JP4706412B2 - Anisotropic composite magnet - Google Patents

Anisotropic composite magnet Download PDF

Info

Publication number
JP4706412B2
JP4706412B2 JP2005275725A JP2005275725A JP4706412B2 JP 4706412 B2 JP4706412 B2 JP 4706412B2 JP 2005275725 A JP2005275725 A JP 2005275725A JP 2005275725 A JP2005275725 A JP 2005275725A JP 4706412 B2 JP4706412 B2 JP 4706412B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
demagnetization
anisotropic
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005275725A
Other languages
Japanese (ja)
Other versions
JP2007088246A (en
Inventor
文敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005275725A priority Critical patent/JP4706412B2/en
Publication of JP2007088246A publication Critical patent/JP2007088246A/en
Application granted granted Critical
Publication of JP4706412B2 publication Critical patent/JP4706412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は長期間にわたって高温暴露される環境下においても、モータなどの鉄心と対向した空隙に強い静磁界を発生し続け得る異方性複合磁石に関する。   The present invention relates to an anisotropic composite magnet that can continue to generate a strong static magnetic field in a gap facing an iron core, such as a motor, even in an environment exposed to high temperatures for a long period of time.

メルトスパンなどの急冷凝固で得られるNd2Fe14B、αFe/Nd2Fe14B、Fe3B/Nd2Fe14B磁石材料の形態はリボンなどの薄帯や、それを粉砕したフレーク状の粉末に制限される。このため、一般に使用されるバルク状永久磁石とするには材料形態の変換、つまり何らかの方法で薄帯や粉末を特定のバルクに固定化する技術が必要となる。粉末冶金学における基本的な粉末固定手段は常圧焼結であるが、当該リボンは準安定状態に基づく磁気特性を維持する必要があるため常圧焼結の適用は困難である。そのため、もっぱらエポキシ樹脂のような結合剤で特定形状のバルクに固定化することが行われた。例えば、R.W.Leeらは(BH)max111kJ/m3のリボンを樹脂で固定すると(BH)max72kJ/m3の等方性複合磁石ができるとした[R.W.Lee,E.G.Brewer,N.A.Schaffel,“Hot−pressed Neodymium−Iron−Boron magnets”IEEE Trans.Magn.,Vol.21,1958(1985)](非特許文献1参照)。 The Nd 2 Fe 14 B, αFe / Nd 2 Fe 14 B, and Fe 3 B / Nd 2 Fe 14 B magnet materials obtained by rapid solidification such as melt span are in the form of ribbons and other flakes. Limited to powder. For this reason, in order to obtain a generally used bulk permanent magnet, it is necessary to change the material form, that is, a technique for fixing a ribbon or powder to a specific bulk by some method. Although the basic powder fixing means in powder metallurgy is atmospheric pressure sintering, it is difficult to apply atmospheric pressure sintering because the ribbon needs to maintain magnetic properties based on a metastable state. For this reason, fixing to a bulk of a specific shape was performed exclusively with a binder such as an epoxy resin. For example, R.A. W. Lee et al. Stated that (BH) max 72 kJ / m 3 isotropic composite magnet could be obtained by fixing a (BH) max 111 kJ / m 3 ribbon with resin [R. W. Lee, E .; G. Brewer, N.M. A. Schaffel, “Hot-pressed Neodymium-Iron-Boron magnets” IEEE Trans. Magn. , Vol. 21, 1958 (1985)] (see Non-Patent Document 1).

1986年、本発明者らは特開昭62−196057号公報によって上記メルトスパンリボンを粉砕したNd2Fe14B磁石粉末をエポキシ樹脂で固定した(BH)max〜72kJ/m3の小口径環状等方性複合磁石が小型モータに有用であることを明らかにした(特許文献1参照)。その後、T.Shimodaも前記小口径環状等方性複合磁石の小型モータ特性をSm−Co系ラジアル異方性複合磁石の小型モータ特性と比較し、前者が有用であるとした[T. Shimoda,“Compression molding magnet made from rapid−quenched powder”,PERMANENT MAGNETS 1988 UPDATE,Wheeler Associate INC(1988)](非特許文献2参照)。さらに、小型モータに有用であるという報告がW.Baran[“Case histories of NdFeB in the European community”,The European Business and Technical Outlook for NdFeB Magnets,Nov.(1989)]、G.X.Huang,W.M.Gao,S.F.Yu[“Application of melt−spun Nd−Fe−B bonded magnet to the micro−motor”,Proc.of the 11th International Rare−Earth Magnets and Their Applications,Pittsburgh,USA,pp.583−595(1990)]、Kasai[“MQ1,2&3 magnets applied to motors and actuators”,Polymer Bonded Magnets T92,Embassy Suite OTHare−Rosemont,Illinois,USA,(1992)]などによってなされ、1990年代から、主にOA、AV、PCおよびその周辺機器、情報通信機器の永久磁石型モータ用途の環状磁石として、広く普及した経緯がある(非特許文献3〜5参照)。 In 1986, the present inventors fixed an Nd 2 Fe 14 B magnet powder obtained by pulverizing the above melt spun ribbon with an epoxy resin according to Japanese Patent Application Laid-Open No. 62-196057 (BH), a small-diameter annular with a maximum of 72 kJ / m 3. It has been clarified that isotropic composite magnets are useful for small motors (see Patent Document 1). Thereafter, T.W. Shimoda also compared the small motor characteristics of the small-diameter annular isotropic composite magnet with the small motor characteristics of the Sm-Co radial anisotropic composite magnet, and the former was useful [T. Shimoda, “Compression molding target made rapid-quenched powder”, PERMANENT MAGNETS 1988 UPDATE, Wheeler Associate INC (1988)] (see Non-Patent Document 2). Furthermore, a report that it is useful for a small motor is disclosed in W.W. Baran ["Case history of NdFeB in the European community", The European Business and Technical Outlook for NdFeB Magnets, Nov. (1989)], G.M. X. Huang, W.H. M.M. Gao, S .; F. Yu ["Application of melt-spun Nd-Fe-B bonded magnet to the micro-motor", Proc. of the 11 th International Rare-Earth Magnets and Their Applications, Pittsburgh, USA, pp. 583-595 (1990)], Kasai ["MQ1, 2 & 3 magnets applied to motors and actuators", Polymer Bonded Magnets T92, Embassie Suite OTare90, 1992. Are widely used as annular magnets for permanent magnet type motors of OA, AV, PC and peripheral devices thereof, and information communication devices (see Non-Patent Documents 3 to 5).

他方、1980年代からメルトスピニングによる磁石材料の研究が活発に行われ、Nd2Fe14B系、Sm2Fe173系、或いはそれらとαFe、Fe3B系などとの微細組織に基づく交換結合を利用したナノコンポジット材料を含め、多彩な合金組成をミクロ組織制御した材料に加え、近年ではメルトスピニング以外の急冷凝固法により、粉末形状の異な
る等方性希土類磁石粉末も工業的に利用可能になっている[例えば、入山恭彦,“高性能希土類ボンド磁石の開発動向”,文部科学省イノベーション創出事業/希土類資源の有効利用と先端材料シンポジウム,東京,pp.19−26(2002)、B.H.Rabin,B.M.Ma,“Recent developments in Nd−Fe−B
powder”,120th Topical Symposium of the Magnetic Society of Japan,pp.23−28(2001)、B.M.Ma,“Recent powder development at magnequench”,Polymer Bonded Magnets 2002, Chicago(2002)、S.Hirasawa,H.Kanekiyo,T.Miyoshi,K.Murakami,Y.Shigemoto,T.Nishiuchi,“Structure and magnetic properties of Nd2Fe14B/FexB−type nanocomposite permanent magnets prepared by strip casting”,9th Joint MMM/INTERMAG,CA(2004)FG−05](非特許文献6〜9参照)。
On the other hand, research on magnet materials by melt spinning has been actively conducted since the 1980s, and exchange based on the microstructure of Nd 2 Fe 14 B system, Sm 2 Fe 17 N 3 system or αFe, Fe 3 B system and the like. In addition to nanocomposite materials using bonding, materials with various alloy compositions and microstructure controlled, in recent years, isotropic rare earth magnet powders with different powder shapes can also be used industrially by rapid solidification methods other than melt spinning. [For example, Yasuhiko Iriyama, “Development Trends of High Performance Rare Earth Bond Magnets”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Utilization of Rare Earth Resources and Advanced Materials Symposium, Tokyo, pp. 19-26 (2002), B.I. H. Rabin, B.M. M.M. Ma, “Recent developments in Nd—Fe—B
powder ", 120 th Topical Symposium of the Magnetic Society of Japan, pp. 23-28 (2001), B. M. Ma," Recent powder development at magnepne m agneP , H.Kanekiyo, T.Miyoshi, K.Murakami, Y.Shigemoto , T.Nishiuchi, "Structure and magnetic properties of Nd 2 Fe 14 B / FexB-type nanocomposite permanent magnets prepared by strip castin ", 9 th Joint MMM / INTERMAG , CA (2004) FG-05] ( see Non-Patent Document 6-9).

また、等方性でありながら(BH)maxが220kJ/m3に達するというDaviesらの報告もある[H.A.Davies,J.I.Betancourt,C.L.Harland,“Nanophase Pr and Nd/Pr based rare−earth−iron− boron alloys”,Proc.of 16th Int. Workshop on Rare−Earth Magnets and Their Applications,Sendai,pp.485−495(2000)](非特許文献10参照)。 There is also a report by Davies et al. That (BH) max reaches 220 kJ / m 3 while being isotropic [H. A. Davies, J .; I. Betancourt, C.I. L. Harland, “Nanophase Pr and Nd / Pr based rare-earth-iron-boron alloys”, Proc. of 16 th Int. Works on Rare-Earth Magnets and Their Applications, Sendai, pp. 485-495 (2000)] (see Non-Patent Document 10).

しかし、工業的に利用可能な急冷凝固粉末の(BH)maxは〜134kJ/m3、等方性複合磁石の(BH)maxは略80kJ/m3と見積もられる。 However, industrially usable rapidly solidified powder (BH) max is ~134kJ / m 3, (BH) max of the isotropic composite magnet is estimated to be approximately 80 kJ / m 3.

