JP2005158863A - Self-organized hybrid rare earth bond magnet and its manufacturing method, and motor - Google Patents

Self-organized hybrid rare earth bond magnet and its manufacturing method, and motor Download PDF

Info

Publication number
JP2005158863A
JP2005158863A JP2003392230A JP2003392230A JP2005158863A JP 2005158863 A JP2005158863 A JP 2005158863A JP 2003392230 A JP2003392230 A JP 2003392230A JP 2003392230 A JP2003392230 A JP 2003392230A JP 2005158863 A JP2005158863 A JP 2005158863A
Authority
JP
Japan
Prior art keywords
rare earth
phase
self
magnet
earth bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003392230A
Other languages
Japanese (ja)
Other versions
JP4033112B2 (en
Inventor
Fumitoshi Yamashita
文敏 山下
Shinichi Tsutsumi
慎一 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003392230A priority Critical patent/JP4033112B2/en
Publication of JP2005158863A publication Critical patent/JP2005158863A/en
Application granted granted Critical
Publication of JP4033112B2 publication Critical patent/JP4033112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a decline in the (BH)max of a rare earth bond magnet which is an annular magnet carried in a small motor even if a diameter is reduced (or a length is increased) by using anisotropic Nd<SB>2</SB>Fe<SB>14</SB>B-based rare earth magnet powder. <P>SOLUTION: The self-organized hybrid rare earth bond magnet contains, as essential components, a single nucleus cluster phase [A], the chief of which is the magnetically anisotropic polycrystal-assembled Nd<SB>2</SB>Fe<SB>14</SB>B-based rare earth magnet powder [Aa], a multi-nucleus cluster phase [An], or a mixed phase of these [A+An]; a spherical multi-nucleus cluster phase [A'], the chief of which is magnetically anisotropic single-domain particle type Sm<SB>2</SB>Fe<SB>17</SB>N<SB>3</SB>-based rare earth magnet powder [A'a], and an extension phase [B]; the mixed phase [A+An] and the phase [A']; and chemical contact [C] with the phase [B]. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はコンピュータ周辺機、プリンタなどの制御用・駆動用として幅広く使用され、小型軽量化・高出力化を中心に技術革新が活発な、所謂永久磁石回転子型、或は永久磁石界磁型のブラシレスモータや直流モータに関し、更に詳しくは、それらに搭載する自己組織化した希土類ボンド磁石とその製造方法、並びに当該小型モータに関する。   The present invention is widely used for control and drive of computer peripherals, printers, etc., so-called permanent magnet rotor type, or permanent magnet field type, which is actively undergoing technological innovation centering on miniaturization, weight reduction and high output. More specifically, the present invention relates to a self-organized rare earth bonded magnet to be mounted thereon, a method for manufacturing the same, and the small motor.

J.J.Croat,J.F.Herbst,R.W.Lee and F.E.Pinkerton:J.Appl.Phys.,Vol.55,2078(1984):非特許文献1により、R−Fe−B(RはNd,Pr)系合金をメルトスパンしたリボンがHci>1.2(MA/m),残留磁化(Mr)800(mT),最大エネルギー積(BH)max112(kJ/m3)の磁気特性が明らかになった。同時にM.Sagawa,S.Fujiwara,H.Yamamoto and Y.Matsuura:J.Appl.Phys.,Vol.55,2083(1984):非特許文献2によって、Nd−Fe−B系合金を出発原料とし,粉末冶金学的手法によって(BH)max304(kJ/m3)の焼結磁石が得られることも明らかになった。1986年には、J.F.Herbst,R.W.Lee and F.E.Pinkerton:Ann.Rev.Mater.Sci.,Vol.16,467(1986):非特許文献3によって、J.J.CroatらやM.SagawaらのNd−Fe−B3元系合金の主相がNd2Fe14B金属間化合物であることが明らかにされた。この希土類−鉄系磁石の作製法としては、その後、メカニカルアロイング法、熱間鋳造法なども提唱されてきた。しかし、1980年代後半から現在に至るまで新市場を創製し、拡充し得た代表的希土類−鉄系磁石はM.Sagawaらの粉末冶金学的手法による常圧焼結磁石と、J.J.Croatらのメルトスパンリボンを出発原料とする急冷磁石の2系統に区分される。 J. et al. J. et al. Croat, J. et al. F. Herbst, R.A. W. Lee and F.M. E. Pinkerton: J.M. Appl. Phys. , Vol. 55, 2078 (1984): According to Non-Patent Document 1, an R-Fe-B (R is Nd, Pr) type alloy melt-spun ribbon is Hci> 1.2 (MA / m), remanent magnetization (Mr) 800 ( mT), the maximum energy product (BH) max 112 (kJ / m 3 ) magnetic characteristics were revealed. At the same time Sagawa, S .; Fujiwara, H .; Yamamoto and Y.J. Matsuura: J.M. Appl. Phys. , Vol. 55, 2083 (1984): According to Non-Patent Document 2, a sintered magnet of (BH) max 304 (kJ / m 3 ) can be obtained by using a powder metallurgical technique using an Nd—Fe—B alloy as a starting material. It became clear. In 1986, J.M. F. Herbst, R.A. W. Lee and F.M. E. Pinkerton: Ann. Rev. Mater. Sci. , Vol. 16, 467 (1986). J. et al. Croat et al. It was revealed that the main phase of the Nd-Fe-B ternary alloy of Sagawa et al. Is an Nd 2 Fe 14 B intermetallic compound. As a method for producing the rare earth-iron magnet, a mechanical alloying method, a hot casting method, and the like have been proposed thereafter. However, representative rare earth-iron magnets that have created and expanded new markets from the late 1980s to the present are M.M. Sagawa's powder metallurgy-based atmospheric pressure sintered magnet; J. et al. It is divided into two types of quenching magnets starting from the melt spun ribbon of Croat et al.

まず、粉末冶金学的手法による常圧焼結磁石であるが、この磁石の作製は既に工業的規模で生産されていた1−5,2−17型Sm−Co系焼結磁石の作製方法を利用できる利点があることから、いち早く工業的規模での生産技術が確立されたと思われる。また、Dy添加で結晶磁気異方性を高めて熱安定性を改善したり、VやMo添加で熱安定性と耐食性の両者を改善する研究、表面処理による耐食性向上が進展し、(BH)max216〜296(kJ/m3)の焼結磁石としてMRI、VCM、FAやEVなど機械出力数百W〜数十kWに至る比較的大型のモータなどへ広く普及した。 First, although it is an atmospheric pressure sintered magnet by a powder metallurgy technique, the production of this magnet is based on a method for producing a 1-5, 2-17 type Sm-Co sintered magnet that has already been produced on an industrial scale. It seems that production technology on an industrial scale was quickly established because of the advantages that can be used. In addition, Dy addition enhances magnetocrystalline anisotropy to improve thermal stability, V and Mo addition improve both thermal stability and corrosion resistance, and surface treatment improves corrosion resistance. (BH) As a sintered magnet having a maximum of 216 to 296 (kJ / m 3 ), it has been widely spread to relatively large motors such as MRI, VCM, FA, and EV, which have a mechanical output of several hundred watts to several tens kW.

