアミド(ナイロン)を用いたSm−Fe−N系
射出成形ボンド磁石は公知である。例えば、"Developme
nt of high-energy productSm2Fe173 bonded mag
nets"(Proc. Int. Conf. MRS, Tokyo, 1993, L7-1)で
は、保磁力HcJが5〜7kOeのSm−Fe−N系射出
成形ボンド磁石を開示している。また、特開平6−29
5805号あるいは特開平6−295816号公報には
保磁力HcJが6kOe未満のSm−Fe−N系射出成形
ボンド磁石が開示されている。
As a rare earth bond magnet composed of the R-Fe-N magnetic powder and a resin binder, an Sm-Fe-N injection-molded bond magnet using polyamide (nylon) as a resin binder is known. For example, "Developme
nt of high-energy product Sm 2 Fe 17 N 3 bonded mag
nets "(Proc. Int. Conf. MRS, Tokyo, 1993, L7-1) discloses an Sm-Fe-N-based injection-molded bond magnet having a coercive force HcJ of 5 to 7 kOe. -29
5805 or JP-A-6-295816 discloses an Sm-Fe-N based injection-molded bond magnet having a coercive force HcJ of less than 6 kOe.

【0004】[0004]

【発明が解決しようとする課題】ところで、これら従来
のR−Fe−N系射出成形ボンド磁石は、磁気特性の耐
熱性が悪いという問題点があった。
By the way, these conventional R-Fe-N system injection-molded bonded magnets have a problem that the heat resistance of magnetic properties is poor.

【0005】すなわち、磁石を組み込んだ磁気回路では
磁石が発生する磁束(フラックス)を利用するため、必
要な磁束が温度履歴に依存せず安定に得られること、す
なわち良好な耐熱性が要求される。
That is, in a magnetic circuit incorporating a magnet, since the magnetic flux generated by the magnet is used, it is required that the required magnetic flux can be stably obtained without depending on the temperature history, that is, good heat resistance. .

【0006】この耐熱性の指標として、磁石を所定時間
所定温度で加熱しその前後の磁束変化率(不可逆減磁
率)を評価することが行われる。また、特に1時間加熱
したときの不可逆減磁率をその加熱温度での初期減磁率
と呼ぶことがある。いずれも0に近いほど耐熱性が良好
である。
As an index of this heat resistance, the magnet is heated at a predetermined temperature for a predetermined time and the rate of change in magnetic flux before and after that (irreversible demagnetization rate) is evaluated. In addition, the irreversible demagnetization rate after heating for one hour may be referred to as the initial demagnetization rate at the heating temperature. In all cases, the closer it is to 0, the better the heat resistance.

【0007】そして、従来のR−Fe−N系射出成形ボ
ンド磁石では、初期減磁率が5%になる加熱温度が80
℃以下であった。例えば上記"Development of high-ene
rgyproduct Sm2Fe173 bonded magnets"によれ
ば、Sm−Fe−N系射出成形ボンド磁石で50℃、S
m−(Fe,Co)−N系射出成形ボンド磁石で80℃で
あった。
In the conventional R-Fe-N injection-molded bond magnet, the heating temperature at which the initial demagnetization rate is 5% is 80%.
It was below ℃. For example, above "Development of high-ene
According to "rgyproduct Sm 2 Fe 17 N 3 bonded magnets", Sm-Fe-N based injection-molded bonded magnets at 50 ° C, S
The m- (Fe, Co) -N injection-molded bond magnet had a temperature of 80 ° C.

【0008】しかし、希土類ボンド磁石の主な用途であ
るOA機器用あるいはAV機器用小型モータでは少なく
とも80℃まで使用可能であることが求められており、
更に自動車用途に対しては100〜125℃を越える耐
熱性が求められている。
However, it is required that a small motor for OA equipment or AV equipment, which is a main application of the rare earth bonded magnet, can be used up to at least 80 ° C.,
Furthermore, heat resistance exceeding 100 to 125 ° C. is required for automobile applications.

【0009】このため、80℃で5%以上減磁してしま
う従来のR−Fe−N系射出成形ボンド磁石では耐熱性
が十分とはいえなかった。
Therefore, it cannot be said that the conventional R-Fe-N injection-molded bonded magnet, which is demagnetized by 5% or more at 80 ° C., has sufficient heat resistance.

【0010】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、初期減磁率が5%
になる加熱温度が80℃を越える耐熱性に優れた希土類
ボンド磁石用磁性粉末と希土類ボンド磁石用組成物およ
び希土類ボンド磁石を提供することにある。
The present invention was made by paying attention to such problems, and the problem is that the initial demagnetization rate is 5%.
To provide a magnetic powder for rare-earth bonded magnets, a composition for rare-earth bonded magnets, and a rare-earth bonded magnet, which have excellent heat resistance at a heating temperature of over 80 ° C.

【0011】[0011]

【課題を解決するための手段】このような課題を解決す
るため、本発明者等は以下に挙げる従来技術を参考にし
て希土類ボンド磁石用磁性粉末等の開発を試みた。
In order to solve such a problem, the inventors of the present invention tried to develop a magnetic powder for a rare earth bonded magnet with reference to the following prior art.

【0012】まず、参考にした特開平4−157705
号公報には、ボンド磁石用R−Fe−N系磁性粉末の粒
子径に関し、平均粒子径が0.1〜30μmの範囲にあ
ること、成形加工性や表面平滑性に特に優れた材料を作
製する場合には平均粒子径が1〜10μmであることが
好ましいこと等が開示され、また、特開平5−3080
12号公報には、粒子径1μm以下の粒子の含有率を体
積基準で10%以下とすることによりR−Fe−N系を
含む磁性粉末の磁気特性が向上することが開示されてい
る。これ等の従来技術は、粒子径の平均値および粒度分
布の微粒側を規定する手法であり、粒度分布の粗粒側に
関する知見は皆無である。
First, reference is made to JP-A-4-157705.
Japanese Patent Laid-Open Publication No. 2003-242242 discloses a material having an average particle size in the range of 0.1 to 30 μm and a particularly excellent moldability and surface smoothness with respect to the particle size of the R—Fe—N magnetic powder for bonded magnets. In that case, it is disclosed that the average particle size is preferably 1 to 10 μm, and the like.
Japanese Unexamined Patent Publication No. 12 discloses that the magnetic property of the magnetic powder containing the R—Fe—N system is improved by making the content of particles having a particle diameter of 1 μm or less 10% or less on a volume basis. These conventional techniques are methods for defining the average value of the particle size and the fine particle side of the particle size distribution, and there is no knowledge of the coarse particle side of the particle size distribution.

【0013】一方、参考にした特開平5−175022
号公報では、磁性粉末粒子径の標準偏差を1.0μm以
下にすることによってHk(後述するように残留磁束密
度Brの90%まで磁化Jが低下するときの減磁界で減
磁曲線の角型性を表すもの)の高いボンド磁石を製造で
きるとしている。しかし、樹脂ボンド磁石に適用する場
合、磁性粉末の平均粒子径に関して「単磁区となる程度
の粒子径、たとえば0.5〜10μm程度にまで粉砕す
る」ことしか記載されておらず、具体的な粒度分布の粗
粒側に関する知見は上述した従来技術と同様に皆無であ
る。また、その実施例にも粉末の磁気特性はあるが、ボ
ンド磁石の磁気特性や耐熱性については具体的に記載さ
れていない。
On the other hand, Japanese Patent Application Laid-Open No. 5-175022 referred to
In the publication, by setting the standard deviation of the magnetic powder particle diameter to 1.0 μm or less, Hk (the square shape of the demagnetization curve by the demagnetizing field when the magnetization J decreases to 90% of the residual magnetic flux density Br as described later) It is said that it is possible to manufacture a bonded magnet having high property). However, when it is applied to a resin-bonded magnet, it is only described that the average particle diameter of the magnetic powder is “crushed to a particle diameter of a single magnetic domain, for example, 0.5 to 10 μm”. Similar to the above-mentioned prior art, there is no knowledge of the coarse particle side of the particle size distribution. In addition, although the examples also have the magnetic properties of the powder, the magnetic properties and heat resistance of the bonded magnet are not specifically described.

【0014】そこで、粒度分布の微粒側を規定するこれ
等従来技術の手法に従って、磁性粉末の平均粒子径や1
μm未満の微粒側粒度分布制御などを種々検討したが、
磁性粉末の角型性や保磁力を高めても必ずしもボンド磁
石の耐熱性を改善させるには至らなかった。特に、粒子
径1μm未満の粒子の存在は、特開平5−308012
号公報に記述されている磁性粉末の場合とは異なり、ボ
ンド磁石化した後には減磁曲線の角型性や保磁力にそれ
ほど影響していないことが確認された。
Therefore, according to these conventional techniques for defining the fine particle side of the particle size distribution, the average particle size of the magnetic powder or 1
Various studies were conducted on the particle size distribution control on the fine particle side of less than μm,
Increasing the squareness and coercive force of the magnetic powder has not necessarily improved the heat resistance of the bonded magnet. In particular, the presence of particles having a particle size of less than 1 μm is reported in JP-A-5-308012.
It was confirmed that, unlike the case of the magnetic powder described in the publication, it did not significantly affect the squareness of the demagnetization curve and the coercive force after it was made into a bonded magnet.