上記に拘らず、本発明が対象とする永久磁石型モータは電気電子機器の高性能化のもと、更なる薄型化、小型化、高出力化、低振動騒音化、或いは位置制御の高精度化などの要求が絶えない。したがって、等方性希土類ボンド磁石の磁石粉末の(BH)maxに代表される磁気特性の改良では、もはや当該モータの高性能化に有用と言い切れなくなりつつある。よって、このような、等方性希土類ボンド磁石モータの分野では異方性希土類ボンド磁石の永久磁石型モータへの応用の必要性が高まっている[山下文敏,“希土類磁石の電子機器への応用と展望”,文部科学省イノベ−ション創出事業/希土類資源の有効利用と先端材料シンポジウム,東京,(2002)](非特許文献11参照)。 Regardless of the above, the permanent magnet type motors targeted by the present invention are further reduced in thickness, size, output, vibration and noise, or high accuracy in position control under the performance of electric and electronic equipment. There is a constant demand for conversion. Therefore, the improvement of the magnetic characteristics represented by (BH) max of the magnet powder of the isotropic rare earth bonded magnet is no longer useful for improving the performance of the motor. Therefore, in the field of isotropic rare earth bonded magnet motors, there is an increasing need for application of anisotropic rare earth bonded magnets to permanent magnet motors [Fumitoshi Yamashita, “Application of rare earth magnets to electronic devices. And prospects ”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Utilization of Rare Earth Resources and Advanced Materials Symposium, Tokyo, (2002)] (see Non-Patent Document 11)

ところで、異方性複合磁石に用いるSm−Co系磁石粉末はインゴットを粉砕しても大きな保磁力HCJが得られる。しかし、SmやCoは資源バランスの課題が大きく、工業材料としての汎用化には馴染まない。これに対し、NdやFeは資源バランスの観点で有利である。しかし、Nd2Fe14B系合金のインゴットや焼結磁石を粉砕してもHCJは小さい。このため、異方性Nd2Fe14B磁石粉末の作製に関しては、急冷凝固材料を出発原料とする研究が先行した。 By the way, the Sm—Co based magnet powder used for the anisotropic composite magnet can obtain a large coercive force H CJ even if the ingot is pulverized. However, Sm and Co have a great resource balance problem, and are not suitable for general use as industrial materials. On the other hand, Nd and Fe are advantageous from the viewpoint of resource balance. However, even if the Nd 2 Fe 14 B alloy ingot or sintered magnet is pulverized, HCJ is small. For this reason, with respect to the production of anisotropic Nd 2 Fe 14 B magnet powder, research using a rapidly solidified material as a starting material preceded.

1989年、徳永はNd14Fe80-X6GaX(X=0.4〜0.5)を熱間据込加工(Die−upset)したバルクを粉砕しHCJ=1.52MA/mの異方性Nd2Fe14B粉末とし、樹脂で固めて(BH)max127kJ/m3の異方性複合磁石を得た[徳永雅亮,“希土類ボンド磁石の磁気特性”,粉体および粉末冶金,Vol.35,pp.3−7,(1988)](非特許文献12参照)。また、1991年、H.SakamotoらはNd14Fe79.85.2Cu1を熱間圧延し、HCJ1.30MA/mの異方性Nd2Fe14B粉末を作製した[H.Sakamoto,M.Fujikura and T. M
ukai,“Fully−dense Nd−Fe−B magnets prepared from hot−rolled anisotropic powders”,Proc.11th Int.Workshop on Rare−earth Magnets and Their Applications,Pittsburg,pp.72−84(1990)](非特許文献13参照)。このように、GaやCuの添加で熱間加工性を向上させ、Nd2Fe14B結晶粒径を制御して高HCJ化した粉末が知られた。1991年、V.Panchanathanらは熱間加工バルクの粉砕法とし、粒界から水素を侵入させNd2Fe14BHXとして崩壊させ、真空加熱で脱水素したHD(Hydrogen Decrepitation)−Nd2Fe14B粒子とし、(BH)max150kJ/m3の異方性複合磁石とした[M.Doser,V.Panchanacthan,and R.K.Mishra,“Pulverizing anisotropic
rapidly solidified Nd−Fe−B materials for bonded magnets”,J.Appl.Phys.,Vol.70,pp.6603−6805(1991)](非特許文献14参照)。2001年、IriyamaはNd0.137Fe0.735Co0.0670.055Ga0.006を同法で310kJ/m3の粒子とし、(BH)max177kJ/m3の異方性複合磁石に改良した[T.Iriyama,“Anisotropic bonded NdFeB magnets made from hot−upset powders”,Polymer Bonded Magnet 2002, Chicago (2002)](非特許文献15参照)。
In 1989, Tokunaga pulverized a hot upset (Die-upset) bulk of Nd 14 Fe 80-X B 6 Ga X (X = 0.4 to 0.5) and HC J = 1.52 MA / m Anisotropy Nd 2 Fe 14 B powder and solidified with resin to obtain an anisotropic composite magnet with (BH) max 127 kJ / m 3 [Masaaki Tokunaga, “Magnetic properties of rare earth bonded magnet”, powder and powder Metallurgy, Vol. 35, pp. 3-7, (1988)] (see Non-Patent Document 12). In 1991, H.C. Sakamoto et al. Hot rolled Nd 14 Fe 79.8 B 5.2 Cu 1 to produce anisotropic Nd 2 Fe 14 B powder of H CJ 1.30 MA / m [H. Sakamoto, M .; Fujikura and T. M
ukai, “Fully-dense Nd-Fe-B magnets prepared from hot-rolled anisotropic powders”, Proc. 11 th Int. Workshop on Rare-earth Magnets and Ther Applications, Pittsburg, pp. 72-84 (1990)] (see Non-Patent Document 13). As described above, a powder in which hot workability is improved by addition of Ga or Cu, and Nc 2 Fe 14 B crystal grain size is controlled to increase the HCJ is known. 1991, V.C. Panchanathan et al. Used a hot-working bulk pulverization method to make HD (Hydrogen Depreciation) -Nd 2 Fe 14 B particles, which were dehydrogenated by vacuum heating by intruding hydrogen from the grain boundaries to collapse into Nd 2 Fe 14 BH X , ( BH) An anisotropic composite magnet having a max of 150 kJ / m 3 [M. Doser, V.M. Panchanthan, and R.A. K. Misra, “Pulverizing anisotropic”
rapidly solidified Nd-Fe-B materials for bonded magnets ", J.Appl.Phys., Vol.70, pp.6603-6805 (1991)] ( see Non-Patent Document 14). 2001, Iriyama the Nd 0.137 Fe 0.735 Co 0.067 B 0.055 Ga 0.006 was made into particles of 310 kJ / m 3 by the same method and improved to an anisotropic composite magnet of (BH) max 177 kJ / m 3 [T. Iriyama, “Anisotropic bonded NdFeB magnets made hot-ps. "Powders", Polymer Bonded Magnet 2002, Chicago (2002)] (see Non-Patent Document 15).

一方、TakeshitaらはNd−Fe(Co)−Bインゴットを水素中熱処理し、Nd2(Fe,Co)14B相の水素化(Hydrogenation,Nd2[Fe,Co]14BHx)、650〜1000℃で相分解(De composition,NdH2+Fe+Fe2B)、脱水素(Desorpsion)、再結合(Recombination)するHDDR法を提案し[T.Takeshita,and R.Nakayama,“Magnetic properties and micro− structure of the Nd−Fe−B magnet powders produced by hydrogen treatment”,Proc.10th Int.Workshop on Rare−earth Magnets and Their
Applications,Kyoto,pp.551−562(1989)]、1999年にはHDDR−Nd2Fe14B粒子から(BH)max193kJ/m3の異方性複合磁石を作製した[K.Morimoto,R.Nakayama,K.Mori,K.Igarashi,Y.Ishii,M.Itakura,N.Kuwano,K.Oki,“Nd2Fe14B−based magnetic powder with high remanence produced by modified HDDR process”,IEEE.Trans.Magn.,Vol.35,pp.3253−3255(1999)](非特許文献16、17参照)。
Meanwhile, Takeshita et al. Nd—Fe (Co) —B ingot is heat-treated in hydrogen to hydrogenate Nd 2 (Fe, Co) 14 B phase (Hydrogenation, Nd 2 [Fe, Co] 14 BHx), 650-1000. The HDDR method is proposed in which phase decomposition (De composition, NdH 2 + Fe + Fe 2 B), dehydrogenation, and recombination are performed at ℃ [T. Takeshita, and R.A. Nakayama, "Magnetic properties and micro-structure of the Nd-Fe-B magnet powders produced by hydrogen treatment", Proc. 10 th Int. Works on Rare-earth Magnets and Their
Applications, Kyoto, pp. 551-562 (1989)], in 1999, an anisotropic composite magnet having a (BH) max of 193 kJ / m 3 was produced from HDDR-Nd 2 Fe 14 B particles [K. Morimoto, R.A. Nakayama, K .; Mori, K .; Igarashi, Y. et al. Ishii, M .; Itakura, N .; Kuwano, K .; Oki, “Nd 2 Fe 14 B-based magnetic powder with high remanufactured produced by HDDR process”, IEEE. Trans. Magn. , Vol. 35, pp. 3253-3255 (1999)] (see Non-Patent Documents 16 and 17).