一方,J.J.Croatらのメルトスパンで得られる材料形態はリボンなどの薄帯や,それを粉砕したフレ−ク状の粉末に制限される。このため、一般に使用されるバルク状の永久磁石とするには材料形態の変換、つまり何らかの方法で薄帯や粉末を特定のバルクに固定化する技術が必要となる。粉末冶金学における基本的な粉末固定手段は常圧焼結であるが、メルトスパンリボンは準安定状態に基づく磁気特性を維持する必要があるため常圧焼結の適用は困難である。そのため、もっぱらエポキシ樹脂のような結合剤で薄帯や粉末を特定形状のバルクに固定化することが行われた。R.W.Lee,E.G.Brewere and N.A.Shaffel:IEEE Trans.Magn.,Vol.21,1958(1985):非特許文献4では、(BH)max111(kJ/m3)のメルトスパンリボンを樹脂で固定すると(BH)ma72(kJ/m3)の等方性希土類ボンド磁石ができるとした。 On the other hand, J.H. J. et al. The material form obtained with the Croat et al. Meltspan is limited to ribbons and other flakes and flake powders. For this reason, in order to use a generally used bulk permanent magnet, it is necessary to change the material form, that is, a technique for fixing a ribbon or powder to a specific bulk by some method. Although the basic powder fixing means in powder metallurgy is atmospheric pressure sintering, it is difficult to apply atmospheric pressure sintering to a melt spun ribbon because it is necessary to maintain magnetic properties based on a metastable state. For this reason, it has been carried out that a ribbon or powder is fixed to a bulk of a specific shape exclusively with a binder such as an epoxy resin. R. W. Lee, E .; G. Brewere and N.M. A. Shaffel: IEEE Trans. Magn. , Vol. 21, 1958 (1985): In Non-Patent Document 4, when a melt spun ribbon of (BH) max 111 (kJ / m 3 ) is fixed with a resin, an isotropic rare earth bond of (BH) ma 72 (kJ / m 3 ) A magnet was made.

1986年、本発明者らは、上記メルトスパンリボンを粉砕したR−TM−B系急冷粉末を樹脂で固定した(BH))max〜72(kJ/m3)の小口径環状等方性希土類ボンド磁石が小型モータに有用であることを見出し、特願昭61−38830号公報:特許文献1にて明らかにした。その後、前記小口径環状等方性希土類ボンド磁石とSm−Co系ラジアル異方性希土類ボンド磁石との小型モータ特性を比較検証し、前者が有用であるとした(T.Shimoda,SUPPLEMENTARY MATERIAL,“PERMANENT MAGNETS 1988 UPDATE”Wheeler Associate,INC(1988):非特許文献5)。さらに、小型モータに有用であるという報告が、W.Baran,The European Business and Technical Outlook for NdFeB Magnets”Nov.(1989):非特許文献6、G.X.Huang,W.M.Gao,S.F.Yu,:”Application of Melt−Spun Nd−Fe−B Bonded Magnet to the Micro−motor”,Proc.of the 11th International Rare−Earth Magnets and Their Applications,Pittsburgh,USA,pp.583−595,(1990):非特許文献7などによって明らかにされ、1990年代からOA,AV,PC及びその周辺機器、情報通信機器などの駆動源として使用される各種小型高性能モータに広く普及したのである。
特開昭62−196057号公報 特開昭57−170501号公報 J.J.Croat,J.F.Herbst,R.W.Lee and F.E.Pinkerton:J.Appl.Phys.,Vol.55,2078(1984) M.Sagawa,S.Fujiwara,H.Yamamoto and Y.Matsuura:J.Appl.Phys.,Vol.55,2083(1984) J.F.Herbst,R.W.Lee and F.E.Pinkerton:Ann.Rev.Mater.Sci.,Vol.16,467(1986) R.W.Lee,E.G.Brewere and N.A.Shaffel:IEEE Trans.Magn., Vol.21,1958(1985) T.Shimoda,SUPPLEMENTARY MATERIAL,“PERMANENT MAGNETS 1988 UPDATE”Wheeler Associate,INC(1988) W.Baran,The European Business and Technical Outlook for NdFeB Magnets”Nov.(1989) G.X.Huang,W.M.Gao,S.F.Yu,:”Application of Melt−Spun Nd−Fe−B Bonded Magnet to the Micro−motor”,Proc.of the 11th International Rare−Earth Magnets and Their Applications,Pittsburgh,USA,pp.583−595,(1990) M.Tokunaga,N.Nozawa,K.Iwasaki,M.Endoh,S,Tanigawa and H.Harada: IEEE Trans.Magn.,Vol.25,3561(1989) H. Sakamoto,M.Fujikura and T.Mukai:J.Appl.Phys.,Vol.69,5382(1991) M.Doser,V.Panchanacthan,and R.K.Mishra:J.Appl.Phys.,Vol.70,6603(1991) T.Takeshita,and R.Nakayama:Proc.of the 11th International workshop on Rare−earth Magnets and Their Applications,Pittsburh,PA.,Vol.1,49(1990) M.Doser,V.Panchanathan,“Pulverizing anisotropic rapidly solidified Nd−Fe−B materials for bonded magnet”,J.Appl.Phys.70(10),15,1993 T.Takeshita and R.Nakayama:Proc.of the 10th RE Magnets and Their Applications,Kyoto,Vol.1,551 1989 K.Machida,K.Noguchi,M.Nushimura,Y.Hamaguchi,G.Adachi,Proc.9th Int.Workshop on Rare−Earth Magnets and Ttheir Applications,Sendai,Japan,II,845 2000 K.Machida,Y.Hamaguchi,K.Noguchi,G.Adachi,Digests of the 25th Annual conference on Magnetcs in Japan,28aC−6 2001
In 1986, the present inventors fixed the R-TM-B quenching powder obtained by pulverizing the above melt spun ribbon with a resin (BH)) small diameter annular isotropic rare earth of max- 72 (kJ / m 3 ). It has been found that a bonded magnet is useful for a small motor, and has been made clear in Japanese Patent Application No. 61-38830: Patent Document 1. Thereafter, the small motor characteristics of the small-diameter annular isotropic rare earth bonded magnet and the Sm—Co radial anisotropic anisotropic rare earth bonded magnet were compared and verified, and the former was useful (T. Shimoda, SUPPLEMENTARY MATERIAL, “ PERMANENT MAGNETS 1988 UPDATE “Wheeler Associate, INC (1988): Non-Patent Document 5). Furthermore, a report that it is useful for a small motor is disclosed in W.W. Baran, The European Business and Technical Outlook for NdFeB Magnets "Nov. (1989): Non-Patent Document 6, GX Huang, WM Gao, SF Yu-," ApplicationNt. Fe-B Bonded Magnet to the Micro -motor ", Proc.of the 11 th International Rare-Earth Magnets and Their Applications, Pittsburgh, USA, pp.583-595, (1990): revealed by non-Patent Document 7 Since the 1990s, it has been used as a drive source for OA, AV, PC, peripheral equipment, information communication equipment, etc. It was widely used to seed a small high-performance motor.
JP-A-62-196057 JP-A-57-170501 J. et al. J. et al. Croat, J. et al. F. Herbst, R.A. W. Lee and F.M. E. Pinkerton: J.M. Appl. Phys. , Vol. 55, 2078 (1984) M.M. Sagawa, S .; Fujiwara, H .; Yamamoto and Y.J. Matsuura: J.M. Appl. Phys. , Vol. 55, 2083 (1984) J. et al. F. Herbst, R.A. W. Lee and F.M. E. Pinkerton: Ann. Rev. Mater. Sci. , Vol. 16, 467 (1986) R. W. Lee, E .; G. Brewere and N.M. A. Shaffel: IEEE Trans. Magn. , Vol. 21, 1958 (1985) T.A. Shimoda, SUPPLEMENTARY MATERIAL, “PERMANENT MAGNETS 1988 UPDATE” Wheeler Associate, INC (1988) W. Baran, The European Business and Technical Outlook for NdFeB Magnets "Nov. (1989) G. X. Huang, W.H. M.M. Gao, S .; F. Yu ,: "Application of Melt-Spun Nd-Fe-B Bonded Magnet to the Micro-motor", Proc. of the 11th International Rare-Earth Magnets and Their Applications, Pittsburgh, USA, pp. 583-595 (1990) M.M. Tokunaga, N .; Nozawa, K .; Iwasaki, M .; Endoh, S, Tanigawa and H .; Harada: IEEE Trans. Magn. , Vol. 25, 3561 (1989) H. Sakamoto, M .; Fujikura and T. Mukai: J.M. Appl. Phys. , Vol. 69, 5382 (1991) M.M. Doser, V.M. Panchanthan, and R.A. K. Misra: J.M. Appl. Phys. , Vol. 70, 6603 (1991) T.A. Takeshita, and R.A. Nakayama: Proc. of the 11th International worksshop on Rare-earth Magnets and Ther Applications, Pittsburgh, PA. , Vol. 1, 49 (1990) M.M. Doser, V.M. Panchanathan, “Pulverizing anisotropy rapidly solidified Nd—Fe—B materials for bonded magnet”, J. Am. Appl. Phys. 70 (10), 15, 1993 T.A. Takeshita and R.K. Nakayama: Proc. of the 10th RE Magnets and Ther Applications, Kyoto, Vol. 1,551 1989 K. Macida, K .; Noguchi, M .; Nushimura, Y .; Hamaguchi, G .; Adachi, Proc. 9th Int. Works on Rare-Earth Magnets and Ttheir Applications, Sendai, Japan, II, 845 2000 K. Macida, Y .; Hamaguchi, K .; Noguchi, G .; Adachi, Digests of the 25th Annual conference on Magnetcs in Japan, 28aC-6 2001