【0015】尚、この様な分析から、ボンド磁石を製造
する工程途中で、原料となる磁性粉末が晒される50〜
330℃の温度履歴により粒子径1μm未満の小さな粒
子の磁石特性は損なわれ、最終的なボンド磁石の磁気特
性は、磁石特性を損なわれずに生き残った1μm以上の
磁性粉末によって影響されているとの推論が導かれるに
至った。すなわち、耐熱性に優れた希土類ボンド磁石を
求める場合、粒度分布の微粒側を規定する従来手法によ
っていてはその実現が困難で、これまで知見のなかった
粒度分布の粗粒側を規定する新たな手法が必要となると
の考えを得るに至った。
From the above analysis, the magnetic powder as the raw material is exposed to 50 to 50 during the process of producing the bonded magnet.
The temperature history of 330 ° C. impairs the magnetic properties of small particles having a particle size of less than 1 μm, and the final magnetic properties of the bonded magnet are affected by the magnetic powder of 1 μm or more that survives without impairing the magnetic properties. The reasoning came to be guided. In other words, when a rare-earth bonded magnet with excellent heat resistance is sought, it is difficult to achieve it even with the conventional method of defining the fine particle side of the particle size distribution. We came to the idea that a method is needed.

【0016】この様な推論の下、これまで知見のなかっ
た粗粒側の粒子径がボンド磁石の耐熱性に与える影響を
詳細に検討したところ、粒子径1.0μm以上の全磁性
粉末に対する5.0μm以上の全磁性粉末の含有率が、
減磁曲線の角型性や保磁力に強く影響を及ぼし、その結
果、耐熱性が左右されることを見出だすに至った。本発
明はこの様な技術的発見に基づき完成されたものであ
る。
Based on such inference, the effect of the particle size on the coarse particle side, which has not been found so far, on the heat resistance of the bonded magnet was examined in detail. The content rate of all magnetic powder of 0.0 μm or more is
It has been found that the squareness of the demagnetization curve and the coercive force are strongly influenced, and as a result, the heat resistance is influenced. The present invention has been completed based on such technical findings.

【0017】すなわち、請求項1に係る発明は、R(R
は希土類元素)と、FeまたはFe並びにCoと、Nを
主構成成分としかつTh2Zn17型結晶構造を有する希
土類ボンド磁石用磁性粉末を前提とし、粒子径1.0μ
m以上の全磁性粉末に対する粒子径5.0μm以上の全
磁性粉末の含有率が個数基準で2.5%以下であり、か
つ、粒子径1.0μm以上の全磁性粉末に対する粒子径
4.0μm以上の全磁性粉末の含有率が個数基準で0%
を超え4.5%以下であると共に、粒子径1.0μm以
上の全磁性粉末に対する粒子径3.2μm以上の全磁性
粉末の含有率が個数基準で0%を超え10%以下である
ことを特徴とするものである。
That is, the invention according to claim 1 is R (R
Is a rare earth element), Fe or Fe and Co, and N as main constituents, and magnetic powder for rare earth bonded magnets having a Th 2 Zn 17 type crystal structure is premised, and the particle diameter is 1.0 μm.
Whether the content of the total magnetic powder having a particle diameter of 5.0 μm or more with respect to the total magnetic powder of m or more is 2.5% or less on a number basis .
The particle size for all magnetic powders with a particle size of 1.0 μm or more
The total magnetic powder content of 4.0 μm or more is 0% on a number basis.
Is more than 4.5% and the particle size is 1.0 μm or less.
Total magnetism of particle size 3.2μm or more for the above total magnetic powder
It is characterized in that the powder content is more than 0% and 10% or less on a number basis .

【0018】[0018]

【0019】次に、請求項に係る発明は、初期減磁率
が5%になる加熱温度が80℃を越える耐熱性を具備す
る希土類ボンド磁石の製造に用いられる希土類ボンド磁
石用組成物を前提とし、請求項1記載の希土類ボンド磁
石用磁性粉末と樹脂バインダーを主成分とすることを特
徴とし、また、請求項に係る発明は、希土類ボンド磁
石を前提とし、上記請求項記載の希土類ボンド磁石用
組成物を磁石形状に成形して成りかつその初期減磁率が
5%になる加熱温度が80℃を越える耐熱性を具備する
ことを特徴とするものである。
Next, the invention according to claim 2 presupposes a composition for a rare earth bonded magnet used for producing a rare earth bonded magnet having a heat resistance at which the heating temperature at which the initial demagnetization rate becomes 5% exceeds 80 ° C. In addition, the magnetic powder for rare earth bonded magnet according to claim 1 and a resin binder are main components, and the invention according to claim 3 is based on a rare earth bonded magnet, and the rare earth according to claim 2 above. It is characterized in that it is formed by molding the composition for a bonded magnet into a magnet shape and has heat resistance at which the heating temperature at which the initial demagnetization rate is 5% exceeds 80 ° C.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0021】まず、本発明に係る希土類ボンド磁石用磁
性粉末、希土類ボンド磁石用組成物および希土類ボンド
磁石で使用する磁性粉末としては、例えば、特開平2−
057663号公報に従い溶解鋳造法、あるいは特許第
1702544号明細書若しくは特開平9−15780
3号公報などで示される還元拡散法で製造されるR−F
e系合金あるいはR−(Fe,Co)系合金を窒化した
後、微粉砕して得ることができる。Rは希土類元素であ
るがSmが40重量%以上含まれるものが好ましい。C
oを添加すると磁石の飽和磁化と磁束密度の温度係数が
向上する。また、主構成成分であるR、FeまたはFe
並びにCo、Nに加えて、C、Al、Si、P、Ti、
V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、N
b、Mo、Ag、In、Sn、Hf、Ta、W、Re、
Os、Ir、Pt、Auの一種以上を磁性粉末に3重量
%以下添加すると耐熱性をさらに高めることが出来る。
微粉砕は、ジェットミル、振動ボールミル、回転ボール
ミルなど公知の技術で実施することができるが、ボンド
磁石用磁性粉末、ボンド磁石用組成物およびボンド磁石
を製造したとき粒子径1.0μm以上の全磁性粉末に対
する5.0μm以上の全磁性粉末の含有率が個数基準で
2.5%以下、好ましくは1.0%以下となるように、
粉砕条件の制御や分級機の併用を行うことが必要である
(請求項1、請求項、請求項)。ここで5.0μm
以上の全磁性粉末の含有率が個数基準で2.5%を超え
ると、磁石の減磁曲線の角型性や保磁力が低下し耐熱性
が悪化する。また粒子径1.0μm以上の全磁性粉末に
対する粒子径4.0μm以上の全磁性粉末の含有率を個
数基準で0%を超え4.5%以下(請求項1、請求項
、請求項)、さらには粒子径1.0μm以上の全磁
性粉末に対する粒子径3.2μm以上の全磁性粉末の含
有率を個数基準で0%を超え10%以下とする(請求項
1、請求項、請求項)ことによって、減磁曲線の角
型性や保磁力がより改善され、耐熱性が向上する。
First, the magnetic powder for rare earth bonded magnets, the composition for rare earth bonded magnets, and the magnetic powder used in the rare earth bonded magnets according to the present invention are, for example, JP-A-2-
Melt casting method according to Japanese Patent No. 0576663, or Japanese Patent No. 1702544 or Japanese Patent Laid-Open No. 9-15780.
R-F manufactured by the reduction diffusion method disclosed in Japanese Patent No.
It can be obtained by nitriding an e-based alloy or an R- (Fe, Co) -based alloy and then finely pulverizing it. R is a rare earth element, but preferably contains Sm in an amount of 40% by weight or more. C
Addition of o improves the saturation magnetization of the magnet and the temperature coefficient of magnetic flux density. Further, R, Fe or Fe which is a main constituent component
In addition to Co and N, C, Al, Si, P, Ti,
V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, N
b, Mo, Ag, In, Sn, Hf, Ta, W, Re,
If one or more of Os, Ir, Pt, and Au is added to the magnetic powder in an amount of 3% by weight or less, heat resistance can be further improved.
The fine pulverization can be carried out by a known technique such as a jet mill, a vibrating ball mill, a rotary ball mill, etc., but when the magnetic powder for a bonded magnet, the composition for a bonded magnet and the bonded magnet are produced, the total particle size is 1.0 μm or more. The content ratio of all magnetic powders of 5.0 μm or more to the magnetic powder is 2.5% or less on a number basis, preferably 1.0% or less.
It is necessary to control the crushing conditions and use a classifier together (Claims 1, 2 and 3 ). 5.0 μm here
When the content of the above total magnetic powder exceeds 2.5% on the number basis, the squareness of the demagnetization curve and the coercive force of the magnet decrease, and the heat resistance deteriorates. Further, the content ratio of the total magnetic powder having a particle diameter of 4.0 μm or more to the total magnetic powder having a particle diameter of 1.0 μm or more is more than 0% and 4.5% or less on the basis of the number (claim 1, claim 1
2 , claim 3 ), and further, the content ratio of the total magnetic powder having a particle diameter of 3.2 μm or more to the total magnetic powder having a particle diameter of 1.0 μm or more is set to more than 0% and 10% or less based on the number (claim 1). According to claims 2 and 3 , the squareness of the demagnetization curve and the coercive force are further improved, and the heat resistance is improved.