2001年には、MishimaらによってCo−freeのd−HDDR Nd2Fe14B粒子が報告され[C.Mishima,N.Hamada,H.Mitarai,and Y.Honkura,“Development of a Co−free NdFeB anisotropic magnet produced d−HDDR
processes powder”,IEEE.Trans.Magn.,Vol.37,pp.2467−2470(2001)]、N.Hamadaらは(BH)max358kJ/m3の同d−HDDR異方性Nd2Fe14B粒子を150℃、2.5Tの配向磁界中、0.9GPaで圧縮し、密度6.51Mg/m3、(BH)max213kJ/m3の立方体(7mm×7mm×7mm)異方性ボンド磁石を作製している[N.Hamada,C.Mishima,H.Mitarai and Y.Honkura,“Development of anisotropic bonded magnet with 27 MGOe”IEEE.Trans.Magn.,Vol.39,pp.295
3−2956(2003)](非特許文献18、19参照)。しかし、立方体磁石は、一般の永久磁石型モータには適合しない。例えば、肉厚1mm程度の環状、或いは円弧状の磁気異方性磁石として永久磁石型モータへの形状対応力を高める必要がある。
In 2001, Misima et al. Reported Co-free d-HDDR Nd 2 Fe 14 B particles [C. Misima, N .; Hamada, H .; Mitarai, and Y.M. Honkura, “Development of a Co-free NdFeB anisotropy magnet produced d-HDDR
processes powder ", IEEE Trans. Magn., Vol. 37, pp. 2467-2470 (2001)], N. Hamada et al. (BH) max 358 kJ / m 3 of the same d-HDDR anisotropic Nd 2 Fe 14. B particles were compressed at 0.9 GPa in an orientation magnetic field of 150 ° C. and 2.5 T, and a cubic (7 mm × 7 mm × 7 mm) anisotropic bond with a density of 6.51 Mg / m 3 and (BH) max 213 kJ / m 3 Magnets [N. Hamada, C. Misima, H. Mitarai and Y. Honkura, “Development of anisotrophic bonded with 27 MGOe”, IEEE. Trans.
3-2956 (2003)] (see Non-Patent Documents 18 and 19). However, the cubic magnet is not compatible with a general permanent magnet type motor. For example, it is necessary to increase the shape-corresponding force to a permanent magnet type motor as an annular or arc-shaped magnetic anisotropic magnet having a thickness of about 1 mm.

一方、2001年、RD(Reduction&Diffusion)−Sm2Fe173微粉末を用いた(BH)max〜119kJ/m3の射出成形異方性複合磁石が報告された[川本淳,白石佳代,石坂和俊,保田晋一,“15MGOe級SmFeN射出成形コンパウンド”,電気学会マグネティックス研究会,(2001)MAG−01−173](非特許文献20参照)。2002年、Ohmoriにより(BH)max323kJ/m3の耐候性付与RD−Sm2Fe173微粉末を使用した(BH)max136kJ/m3の異方性複合磁石も報告された[K.Ohmori,“New era of anisotropic bonded SmFeN magnets”,Polymer Bonded
Magnet 2002,Chicago(2002)](非特許文献21参照)。このような射出成形による(BH)max80kJ/m3のSm2Fe173系の異方性複合磁石を応用した表面磁石(SPM)ロータを用いることで、フェライト焼結磁石モータに対して高効率化を実現した報告もある[松岡篤,山崎東吾,川口仁,“送風機用ブラシレスDCモータの高性能化検討”,電気学会回転機研究会,(2001)RM−01−161](非特許文献22参照)。
On the other hand, in 2001, an injection molded anisotropic composite magnet of (BH) max ˜119 kJ / m 3 using RD (Reduction & Diffusion) -Sm 2 Fe 17 N 3 fine powder was reported [Satoshi Kawamoto, Kayo Shiraishi, Ishizaka Kazutoshi, Junichi Yasuda, “15MGOe-class SmFeN injection molding compound”, Institute of Electrical Engineers of Magnetics, (2001) MAG-01-173] (see Non-Patent Document 20). In 2002, Ohmori also reported an anisotropic composite magnet with (BH) max 136 kJ / m 3 using (BH) max 323 kJ / m 3 weatherable RD-Sm 2 Fe 17 N 3 fine powder [KH] . Ohmori, “New era of anisotropic bonded SmFeN magnets”, Polymer Bonded.
Magnet 2002, Chicago (2002)] (see Non-Patent Document 21). By using a surface magnet (SPM) rotor to which an anisotropic composite magnet of Sm 2 Fe 17 N 3 system of (BH) max 80 kJ / m 3 by such injection molding is applied, a ferrite sintered magnet motor can be used. There are also reports that have achieved high efficiency [Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi, “Examination of high-performance brushless DC motors for blowers”, The Institute of Electrical Engineers of Japan, (2001) RM-01-161] (non- (See Patent Document 22).

しかし、ラジアル配向磁界は成形型リングキャビティが小口径化(或いは、長尺化)すると、起磁力の多くが漏洩磁束として消費されるため配向磁界が減少する。したがって、配向度の低下に伴って、複合磁石や焼結磁石に拘らず小口径化に伴って(BH)maxが減少する[例えば、清水元治,平井伸之,“Nd−Fe−B系焼結型異方性リング磁石”,日立金属技報,Vol.6,pp.33−36(1990)](非特許文献23参照)。また、均質なラジアル磁界の発生は困難で等方性複合磁石に比べて生産性が低い課題もある。 However, in the radial orientation magnetic field, when the mold ring cavity is reduced in diameter (or lengthened), most of the magnetomotive force is consumed as the leakage magnetic flux, so that the orientation magnetic field is reduced. Therefore, as the degree of orientation decreases, (BH) max decreases as the diameter decreases regardless of the composite magnet or sintered magnet [for example, Motoharu Shimizu, Nobuyuki Hirai, “Nd—Fe—B based sintering” Type anisotropic ring magnet ", Hitachi Metals Technical Report, Vol. 6, pp. 33-36 (1990)] (see Non-Patent Document 23). In addition, it is difficult to generate a homogeneous radial magnetic field, and there is a problem that productivity is lower than that of an isotropic composite magnet.

加えて、Nd2Fe14B系やSm2Fe173系異方性複合磁石はNd2Fe14B系の等方性複合磁石に比べて耐環境性など耐久性が低く、等方性複合磁石のような普及はない。
特開昭62−196057号公報 R.W.Lee,E.G.Brewer,N.A.Schaffel,“Hot−pressed Neodymium−Iron−Boron magnets”IEEE Trans.Magn.,Vol.21,1958(1985) T. Shimoda,“Compression molding magnet made from rapid−quenched powder”,PERMANENT MAGNETS 1988 UPDATE,Wheeler Associate INC(1988) W.Baran“Case histories of NdFeB in the European community”,The European Business and Technical Outlook for NdFeB Magnets,Nov.(1989) G.X.Huang,W.M.Gao,S.F.Yu[“Application of melt−spun Nd−Fe−B bonded magnet to the micro−motor”,Proc.of the 11th International Rare−Earth Magnets and Their Applications,Pittsburgh,USA,pp.583−595(1990) Kasai“MQ1,2&3 magnets applied to motors and actuators”,Polymer Bonded Magnets T92,Embassy Suite OTHare−Rosemont,Illinois,USA,(1992) 入山恭彦,“高性能希土類ボンド磁石の開発動向”,文部科学省イノベーション創出事業/希土類資源の有効利用と先端材料シンポジウム,東京,pp.19−26(2002) B.H.Rabin,B.M.Ma,“Recent developments in Nd−Fe−B powder”,120th Topical Symposium of the Magnetic Society of Japan,pp.23−28(2001) B.M.Ma,“Recent powder development at magnequench”,Polymer Bonded Magnets 2002, Chicago(2002) S.Hirasawa,H.Kanekiyo,T.Miyoshi,K.Murakami,Y.Shigemoto,T.Nishiuchi,“Structure and magnetic properties of Nd2Fe14B/FexB−type nanocomposite permanent magnets prepared by strip casting”,9th Joint MMM/INTERMAG,CA(2004)FG−05 H.A.Davies,J.I.Betancourt,C.L.Harland,“Nanophase Pr and Nd/Pr based rare−earth−iron− boron alloys”,Proc.of 16th Int. Workshop on Rare−Earth Magnets and Their Applications,Sendai,pp.485−495(2000) 山下文敏,“希土類磁石の電子機器への応用と展望”,文部科学省イノベ−ション創出事業/希土類資源の有効利用と先端材料シンポジウム,東京,(2002) 徳永雅亮,“希土類ボンド磁石の磁気特性”,粉体および粉末冶金,Vol.35,pp.3−7,(1988) T.Mukai,“Fully−dense Nd−Fe−B magnets prepared from hot−rolled anisotropic powders”,Proc.11th Int.Workshop on Rare−earth Magnets and Their Applications,Pittsburg,pp.72−84(1990) M.Doser,V.Panchanacthan,and R.K.Mishra,“Pulverizing anisotropic rapidly solidified Nd−Fe−B materials for bonded magnets”,J.Appl.Phys.,Vol.70,pp.6603−6805(1991) T.Iriyama,“Anisotropic bonded NdFeB magnets made from hot−upset powders”,Polymer Bonded Magnet 2002, Chicago (2002) T.Takeshita,and R.Nakayama,“Magnetic properties and micro− structure of the Nd−Fe−B magnet powders produced by hydrogen treatment”,Proc.10th Int.Workshop on Rare−earth Magnets and Their Applications,Kyoto,pp.551−562(1989) K.Morimoto,R.Nakayama,K.Mori,K.Igarashi,Y.Ishii,M.Itakura,N.Kuwano,K.Oki,“Nd2Fe14B−based magnetic powder with high remanence produced by modified HDDR process”,IEEE.Trans.Magn.,Vol.35,pp.3253−3255(1999) C.Mishima,N.Hamada,H.Mitarai,and Y.Honkura,“Development of a Co−free NdFeB anisotropic magnet produced d−HDDR processes powder”,IEEE.Trans.Magn.,Vol.37,pp.2467−2470(2001) N.Hamada,C.Mishima,H.Mitarai and Y.Honkura,“Development of anisotropic bonded magnet with 27 MGOe”IEEE.Trans.Magn.,Vol.39,pp.2953−2956(2003) 川本淳,白石佳代,石坂和俊,保田晋一,“15MGOe級SmFeN射出成形コンパウンド”,電気学会マグネティックス研究会,(2001)MAG−01−173 K.Ohmori,“New era of anisotropic bonded SmFeN magnets”,Polymer Bonded Magnet 2002,Chicago(2002) 松岡篤,山崎東吾,川口仁,“送風機用ブラシレスDCモータの高性能化検討”,電気学会回転機研究会,(2001)RM−01−161 清水元治,平井伸之,“Nd−Fe−B系焼結型異方性リング磁石”,日立金属技報,Vol.6,pp.33−36(1990)
In addition, Nd 2 Fe 14 B and Sm 2 Fe 17 N 3 anisotropic composite magnets are less isotropic and less isotropic than Nd 2 Fe 14 B isotropic composite magnets, and are isotropic There is no spread like a composite magnet.
JP-A-62-196057 R. W. Lee, E .; G. Brewer, N.M. A. Schaffel, “Hot-pressed Neodymium-Iron-Boron magnets” IEEE Trans. Magn. , Vol. 21, 1958 (1985) T.A. Shimoda, “Compression molding magnet made rapid-quenched powder”, PERMANENT MAGNETS 1988 UPDATE, Wheeler Associate INC (1988) W. Baran “Case history of NdFeB in the European community”, The European Business and Technical Outlook for NdFeB Magnets, Nov. (1989) G. X. Huang, W.H. M.M. Gao, S .; F. Yu ["Application of melt-spun Nd-Fe-B bonded magnet to the micro-motor", Proc. of the 11th International Rare-Earth Magnets and Their Applications, Pittsburgh, USA, pp. 583-595 (1990) Kasai “MQ1, 2 & 3 magnets applied to motors and actors”, Polymer Bonded Magnets T92, Embassiy Suite OTare-Rosemont, Illinois, USA (Illinois 92, USA). Yasuhiko Iriyama, “Development Trend of High Performance Rare Earth Bond Magnets”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Use of Rare Earth Resources and Advanced Materials Symposium, Tokyo, pp. 19-26 (2002) B. H. Rabin, B.M. M.M. Ma, “Recent developments in Nd—Fe—B powder”, 120th Topical Symposium of the Magnetic Society of Japan, pp. 23-28 (2001) B. M.M. Ma, “Recent powder development at magneque”, Polymer Bonded Magnets 2002, Chicago (2002) S. Hirazawa, H .; Kanekiyo, T .; Miyoshi, K .; Murakami, Y .; Shigemoto, T .; Nishiuchi, “Structure and magnetic properties of Nd2Fe14B / FexB-type nanocomposite permanent magnets pre-prepared by MMM” 5G H. A. Davies, J .; I. Betancourt, C.I. L. Harland, “Nanophase Pr and Nd / Pr based rare-earth-iron-boron alloys”, Proc. of 16th Int. Works on Rare-Earth Magnets and Their Applications, Sendai, pp. 485-495 (2000) Fumitoshi Yamashita, “Application and Prospect of Rare Earth Magnets for Electronic Equipment”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Utilization of Rare Earth Resources and Advanced Materials Symposium, Tokyo, (2002) Masaaki Tokunaga, “Magnetic Properties of Rare Earth Bond Magnets”, Powder and Powder Metallurgy, Vol. 35, pp. 3-7, (1988) T.A. Mukai, “Fully-dense Nd-Fe-B magnets prepared from hot-rolled anisotropic powders”, Proc. 11th Int. Workshop on Rare-earth Magnets and Ther Applications, Pittsburg, pp. 72-84 (1990) M.M. Doser, V.M. Panchanthan, and R.A. K. Misra, “Pulverizing anisotropy rapidly solidified Nd—Fe—B materials for bonded magnets”, J. Am. Appl. Phys. , Vol. 70, pp. 6603-6805 (1991) T.A. Iriyama, “Anisotropic bonded NdFeB magnets made from hot-upset powders”, Polymer Bonded Magnet 2002, Chicago (2002) T.A. Takeshita, and R.A. Nakayama, "Magnetic properties and micro-structure of the Nd-Fe-B magnet powders produced by hydrogen treatment", Proc. 10th Int. Works on Rare-earth Magnets and Ther Applications, Kyoto, pp. 551-562 (1989) K. Morimoto, R.A. Nakayama, K .; Mori, K .; Igarashi, Y. et al. Ishii, M .; Itakura, N .; Kuwano, K .; Oki, “Nd 2 Fe 14 B-based magnetic powder with high remanufactured produced by modified HDDR process”, IEEE. Trans. Magn. , Vol. 35, pp. 3253-3255 (1999) C. Misima, N .; Hamada, H .; Mitarai, and Y.M. Honkura, “Development of a Co-free NdFeB anisotropy magnet produced produced d-HDDR processes powder”, IEEE. Trans. Magn. , Vol. 37, pp. 2467-2470 (2001) N. Hamada, C.I. Misima, H .; Mitarai and Y.M. Honkura, “Development of anisotrophic bonded magnet with 27 MGOe” IEEE. Trans. Magn. , Vol. 39, pp. 2953-2956 (2003) Satoshi Kawamoto, Kayo Shiraishi, Kazutoshi Ishizaka, Junichi Yasuda, “15MGOe-class SmFeN injection molding compound”, The Institute of Electrical Engineers of Japan, (2001) MAG-01-173 K. Ohmori, “New era of anisotropic bonded SmFeN magnets”, Polymer Bonded Magnet 2002, Chicago (2002) Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi, “Examination of high performance brushless DC motor for blower”, The Institute of Electrical Engineers of Japan, (2001) RM-01-161 Motoharu Shimizu, Nobuyuki Hirai, “Nd—Fe—B sintered anisotropic ring magnet”, Hitachi Metals, Vol. 6, pp. 33-36 (1990)