ところで、1980年代半ばから現在に至るまでメルトスパンリボンの磁気特性の改良研究は継続的、かつ活発に行われてきたものの、リボン自体の(BH)maxは160(kJ/m3)程であり、当該リボンを粉砕したR−TM−B系急冷粉末を樹脂で固定した磁気的に等方性のボンド磁石の(BH)maxは工業的には〜80kJ/m3である。したがって、1985年当時から最近に至るまで、メルトスパンリボンを粉砕したR−TM−B系急冷粉末を樹脂で固定した磁気的に等方性希土類ボンド磁石の高(BH)max 化は、さほど進展していない。 By the way, although research on improving the magnetic properties of the melt spun ribbon has been continuously and actively conducted from the mid-1980s to the present, the (BH) max of the ribbon itself is about 160 (kJ / m 3 ). The (BH) max of a magnetically isotropic bond magnet in which an R-TM-B quenching powder obtained by pulverizing the ribbon is fixed with a resin is industrially ~ 80 kJ / m 3 . Therefore, from 1985 until recently, the increase in the (BH) max of magnetically isotropic rare earth bonded magnets in which R-TM-B quenching powder obtained by pulverizing melt-spun ribbons was fixed with resin has made great progress. Not done.

上記に拘らず、本発明が対象とするコンピュータ周辺機、プリンタなどの制御用、駆動用として幅広く使用され、所謂永久磁石回転子型、或は永久磁石界磁型のブラシレスモータや直流モータに関しては電気・電子機器の高性能化・高付加価値化の背景のもと、小型磁石モータの更なる小型軽量化・高出力化に対する要求が絶えない。したがって、本発明者らが1986年に見出したメルトスパンリボンを粉砕したR−TM−B系急冷粉末を樹脂で固定した小口径環状等方性希土類ボンド磁石は、もはや小型モータの進化に有用であると言い切ることはできない。   Regardless of the above, the present invention is widely used for control and drive of computer peripherals, printers, etc., so-called permanent magnet rotor type or permanent magnet field type brushless motors and DC motors. Under the background of high performance and high added value of electrical and electronic equipment, there is a constant demand for further reduction in size, weight and output of small magnet motors. Therefore, the small-diameter annular isotropic rare earth bonded magnet in which R-TM-B quenching powder obtained by pulverizing the melt spun ribbon found by the present inventors in 1986 is fixed to resin is no longer useful for the evolution of small motors. I can't say that there is.