【0022】次に、本発明に係る希土類ボンド磁石用磁
性粉末、希土類ボンド磁石用組成物および希土類ボンド
磁石において、磁性粉末の粒子径は次のように評価・定
義される。上記希土類ボンド磁石用磁性粉末が樹脂に埋
め込まれたもの、希土類ボンド磁石用組成物または希土
類ボンド磁石の断面を研磨し、光学顕微鏡や走査型電子
顕微鏡などでひとつの試料につき1視野以上の写真を撮
影する。得られた写真に、同一の磁性粉末に重ならない
ように、平行な複数本の直線を引く。このとき1個の磁
性粉末と直線との交点間距離をもって、その磁性粉末の
粒子径と定義する。また、粒度分布の評価にあたって
は、100個以上、好ましくは200個以上の磁性粉末
について粒子径を測定する。得られたデータから粒子径
1μm未満の磁性粉末のものを除き、1μm以上の磁性
粉末について粒子径の対数に対する個数基準の粒度分布
を算出し、5.0μm以上の磁性粉末の含有率を求め
る。
Next, in the magnetic powder for rare-earth bonded magnets, the composition for rare-earth bonded magnets, and the rare-earth bonded magnet according to the present invention, the particle size of the magnetic powder is evaluated and defined as follows. A cross-section of the above-mentioned magnetic powder for rare-earth bonded magnets embedded in a resin, a composition for rare-earth bonded magnets, or a rare-earth bonded magnet is polished, and one or more fields of view are taken for one sample with an optical microscope or a scanning electron microscope. Take a picture. A plurality of parallel straight lines are drawn on the obtained photograph so as not to overlap the same magnetic powder. At this time, the distance between the intersections of one magnetic powder and a straight line is defined as the particle diameter of the magnetic powder. Further, in evaluating the particle size distribution, the particle size of 100 or more, preferably 200 or more magnetic powders is measured. From the obtained data, a magnetic powder having a particle diameter of less than 1 μm is excluded, and a particle size distribution on a number basis with respect to the logarithm of the particle diameter is calculated for the magnetic powder having a particle diameter of 1 μm or more to obtain the content of the magnetic powder having a particle diameter of 5.0 μm or more.

【0023】尚、微粉砕した磁性粉末の発火防止などハ
ンドリング性を向上させるために、例えば、特開昭52
−54998号、特開昭59−170201号、特開昭
60−128202号、特開平3−211203号公
報、または、特開昭46−7153号、特開昭56−5
5503号、特開昭61−154112号、特開平3−
126801号公報に開示されているような湿式ないし
乾式処理による徐酸化皮膜を磁性粉末表面に形成するこ
とができる。
In order to improve handling property such as prevention of ignition of finely pulverized magnetic powder, for example, Japanese Patent Laid-Open No.
-54998, JP-A-59-170201, JP-A-60-128202, JP-A-3-211203, or JP-A-46-7153, JP-A-56-5.
5503, JP-A-61-154112, JP-A-3-
It is possible to form a slow oxidation film on the surface of the magnetic powder by a wet or dry process as disclosed in Japanese Patent No. 126801.

【0024】また、特開平5−230501号、特開平
5−234729号、特開平8−143913号号、特
開平7−268632号公報や日本金属学会講演概要
(1996年春期大会、No.446、p.184)な
どに開示されているような金属皮膜を形成する方法や、
特公平6−17015号、特開平1−234502号、
特開平4−21702号、特開平5−213601号、
特開平7−326508号、特開平8−153613
号、特開平8−183601号公報などによる無機皮膜
を形成する方法などの一種以上の表面処理を磁性粉末に
施すと、磁性粉末、組成物およびボンド磁石の保磁力が
向上し耐熱性がさらに向上する。
[0024] Further, JP-A-5-230501, JP-A-5-234729, JP-A-8-143913, JP-A-7-268632 and summary of lectures of the Japan Institute of Metals (1996 Spring Conference, No. 446, p.184) and other methods for forming a metal film,
JP-B-6-17015, JP-A-1-234502,
JP-A-4-21702, JP-A-5-213601,
JP-A-7-326508, JP-A-8-153613
When the magnetic powder is subjected to one or more surface treatments such as a method of forming an inorganic film according to Japanese Patent Laid-Open No. 8-183601, the coercive force of the magnetic powder, the composition and the bond magnet is improved and the heat resistance is further improved. To do.

【0025】次に、本発明に係る希土類ボンド磁石用組
成物の樹脂バインダーは磁性粉末の結合剤として作用す
るものであり、適用できる樹脂としては特に限定される
ことはなく、例えば、熱可塑性樹脂の場合は、6ナイロ
ン、6、6ナイロン、11ナイロン、12ナイロン、
6、12ナイロン、芳香族系ナイロン、これらの分子を
一部変性した変性ナイロン等のポリアミド樹脂、直鎖型
ポリフェニレンサルファイド樹脂、架橋型ポリフェニレ
ンサルファイド樹脂、セミ架橋型ポリフェニレンサルフ
ァイド樹脂、低密度ポリエチレン、線状低密度ポリエチ
レン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエ
チレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニ
ル共重合樹脂、エチレン−エチルアクリレート共重合樹
脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリ
スチレン樹脂、アクリロニトリル−ブタジエン−スチレ
ン共重合樹脂、アクリロニトリル−スチレン共重合樹
脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポ
リ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビ
ニルブチラール樹脂、ポリビニルホルマール樹脂、メタ
クリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化
塩化エチレン樹脂、四フッ化エチレン−六フッ化プロピ
レン共重合樹脂、エチレン−四フッ化エチレン共重合樹
脂、四フッ化エチレン−パーフルオロアルキルビニルエ
ーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、
ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチ
レンテレフタレート樹脂、ポリブチレンテレフタレート
樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエー
テルアリルスルホン樹脂、ポリエーテルスルホン樹脂、
ポリエーテルエーテルケトン樹脂、ポリアリレート樹
脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、各
種エラストマーやゴム類等が挙げられ、これらの単重合
体や他種モノマーとのランダム共重合体、ブロック共重
合体、グラフト共重合体、他の物質での末端基変性品な
どが挙げられる。また、これら熱可塑性樹脂の2種類以
上のブレンド等における系も当然含まれる。これら熱可
塑性樹脂の溶融粘度や分子量は、所望の機械的強度が得
られる範囲で低い方が望ましく、形状は、パウダー、ビ
ーズ、ペレット等特に限定されないが、磁性粉末との均
一混合性から考えるとパウダーが望ましい。
Next, the resin binder of the rare earth bonded magnet composition according to the present invention acts as a binder for the magnetic powder, and the applicable resin is not particularly limited, and examples thereof include thermoplastic resins. In case of, 6 nylon, 6, 6 nylon, 11 nylon, 12 nylon,
Polyamide resin such as 6,12 nylon, aromatic nylon, modified nylon obtained by partially modifying these molecules, linear polyphenylene sulfide resin, crosslinked polyphenylene sulfide resin, semi-crosslinked polyphenylene sulfide resin, low density polyethylene, wire Low density polyethylene resin, high density polyethylene resin, ultra high molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene resin -Styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin Polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluorochloroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, ethylene-tetrafluoroethylene copolymer resin, tetrafluoroethylene-perfluoro Alkyl vinyl ether copolymer resin, polytetrafluoroethylene resin,
Polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, polyether sulfone resin,
Polyether ether ketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, various elastomers and rubbers, and the like, random copolymers of these homopolymers and other kinds of monomers, block copolymers, Examples include graft copolymers and end group-modified products with other substances. Further, a system in a blend of two or more kinds of these thermoplastic resins is naturally included. The melt viscosity and the molecular weight of these thermoplastic resins are preferably as low as possible in the range where the desired mechanical strength can be obtained, and the shape is not particularly limited such as powder, beads, pellets, etc., but considering from the uniform mixing property with the magnetic powder. Powder is desirable.

【0026】また、例えば、熱硬化性樹脂の場合は、エ
ポキシ樹脂、ビニルエステル系エポキシ樹脂、不飽和ポ
リエステル樹脂、フェノール樹脂、メラミン樹脂、ユリ
ア樹脂、ベンゾグアナミン樹脂、ビスマレイミド・トリ
アジン樹脂、ジアリルフタレート樹脂、フラン樹脂、熱
硬化性ポリブタジエン樹脂、ポリイミド樹脂、ポリウレ
タン系樹脂、シリコーン樹脂、キシレン樹脂等が挙げら
れ、これらの基本組成物や他種モノマーやこれら樹脂の
2種類以上のブレンド等における系も当然含まれる。こ
れら熱硬化性樹脂の粘度、分子量、性状等は、所望の機
械的強度や成形性が得られる範囲であれば特に限定され
ないが、磁性粉末との均一混合性や成形性から考えると
パウダー又は液状が望ましい。
In the case of a thermosetting resin, for example, epoxy resin, vinyl ester epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, urea resin, benzoguanamine resin, bismaleimide triazine resin, diallyl phthalate resin. , Furan resin, thermosetting polybutadiene resin, polyimide resin, polyurethane resin, silicone resin, xylene resin, and the like. Of course, these basic compositions, other kinds of monomers, and systems in blends of two or more kinds of these resins are also included. included. The viscosity, molecular weight, properties, etc. of these thermosetting resins are not particularly limited as long as the desired mechanical strength and moldability can be obtained, but in view of uniform mixing with magnetic powder and moldability, powder or liquid Is desirable.