永久磁石を使用するうえで、その性能を左右する要素として(1)磁束密度の大きさ,(2)磁気安定性の2つがある。   When using a permanent magnet, there are two factors that influence its performance: (1) magnitude of magnetic flux density and (2) magnetic stability.

上記(1)の磁束密度の大きさに関して、本発明者らは、結合剤と磁石粉末とのコンパウンドを圧縮成形し、結合剤の自己組織化により形成した架橋間巨大分子を機械的に延伸し、面垂直磁気異方性薄板磁石の可撓性を制御し、その可撓性を利用して、磁気異方性の方向を垂直方向からラジアル方向に転換するラジアル異方性複合磁石の作製技術、並びに(BH)max〜160kJ/m3、高温暴露下での減磁曲線の角型性(Hk/HcJ)の向上による短時間高温暴露による初期減磁の改善などを開示した[F.Yamashita,S.Tsutsumi,H.Fukunaga,“Radially Anisotropic Ring− or Arc−Shaped Rare−Earth Bonded Magnets Using Self−Organization Technique”,IEEE Trans. Magn.,Vol.40,No.4 pp.2059−2064(2004)]。これにより、小口径化(或いは、長尺化)してもラジアル方向の磁気特性が、殆ど低下しないラジアル異方性複合磁石が製造できるようになった。 Regarding the magnitude of the magnetic flux density of (1) above, the present inventors compression-molded a compound of a binder and a magnet powder, and mechanically stretched the inter-crosslinking macromolecule formed by self-organization of the binder. , Manufacturing technology of radial anisotropic composite magnet that controls the flexibility of plane perpendicular magnetic anisotropic thin plate magnet and changes the direction of magnetic anisotropy from vertical to radial direction by utilizing the flexibility , And (BH) max ˜160 kJ / m 3 , the improvement of initial demagnetization by short-time high-temperature exposure by improving the squareness (Hk / HcJ) of the demagnetization curve under high-temperature exposure was disclosed [F. Yamashita, S .; Tsusumumi, H .; Fukunaga, “Radially Anisotropic Ring- or Arc-Shaped Rare-Earth Bonded Magnets Using Self-Organization Technique”, IEEE Trans. Magn. , Vol. 40, no. 4 pp. 2059-2064 (2004)]. As a result, it is possible to manufacture a radial anisotropic composite magnet in which the magnetic properties in the radial direction are hardly deteriorated even when the diameter is reduced (or lengthened).

しかし、上記のような磁石をモ−タへ応用するには、磁石の磁化による静磁界が長期間に亘って高温暴露されても一定の水準を維持することが必要で、(2)の長期に亘る磁気安定性を明らかにする必要がある。永久磁石の磁気安定性を乱す外的要因は熱的効果、機械的応力、外部磁界などがあるが、モータなどでは高温暴露されるため、とくに長期にわたる熱効果について明らかにする必要がある。   However, in order to apply the above-mentioned magnet to a motor, it is necessary to maintain a constant level even if the static magnetic field due to the magnetization of the magnet is exposed to a high temperature for a long period of time. It is necessary to clarify the magnetic stability over the range. External factors that disturb the magnetic stability of permanent magnets include thermal effects, mechanical stress, and external magnetic fields. However, since motors are exposed to high temperatures, it is necessary to clarify the thermal effects over a long period of time.

磁化の経時変化は非磁性相の析出や酸化などの組織変化で磁性相が減少する所謂永久減
磁と、組織変化によらない不可逆減磁の2つに分けられる。
The change in magnetization with time is divided into two types, so-called permanent demagnetization in which the magnetic phase decreases due to structural changes such as precipitation or oxidation of a nonmagnetic phase, and irreversible demagnetization that does not depend on structural changes.

先ずここで、熱効果の例として磁石が室温から高温へ温度上昇し、再び室温に戻した際の減磁を考える。このとき、酸化など組織変化から生じる減磁は再着磁しても磁化は減少したまま元には戻らない。そのため永久減磁と呼ばれる。希土類磁石粉末を使った複合磁石で永久減磁を抑制するには一般に磁石の表面被覆で磁石を大気から遮断することが行われる。   First, as an example of the thermal effect, consider demagnetization when the temperature of the magnet rises from room temperature to high temperature and then returns to room temperature. At this time, the demagnetization caused by the structural change such as oxidation does not return to the original state while the magnetization is reduced even if re-magnetization is performed. Therefore, it is called permanent demagnetization. In order to suppress permanent demagnetization with a composite magnet using rare earth magnet powder, the magnet is generally shielded from the atmosphere with a magnet surface coating.

一方、高温状態における磁石は飽和磁化の温度変化により、その保磁力が低下する。有限長磁石では反磁界により磁石の磁気モ−メントの向きが反転したり、磁壁移動により磁化が減少する。この磁化の減少分は磁石を冷却する際に外部からエネルギ−が与えられない場合には回復しないため不可逆減磁と呼ばれている。   On the other hand, the coercive force of a magnet in a high temperature state decreases due to the temperature change of saturation magnetization. In a finite length magnet, the direction of the magnetic moment of the magnet is reversed by the demagnetizing field, or the magnetization is reduced by the domain wall movement. This decrease in magnetization is called irreversible demagnetization because it does not recover when energy is not applied from the outside when the magnet is cooled.