一方、1980年代後半より、Nd2Fe14B化学量論組成より、高Nd組成のメルトスパンリボンを出発原料とした磁気的に異方性の希土類磁石粉末の研究が活発に行われた。従来のSm−Co系ボンド磁石ではインゴットを微粉砕することにより、大きな保磁力Hciが得られるのに対し、Nd2Fe14B系合金インゴットやNd2Fe14B系常圧焼結磁石を粉砕しても小さな保磁力Hciしか得られない。 On the other hand, since the late 1980s, research on magnetically anisotropic rare earth magnet powders using a melt spun ribbon having a high Nd composition as a starting material has been actively conducted from the Nd 2 Fe 14 B stoichiometric composition. In conventional Sm-Co based bonded magnets, the ingot is finely pulverized to obtain a large coercive force Hci, whereas Nd 2 Fe 14 B based alloy ingots and Nd 2 Fe 14 B based atmospheric pressure sintered magnets are pulverized. Even then, only a small coercive force Hci can be obtained.

このため、磁気的に異方性のNd2Fe14B系希土類磁石粉末の出発原料としては、メルトスパンリボンが、先ず検討された。 For this reason, a melt spun ribbon was first studied as a starting material for magnetically anisotropic Nd 2 Fe 14 B rare earth magnet powder.

1989年、TokunagaらはNd14Fe80-X6GaX(X=0.4〜0.5)を熱間据え込み加工(Die−up−set)して得たバルクを機械粉砕して保磁力Hci1.52(MA/m)の異方性Nd2Fe14B系希土類磁石粉末を作製し,これを樹脂で固めて(BH)max127(kJ/m3)の異方性希土類ボンド磁石を得ている[M.Tokunaga,N.Nozawa,K.Iwasaki,M.Endoh,S,Tanigawa and H.Harada:IEEE Trans.Magn.,Vol.25,3561(1989):非特許文献8]。 In 1989, Tokunaga et al. Mechanically pulverized a bulk obtained by hot upsetting (Die-up-set) of Nd 14 Fe 80-X B 6 Ga X (X = 0.4 to 0.5). An anisotropic Nd 2 Fe 14 B-based rare earth magnet powder having a coercive force Hci 1.52 (MA / m) is prepared, and this is solidified with a resin (BH) max 127 (kJ / m 3 ) anisotropic rare earth bond Magnets [M. Tokunaga, N .; Nozawa, K .; Iwasaki, M .; Endoh, S, Tanigawa and H .; Harada: IEEE Trans. Magn. , Vol. 25, 3561 (1989): Non-Patent Document 8].

また、1991年、T.MukaiらはNd14Fe79.85.2Cu1を熱間圧延して,保磁力Hci1.30(MA/m)の異方性Nd2Fe14B系希土類磁石粉末を作製している。[H.Sakamoto,M.Fujikura and T.Mukai:J.Appl.Phys.,Vol.69,5382(1991):非特許文献9]。 In 1991, T.W. Mukai et al. Hot rolled Nd 14 Fe 79.8 B 5.2 Cu 1 to produce anisotropic Nd 2 Fe 14 B rare earth magnet powder with coercive force Hci 1.30 (MA / m). [H. Sakamoto, M .; Fujikura and T. Mukai: J.M. Appl. Phys. , Vol. 69, 5382 (1991): Non-Patent Document 9].

このように、GaやCuなどの添加は熱間加工性を向上させ結晶粒径を概ね500(nm)以下に抑制できる。結晶粒成長が抑えられると粉末粒子径が概ね100(μm)以上の粉末であれば保磁力Hciの低下が抑えられた磁石粉末となる。1991年、M.Doser,V.Panchanathanらは、それら熱間加工後のバルクを粉末化する方法として粒界から水素を侵入させNd2Fe14BHXとして崩壊させ、その後真空加熱により脱水素したHD(Hydrogen Decrepitation)異方性希土類磁石粉末を樹脂で固めて(BH)max150(kJ/m3)の異方性希土類ボンド磁石を得ている[M.Doser,V.Panchanacthan,and R.K.Mishra:J.Appl.Phys.,Vol.70,6603(1991):非特許文献10]。 Thus, the addition of Ga, Cu or the like can improve the hot workability and suppress the crystal grain size to approximately 500 nm or less. When the crystal grain growth is suppressed, a powder having a powder particle diameter of approximately 100 (μm) or more becomes a magnet powder in which the decrease in coercive force Hci is suppressed. 1991, M.M. Doser, V.M. Panchanathan et al. Described HD (Hydrogen Depreciation) anisotropic rare earth as a method of pulverizing the bulk after hot working, in which hydrogen was allowed to penetrate from the grain boundaries to be collapsed as Nd 2 Fe 14 BH X and then dehydrogenated by vacuum heating. An anisotropic rare earth bonded magnet having (BH) max 150 (kJ / m 3 ) is obtained by solidifying the magnet powder with a resin [M. Doser, V.M. Panchanthan, and R.A. K. Misra: J.M. Appl. Phys. , Vol. 70, 6603 (1991): Non-Patent Document 10].

しかし、上記メルトスパンリボンを熱間据え込み,或いは熱間圧延した異方性Nd2Fe14B系希土類磁石粉末は結晶粒界にNd−rich相が存在し、粒界腐食に基づく永久減磁を引起こし易い欠点があった。この欠点を克服する方法として、Ga,Zr,Hf,などの元素を添加したNd−Fe(Co)−B系合金インゴットを水素中で熱処理しNd2(Fe,Co)14B相の水素化(Hydrogenation,Nd2[Fe,Co]14BHx),650〜1000(℃)での相分解(Decomposition,NdH2+Fe+Fe2B),脱水素(Desorpsion),再結合(Recombination)する、いわゆるHDDR処理が提案された[例えば、T.Takeshita,and R.Nakayama:Proc.of the 11th International workshop on Rare−earth Magnets and Their Applications,Pittsburh,PA.,Vol.1,49(1990):非特許文献11]。この方法で作製された異方性Nd2Fe14B系希土類磁石粉末は0.5μm以下の結晶粒の集合組織のみから構成され、結晶粒界にNd−rich相が存在しない。このHDDR現象のメカニズムに対する研究も精力的に行われ、Dy添加や脱水素条件などによりNd2Fe14B化学量論組成に近い粉末を樹脂で固めた希土類ボンド磁石と同等の熱安定性が期待される保磁力Hci 1.20(MA/m)以上の異方性Nd2Fe14B系希土類磁石粉末も開発された。 However, the anisotropic Nd 2 Fe 14 B rare earth magnet powder in which the above melt spun ribbon is hot-set or hot-rolled has a Nd-rich phase at the crystal grain boundary and is permanently demagnetized based on the grain boundary corrosion. There was a drawback that it is easy to cause. As a method of overcoming this drawback, Nd—Fe (Co) —B alloy ingots added with elements such as Ga, Zr, Hf, etc. are heat-treated in hydrogen to hydrogenate Nd 2 (Fe, Co) 14 B phase. (Hydrogenation, Nd 2 [Fe, Co] 14 BHx), phase decomposition (Decomposition, NdH 2 + Fe + Fe 2 B), dehydrogenation (Decomposition), recombination (Recombination) at 650 to 1000 (° C.), so-called HDDR process Have been proposed [e.g. Takeshita, and R.A. Nakayama: Proc. of the 11th International worksshop on Rare-earth Magnets and Ther Applications, Pittsburgh, PA. , Vol. 1, 49 (1990): Non-Patent Document 11]. The anisotropic Nd 2 Fe 14 B rare earth magnet powder produced by this method is composed only of a texture of crystal grains of 0.5 μm or less, and no Nd-rich phase exists at the grain boundaries. Research on the mechanism of this HDDR phenomenon has also been vigorously conducted, and it is expected to have the same thermal stability as a rare earth bonded magnet in which a powder close to the Nd 2 Fe 14 B stoichiometric composition is solidified with resin by Dy addition or dehydrogenation conditions. An anisotropic Nd 2 Fe 14 B rare earth magnet powder having a coercive force Hci of 1.20 (MA / m) or more has also been developed.