【0027】これらの樹脂バインダーの含有量は、磁性
粉末100重量部に対して100重量部よりも多く充填
した場合、ボンド磁石の磁束密度が著しく低下する。ま
た、3重量部より少ないと著しく成形性が低下し所望の
成形体が得られない。よって、これらの樹脂混合量は、
磁性粉末100重量部に対し3重量部以上100重量部
以下が好ましい。
When the content of these resin binders is more than 100 parts by weight with respect to 100 parts by weight of magnetic powder, the magnetic flux density of the bonded magnet is significantly reduced. On the other hand, if the amount is less than 3 parts by weight, the moldability is remarkably reduced and a desired molded product cannot be obtained. Therefore, the mixing amount of these resins is
The amount is preferably 3 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the magnetic powder.

【0028】また、本発明に係る希土類ボンド磁石用組
成物を製造するとき、添加物としてカップリング剤や滑
剤、安定剤などを使用すると、さらに組成物の加熱流動
性が向上し成形性や磁気特性が向上する。カップリング
剤としては、シラン系カップリング剤、例えば、ビニル
トリエトキシシラン、γ−メタクリロキシプロピルトリ
メトキシシラン、β−(3,4エポキシシクロヘキシル
エチルトリメトキシシラン)、γ−グリシドキシプロピ
ルトリメトキシシラン、γ−グリシドキシメチルジエト
キシシラン、N−β(アミノエチル)γアミノプロピル
トリメトキシシラン、N−β(アミノエチル)γ−アミ
ノプロピルメチルジメトキシシラン、γ−アミノプロピ
ルトリエトキシシラン、N−フェニル−γ−アミノプロ
ピルトリメトキシシラン、γ−メルカプトプロピルトリ
メトキシシラン、メチルトリメトキシシラン、フェニル
トリメトキシシラン、ジフェニルジメトキシシラン、メ
チルトリエトキシシラン、ジメチルジメトキシシラン、
フェニルトリエトキシシラン、ジフェニルジエトキシシ
ラン、イソブチルトリメトキシシラン、デシルトリメト
キシシランなどが、また、チタン系カップリング剤、例
えば、イソプロピルトリイソステアロイルチタネート、
イソプロピルトリ(N−アミノエチル−アミノエチル)
チタネート、イソプロピルトリス(ジオクチルパイロホ
スフェート)チタネート、テトライソプロピルビス(ジ
オクチルホスファイト)チタネート、テトライソプロピ
ルチタネート、テトラブチルチタネート、テトラオクチ
ルビス(ジトリデシルホスファイト)チタネート、イソ
プロピルトリオクタノイルチタネート、イソプロピルト
リドデシルベンゼンスルホニルチタネート、イソプロピ
ルトリ(ジオクチルホスフェート)チタネート、ビス
(ジオクチルパイロホスフェート)エチレンチタネー
ト、イソプロピルジメタクリルイソステアロイルチタネ
ート、テトラ(2,2−ジアリルオキシメチル−1−ブ
チル)ビス(ジトリデシルホスファイト)チタネート、
イソプロピルトリクミルフェニルチタネート、ビス(ジ
オクチルパイロホスフェート)オキシアセテートチタネ
ート、イソプロピルイソステアロイルジアクリルチタネ
ートなど、が挙げられ、樹脂バインダーの種類に合わせ
た適当なものを選択しそれらの一種または二種以上を使
うことが出来る。滑剤としては、例えば、パラフィンワ
ックス、流動パラフィン、ポリエチレンワックス、ポリ
プロピレンワックス、エステルワックス、カルナウバ、
マイクロワックス等のワックス類、ステアリン酸、1,
2−オキシステアリン酸、ラウリン酸、パルミチン酸、
オレイン酸等の脂肪酸類、ステアリン酸カルシウム、ス
テアリン酸バリウム、ステアリン酸マグネシウム、ステ
アリン酸リチウム、ステアリン酸亜鉛、ステアリン酸ア
ルミニウム、ラウリン酸カルシウム、リノール酸亜鉛、
リシノール酸カルシウム、2−エチルヘキソイン酸亜鉛
等の脂肪酸塩(金属石鹸類)ステアリン酸アミド、オレ
イン酸アミド、エルカ酸アミド、ベヘン酸アミド、パル
ミチン酸アミド、ラウリン酸アミド、ヒドロキシステア
リン酸アミド、メチレンビスステアリン酸アミド、エチ
レンビスステアリン酸アミド、エチレンビスラウリン酸
アミド、ジステアリルアジピン酸アミド、エチレンビス
オレイン酸アミド、ジオレイルアジピン酸アミド、N−
ステアリルステアリン酸アミド等脂肪酸アミド類、ステ
アリン酸ブチル等の脂肪酸エステル、エチレングリコー
ル、ステアリルアルコール等のアルコール類、ポリエチ
レングリコール、ポリプロピレングリコール、ポリテト
ラメチレングリコール、および、これら変性物から成る
ポリエーテル類、ジメチルポリシロキサン、シリコング
リース等のポリシロキサン類、弗素系オイル、弗素系グ
リース、含弗素樹脂粉末といった弗素化合物、窒化珪
素、炭化珪素、酸化マグネシウム、アルミナ、二酸化珪
素、二硫化モリブデン等の無機化合物粉体が挙げられ
る。また、安定剤としては、ビス(2,2,6,6,−
テトラメチル−4−ピペリジル)セバケート、ビス
(1,2,2,6,6,−ペンタメチル−4−ピペリジ
ル)セバケート、1−[2−{3−(3,5−ジ−第三
ブチル−4−ヒドロキシフェニル)プロピオニルオキ
シ}エチル]−4−{3−(3,5−ジ−第三ブチル−
4−ヒドロキシフェニル)プロピオニルオキシ}−2,
2,6,6−テトラメチルピペリジン、8−ベンジル−
7,7,9,9−テトラメチル−3−オクチル−1,
2,3−トリアザスピロ[4,5]ウンデカン−2,4
−ジオン,4−ベンゾイルオキシ−2,2,6,6−テ
トラメチルピペリジン、こはく酸ジメチル−1−(2−
ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6
−テトラメチルピペリジン重縮合物、ポリ[[6−
(1,1,3,3−テトラメチルブチル)イミノ−1,
3,5−トリアジン−2,4−ジイル][(2,2,
6,6−テトラメチル−4−ピペリジル)イミノ]ヘキ
サメチレン、[[2,2,6,6−テトラメチル−4−
ピペリジル)イミノ]]、2−(3,5−ジ・第三ブチ
ル−4−ヒドロキシベンジル)−2−n−ブチルマロン
酸ビス(1,2,2,6,6−ペンタメチル−4−ピペ
リジル)等のヒンダード・アミン系安定剤のほか、フェ
ノール系、ホスファイト系、チオエーテル系等の抗酸化
剤等が挙げられる。また滑剤としては、パラフィンワッ
クス、流動パラフィン、ポリエチレンワックス、ポリプ
ロピレンワックス、エステルワックス、カルナウバ、マ
イクロワックスなどのワックス類、ステアリン酸、12
−オキシステアリン酸、ラウリン酸などの脂肪酸類や、
ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリ
ン酸バリウム、ステアリン酸アルミニウム、ステアリン
酸マグネシウム、ラウリン酸カルシウム、リノール酸亜
鉛、リノール酸カルシウム、2−エチルヘキソイン酸亜
鉛などの脂肪酸塩、ステアリン酸アミド、オレイン酸ア
ミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸
アミド、ラウリン酸アミド、ヒドロキシステアリン酸ア
ミド、メチレンビスステアリン酸アミド、エチレンビス
ステアリン酸アミド、エチレンビスラウリン酸アミド、
ジステアリルアジピン酸アミド、エチレンビスオレイン
酸アミド、ジオレイルアジピン酸アミド、N−ステアリ
ルスアリン酸アミド、N−オレイルステアリン酸アミ
ド、N−ステアリルエルカ酸アミド、メチロールステア
リン酸アミド、メチロールベヘン酸アミドなどの脂肪酸
アミド、ステアリン酸ブチルなどの脂肪酸エステル、エ
チレングリコール、ステアリルアルコールなどのアルコ
ール類、ポリエチレングリコール、ポリプロピレングリ
コール、ポリテトラメチレングリコールおよびこれらの
変性物から成るポリエーテル類、シリコーンオイル、シ
リコングリースなどのポリシロキサン類、フッ素系オイ
ル、フッ素系グリース、含フッ素樹脂粉末といったフッ
素化合物、窒化珪素、炭化珪素、酸化マグネシウム、ア
ルミナ、シリカゲルなどの無機化合物粉体などが挙げら
れ、これらの一種または二種以上を使うことが出来る。
When a rare earth bonded magnet composition according to the present invention is produced, if a coupling agent, a lubricant, a stabilizer or the like is used as an additive, the heating fluidity of the composition is further improved and the moldability and magnetic properties are improved. The characteristics are improved. Examples of the coupling agent include silane coupling agents such as vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4epoxycyclohexylethyltrimethoxysilane), γ-glycidoxypropyltrimethoxysilane. Silane, γ-glycidoxymethyldiethoxysilane, N-β (aminoethyl) γaminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N -Phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane,
Phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, decyltrimethoxysilane, etc. are also titanium-based coupling agents such as isopropyltriisostearoyl titanate,
Isopropyltri (N-aminoethyl-aminoethyl)
Titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, isopropyl trioctanoyl titanate, isopropyl tridodecylbenzene. Sulfonyl titanate, isopropyl tri (dioctyl phosphate) titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl dimethacryl isostearoyl titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl phosphite) titanate,
Isopropyl tricumyl phenyl titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, isopropyl isostearoyl diacryl titanate, etc. are selected, and one or more of them are selected by selecting an appropriate one according to the type of resin binder. You can Examples of the lubricant include paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba,
Waxes such as microwax, stearic acid, 1,
2-oxystearic acid, lauric acid, palmitic acid,
Fatty acids such as oleic acid, calcium stearate, barium stearate, magnesium stearate, lithium stearate, zinc stearate, aluminum stearate, calcium laurate, zinc linoleate,
Fatty acid salts (metal soaps) such as calcium ricinoleate, zinc 2-ethylhexoate, stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylenebisstearin. Acid amide, ethylene bisstearic acid amide, ethylene bislauric acid amide, distearyl adipic acid amide, ethylene bisoleic acid amide, dioleyl adipic acid amide, N-
Fatty acid amides such as stearyl stearic acid amide, fatty acid esters such as butyl stearate, alcohols such as ethylene glycol and stearyl alcohol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethers composed of these modified products, dimethyl Polysiloxanes such as polysiloxane and silicon grease, fluorine-based oils, fluorine compounds such as fluorine-based grease and fluorine-containing resin powders, and inorganic compound powders such as silicon nitride, silicon carbide, magnesium oxide, alumina, silicon dioxide and molybdenum disulfide. Is mentioned. Further, as the stabilizer, bis (2,2,6,6,-
Tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6, -pentamethyl-4-piperidyl) sebacate, 1- [2- {3- (3,5-di-tert-butyl-4) -Hydroxyphenyl) propionyloxy} ethyl] -4- {3- (3,5-di-tert-butyl-
4-hydroxyphenyl) propionyloxy} -2,
2,6,6-tetramethylpiperidine, 8-benzyl-
7,7,9,9-tetramethyl-3-octyl-1,
2,3-Triazaspiro [4,5] undecane-2,4
-Dione, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, dimethyl succinate-1- (2-
Hydroxyethyl) -4-hydroxy-2,2,6,6
-Tetramethylpiperidine polycondensate, poly [[6-
(1,1,3,3-tetramethylbutyl) imino-1,
3,5-triazine-2,4-diyl] [(2,2,
6,6-Tetramethyl-4-piperidyl) imino] hexamethylene, [[2,2,6,6-tetramethyl-4-
Piperidyl) imino]], 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl) In addition to hindered amine-based stabilizers such as the above, antioxidants such as phenol-based, phosphite-based, thioether-based and the like can be mentioned. As the lubricant, waxes such as paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba and micro wax, stearic acid, 12
-Fatty acids such as oxystearic acid and lauric acid,
Zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, calcium laurate, fatty acid salts such as zinc linoleate, calcium linoleate, zinc 2-ethylhexoate, stearic acid amide, oleic acid amide, erucic acid Amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylenebisstearic acid amide, ethylenebisstearic acid amide, ethylenebislauric acid amide,
Distearyl adipic acid amide, ethylene bisoleic acid amide, dioleyl adipic acid amide, N-stearyl suric acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, methylol stearic acid amide, methylol behenic acid amide, etc. Fatty acid amides, fatty acid esters such as butyl stearate, alcohols such as ethylene glycol and stearyl alcohol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and polyethers composed of these modified products, silicone oil, silicone grease, etc. Fluorine compounds such as polysiloxanes, fluorinated oils, fluorinated greases, fluorinated resin powders, silicon nitride, silicon carbide, magnesium oxide, alumina, silica gel How the inorganic compound powder and the like can be used alone or in combination.