次に、磁石を高温に暴露し、そのまま高温で磁化を測定する場合を考える。室温で測定する場合と同様に組織変化による永久減磁(時効)が生じる。それ以外の磁化の変化は室温に戻した際に、飽和磁化の温度変化そのものによる磁化の減少分は再び室温に戻した際に完全に最初の磁化の状態に戻る可逆変化と、それ以外の不可逆変化とに分けられる。可逆変化は飽和磁化の高温での減少が原因で、その減少率が小さく、さらに室温に戻した場合は磁化が可逆的に戻るため磁石の使用上大きな問題にはならない。不可逆的な磁化の変化は通常不可逆減磁と呼ばれる。   Next, consider the case where the magnet is exposed to a high temperature and the magnetization is measured at the high temperature. As in the case of measurement at room temperature, permanent demagnetization (aging) occurs due to a structural change. When the change in magnetization other than that is returned to room temperature, the decrease in magnetization due to the change in temperature of the saturation magnetization itself is a reversible change that completely returns to the initial magnetization state when returned to room temperature, and the other irreversible Divided into change. The reversible change is caused by a decrease in saturation magnetization at a high temperature, and the rate of decrease is small. Further, when the temperature is returned to room temperature, the magnetization is reversibly returned, which does not pose a major problem in the use of the magnet. The irreversible change in magnetization is usually called irreversible demagnetization.

不可逆減磁のうち、短時間の高温暴露による減磁を初期減磁、それ以降の減磁を長期減磁としたとき、本発明にかかる平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した異方性複合磁石の長期減磁とその要因を明らかにし、例えば、永久磁石型モータの磁石としての耐久性を明らかにする必要がある。 Among irreversible demagnetization, when demagnetization due to short-time exposure to high temperature is initial demagnetization and subsequent demagnetization is long-term demagnetization, Sm 2 Fe 17 N 3 fine particles having an average particle diameter of 1 to 5 μm according to the present invention The long-term demagnetization of an anisotropic composite magnet composed of Nd 2 Fe 14 B particles having an average particle diameter of 50 to 150 μm, a binder, and an additive that is added as necessary, and the cause thereof are clarified. It is necessary to clarify the durability of the mold motor as a magnet.

Neelは無限長の磁石において,熱活性による磁化の変化が対数時間に対して直線的に変化する場合に、時刻t1とt2の間に生じる磁気余効の大きさΔIを Neel is a magnetic aftereffect magnitude ΔI generated between times t 1 and t 2 when the change in magnetization due to thermal activation changes linearly with respect to logarithmic time in an infinite length magnet.

と表記できると報告している[L.Neel:J.phys.Rad.,Vol.11,49(1950)]。ここで、χirrは不可逆帯磁率、Svは磁気余効定数である。 [L. Neel: J.M. phys. Rad. , Vol. 11, 49 (1950)]. Here, χ irr is an irreversible magnetic susceptibility, and Sv is a magnetic aftereffect constant.

一方、有限長の磁石では測定中に磁化の変化により反磁界の大きさが変化するので印加磁界と反磁界の和である有効印加磁界が変化する。磁石材料では負方向の印加磁界中で測定するのが一般的であるので、測定中に有効磁界が次第に小さくなる。従って無限長の反磁界のない試料に比べれば、磁気余効が小さくなると考えられる。   On the other hand, in the case of a finite length magnet, the magnitude of the demagnetizing field changes due to a change in magnetization during measurement, so the effective applied magnetic field, which is the sum of the applied magnetic field and the demagnetizing field, changes. Since it is common to measure in a negative applied magnetic field with a magnet material, the effective magnetic field gradually decreases during the measurement. Therefore, it is considered that the magnetic aftereffect is smaller than that of the sample having no infinite length demagnetizing field.

本発明では反磁界補正前の見掛けの磁気余効ΔITを(式2)〜(式4)で示す。ただし、Nは反磁界係数、μoは真空の透磁率、χtotは全微分帯磁率、χrevは可逆帯磁率である。 In the present invention, the apparent magnetic aftereffect ΔIT before demagnetizing field correction is expressed by (Expression 2) to (Expression 4). Where N is the demagnetizing factor, μ o is the vacuum permeability, χ tot is the total differential susceptibility, and χ rev is the reversible susceptibility.

以上が有限長磁石での磁気余効による磁化の変化の式であり、これらの式から磁気余効による減磁には反磁界補正前後の不可逆帯磁率と磁気余効定数が大きく影響することがわかる。 The above are the equations for the change in magnetization due to magnetic aftereffect in a finite-length magnet. From these equations, demagnetization due to magnetic aftereffect can be greatly affected by the irreversible magnetic susceptibility and magnetic aftereffect constant before and after demagnetizing field correction. Recognize.

さて、磁石を高温暴露した際には、磁気余効により一部の結晶粒で磁化反転が起こる。この高温暴露での減磁をΔIとすると、その温度での磁化はIw(TEX)−ΔITとなる。そして、この状態から室温に戻すと、磁化Iは高温暴露での磁化Iw(TEX)、温度TEX、TRT間の残留磁化Jrの温度係数を−α(℃-1)とすれば When the magnet is exposed to high temperature, magnetization reversal occurs in some crystal grains due to magnetic aftereffect. When the demagnetization at this high temperature exposure is ΔI, the magnetization at that temperature is I w (T EX ) −ΔIT. When the temperature is returned to room temperature from this state, the magnetization I can be set to −α (° C. −1 ) as the magnetization I w (T EX ) at high temperature exposure and the temperature coefficient of the residual magnetization Jr between the temperatures T EX and T RT.

となる。よって、長期不可逆減磁率FLlonは It becomes. Therefore, the long-term irreversible demagnetization factor FLlon is

となる。よって(2)と(6)の関係から長期不可逆減磁率FLlonと不可逆帯磁率χTirr,磁気余効定数Svの関係は(7)式で表される。 It becomes. Therefore, from the relationship between (2) and (6), the relationship between the long-term irreversible demagnetization factor FL lon , the irreversible magnetic susceptibility χT irr , and the magnetic aftereffect constant Sv is expressed by equation (7).

本発明は、平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した複合磁石の長期減磁を(7)式によって定量的に明らかにし、Sm2Fe173やNd2Fe14B系の異方性複合磁石に比べて140kJ/m3以上の高(BH)maxとともに長期減磁FLlonを低減して、長期にわたり強い静磁界を安定して発生する磁石の提供を目的とする。 The present invention relates to a composite magnet composed of Sm 2 Fe 17 N 3 fine particles having an average particle diameter of 1 to 5 μm, Nd 2 Fe 14 B particles having an average particle diameter of 50 to 150 μm, a binder, and additives that are appropriately added as necessary. The long-term demagnetization is quantitatively clarified by the equation (7), and with a high (BH) max of 140 kJ / m 3 or more compared to the anisotropic composite magnets of Sm 2 Fe 17 N 3 and Nd 2 Fe 14 B system An object of the present invention is to provide a magnet that stably generates a strong static magnetic field over a long period of time by reducing long-term demagnetization FL lon .

本発明は平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した複合磁石の120℃における磁気余効定数Svを3.1kA/m以下とする。さらに好適なものとして、最大エネルギー積(BH)maxが140kJ/m3以上で、且つ、結合剤の自己組織化によって生成せしめた架橋間巨大分子の延伸によって異方性の方向を面垂直方向からラジアル方向に転換できる異方性複合磁石である。 The present invention relates to a composite magnet composed of Sm 2 Fe 17 N 3 fine particles having an average particle diameter of 1 to 5 μm, Nd 2 Fe 14 B particles having an average particle diameter of 50 to 150 μm, a binder, and additives that are appropriately added as necessary. The magnetic aftereffect constant S v at 120 ° C. is set to 3.1 kA / m or less. More preferably, the maximum energy product (BH) max is 140 kJ / m 3 or more, and the direction of anisotropy is changed from the direction perpendicular to the plane by stretching of the inter-crosslinking macromolecule formed by self-assembly of the binder. An anisotropic composite magnet that can be changed in the radial direction.

これにより、Sm2Fe173やNd2Fe14B系異方性複合磁石に比べ、140kJ/m3以上の高(BH)maxとともに長期減磁FLlonを低減する効果を得て、例えば、永久磁石型モータに有用な磁石を提供する。 As a result, an effect of reducing long-term demagnetization FL lon with a high (BH) max of 140 kJ / m 3 or more as compared with Sm 2 Fe 17 N 3 and Nd 2 Fe 14 B-based anisotropic composite magnets, for example, A magnet useful for a permanent magnet type motor is provided.

本発明は平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した異方性複合磁石の120℃における磁気余効定数Svを3.1kA/m以下とすることにより、Sm2Fe173やNd2Fe14B系異方性複合磁石に比べて140kJ/m3以上の高(BH)maxとともに長期減磁FLlonを低減する効果があり、例えば、永久磁石型モータに有用である。 The present invention is an anisotropy composed of Sm 2 Fe 17 N 3 fine particles having an average particle diameter of 1 to 5 μm, Nd 2 Fe 14 B particles having an average particle diameter of 50 to 150 μm, a binder, and additives that are appropriately added as necessary. by the magnetic aftereffect constant S v at 120 ° C. of the composite magnet than 3.1kA / m, Sm 2 Fe 17 N 3 or Nd 2 Fe 14 140kJ / m 3 or more in comparison with the B system anisotropic hybrid magnet This has the effect of reducing the long-term demagnetization FL lon with a high (BH) max of , and is useful for, for example, a permanent magnet type motor.

先ず、本発明にかかる異方性複合磁石に好適な希土類磁石粉末について説明する。   First, the rare earth magnet powder suitable for the anisotropic composite magnet according to the present invention will be described.