しかし、上記、異方性Nd2Fe14B系希土類磁石粉末を用いた高(BH)max希土類ボンド磁石は円柱や立方体で試作されたものであり、実際には一般的な小型モータには殆ど使用されない。その理由は、本発明が対象とする小型モータに搭載する磁石の形状は、かつて試作された高(BH))max希土類ボンド磁石のような単純な円柱や立方体ではなく、例えば直径25(mm)以下の環状、或いは肉厚1(mm)以下の円弧状が求められるからである。例えば前記環状磁石の場合には、半径方向に磁気異方化したラジアル異方性の希土類ボンド磁石が必要となる。このような、ラジアル配向磁界の発生手段としては、例えば、特開昭57−170501号公報:特許文献2に記載されているように環状成形型キャビティを取り囲んで磁性体ヨークと非磁性体ヨークとを交互に組み合わせ、且つ外側に励磁コイルを配置した成形型を用いる。かかる方法は環状成形型キャビティに所定の強さのラジアル配向磁界を発生させるため、高電圧大電流型の電源を用い、例えば170(kAT)のように起磁力を大とすることが行われる。 However, the above-mentioned high (BH) max rare earth bonded magnets using anisotropic Nd 2 Fe 14 B rare earth magnet powders are prototyped in cylinders or cubes. Not used. The reason for this is that the shape of the magnet mounted on the small motor targeted by the present invention is not a simple cylinder or cube, such as a high (BH)) max rare earth bonded magnet that was once prototyped, but a diameter of 25 (mm), for example. This is because the following annular shape or an arc shape having a thickness of 1 (mm) or less is required. For example, in the case of the annular magnet, a radially anisotropic rare earth bonded magnet magnetically anisotropic in the radial direction is required. As a means for generating such a radial orientation magnetic field, for example, as disclosed in JP-A-57-170501: Patent Document 2, a magnetic yoke and a non-magnetic yoke surrounding an annular mold cavity are used. Are used in combination, and a molding die in which an exciting coil is arranged outside is used. In this method, a radial orientation magnetic field having a predetermined strength is generated in the annular mold cavity, and therefore, a high-voltage, high-current power source is used to increase the magnetomotive force, for example, 170 (kAT).

しかし、環状成形型キャビティの外周から磁性体ヨークにより励磁コイルで励磁した磁束を環状成形型キャビティに有効に集束させるには、磁性体ヨークの磁路を長くせざるを得ず、とくに環状成形型キャビティが小口径(或いは、長尺)になると、起磁力のかなりが漏洩磁束として消費される。その結果、環状成形型キャビティの配向磁界が減少する課題があり、例えば、直径25(mm)以下、肉厚1〜2(mm)、長さと直径の比(L/D=0.5〜1)程度の本発明が対象とする小型モータに搭載されるような環状磁石では希土類磁石粉末の配向度の低下により、希土類ボンド磁石の高(BH)maxの減少が避けられず、円柱や立方体で試作された高(BH)max希土類ボンド磁石とは大きく特性が下回る環状形状のモータ用磁石しか作製することができなかったのである。 However, in order to effectively focus the magnetic flux excited by the magnetic coil from the outer periphery of the annular mold cavity to the annular mold cavity, the magnetic path of the magnetic yoke must be lengthened. When the cavity has a small diameter (or long length), a considerable amount of magnetomotive force is consumed as leakage flux. As a result, there is a problem that the orientation magnetic field of the annular mold cavity is reduced. For example, the diameter is 25 (mm) or less, the wall thickness is 1 to 2 (mm), and the length to diameter ratio (L / D = 0.5 to 1). ) In the case of an annular magnet that is mounted on a small motor targeted by the present invention, the reduction in the orientation of the rare earth magnet powder inevitably reduces the high (BH) max of the rare earth bonded magnet. Only a ring-shaped motor magnet having a characteristic that is significantly lower than that of a prototype high (BH) max rare earth bonded magnet could be produced.

上記課題を解決するための第1の発明は、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]と、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]、延伸相[B]、並びに相[A]、[A´]、並びに相[B]とのケミカルコンタクト[C]とを必須成分とする自己組織化したハイブリッド型希土類ボンド磁石である。 A first invention for solving the above-described problem is a mononuclear cluster phase [A] mainly composed of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa], A spherical shape mainly composed of a multinuclear cluster phase [An] or a mixed phase thereof [A + An] and a magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a]. Self-organized hybrid rare earth containing, as an essential component, a multinuclear cluster phase [A ′], an extended phase [B], and phases [A], [A ′], and a chemical contact [C] with the phase [B] Bond magnet.