【0029】これらの磁性粉末と樹脂バインダー等を、
例えば、リボンブレンダー、タンブラー、ナウターミキ
サー、ヘンシェルミキサー、スーパーミキサー、プラネ
タリーミキサー等の混合機、および、バンバリーミキサ
ー、ニーダー、ロール、ニーダールーダー、単軸押出
機、二軸押出機等の混練機を使用して混合・混練するこ
とによって本発明に係る希土類ボンド磁石用組成物が得
られる。
These magnetic powder and resin binder, etc.,
For example, a mixer such as a ribbon blender, a tumbler, a Nauter mixer, a Henschel mixer, a super mixer, a planetary mixer, and a kneading machine such as a Banbury mixer, a kneader, a roll, a kneader ruder, a single screw extruder, and a twin screw extruder. The composition for a rare earth bonded magnet according to the present invention can be obtained by mixing and kneading using.

【0030】また、本発明に係る希土類ボンド磁石用組
成物を、例えば射出成形することによって本発明に係る
希土類ボンド磁石が得られる。あるいは、射出成形ボン
ド磁石ではないが、特開平6−236807号、特開平
7−249538号公報などに開示されるような押出成
形法でも同様な耐熱性に優れた希土類ボンド磁石が製造
できる。尚、このとき磁場中で成形すると、磁性粉末の
磁化容易方向が揃い高い磁束密度を持つ異方性の高性能
希土類ボンド磁石が製造できる。
The rare earth bonded magnet according to the present invention can be obtained by, for example, injection molding the composition for a rare earth bonded magnet according to the present invention. Alternatively, although it is not an injection-molded bonded magnet, a similar rare-earth bonded magnet having excellent heat resistance can be manufactured by an extrusion molding method as disclosed in JP-A-6-236807 and JP-A-7-249538. At this time, if it is molded in a magnetic field, it is possible to manufacture an anisotropic high-performance rare earth bonded magnet having a high magnetic flux density in which the easy directions of magnetization of the magnetic powder are aligned.

【0031】これらの混練・成形工程において、以下に
述べる7項目の一つ以上を実施することによって、ボン
ド磁石の耐熱性を更に向上させることができる。
By performing one or more of the following seven items in these kneading / molding steps, the heat resistance of the bonded magnet can be further improved.

【0032】すなわち、 1.樹脂バインダーと磁性粉末との混練温度を、熱可塑
性樹脂を用いる場合には240℃以下、好ましくは22
0℃以下とすればよい。混練温度が240℃を超えると
希土類ボンド磁石用組成物およびボンド磁石の磁気特
性、特に角型性と保磁力が低下する。
That is, 1. The kneading temperature of the resin binder and the magnetic powder is 240 ° C. or less when a thermoplastic resin is used, preferably 22
The temperature may be 0 ° C or lower. When the kneading temperature exceeds 240 ° C., the magnetic properties of the rare earth bonded magnet composition and the bonded magnet, particularly the squareness and the coercive force are deteriorated.

【0033】2.混練する雰囲気を、例えば、窒素ガ
ス、アルゴンガス、ヘリウムガスなどの非酸化性雰囲気
とし、残留酸素濃度を10体積%以下、望ましくは1体
積%以下とすればよい。このとき、特に混練機の原料投
入ホッパー内部、シリンダー内部、混練された溶融組成
物の出口であるダイス付近を上記非酸化性雰囲気とする
ことが効果的である。更に、熱可塑性樹脂を用いる場合
にはダイスを通った希土類ボンド磁石用組成物が室温に
冷却されるまでの雰囲気も上記非酸化性雰囲気とするこ
とが望ましい。残留酸素濃度が10体積%を超えると上
記組成物およびボンド磁石の磁気特性、特に角型性と保
磁力が低下する。
2. The atmosphere to be kneaded may be a non-oxidizing atmosphere such as nitrogen gas, argon gas or helium gas, and the residual oxygen concentration may be 10% by volume or less, preferably 1% by volume or less. At this time, it is particularly effective to set the above-mentioned non-oxidizing atmosphere in the raw material feeding hopper of the kneading machine, the inside of the cylinder, and the vicinity of the die which is the exit of the kneaded molten composition. Further, when a thermoplastic resin is used, it is desirable that the atmosphere before the composition for a rare earth bonded magnet that has passed through the die is cooled to room temperature is also the non-oxidizing atmosphere. If the residual oxygen concentration exceeds 10% by volume, the magnetic properties of the composition and the bonded magnet, particularly the squareness and the coercive force, deteriorate.

【0034】3.熱可塑性樹脂を用いる場合にはダイス
を通った組成物の室温への冷却時間も可及的速やかであ
るのがよく、ダイスから出た組成物をファンで空冷した
り液体窒素や水などの冷媒中へ投入するとよい。冷却時
間が長いと組成物およびボンド磁石の磁気特性、特に角
型性と保磁力が低下する。
3. When using a thermoplastic resin, the cooling time of the composition passing through the die to room temperature should be as fast as possible, and the composition discharged from the die should be air-cooled with a fan or a refrigerant such as liquid nitrogen or water. It is good to throw it in. If the cooling time is long, the magnetic properties of the composition and the bonded magnet, particularly the squareness and the coercive force are deteriorated.

【0035】4.得られた混練後の組成物をペレットに
粉砕する工程においても、雰囲気を例えば、窒素ガス、
アルゴンガス、ヘリウムガスなどの非酸化性雰囲気と
し、残留酸素濃度を10体積%以下、望ましくは1体積
%以下とすればよい。残留酸素濃度が10体積%を超え
ると組成物およびボンド磁石の磁気特性、特に角型性と
保磁力が低下する。
4. Also in the step of crushing the obtained composition after kneading into pellets, the atmosphere is, for example, nitrogen gas,
A non-oxidizing atmosphere such as argon gas or helium gas may be used, and the residual oxygen concentration may be 10% by volume or less, preferably 1% by volume or less. If the residual oxygen concentration exceeds 10% by volume, the magnetic properties of the composition and the bonded magnet, particularly the squareness and the coercive force, deteriorate.