本発明で言うSm2Fe173微粉末とは、例えば、特開平2−57663号公報に記載される溶解鋳造法、特許第17025441号や特開平9−157803号公報などに開示される還元拡散法より、R−Fe系合金、又はR−(Fe、Co)系合金を製造し、これを窒化した後、微粉砕して得られる。微粉砕はジェットミル、振動ボールミル、回転ボールミルなど、公知の技術を適用でき、フィッシャー平均粒径で1.5μm以下、好ましくは1.2μm以下となるように微粉砕したものを言う。金属間化合物Sm2Fe17xにおいてx≒3である理由は、微粉末の保磁力HCJがx≒3で最大値を示すからである。なお、微粉末は、発火防止などハンドリング性を向上させるため、例えば特開昭52−54998号公報、特開昭59−170201号公報、特開昭60−128202号公報、特開平3−211203号公報、特開昭46−7153号公報、特開昭56−55503号公報、特開昭61−154112号公報、特開平3−126801号公報等に開示されているような、湿式ないし乾式処理による除酸化皮膜を表面に形成したものが望ましい。また、特開平5−230501号公報、特開平5−234729号公報、特開平8−143
913号公報、特開平7−268632号公報や、日本金属学会講演概要(1996年春期大会、No.446、p184)等に開示されている金属皮膜を形成する方法や、特公平6−17015号公報、特開平1−234502号公報、特開平4−217024号公報、特開平5−213601号公報、特開平7−326508号公報、特開平8−153613号公報、特開平8−183601号公報等による無機皮膜を形成する方法など1種以上の表面処理Sm2Fe173微粉末であっても差支えない。
The Sm 2 Fe 17 N 3 fine powder referred to in the present invention is, for example, a melting casting method described in Japanese Patent Laid-Open No. 2-57663, a reduction disclosed in Japanese Patent No. 17025441, Japanese Patent Laid-Open No. 9-157803, and the like. An R—Fe based alloy or an R— (Fe, Co) based alloy is produced by a diffusion method, and after nitriding this, it is obtained by pulverization. The fine pulverization refers to a finely pulverized product such as a jet mill, a vibrating ball mill, a rotating ball mill, etc., which is finely pulverized so as to have a Fisher average particle size of 1.5 μm or less, preferably 1.2 μm or less. The reason why x≈3 in the intermetallic compound Sm 2 Fe 17 N x is that the coercive force H CJ of the fine powder shows a maximum value when x≈3. In order to improve handling properties such as prevention of ignition, fine powders are disclosed in, for example, JP-A-52-54998, JP-A-59-170201, JP-A-60-128202, JP-A-3-211203. As disclosed in Japanese Patent Laid-Open No. 46-7153, Japanese Patent Laid-Open No. 56-55503, Japanese Patent Laid-Open No. 61-154112, Japanese Patent Laid-Open No. 3-126801, etc. What formed the deoxidation film on the surface is desirable. JP-A-5-230501, JP-A-5-234729, JP-A-8-143.
No. 913, Japanese Patent Application Laid-Open No. 7-268632, outlines of lectures of the Japan Institute of Metals (Spring convention in 1996, No. 446, p184) and the like, and Japanese Patent Publication No. 6-17015 JP, 1-234502, JP 4-217024, JP 5-213601, JP 7-326508, JP 8-153613, JP 8-183601, etc. One or more kinds of surface-treated Sm 2 Fe 17 N 3 fine powder may be used, such as a method of forming an inorganic film by the method.

一方、本発明で言うNd2Fe14B粒子とはHDDR処理(水素分解/再結合)、すなわち、希土類−鉄系合金(R2[Fe,Co]14B)相の水素化(Hydrogenation,R2[Fe,Co]14BHx)、650〜1000℃での相分解(Decomposition,RH2+Fe+Fe2B)、脱水素(Desorpsion)、再結合(Recombination)する、所謂HDDR処理などで作製した磁石粉末が好ましい。ここで必須元素Rは、10原子%未満では結晶構造がα−Feと同一構造の立方晶組織となるため、高磁気特性、特に高保磁力HCJが得られず、30原子%を超えるとRリッチな非磁性相が多くなり、飽和磁化Jsが低下する。よって、Rは10〜30原子%の範囲が望ましい。加えて必須元素Bは、2原子%未満では菱面体構造が主相となり、高い保磁力HCJは得られず、28原子%を超えるとBリッチな非磁性相が多くなり、飽和磁化Jsが低下する。よって、Bは2〜28原子%の範囲が望ましい。 On the other hand, the Nd 2 Fe 14 B particles referred to in the present invention are HDDR treatment (hydrogen decomposition / recombination), that is, hydrogenation (Hydrogenation, R) of a rare earth-iron alloy (R 2 [Fe, Co] 14 B) phase. 2 [Fe, Co] 14 BHx), phase-decomposition (decomposition, RH 2 + Fe + Fe 2 B) at 650 to 1000 ° C., dehydrogenation (desorption), recombination (recombination), so-called HDDR process, etc. Is preferred. If the essential element R is less than 10 atomic%, the crystal structure has the same cubic structure as that of α-Fe. Therefore, high magnetic properties, particularly high coercive force H CJ cannot be obtained. The rich nonmagnetic phase increases and the saturation magnetization Js decreases. Therefore, R is preferably in the range of 10 to 30 atomic%. In addition, when the essential element B is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force H CJ cannot be obtained, and when it exceeds 28 atomic%, the B-rich nonmagnetic phase increases and the saturation magnetization Js is increased. descend. Therefore, B is preferably in the range of 2 to 28 atomic%.

上記Nd2Fe14B粒子の必須元素Feは、65原子%未満では飽和磁化Jsが低下し、80原子%を超えると高い保磁力HCJが得られない。よって、Feは65〜80原子%が望ましい。また、Feの一部をCoで置換することは、磁石粉末の磁気特性を損なうことなく、キュリー温度Tcの上昇によって実使用温度範囲の残留磁化Jrの温度係数を改善できる。しかしながら、CoのFe置換量が20原子%を超えると飽和磁化Jsが減少する。すなわち、Co置換量が5〜15原子%の範囲では、残留磁化Jrが一般に増加するため、高(BH)maxを得るには好ましい。 When the essential element Fe of the Nd 2 Fe 14 B particles is less than 65 atomic%, the saturation magnetization Js decreases, and when it exceeds 80 atomic%, a high coercive force H CJ cannot be obtained. Therefore, the Fe content is desirably 65 to 80 atomic%. Further, replacing part of Fe with Co can improve the temperature coefficient of the residual magnetization Jr in the actual operating temperature range by increasing the Curie temperature Tc without impairing the magnetic properties of the magnet powder. However, the saturation magnetization Js decreases when the Fe substitution amount of Co exceeds 20 atomic%. That is, when the Co substitution amount is in the range of 5 to 15 atomic%, the residual magnetization Jr generally increases, which is preferable for obtaining a high (BH) max .

次に、本発明において上記のようなNd2Fe14B粒子をSm2Fe173微粉末と併用する理由を以下に説明する。 Next, the reason why the Nd 2 Fe 14 B particles as described above are used in combination with the Sm 2 Fe 17 N 3 fine powder in the present invention will be described below.

上記Nd2Fe14B粒子は500nm以下のNd2Fe14B結晶が集合した所謂多結晶集合型粒子であり、その平均粒子径は50〜150μm程である。このようなNd2Fe14B粒子の併用は本発明にかかる異方性複合磁石の磁石粉末の体積分率を高めることができ、結果として当該磁石の高(BH)max化が図れる。 The Nd 2 Fe 14 B particles are so-called polycrystalline aggregated particles in which Nd 2 Fe 14 B crystals of 500 nm or less are aggregated, and the average particle diameter thereof is about 50 to 150 μm. The combined use of such Nd 2 Fe 14 B particles can increase the volume fraction of the magnetic powder of the anisotropic composite magnet according to the present invention, and as a result, the magnet can have a high (BH) max .

一方、Nd2Fe14B粒子を直接圧縮成形すると、互いに接触しながら緻密化する。すると当該粒子の破砕、或いは亀裂発生による新生面の生成、更には摩擦による表面損傷が不可避となる。Nd2Fe14B粒子は一般に粒界相が存在しない。このため、新生面として暴露された結晶が酸化され、複合磁石の減磁曲線の角型性(Hk/HCJ)を劣化させ、初期減磁率の増大を引き起こす。このような課題に対処するには成形加工の際、Nd2Fe14B粒子が直接接触しながら緻密化するのを防ぐことが必要で、そのためにSm2Fe173微粉末でNd2Fe14B粒子を隔離するのである。 On the other hand, when Nd 2 Fe 14 B particles are directly compression molded, they are densified while in contact with each other. Then, crushing of the particles, generation of a new surface due to generation of cracks, and surface damage due to friction are inevitable. Nd 2 Fe 14 B particles generally have no grain boundary phase. For this reason, the crystal exposed as a new surface is oxidized, the squareness (Hk / H CJ ) of the demagnetization curve of the composite magnet is deteriorated, and the initial demagnetization rate is increased. During molding to address these challenges, Nd 2 Fe 14 B particles must be prevented from being densified with direct contact, Sm 2 Fe 17 for the N 3 fine powder Nd 2 Fe 14 Isolate B particles.

加えて、結合剤成分の溶融下、1MA/m以上の磁界中、50MPa以下で圧縮成形するなど、低圧圧縮成形を好適とする理由の一つも成形加工でのNd2Fe14B粒子の磁気特性の劣化を抑制するためである。 In addition, one of the reasons why low-pressure compression molding is suitable, such as compression molding at 50 MPa or less in a magnetic field of 1 MA / m or more under the melting of the binder component, is the magnetic properties of Nd 2 Fe 14 B particles in the molding process. It is for suppressing deterioration of the.

以上のような本発明にかかる平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した複合磁石の120℃における磁気余効定数Svが3.1kA/m以下の異
方性複合磁石とするには、磁石粉末成分におけるSm2Fe173微粒子の割合を20〜48%とすることが好ましい。
From the above-described Sm 2 Fe 17 N 3 fine particles having an average particle diameter of 1 to 5 μm, Nd 2 Fe 14 B particles having an average particle diameter of 50 to 150 μm, a binder, and additives appropriately added as necessary. In order to obtain an anisotropic composite magnet having a magnetic aftereffect constant S v at 120 ° C. of 3.1 kA / m or less of the constructed composite magnet, the proportion of Sm 2 Fe 17 N 3 fine particles in the magnet powder component is 20 to 48%. It is preferable that

次に、本発明にかかる異方性複合磁石の、より好ましい結合剤成分とその製造方法について説明する。   Next, a more preferable binder component and manufacturing method of the anisotropic composite magnet according to the present invention will be described.