また、第2の発明は、
(1)単核クラスター相[A]、多核クラスター相[An]、又はそれらのクラスター相[A+An]、延伸相[B]、ケミカルコンタクト[C]によるコンパウンド中間体[I−a]、球状多核クラスター相[A´]、並びに前記2種と必要に応じて適宜加える添加剤とを混合したコンパウンド[I]の作製工程と、
(2)コンパウンド圧縮による板状グリーンコンパクト[II]の作製工程と、
(3)前記グリーンコンパクト[II]を熱処理し、相[A+An]、[A´]と相[B]とをケミカルコンタクト[C]で自己組織化した磁石前駆体[III]の作製工程と、
(4)前記磁石前駆体[III]に含まれる相[B]の延伸によって環状[IVa]又は円弧状磁石[IVb]に形状変換する工程とから成る製造方法により得られる自己組織化したハイブリッド型希土類ボンド磁石である。
In addition, the second invention,
(1) A mononuclear cluster phase [A], a polynuclear cluster phase [An], or a compound intermediate [Ia], a spherical polynuclear by the cluster phase [A + An], an extended phase [B], and a chemical contact [C]. A process for producing a compound [I] in which the cluster phase [A ′] and the above-mentioned two types and additives that are appropriately added as necessary are mixed,
(2) Production process of plate green compact [II] by compound compression;
(3) The green compact [II] is heat-treated, and a step of producing a magnet precursor [III] in which the phases [A + An], [A ′] and the phase [B] are self-organized by chemical contacts [C];
(4) A self-organized hybrid type obtained by a manufacturing method comprising a step of transforming the shape into an annular [IVa] or arcuate magnet [IVb] by stretching the phase [B] contained in the magnet precursor [III] It is a rare earth bonded magnet.

また、第3の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]が磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]とオリゴマー[Ab]とで構成し、当該オリゴマー[Ab]が延伸相[B]並びにケミカルコンタクト[C]と自己組織化する反応基質を有する。 The third invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein the mononuclear cluster phase [A], the multinuclear cluster phase [An], or a mixed phase thereof is used. [A + An] is composed of a magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B-based rare earth magnet powder [Aa] and an oligomer [Ab], and the oligomer [Ab] includes the stretched phase [B] and It has a chemical contact [C] and a reaction substrate that self-assembles.

また、第4の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、球状多核クラスター相[A´]が磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]とオリゴマー[A´b]とで構成され、当該オリゴマー[A´b]が相B並びにケミカルコンタクト[C]と自己組織化する反応基質を有する。 The fourth invention is a single-domain particle type in which the spherical multinuclear cluster phase [A ′] is magnetically anisotropic in the self-organized hybrid rare earth bonded magnet of the first invention or the second invention. Reaction composed of Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] and oligomer [A′b], and the oligomer [A′b] self-assembles with phase B and chemical contact [C]. Has a substrate.

また、第5の発明は、上記第4の発明の自己組織化したハイブリッド型希土類ボンド磁石において、球状多核クラスター相[A´]が≦500(μm)の球状グラニュールである。   The fifth invention is a spherical granule having a spherical multinuclear cluster phase [A ′] of ≦ 500 (μm) in the self-organized hybrid rare earth bonded magnet of the fourth invention.

また、第6の発明は、上記第5の発明の自己組織化したハイブリッド型希土類ボンド磁石において、球状多核クラスター相[A´]が、予め磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´]とオリゴマー[A´b]の有機溶媒溶液とを湿式混合、脱溶媒、圧縮、分級したのち転動流動層造粒法によって球状に仕上げられる。 The sixth invention is the self-organized hybrid rare earth bonded magnet of the fifth invention, wherein the spherical multinuclear cluster phase [A ′] is previously magnetically anisotropic single domain particle type Sm 2 Fe. 17 N 3 rare earth magnet powder [A ′] and an organic solvent solution of oligomer [A′b] are wet mixed, desolvated, compressed and classified, and then finished into a spherical shape by a rolling fluidized bed granulation method.

また、第7の発明は、上記第6の発明の自己組織化したハイブリッド型希土類ボンド磁石において、転動流動層造粒がパルスジェット分散機構(造粒ケーシングの側壁より中心に向かってエアジェットを間欠的に噴射する)を組入れた微細造粒機構が用いられる。   According to a seventh invention, in the self-organized hybrid rare earth bonded magnet of the sixth invention, the rolling fluidized bed granulation is performed by a pulse jet dispersion mechanism (air jet is directed toward the center from the side wall of the granulation casing). A fine granulation mechanism that incorporates intermittent injection) is used.

また、第8の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]と球状多核クラスター相[A´]に含まれるオリゴマー[A´b]が室温で固体の、且つ分子鎖中に少なくとも2個以上のオキシラン環を有する有機化合物である。   The eighth invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein the mononuclear cluster phase [A], the multinuclear cluster phase [An], or a mixed phase thereof is used. An organic compound in which the oligomer [Ab] contained in [A + An] and the oligomer [A′b] contained in the spherical polynuclear cluster phase [A ′] are solid at room temperature and have at least two oxirane rings in the molecular chain It is.

また、第9の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]、並びに球状多核クラスター相[A´]に含まれるオリゴマー[A´b]の割合が0.5〜3.0(wt.%)である。   The ninth invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein the mononuclear cluster phase [A], the multinuclear cluster phase [An], or a mixed phase thereof is used. The ratio of the oligomer [Ab] contained in [A + An] and the oligomer [A′b] contained in the spherical polynuclear cluster phase [A ′] is 0.5 to 3.0 (wt.%).

また、第10の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合が30〜50(wt.%)である。   The tenth invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein the mononuclear cluster phase [A], the multinuclear cluster phase [An], or a mixed phase thereof is used. The ratio of the spherical multinuclear cluster phase [A ′] to the sum of [A + An] and the spherical multinuclear cluster phase [A ′] is 30 to 50 (wt.%).

また、第11の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、コンパウンド[I]に占める全てのクラスターの割合が≦97.5(wt.%)である。   According to an eleventh aspect of the invention, in the self-organized hybrid rare earth bonded magnet according to the first or second aspect of the invention, the proportion of all clusters in the compound [I] is ≦ 97.5 (wt.%) ).

また、第12の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、コンパウンド[I]に占める延伸相[B]の割合が≧2.5(wt.%)である。   According to a twelfth aspect, in the self-organized hybrid rare earth bonded magnet of the first aspect or the second aspect, the ratio of the stretched phase [B] to the compound [I] is ≧ 2.5 (wt .%).

また、第13の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、延伸相[B]が一軸延伸による分子鎖配向能、並びに少なくともケミカルコンタクトCと反応し得る反応基質を含む高分子である。   A thirteenth aspect of the present invention is the self-organized hybrid rare earth bonded magnet of the first aspect or the second aspect of the present invention, wherein the stretched phase [B] has molecular chain orientation ability by uniaxial stretching, and at least the chemical contact C. A polymer containing a reaction substrate capable of reacting.

また、第14の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、コンパウンド[I]のがJIS Z2501による見掛密度、及びその粉末流動度は次のとおりである。   According to a fourteenth aspect of the present invention, in the self-organized hybrid rare earth bonded magnet of the first aspect or the second aspect, the compound [I] has an apparent density according to JIS Z2501 and a powder fluidity of the following: It is as follows.