【0036】5.熱可塑性樹脂を用いる場合にはボンド
磁石に成形する際の成形機シリンダー温度を250℃以
下、望ましくは230℃以下とすればよい。また熱可塑
性樹脂あるいは熱硬化性樹脂を用いる場合には金型温度
を140℃以下、望ましくは120℃以下とすればよ
い。シリンダー温度が250℃を超えたり、金型温度が
140℃を超えると、組成物およびボンド磁石の磁気特
性、特に角型性と保磁力が低下する。但し、シリンダー
温度と金型温度については、磁場中で形成する場合には
磁性粉末の配向性を損なわない範囲で上記のように設定
することが望ましい。
5. When a thermoplastic resin is used, the temperature of the molding machine cylinder when molding the bonded magnet is 250 ° C. or lower, preferably 230 ° C. or lower. When a thermoplastic resin or a thermosetting resin is used, the mold temperature may be 140 ° C or lower, preferably 120 ° C or lower. If the cylinder temperature exceeds 250 ° C. or the mold temperature exceeds 140 ° C., the magnetic properties of the composition and the bonded magnet, particularly the squareness and the coercive force, deteriorate. However, it is desirable that the cylinder temperature and the mold temperature are set as described above within a range that does not impair the orientation of the magnetic powder when formed in a magnetic field.

【0037】6.成形する雰囲気を、例えば、窒素ガ
ス、アルゴンガス、ヘリウムガスないしは減圧真空など
の非酸化性雰囲気とし、残留酸素濃度を10体積%以
下、望ましくは1体積%以下とすればよい。このとき、
特に成形機の原料投入ホッパー内部、シリンダー内部、
金型キャビティー付近を上記非酸化性雰囲気とした上で
成形することが効果的である。更に、成形品が室温に冷
却されるまでの雰囲気も上記非酸化性雰囲気とすること
が望ましい。残留酸素濃度が10体積%を超えると希土
類ボンド磁石用組成物およびボンド磁石の磁気特性、特
に角型性と保磁力が低下する。
6. The atmosphere for molding is, for example, a non-oxidizing atmosphere such as nitrogen gas, argon gas, helium gas or reduced pressure vacuum, and the residual oxygen concentration may be 10% by volume or less, preferably 1% by volume or less. At this time,
Especially inside the raw material input hopper of the molding machine, inside the cylinder,
It is effective to perform molding after the vicinity of the mold cavity is set to the non-oxidizing atmosphere. Furthermore, it is desirable that the atmosphere until the molded product is cooled to room temperature is also the non-oxidizing atmosphere. If the residual oxygen concentration exceeds 10% by volume, the magnetic properties of the rare earth bonded magnet composition and the bonded magnet, particularly the squareness and the coercive force, deteriorate.

【0038】7.金型から取り出された成形品の室温へ
の冷却時間も可及的速やかであるのがよく、成形品をフ
ァンで空冷したり液体窒素やドライアイスや水などの冷
媒中へ投入するとよい。冷却時間が長いと希土類ボンド
磁石用組成物およびボンド磁石の磁気特性、特に角型性
と保磁力が低下する。
7. The time taken to cool the molded product taken out of the mold to room temperature should be as quick as possible, and the molded product should be air-cooled with a fan or put into a refrigerant such as liquid nitrogen, dry ice or water. When the cooling time is long, the magnetic properties of the rare earth bonded magnet composition and the bonded magnet, particularly the squareness and the coercive force are deteriorated.

【0039】8.熱硬化性樹脂を用い、成形後に樹脂の
硬化工程が必要な場合には、その温度は140℃以下、
望ましくは80℃以下とするのがよい。硬化温度が高い
ほど硬化時間は短縮できるが、140℃を超えると希土
類ボンド磁石用組成物およびボンド磁石の磁気特性、特
に角型性と保磁力が低下する。また硬化雰囲気を雰囲気
を例えば、窒素ガス、アルゴンガス、ヘリウムガスない
しは減圧真空などの非酸化性雰囲気とし、残留酸素濃度
を10体積%以下、望ましくは1体積%以下とすればよ
い。残留酸素濃度が10体積%を超えると希土類ボンド
磁石用組成物およびボンド磁石の磁気特性、特に角型性
と保磁力が低下する。
8. When a thermosetting resin is used and a resin curing step is required after molding, the temperature is 140 ° C or lower,
It is preferably 80 ° C. or lower. The higher the curing temperature is, the shorter the curing time can be. However, if the curing temperature exceeds 140 ° C., the magnetic properties, particularly the squareness and the coercive force of the rare earth bonded magnet composition and the bonded magnet deteriorate. Further, the hardening atmosphere may be a non-oxidizing atmosphere such as nitrogen gas, argon gas, helium gas or reduced pressure vacuum, and the residual oxygen concentration may be 10% by volume or less, preferably 1% by volume or less. If the residual oxygen concentration exceeds 10% by volume, the magnetic properties of the rare earth bonded magnet composition and the bonded magnet, particularly the squareness and the coercive force, deteriorate.

【0040】[0040]

【実施例】以下、本発明の実施例について説明するが、
本発明はこれらの実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be described below.
The invention is not limited to these examples.

【0041】純度99.9重量%、粒度150メッシュ
(タイラー標準、以下同じ)以下の電解Fe粉2.25
kgと、純度99重量%、平均粒度325メッシュの酸
化Sm粉末1.01kgと、純度99重量%の粒状金属
Ca 0.44kgと、無水塩化Ca粉末0.05kg
とを、Vブレンダーを用いて混合した。ここで得られた
混合物をステンレス容器に入れ、アルゴン雰囲気下11
50℃で8時間加熱し還元拡散反応させた。
Electrolytic Fe powder having a purity of 99.9% by weight and a particle size of 150 mesh (Tyler standard, the same applies below) 2.25
kg, purity 99% by weight, oxidized Sm powder having an average particle size of 325 mesh 1.01 kg, granular metal Ca 0.44 kg with a purity 99% by weight, anhydrous Ca chloride powder 0.05 kg
And were mixed using a V blender. The mixture obtained here was placed in a stainless steel container and placed under an argon atmosphere.
The mixture was heated at 50 ° C. for 8 hours to cause reduction diffusion reaction.

【0042】次いで、反応生成物を冷却してから水中に
投入し崩壊させた。得られたスラリーを水洗し、更に酢
酸を用いて酸洗浄して未反応のCaと副生したCaOを
除去した。得られたスラリーを濾過しエタノールで置換
した後、真空乾燥して150μm以下のSm−Fe合金
粉末を約3kgを得た。
Then, the reaction product was cooled and then put into water to disintegrate. The obtained slurry was washed with water and then with acetic acid to remove unreacted Ca and CaO by-produced. The obtained slurry was filtered, replaced with ethanol, and then vacuum dried to obtain about 3 kg of Sm—Fe alloy powder having a particle size of 150 μm or less.

【0043】次いで、この粉末を管状炉中に装填し、ア
ンモニア分圧0.35のアンモニア−水素混合ガス雰囲
気中、465℃で6時間加熱(窒化処理)し、その後、
アルゴンガス中465℃で2時間加熱(アニール処理)
し、24.6重量%Sm−3.6重量%N−71.8重
量%FeのSm−Fe−N系磁性粉末を得た。
Next, this powder was loaded into a tubular furnace and heated (nitriding treatment) at 465 ° C. for 6 hours in an ammonia-hydrogen mixed gas atmosphere with an ammonia partial pressure of 0.35, and then,
Heating at 465 ° C for 2 hours in argon gas (annealing treatment)
Then, Sm-Fe-N based magnetic powder of 24.6 wt% Sm-3.6 wt% N-71.8 wt% Fe was obtained.

【0044】この磁性粉末をX線解析したところ、菱面
体晶系のTh2Zn17型結晶構造の回折線(Sm2Fe17
3金属間化合物)を示した。
An X-ray analysis of this magnetic powder revealed that the diffraction line (Sm 2 Fe 17) of the rhombohedral Th 2 Zn 17 type crystal structure was used.
N 3 intermetallic compound).

【0045】次に、上記磁性粉末を以下の表1の条件で
微粉砕し、実施例1〜2、比較例および参考例1〜2
係る希土類ボンド磁石用磁性粉末を調製した。
Next, the above magnetic powder was finely pulverized under the conditions shown in Table 1 below to prepare magnetic powders for rare earth bonded magnets according to Examples 1-2 , Comparative Examples and Reference Examples 1-2 .

【0046】[0046]

【表1】 これら実施例1〜2、比較例および参考例1〜2に係る
各希土類ボンド磁石用磁性粉末に、磁性粉末100重量
部に対して12−ポリアミド樹脂8重量部、エチレンビ
スステアリン酸アミド1重量部、パラフィンワックス1
重量部を混合し、ラボプラストミルにて混練した。混練
温度は220〜240℃、混練槽内の雰囲気は8体積%
2−N2、混練後に取り出した組成物の冷却は空冷とし
た。
[Table 1] In each of the magnetic powders for rare-earth bonded magnets according to Examples 1 to 2, Comparative Examples and Reference Examples 1 to 2, 8 parts by weight of 12-polyamide resin and 1 part by weight of ethylenebisstearic acid amide were used with respect to 100 parts by weight of the magnetic powder. , Paraffin wax 1
Parts by weight were mixed and kneaded with a Labo Plastomill. The kneading temperature is 220 to 240 ° C, and the atmosphere in the kneading tank is 8% by volume.
O 2 —N 2 and the composition taken out after kneading were cooled by air.