例えばSm2Fe173微粉末38.20重量部、Nd2Fe14B粒子57.44重量部にオリゴマーAを1重量部表面被覆し、次いで120〜130℃でポリマーBと溶融混練し、室温に冷却して粗粉砕し、ケミカルコンタクトCを0.28重量部混合したコンパウンドを作製する。更に、低圧圧縮成形が可能となるように、例えば160℃に加熱した成形型キャビティに充填し、1.4MA/m以上の平行磁界中、50MPa以下で圧縮成形し、垂直磁気異方性薄板圧粉体を作製する。この際、磁石粉末の体積分率を77vol.%以上、空隙量2%以下、厚さ1.35mm以下が好ましい。磁石体積分率の増加は磁石の(BH)maxの向上に効果があり、140〜160kJ/m3が容易に得られる。また、空隙量は圧粉体を熱して結合剤成分を自己組織化する際、得られた磁石の(BH)maxと減磁曲線の角型性(Hk/HCJ)低下の抑制に効果があり、厚さの上限は機械的延伸による異方性の変化の抑制に効果的だからである。 For example, 38.20 parts by weight of Sm 2 Fe 17 N 3 fine powder, 57.44 parts by weight of Nd 2 Fe 14 B particles are coated with 1 part by weight of oligomer A, and then melt-kneaded with polymer B at 120 to 130 ° C. Cool to room temperature and coarsely pulverize to produce a compound in which 0.28 parts by weight of chemical contact C is mixed. Further, in order to enable low-pressure compression molding, for example, a mold cavity heated to 160 ° C. is filled, and compression molding is performed at a pressure of 50 MPa or less in a parallel magnetic field of 1.4 MA / m or more. Powder is produced. At this time, the volume fraction of the magnet powder was 77 vol. % Or more, a void amount of 2% or less, and a thickness of 1.35 mm or less are preferable. An increase in the magnet volume fraction is effective in improving the (BH) max of the magnet, and 140 to 160 kJ / m 3 can be easily obtained. Also, the void volume is effective in suppressing the decrease in (BH) max of the obtained magnet and the squareness (Hk / H CJ ) of the demagnetization curve when the binder component is self-assembled by heating the green compact. This is because the upper limit of the thickness is effective in suppressing anisotropy change due to mechanical stretching.

次に、本発明にかかる垂直磁気異方性薄板圧粉体の結合剤成分を加熱し自己組織化して架橋間巨大分子を生成せしめる。   Next, the binder component of the perpendicular magnetic anisotropic thin plate compact according to the present invention is heated and self-assembled to generate an intercrosslinking macromolecule.

以上により、高(BH)maxで、かつ異方性の方向を面垂直方向からラジアル方向に転換できる磁石の磁化による静磁界が長期間に亘って高温暴露されても一定の水準を維持することができる異方性複合磁石が得られる。 As described above, a high level (BH) max and maintaining a certain level even when a static magnetic field due to magnetization of a magnet that can change the direction of anisotropy from a plane perpendicular direction to a radial direction is exposed to a high temperature for a long period of time. An anisotropic composite magnet that can be obtained is obtained.

以下、本発明を実施例により更に詳しく説明する。ただし、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

[異方性複合磁石の作製1]
HDDR−Nd2Fe14B粒子に対して、RD−Sm2Fe173微粒子を0,10,20,30,40,50,60,80,100%となる割合で計量(1試料当たり100g)し、室温でよく混合した。
[Preparation of anisotropic composite magnet 1]
RD-Sm 2 Fe 17 N 3 fine particles are weighed at a ratio of 0, 10, 20, 30, 40, 50, 60, 80, 100% to HDDR-Nd 2 Fe 14 B particles (100 g per sample) And mixed well at room temperature.

混合した上記磁石粉末97gに対し、固体ノボラックエポキシ樹脂2.5gを計量し、当該樹脂50%アセトン溶液としたのち磁石粉末と樹脂溶液を混合、その後70℃で30min加熱し、室温に冷却後、350μm以下のグラニュールとした。   To 97 g of the mixed magnetic powder, 2.5 g of solid novolak epoxy resin is weighed, and after making the resin 50% acetone solution, the magnetic powder and the resin solution are mixed, then heated at 70 ° C. for 30 minutes, cooled to room temperature, The granule was 350 μm or less.

上記350μm以下のグラニュール99.5gに対し、平均粒子径3μmのイミダゾール誘導体を0.5g、ステアリン酸カルシウム0.2gを加えて混合し、コンパウンドとした。   To 99.5 g of the above granules having a particle size of 350 μm or less, 0.5 g of an imidazole derivative having an average particle diameter of 3 μm and 0.2 g of calcium stearate were added and mixed to obtain a compound.

次に、1.4MA/mの直交磁界中、温度150−160℃、圧力0.6GPaで8mmの立方体とし、140℃で15min加熱硬化して本発明にかかる、或いは比較のための異方性複合磁石とした。   Next, in an orthogonal magnetic field of 1.4 MA / m, a cube of 8 mm at a temperature of 150 to 160 ° C. and a pressure of 0.6 GPa, and heat-cured at 140 ° C. for 15 minutes and applied to the present invention or anisotropy for comparison A composite magnet was used.

[長期減磁と不可逆帯磁率、磁気余効定数]
図1はHDDR−Nd2Fe14B粒子に対して、RD−Sm2Fe173微粒子を0,10,20,30,40,50,60,80,100%となる割合で作製した異方性複合磁石の長期減磁FLlon、図2は不可逆帯磁率χTirr、磁気余効定数Svを示す。
[Long-term demagnetization, irreversible magnetic susceptibility, magnetic aftereffect constant]
FIG. 1 shows that the RD-Sm 2 Fe 17 N 3 fine particles are produced at a ratio of 0, 10, 20, 30, 40, 50, 60, 80, 100% with respect to HDDR-Nd 2 Fe 14 B particles. long demagnetization FL lon of isotropic composite magnet, Figure 2 shows the irreversible susceptibility KaiT irr, magnetic aftereffect constant Sv.

ただし、長期減磁率FLlonは8mmの立方体磁石を4MA/mのパルス磁界で磁化し、120℃で1時間の高温暴露後の磁束φ1、300時間暴露後の磁束φ2から[(φ1−φ2)/φ1]から求めた。なお、磁束の測定はサ−チコイル引抜き法による。 However, the long-term demagnetization rate FL lon is obtained by magnetizing an 8 mm cubic magnet with a pulse magnetic field of 4 MA / m, from the magnetic flux φ 1 after exposure at 120 ° C. for 1 hour and the magnetic flux φ 2 after exposure for 300 hours to [(φ 1 was determined from -φ 2) / φ 1]. The magnetic flux is measured by the search coil drawing method.

一方、全微分帯磁率χTtotと可逆帯磁率χTrevはVSMで測定した。高温での減磁曲線を図3に示すように測定し、(4)式から不可逆帯磁率χTirrを求め、さらに(3)式から磁気余効定数Svを算出した。 On the other hand, total differential magnetic susceptibility χT tot and reversible magnetic susceptibility χT rev were measured by VSM. The demagnetization curve at a high temperature was measured as shown in FIG. 3, the irreversible magnetic susceptibility χT irr was calculated from the equation (4), and the magnetic aftereffect constant Sv was calculated from the equation (3).

なお、図3は反磁界補正前の高温での減磁曲線を模式的に示している。先ず減磁曲線上において動作点付近の磁界H1で磁界を1000sec保持する。磁化は磁気余効によりa点からb点まで減少する。次に磁界をH2まで(800kA/m程度)増加させ(bからc)、そこで再び磁界を1000sec間保持する。c点においてもaからbと同様に磁気余効による変化が生じ、磁化はc点からd点に移動する。この点bと点dを結んだ直線の傾きから可逆帯磁率χTrevを求めた.そして磁界をH1まで減少させ,1000sec保持する.全微分帯磁率χTtotは磁界を更にH3まで変化させ、1000sec保持することにより直線b−fの傾きとして求めた。 FIG. 3 schematically shows a demagnetization curve at a high temperature before demagnetizing field correction. First, on the demagnetization curve, the magnetic field is held for 1000 seconds with the magnetic field H1 near the operating point. Magnetization decreases from point a to point b due to magnetic aftereffect. Next, the magnetic field is increased to H2 (about 800 kA / m) (from b to c), and the magnetic field is held again for 1000 seconds. Also at the point c, a change due to the magnetic aftereffect occurs as in the case of a to b, and the magnetization moves from the point c to the point d. The reversible magnetic susceptibility χT rev was obtained from the slope of the straight line connecting points b and d. The magnetic field is reduced to H1 and held for 1000 seconds. The total differential magnetic susceptibility χT tot was obtained as the slope of the straight line bf by changing the magnetic field to H3 and holding it for 1000 sec.

図1から明らかなように、本発明にかかる異方性複合磁石の長期減磁FLlonはSm2Fe173微粒子の割合によって変化する。先ず、Sm2Fe173微粒子の割合が30%までの領域での長期減磁FLlonはSm2Fe173微粒子の量に応じて低減する。しかし、40%を越えると増加に転じ、およそ60%でSm2Fe173微粒子がゼロの場合と同等となり、それ以上Sm2Fe173微粒子が増すと長期減磁FLlonは悪化する。 As is clear from FIG. 1, the long-term demagnetization FL lon of the anisotropic composite magnet according to the present invention varies depending on the proportion of Sm 2 Fe 17 N 3 fine particles. First, the long-term demagnetization FL lon in the region where the ratio of Sm 2 Fe 17 N 3 fine particles is up to 30% is reduced according to the amount of Sm 2 Fe 17 N 3 fine particles. However, when it exceeds 40%, it starts to increase, and at about 60%, it is equivalent to the case where the Sm 2 Fe 17 N 3 fine particles are zero, and when the Sm 2 Fe 17 N 3 fine particles increase further, the long-term demagnetization FL lon deteriorates. .

一方、図2をみるとSm2Fe173微粒子の割合に対して異方性複合磁石の不可逆帯磁率χTirrと磁気余効定数Svとはトレードオフの関係にある。また、不可逆帯磁率χTirrはSm2Fe173微粒子の割合に対して直線近似が成り立つが、磁気余効定数Sv(kA/m)は4×1063−2×1042+0.0436C+1.0389の多項近似が成り立つ(相関係数は0.9947)。 On the other hand, there is a trade-off between the irreversible susceptibility KaiT irr magnetic aftereffect constant Sv anisotropic hybrid magnet with respect to the proportion of Sm 2 Fe 17 N 3 fine particles Looking at FIG. The irreversible magnetic susceptibility χT irr is linearly approximated with respect to the ratio of Sm 2 Fe 17 N 3 fine particles, but the magnetic aftereffect constant Sv (kA / m) is 4 × 10 6 C 3 −2 × 10 4 C 2. A polynomial approximation of + 0.0436C + 1.0389 is established (correlation coefficient is 0.9947).