コンパウンド[I]の見掛密度≧2.4(Mg/m3)・・・(式1) Apparent density of compound [I] ≧ 2.4 (Mg / m 3 ) (Formula 1)

コンパウンド[I]の粉末流動度≧45(sec/50g)・・・(式2)   Compound [I] powder flow rate ≧ 45 (sec / 50 g) (Formula 2)

また、第15の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、板状グリーンコンパクト[II]を作製する際、成形型キャビティに充填したコンパウンド[I]の単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]、並びに球状多核クラスター相[A´]に含まれるオリゴマー[A´b]の融点以上に熱し、然るのち配向磁界を印加しながら圧縮する。   Further, the fifteenth aspect of the invention is the self-organized hybrid rare earth bonded magnet of the first aspect of the invention or the second aspect of the invention, wherein when the plate-shaped green compact [II] is produced, the compound [ I], a mononuclear cluster phase [A], a multinuclear cluster phase [An], or an oligomer [Ab] contained in a mixed phase [A + An] thereof, and an oligomer [A ′] contained in a spherical multinuclear cluster phase [A ′]. b] above the melting point, and then compressing while applying an orientation magnetic field.

また、第16の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、グリーンコンパクト[II]を作製する際、ケミカルコンタクト[C]による自己組織化開始温度以下とする。   The sixteenth invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein self-organization by chemical contact [C] is started when green compact [II] is manufactured. Below the temperature.

また、第17の発明は、上記第1の発明、第2の発明、第14の発明、又は第15の発明の自己組織化したハイブリッド型希土類ボンド磁石において、板状グリーンコンパクト[II]を作製する際、≧1.5(MA/m)の直交配向磁界の下、板状の板厚に相当する長手方向側面を圧縮する。   The seventeenth invention is a self-organized hybrid rare earth bonded magnet according to the first invention, the second invention, the fourteenth invention, or the fifteenth invention. In this case, the longitudinal side surface corresponding to the plate thickness is compressed under an orthogonal orientation magnetic field of ≧ 1.5 (MA / m).

また、第18の発明は、上記第1の発明、第2の発明、又は第16の発明の自己組織化したハイブリッド型希土類ボンド磁石において、板状グリーンコンパクト[II]を作製する際、複数のキャビティを有する非磁性材料で構成した成形型並びにダイセットを用いる。   The eighteenth aspect of the invention is the self-organized hybrid rare earth bonded magnet of the first aspect, the second aspect, or the sixteenth aspect of the present invention. A mold and a die set made of a nonmagnetic material having a cavity are used.

また、第19の発明は、上記第1の発明、第2の発明、又は第17の発明の自己組織化したハイブリッド型希土類ボンド磁石において、板状グリーンコンパクト[II]を作製する際、板状の板厚に相当する長手方向中央の成形型キャビティの最大歪量を≦0.1(mm)とする。   The nineteenth invention is a plate-like green compact [II] in the self-organized hybrid rare earth bonded magnet of the first invention, the second invention, or the seventeenth invention. The maximum strain amount of the mold cavity at the center in the longitudinal direction corresponding to the plate thickness is set to ≦ 0.1 (mm).

また、第20の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、板状グリーンコンパクト[II]の密度分布が≦0.1(Mg/m3)である。 According to a twentieth aspect, in the self-organized hybrid rare earth bonded magnet according to the first aspect or the second aspect, the density distribution of the plate-like green compact [II] is ≦ 0.1 (Mg / m 3 ).

また、第21の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、板状グリーンコンパクト[II]の板厚が1.0±0.5(mm)である。   The twenty-first invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein the plate-like green compact [II] has a thickness of 1.0 ± 0.5 (mm ).

また、第22の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、自己組織化した磁石前駆体[III]が≦160℃、大気中で板状グリーンコンパクト[II]を熱処理するものである。   According to a twenty-second invention, in the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, the self-organized magnet precursor [III] is plate-shaped in the atmosphere at ≦ 160 ° C. Green compact [II] is heat-treated.

また、第23の発明は、上記第1の発明、第2の発明、又は第21の発明の自己組織化したハイブリッド型希土類ボンド磁石において、自己組織化した磁石前駆体[III]の引張強度が板状グリーンコンパクト[II]の3倍を越えるものである。   The twenty-third invention is the self-organized hybrid rare earth bond magnet of the first invention, the second invention, or the twenty-first invention, wherein the tensile strength of the self-organized magnet precursor [III] is It is more than 3 times the plate-shaped green compact [II].

また、第24の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、磁石前駆体[III]の延伸による最大圧下率が10(%)である。   According to a twenty-fourth invention, in the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, the maximum rolling reduction due to stretching of the magnet precursor [III] is 10 (%).

また、第25の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、磁石前駆体[III]に含まれる相Bの延伸を圧延とし、当該圧延後、環状磁石[IVa]に形状変換したものである。   According to a twenty-fifth aspect of the present invention, in the self-organized hybrid rare earth bonded magnet according to the first or second aspect of the present invention, the extension of phase B contained in the magnet precursor [III] is rolled, and after the rolling The shape is converted into an annular magnet [IVa].

また、第26の発明は、上記第1の発明、第2の発明、又は第23の発明の自己組織化したハイブリッド型希土類ボンド磁石において、環状磁石[IVa]が外径≦25(mm)である。   The twenty-sixth invention is the self-organized hybrid rare earth bonded magnet of the first invention, the second invention, or the twenty-third invention, wherein the annular magnet [IVa] has an outer diameter ≦ 25 (mm). is there.

また、第27の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、磁石前駆体[III]に含まれる延伸相[B]の延伸をスタンピングとし、円弧状磁石[IVb]に形状変換したものである。   According to a twenty-seventh aspect of the present invention, in the self-organized hybrid rare earth bonded magnet according to the first or second aspect of the present invention, the stretching of the stretched phase [B] contained in the magnet precursor [III] is stamping, The shape is converted into an arc-shaped magnet [IVb].

また、第28の発明は、上記第1の発明、第2の発明、又は第26の発明の自己組織化したハイブリッド型希土類ボンド磁石において、円弧状磁石[IVb]が不等肉厚で半径方向の磁気特性が異なるものである。   According to a twenty-eighth aspect of the invention, in the self-organized hybrid rare earth bonded magnet of the first aspect, the second aspect, or the twenty-sixth aspect, the arc-shaped magnet [IVb] has an unequal thickness and a radial direction. Have different magnetic properties.