【0047】得られた実施例1〜2、比較例および参考
例1〜2に係る各希土類ボンド磁石用組成物をプラスチ
ック粉砕機により粉砕し成形用ペレットとした。このペ
レットからφ20×13mmの円柱状ボンド磁石を13
mm方向に4kOeの配向磁場をかけながら射出成形し
て製造した。シリンダー温度は190〜250℃、金型
温度は110℃、射出成形機の原料ホッパー・シリンダ
ー内部の雰囲気は8体積%O2−N2、金型キャビティー
付近の雰囲気は大気、および取り出した成形品の冷却方
法は空冷とした。
Obtained Examples 1-2, Comparative Examples and References
The rare earth bonded magnet compositions according to Examples 1 and 2 were crushed by a plastic crusher to obtain pellets for molding. From this pellet, a cylindrical bonded magnet of φ20 × 13 mm was
It was manufactured by injection molding while applying an orientation magnetic field of 4 kOe in the mm direction. Cylinder temperature is 190-250 ° C, mold temperature is 110 ° C, atmosphere inside the raw material hopper / cylinder of the injection molding machine is 8% by volume O 2 -N 2 , atmosphere near the mold cavity is atmospheric air, and molding taken out. The cooling method of the product was air cooling.

【0048】得られた実施例1〜2、比較例および参考
例1〜2に係る各成形品(ボンド磁石)の端面を研磨し
た後、走査型電子顕微鏡で2000倍の写真を3視野ず
つ撮影した。次に、6μm間隔で複数本の直線を写真上
に引き、先に述べた方法で磁性粉末の粒子径を測定し
た。得られたデータから1μm以上のものを抽出し、そ
の粒子径の対数に対する個数基準粒度分布を求めた。抽
出した磁性粉末粒子数は200個以上である。このデー
タから、5.0μm、4.0μm、3.2μm以上の粒
子径を持つ磁性粉末の含有率を調べた。尚、図1〜図3
は、電子顕微鏡写真から求めた実施例1、比較例、実施
例2の個数基準の累積粒度分布を示す。
Obtained Examples 1-2, Comparative Examples and References
After polishing the end faces of each molded product (bonded magnet) according to Examples 1 and 2 , a scanning electron microscope was used to take 2000 times magnification photographs in 3 fields of view. Next, a plurality of straight lines were drawn on the photograph at 6 μm intervals, and the particle size of the magnetic powder was measured by the method described above. Particles having a size of 1 μm or more were extracted from the obtained data, and the number-based particle size distribution with respect to the logarithm of the particle diameter was obtained. The number of extracted magnetic powder particles is 200 or more. From this data, the content ratio of the magnetic powder having a particle size of 5.0 μm, 4.0 μm, 3.2 μm or more was examined. 1 to 3
Shows the number-based cumulative particle size distribution of Example 1, Comparative Example, and Example 2 obtained from electron micrographs.

【0049】また、得られた実施例1〜2、比較例およ
び参考例1〜2に係る各ボンド磁石のHkと保磁力HcJ
を、13mm方向に50kOeのパルス磁場で着磁した
後、自記磁束計にて測定した。ここでHkは、残留磁束
密度Brの90%まで磁化Jが低下するときの減磁界
で、減磁曲線の角型性を表すものである。
The obtained Examples 1 and 2, Comparative Examples and
And Hk and coercive force HcJ of each bonded magnet according to Reference Examples 1 and 2
Was magnetized with a pulsed magnetic field of 50 kOe in the direction of 13 mm and then measured with a self-recording magnetometer. Here, Hk is a demagnetizing field when the magnetization J is reduced to 90% of the residual magnetic flux density Br, and represents the squareness of the demagnetization curve.

【0050】これらの結果を表2に示す。The results are shown in Table 2.

【0051】[0051]

【表2】 但し、表2中、含有率1は5.0μm以上の磁性粉末含
有率、含有率2は4.0μm以上の磁性粉末含有率、含
有率3は3.2μm以上の磁性粉末含有率をそれぞれ示
している。
[Table 2] However, in Table 2, the content rate 1 indicates a magnetic powder content rate of 5.0 μm or more, the content rate 2 indicates a magnetic powder content rate of 4.0 μm or more, and the content rate 3 indicates a magnetic powder content rate of 3.2 μm or more. ing.

【0052】次に、実施例1〜2、比較例および参考例
1〜2に係る各ボンド磁石をφ10×7mm(7mm方
向が配向方向)に加工し、配向方向に磁場50kOeで
着磁した後、50〜125℃の範囲の各温度に設定した
恒温槽内で1時間加熱した。室温での総磁束量を加熱前
後で測定しその差を加熱前の総磁束量で割ることにより
不可逆減磁率(初期減磁率)を評価した。総磁束量の測
定にはデジタルフラックスメーターを使用した。初期減
磁率の加熱温度依存性から5%の初期減磁が起こる温度
(耐熱温度と呼ぶ)を求め上記表2に示す。
Next, Examples 1 and 2, Comparative Examples and Reference Examples
Each bonded magnet according to 1-2 is processed into φ10 × 7 mm (7 mm direction is the orientation direction), magnetized in the orientation direction with a magnetic field of 50 kOe, and then in a constant temperature bath set to each temperature in the range of 50 to 125 ° C. Heated for 1 hour. The irreversible demagnetization rate (initial demagnetization rate) was evaluated by measuring the total amount of magnetic flux at room temperature before and after heating and dividing the difference by the total amount of magnetic flux before heating. A digital flux meter was used to measure the total amount of magnetic flux. From the heating temperature dependence of the initial demagnetization rate, the temperature at which the initial demagnetization of 5% occurs (referred to as heat resistant temperature) was obtained and shown in Table 2 above.

【0053】『評価』 実施例1および2では、粒子径1.0μm以上の全磁性
粉末に対する粒子径5.0μm、4.0μm、3.2μ
m以上の全磁性粉末の含有率が、それぞれ個数基準で
2.5%、4.5%、10%以下の場合(請求項の条
件を全て具備する)であり、減磁曲線の角型性と保磁力
が向上し耐熱温度が100℃以上と最も優れていること
が確認できる。
[Evaluation] In Examples 1 and 2, the particle diameter was 5.0 μm, 4.0 μm and 3.2 μ with respect to the total magnetic powder having a particle diameter of 1.0 μm or more.
When the content of all magnetic powders of m or more is 2.5%, 4.5%, or 10% or less on a number basis (all conditions of claim 1 are satisfied), the demagnetization curve has a square shape. It can be confirmed that the properties and coercive force are improved and the heat resistance temperature is 100 ° C. or more, which is the most excellent.

【0054】また、参考例1では、粒子径5.0μm以
上の全磁性粉末の含有率が個数基準で2.5%以下の場
合(4.0μm以上の全磁性粉末の含有率が個数基準で
5.2%、また、3.2μm以上の全磁性粉末の含有率
が個数基準で12%で請求項の条件をそれぞれ具備せ
ず)であり、耐熱温度が80℃を超えることが確認でき
る。
Further, in Reference Example 1 , when the content ratio of the total magnetic powder having a particle diameter of 5.0 μm or more is 2.5% or less on the number basis (the content ratio of the total magnetic powder of 4.0 μm or more is the number basis. It is 5.2%, and the content ratio of the total magnetic powder of 3.2 μm or more is 12% on the number basis (not satisfying the conditions of claim 1 ), and it can be confirmed that the heat resistance temperature exceeds 80 ° C. .

【0055】参考例2では、粒子径5.0μm、4.0
μm以上の全磁性粉末の含有率が、それぞれ個数基準で
2.5%、4.5%以下の場合(3.2μm以上の全磁
性粉末の含有率が個数基準で11%で請求項の条件を
具備せず)であり、耐熱温度が90℃以上であることが
確認できる。すなわち、実施例1、2よりは耐熱性が若
干劣るが、参考例1よりは優れていることが確認でき
る。
In Reference Example 2 , the particle diameter is 5.0 μm, 4.0.
μm or more of the total magnetic powder content is 2.5% on a particle number basis, respectively, according to claim 1 when 4.5% or less (3.2 .mu.m or more of the total magnetic powder content is 11% by number basis It can be confirmed that the heat resistant temperature is 90 ° C. or higher. That is, it can be confirmed that the heat resistance is slightly inferior to Examples 1 and 2, but is superior to Reference Example 1 .

【0056】一方、比較例では、粒子径5.0μm、
4.0μm、3.2μm以上の全磁性粉末の含有率が、
それぞれ個数基準で2.5%、4.5%、10%を超え
る場合であり、耐熱温度が80℃に達していないことが
確認できる。
On the other hand, in the comparative example, the particle diameter is 5.0 μm,
The total magnetic powder content of 4.0 μm and 3.2 μm or more is
It can be confirmed that the heat-resistant temperature does not reach 80 ° C., in the cases of exceeding 2.5%, 4.5%, and 10% on the number basis, respectively.

【0057】なお、当然のことながら、これらの各ボン
ド磁石に含まれる磁性粉末の粒度分布は成形前の各希土
類ボンド磁石用組成物でも全く同じである。
As a matter of course, the particle size distribution of the magnetic powder contained in each of these bonded magnets is exactly the same in each rare earth bonded magnet composition before molding.