以上から、Sm2Fe173微粒子は異方性複合磁石の不可逆帯磁率χTirrの減少から長期減磁FLlonを低減する。反面、磁気余効定数Svを増加せしめ、或る値を超えると長期減磁FLlonを低減する効果は消滅することが了解される。 From the above, the Sm 2 Fe 17 N 3 fine particles reduce the long-term demagnetization FL lon from the decrease in the irreversible magnetic susceptibility χT irr of the anisotropic composite magnet. On the other hand, it is understood that the effect of reducing the long-term demagnetization FL lon disappears when the magnetic aftereffect constant Sv is increased and exceeds a certain value.

ところで、等方性複合磁石(合金組成Nd4.19Fe76.8818.93,Nd4.75Fe72.76Co3.0118.50Ga0.98,Nd3.81Dy1.05Fe72.07Co3.05189Ga1.02,Nd5.28Fe69.48Co3.0219.19Cr3.03,Nd5.83Fe65.3Co4.9418.91Cr5.02,Nd12Fe77Co56)では高温暴露1hr後の長期不可逆減磁FLlonを表す(7)式左辺の対数時間当たりの不可逆減磁率dFL/d{ln(ta)}は主に不可逆帯磁率χTirrに依存する。また、80、120℃で測定された全試料の磁気余効定数Svは約2.3kA/mとほぼ一定である[Y.Kanai,S.Hayashida,H.Fukunaga,F.Yamashita,“Flux loss in Nano−composite Magnets”,IEEE Trans.Magn.,Vol.35.No.5.pp.3292−3294(1999)]。 By the way, isotropic composite magnets (alloy composition Nd 4.19 Fe 76.88 B 18.93 , Nd 4.75 Fe 72.76 Co 3.01 B 18.50 Ga 0.98 , Nd 3.81 Dy 1.05 Fe 72.07 Co 3.05 B 189 Ga 1.02 , Nd 5.28 Fe 69.48 Co 3.02 B 19.19 Cr 3.03 , Nd 5.83 Fe 65.3 Co 4.94 B 18.91 Cr 5.02 , Nd 12 Fe 77 Co 5 B 6 ) represents the long-term irreversible demagnetization FL lon after 1 hr exposure to high temperature (7) The irreversible demagnetization rate per logarithmic time dFL on the left side of equation (7) / D {ln (t a )} mainly depends on the irreversible magnetic susceptibility χT irr . In addition, the magnetic aftereffect constant Sv of all the samples measured at 80 and 120 ° C. is approximately constant at about 2.3 kA / m [Y. Kanai, S .; Hayashida, H .; Fukunaga, F.A. Yamashita, “Flux loss in Nano-composite Magnets”, IEEE Trans. Magn. , Vol. 35. No. 5. pp. 3292-3294 (1999)].

他方では、等方性複合磁石(合金組成Nd12.2Fe77Co5.45.4)の20〜120℃での磁気余効定数Svは2.6〜3.1kA/mとである[[H.Nishio and
H.Yamamoto:J.Mag.Soc.Jpn.,Vol.16,131(1992)]。
On the other hand, the magnetic aftereffect constant Sv of an isotropic composite magnet (alloy composition Nd 12.2 Fe 77 Co 5.4 B 5.4 ) at 20 to 120 ° C. is 2.6 to 3.1 kA / m [[H. Nishio and
H. Yamamoto: J. Mag. Soc. Jpn. , Vol. 16, 131 (1992)].

つまり、本発明にかかる平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した異方性複合磁石の120℃における磁気余効定数Svは3.1kA/m以下である必要がある。 That is, it is composed of Sm 2 Fe 17 N 3 fine particles having an average particle diameter of 1 to 5 μm, Nd 2 Fe 14 B particles having an average particle diameter of 50 to 150 μm, a binder, and an additive that is appropriately added as necessary. The magnetic aftereffect constant S v at 120 ° C. of the anisotropic composite magnet needs to be 3.1 kA / m or less.

すなわち、図2におけるSm2Fe173微粒子の割合CとSvの多項近似Sv=4×1063−2×1042+0.0436C+1.0389からSv=3.1kA/mのCは約48となり、本発明にかかる異方性複合磁石の磁気余効定数Svを3.1kA/m以下とするSm2Fe173微粒子の割合は48%以下となる。 That is, the ratio C of Sm 2 Fe 17 N 3 fine particles in FIG. 2 and the Sv polynomial approximation Sv = 4 × 10 6 C 3 −2 × 10 4 C 2 +0.0436 C + 1.0389 to Sv = 3.1 kA / m C Is about 48, and the ratio of Sm 2 Fe 17 N 3 fine particles in which the magnetic aftereffect constant Sv of the anisotropic composite magnet according to the present invention is 3.1 kA / m or less is 48% or less.

図4はSm2Fe173微粒子の割合に対する(BH)maxと長期減磁FLlonを示す特性図である。図から明らかなように、Sm2Fe173微粒子の割合を48%以下とした本発明にかかる平均粒子径1〜5μmのSm2Fe173微粒子、平均粒子径50〜150μmのNd2Fe14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成した異方性複合磁石は、Sm2Fe173やNd2Fe14B系の単一系異方性複合磁石に比べて140kJ/m3以上の高い(BH)max値が得られ、かつ長期減磁FLlonが低減できる。 FIG. 4 is a characteristic diagram showing (BH) max and long-term demagnetization FL lon with respect to the ratio of Sm 2 Fe 17 N 3 fine particles. As apparent from FIG, Sm 2 Fe 17 N 3 fine particles having a mean particle size of 1~5μm of Sm 2 Fe 17 N 3 fine particles according to the present invention the ratio was less than 48%, an average particle diameter of 50 to 150 [mu] m Nd 2 An anisotropic composite magnet composed of Fe 14 B particles, a binder, and an additive that is added as needed is used as an Sm 2 Fe 17 N 3 or Nd 2 Fe 14 B single anisotropic composite magnet. In comparison, a high (BH) max value of 140 kJ / m 3 or more can be obtained, and the long-term demagnetization FL lon can be reduced.

本発明の異方性複合磁石は長期間にわたって高温暴露される環境下において稼動される永久磁石型モータに有用である。   The anisotropic composite magnet of the present invention is useful for a permanent magnet type motor that is operated in an environment exposed to a high temperature for a long period of time.

異方性複合磁石の長期減磁FLlonを示す特性図Characteristic diagram showing long-term demagnetization FL lon of anisotropic composite magnet 不可逆帯磁率χT irr、磁気余効定数Svを示す特性図Characteristic diagram showing irreversible magnetic susceptibility χ T irr and magnetic aftereffect constant Sv 反磁界補正前の高温での減磁曲線の模式図Schematic diagram of demagnetization curve at high temperature before demagnetization correction (BH)maxと長期減磁FLlonを示す特性図(BH) Characteristic chart showing max and long-term demagnetization FL lon

符号の説明Explanation of symbols

(BH)max 最大エネルギー積
FLlon 長期減磁
(BH) max maximum energy product FL lon long-term demagnetization

Claims (1)

平均粒子径1〜5μmのSm2Fe17N3微粒子、平均粒子径50〜150μmのNd2F14B粒子、結合剤、並びに必要に応じて適宜加える添加剤から構成された磁石であって、Sm2Fe17N3微粒子の含有割合が20〜48%であり、1.4MA/m以上の平行磁界中、50MPa以下で圧縮成形し、かつ120℃における磁気余効定数Svが3.1kA/m以下である異方性複合磁石。 A magnet composed of Sm2Fe17N3 fine particles having an average particle diameter of 1 to 5 μm, Nd2F14B particles having an average particle diameter of 50 to 150 μm, a binder, and additives that are appropriately added as necessary, and the content ratio of Sm2Fe17N3 fine particles is 20 to 48 An anisotropic composite magnet that is compression molded at 50 MPa or less in a parallel magnetic field of 1.4 MA / m or more and has a magnetic aftereffect constant Sv at 120 ° C. of 3.1 kA / m or less.
JP2005275725A 2005-09-22 2005-09-22 Anisotropic composite magnet Active JP4706412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275725A JP4706412B2 (en) 2005-09-22 2005-09-22 Anisotropic composite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275725A JP4706412B2 (en) 2005-09-22 2005-09-22 Anisotropic composite magnet

Publications (2)

Publication Number Publication Date
JP2007088246A JP2007088246A (en) 2007-04-05
JP4706412B2 true JP4706412B2 (en) 2011-06-22

Family

ID=37974927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275725A Active JP4706412B2 (en) 2005-09-22 2005-09-22 Anisotropic composite magnet

Country Status (1)

Country Link
JP (1) JP4706412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875110A (en) * 2018-08-29 2020-03-10 射洪福临磁材有限公司 VN particle-containing neodymium iron boron magnetic material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296874A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Hybrid rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP2004296873A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Anisotropic rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP2004296875A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Process for producing flexible hybrid rare earth bonded magnet, magnet and motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296874A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Hybrid rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP2004296873A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Anisotropic rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP2004296875A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Process for producing flexible hybrid rare earth bonded magnet, magnet and motor

Also Published As

Publication number Publication date
JP2007088246A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP5344171B2 (en) Anisotropic rare earth-iron resin magnet
JP2007088354A (en) METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
JP4706412B2 (en) Anisotropic composite magnet
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2016066675A (en) Rare earth isotropic bond magnet
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP2006049554A (en) Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
JP4577026B2 (en) Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP4622767B2 (en) Manufacturing method of radial magnetic anisotropic multipole magnet
JP2005158863A (en) Self-organized hybrid rare earth bond magnet and its manufacturing method, and motor
JP4622536B2 (en) Radial magnetic anisotropic magnet motor
JP4701917B2 (en) Reproduction method of composite magnet containing polycrystalline aggregated anisotropic particles
JP4635583B2 (en) Manufacturing method of radial anisotropic magnet motor
JP2006073880A (en) Flexible rare earth bond magnet integral with fiber reinforced layer
JP4934787B2 (en) Magnetic alloys and bonded magnets
JP2006080115A (en) Anisotropic rare earth/iron-based bond magnet
Yamashita et al. Anisotropic Nd-Fe-B based flexible bonded magnet for small permanent magnet motors
JP3703903B2 (en) Anisotropic bonded magnet
JP4655651B2 (en) Method for manufacturing perpendicular magnetic anisotropic thin plate magnet
JPH0992515A (en) Anisotropic bonded magnet
JP2006128436A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4706412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151