【0058】[0058]

【発明の効果】請求項1、に係る発明によれば、
粒子径1.0μm以上の全磁性粉末に対する粒子径5.
0μm以上の全磁性粉末の含有率が個数基準で2.5%
以下であり、かつ、粒子径1.0μm以上の全磁性粉末
に対する粒子径4.0μm以上の全磁性粉末の含有率が
個数基準で0%を超え4.5%以下であると共に、粒子
径1.0μm以上の全磁性粉末に対する粒子径3.2μ
m以上の全磁性粉末の含有率が個数基準で0%を超え1
0%以下に設定されているため、初期減磁率が5%にな
る温度が80℃を超え、耐熱性の極めて優れたR−Fe
−N系ボンド磁石(希土類ボンド磁石)用磁性粉末、希
土類ボンド磁石用組成物および希土類ボンド磁石を提供
できる効果を有する。
According to the inventions according to claims 1, 2 and 3 ,
4. Particle size for all magnetic powder having a particle size of 1.0 μm or more.
The total magnetic powder content of 0 μm or more is 2.5% on a number basis.
All magnetic powder having a particle size of 1.0 μm or more
Content of the total magnetic powder having a particle diameter of 4.0 μm or more
The number of particles is more than 0% and 4.5% or less, and particles
Particle diameter 3.2μ for all magnetic powders with diameter 1.0μm or more
The total magnetic powder content of m or more exceeds 0% on a number basis and is 1
Since it is set to 0% or less , the temperature at which the initial demagnetization rate becomes 5% exceeds 80 ° C, and R-Fe excellent in heat resistance is excellent.
-It has the effect of providing a magnetic powder for an N-based bonded magnet (rare earth bonded magnet), a composition for a rare earth bonded magnet, and a rare earth bonded magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における1μm以上の粒子径
の対数に対する磁性粉末の個数基準の累積粒度分布を示
すグラフ図。
FIG. 1 is a graph showing a number-based cumulative particle size distribution of magnetic powder with respect to a logarithm of a particle size of 1 μm or more in Example 1 of the present invention.

【図2】比較例における1μm以上の粒子径の対数に対
する磁性粉末の個数基準の累積粒度分布を示すグラフ
図。
FIG. 2 is a graph showing a number-based cumulative particle size distribution of magnetic powder with respect to a logarithm of a particle size of 1 μm or more in a comparative example.

【図3】本発明の実施例2における1μm以上の粒子径
の対数に対する磁性粉末の個数基準の累積粒度分布を示
すグラフ図。
FIG. 3 is a graph showing a cumulative particle size distribution based on the number of magnetic powders with respect to a logarithm of a particle size of 1 μm or more in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−308012(JP,A) 特開 平5−226132(JP,A) 特開 平10−41116(JP,A) 特開 平9−97732(JP,A) 特開 平7−302725(JP,A) 特開 平5−339683(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 B22F 1/00 C22C 38/00 303 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-5-308012 (JP, A) JP-A-5-226132 (JP, A) JP-A-10-41116 (JP, A) JP-A-9- 97732 (JP, A) JP 7-302725 (JP, A) JP 5-339683 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00-1 / 117 B22F 1/00 C22C 38/00 303

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R(Rは希土類元素)と、FeまたはFe
並びにCoと、Nを主構成成分としかつTh2Zn17
結晶構造を有する希土類ボンド磁石用磁性粉末におい
て、 粒子径1.0μm以上の全磁性粉末に対する粒子径5.
0μm以上の全磁性粉末の含有率が個数基準で2.5%
以下であり、かつ、粒子径1.0μm以上の全磁性粉末
に対する粒子径4.0μm以上の全磁性粉末の含有率が
個数基準で0%を超え4.5%以下であると共に、粒子
径1.0μm以上の全磁性粉末に対する粒子径3.2μ
m以上の全磁性粉末の含有率が個数基準で0%を超え1
0%以下であることを特徴とする希土類ボンド磁石用磁
性粉末。
1. R (R is a rare earth element) and Fe or Fe
In addition, in the magnetic powder for a rare earth bonded magnet having Co and N as main constituents and having a Th 2 Zn 17 type crystal structure, the particle diameter of all magnetic powder having a particle diameter of 1.0 μm or more is 5.
The total magnetic powder content of 0 μm or more is 2.5% on a number basis.
All magnetic powder having a particle size of 1.0 μm or more
Content of the total magnetic powder having a particle diameter of 4.0 μm or more
The number of particles is more than 0% and 4.5% or less, and particles
Particle diameter 3.2μ for all magnetic powders with diameter 1.0μm or more
The total magnetic powder content of m or more exceeds 0% on a number basis and is 1
A magnetic powder for a rare earth bonded magnet, which is 0% or less .
【請求項2】初期減磁率が5%になる加熱温度が80℃
を越える耐熱性を具備する希土類ボンド磁石の製造に用
いられる希土類ボンド磁石用組成物において、 上記請求項1記載の希土類ボンド磁石用磁性粉末と樹脂
バインダーを主成分とすることを特徴とする希土類ボン
ド磁石用組成物。
2. The heating temperature at which the initial demagnetization rate is 5% is 80 ° C.
A rare earth bond magnet composition for use in the production of a rare earth bond magnet having a heat resistance exceeding 60 ° C., characterized in that the magnetic powder for a rare earth bond magnet according to claim 1 and a resin binder are the main components. Composition for magnets.
【請求項3】上記請求項記載の希土類ボンド磁石用組
成物を磁石形状に成形して成りかつその初期減磁率が5
%になる加熱温度が80℃を越える耐熱性を具備するこ
とを特徴とする希土類ボンド磁石。
3. The composition for a rare earth bonded magnet according to claim 2 , which is formed into a magnet shape and has an initial demagnetization rate of 5.
% Rare-earth bonded magnet having a heat resistance exceeding 80 ° C.
JP19376298A 1998-06-24 1998-06-24 Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet Expired - Lifetime JP3473677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19376298A JP3473677B2 (en) 1998-06-24 1998-06-24 Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19376298A JP3473677B2 (en) 1998-06-24 1998-06-24 Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet

Publications (2)

Publication Number Publication Date
JP2000012316A JP2000012316A (en) 2000-01-14
JP3473677B2 true JP3473677B2 (en) 2003-12-08

Family

ID=16313394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19376298A Expired - Lifetime JP3473677B2 (en) 1998-06-24 1998-06-24 Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JP3473677B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet
JP2014199845A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet
JP2015160721A (en) * 2014-02-28 2015-09-07 京セラドキュメントソリューションズ株式会社 Transfer device and image formation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086528B2 (en) * 1992-02-18 2000-09-11 シチズン時計株式会社 Method for producing anisotropic rare earth magnet alloy
JPH05308012A (en) * 1992-04-30 1993-11-19 Asahi Chem Ind Co Ltd Particle size distribution controlled magnet powder
JPH05339683A (en) * 1992-06-11 1993-12-21 Hitachi Metals Ltd Permanent matnet alloy and its manufacture
JP3148514B2 (en) * 1994-04-28 2001-03-19 住友特殊金属株式会社 Method for producing R-Fe-M-N bonded magnet
JPH0997732A (en) * 1995-09-29 1997-04-08 Sumitomo Special Metals Co Ltd Manufacture of r-t-n anisotropic bonded magnet
JPH1041116A (en) * 1996-07-22 1998-02-13 Sumitomo Special Metals Co Ltd R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet

Also Published As

Publication number Publication date
JP2000012316A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP2011159981A (en) HIGHLY QUENCHABLE Fe-BASED RARE EARTH MATERIAL FOR FERRITE REPLACEMENT
JP2003007521A (en) High weather-resistant magnet powder and magnet using the same
JP2018127716A (en) Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
WO2004029998A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JP2014132599A (en) Rare earth magnet powder, method for manufacturing the same, compound thereof, and bond magnet thereof
JP2021105192A (en) Rare earth-iron-nitrogen magnetic powder, bond magnet compound, bond magnet, and method for producing rare earth-iron-nitrogen magnetic powder
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP3473677B2 (en) Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet
JP3139827B2 (en) Manufacturing method of bonded magnet using rare earth magnetic resin composite material
JP4096531B2 (en) Rare earth hybrid magnet composition, method for producing the same, and magnet obtained therefrom
JPH07226312A (en) Magnetic material resin composite material
JPH0855712A (en) Magnetic material and its manufacture
JP4438445B2 (en) Rare earth hybrid bonded magnet composition and rare earth hybrid bonded magnet
JP2000195714A (en) Polar anisotropic rare-earth bonded magnet, manufacturing method, and permanent magnet type motor
JP2008305878A (en) Magnetic material, its manufacturing method and resin bond type magnet for sensor employing it
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP3217057B2 (en) Magnetic material-resin composite material, method for producing the same, and bonded magnet
JP2002110411A (en) Rare earth hybrid magnet composition and magnet using the same
JP2003328092A (en) Rare earth alloy powder for bonded magnet, compound for bonded magnet, and bonded magnet using the compound
WO2003034451A1 (en) Bonded magnet and method for production thereof
JP2004266151A (en) Composition for rare earth hybrid magnet, and rare earth hybrid magnet
JP3835133B2 (en) Rare earth hybrid magnet composition and magnet
JPH0845718A (en) Magnetic material and its manufacture
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it
JP2005179773A (en) Rare earth-iron-manganese based master alloy powder and its production method, anisotropic rare earth-iron-manganese-nitrogen based magnet powder obtained by using the same and its production method, composition for rare earth bond magnet obtained by using the same, and rare earth bond magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

EXPY Cancellation because of completion of term