また、第29の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、1.2(MA/m)で磁化した際の20℃の最大エネルギー積(BH)maxが≧120kJ/m3である。 According to a twenty-ninth invention, in the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, a maximum energy product of 20 ° C. when magnetized at 1.2 (MA / m) ( BH) max is ≧ 120 kJ / m 3 .

また、第30発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、2.0(MA/m)で磁化した際の20℃の最大エネルギー積(BH)maxが≧160kJ/m3である。 The thirtieth invention is the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, wherein the maximum energy product (BH) at 20 ° C. when magnetized at 2.0 (MA / m). ) Max is ≧ 160 kJ / m 3 .

また、第31の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石において、100(℃)における減磁曲線の角型(Hk/Hci)が≧0.4である。   According to a thirty-first invention, in the self-organized hybrid rare earth bonded magnet of the first invention or the second invention, the square shape (Hk / Hci) of the demagnetization curve at 100 (° C.) is ≧ 0. 4.

また、第32の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石[IVa]を搭載したモータである。   A thirty-second invention is a motor on which the self-organized hybrid rare earth bonded magnet [IVa] of the first invention or the second invention is mounted.

また、第33の発明は、上記第1の発明、第2の発明、又は第25の発明の自己組織化したハイブリッド型希土類ボンド磁石にかかる外径≦25(mm)の環状磁石[IVa]を搭載したモータである。   A thirty-third invention provides an annular magnet [IVa] having an outer diameter ≦ 25 (mm) according to the self-organized hybrid rare earth bonded magnet of the first invention, the second invention, or the twenty-fifth invention. It is a mounted motor.

また、第34の発明は、上記第1の発明又は第2の発明の自己組織化したハイブリッド型希土類ボンド磁石にかかる円弧状磁石[IVb]を搭載したブラシレスモータである。   A thirty-fourth invention is a brushless motor on which an arc-shaped magnet [IVb] according to the self-organized hybrid rare earth bonded magnet of the first invention or the second invention is mounted.

また、第35の発明は、上記第1の発明、第2の発明、又は第27の発明の自己組織化したハイブリッド型希土類ボンド磁石にかかる最大肉厚≦1(mm)の円弧状磁石[IVb]を搭載したモータである。   A thirty-fifth aspect of the present invention is an arc magnet having a maximum thickness ≦ 1 (mm) according to the self-organized hybrid rare earth bonded magnet of the first aspect, the second aspect, or the twenty-seventh aspect [IVb ].

また、第36の発明は、上記第1の発明から第31の発明の自己組織化したハイブリッド型希土類ボンド磁石を製造するハイブリッド型希土類ボンド磁石の製造方法である。   The thirty-sixth invention is a method for producing a hybrid rare earth bonded magnet for producing the self-organized hybrid rare earth bonded magnet of the first to thirty first inventions.

以上のように、本発明によれば、異方性Nd2Fe14B系希土類磁石粉末を用いて小口径化(或いは長尺化)しても希土類ボンド磁石の(BH)maxの減少が改善される。 As described above, according to the present invention, the reduction in (BH) max of a rare earth bonded magnet is improved even when the diameter is reduced (or lengthened) using anisotropic Nd 2 Fe 14 B rare earth magnet powder. Is done.

小型モータのための環状から円弧状に至る多様な磁石形状と磁気特性とが両立する本発明にかかる自己組織化した高(BH)maxハイブリッド型希土類ボンド磁石とは、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]、延伸相[B]、並びに相[A+An]、[A´]、並びに相[B]とのケミカルコンタクト[C]を成分とする。 The self-organized high (BH) max hybrid rare earth bonded magnet according to the present invention, which is compatible with various magnet shapes ranging from an annular shape to an arc shape for a small motor and magnetic characteristics, is magnetically anisotropic. A mononuclear cluster phase [A], a polynuclear cluster phase [An], or a mixed phase [A + An] composed mainly of polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] is magnetically different. Spherical multinuclear cluster phase [A ′] composed mainly of isotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a], stretched phase [B], and phases [A + An], [ A ′] and chemical contact [C] with phase [B] are used as components.

そして、当該磁石の製造方法としては、
(1)クラスター相[A+An]、延伸相[B]、ケミカルコンタクト[C]によるコンパウンド中間体[I−a]、球状多核クラスター相[A´]、並びに前記2種と必要に応じて適宜加える添加剤とを混合したコンパウンド[I]の作製工程と、
(2)コンパウンド圧縮による板状グリーンコンパクト[II]の作製工程と、
(3)前記グリーンコンパクト[II]を熱処理し、相[A+An]と、相[A´]と、相[B]とをケミカルコンタクト[C]で自己組織化した磁石前駆体[III]の作製工程と、
(4)前記磁石前駆体[III]に含まれる相[B]の延伸によって環状[IVa]又は円弧状磁石[IVb]に形状変換する工程と、とから成る。
And as a manufacturing method of the magnet,
(1) Cluster phase [A + An], stretched phase [B], compound intermediate [Ia] by chemical contact [C], spherical multinuclear cluster phase [A ′], and the above-mentioned two types are added as necessary. A process for producing a compound [I] mixed with an additive;
(2) Production process of plate green compact [II] by compound compression;
(3) Heat treatment of the green compact [II] to produce a magnet precursor [III] in which the phase [A + An], the phase [A ′], and the phase [B] are self-organized by the chemical contact [C]. Process,
(4) and a step of transforming the shape into an annular [IVa] or an arcuate magnet [IVb] by stretching the phase [B] contained in the magnet precursor [III].

以上のように得られた自己組織化した高(BH)max希土類ボンド磁石を小型モータに適用することにより、高出力化による省電力化、小型軽量化等、多くの電気・電子機器の高性能化への要望に応えることができる。 By applying the self-organized high (BH) max rare earth bonded magnets obtained as described above to small motors, high performance of many electric and electronic devices such as power saving and miniaturization and weight reduction by high output. We can meet the demands for the development.

(実施の形態)
以上のように、本発明が対象とするコンピュータ周辺機、プリンタなどの制御用、駆動用として幅広く使用され、所謂永久磁石回転子型、或は永久磁石界磁型のブラシレスモータや直流モータに関して、電気・電子機器の高性能化のもと、当該小型磁石モータの更なる小型軽量化・高出力化に対する要求に応えるため、高(BH)max化が、さほど進展しないメルトスパンリボンを粉砕したR−TM−B系急冷粉末を樹脂で固定した磁気的に等方性のボンド磁石に換え、異方性Nd2Fe14B系希土類磁石粉末を用いて小口径化しても希土類ボンド磁石の(BH)maxが減少しない小型モータのための高性能希土類ボンド磁石とその製造方法、並びに当該小型モータに関する技術を開示する。
(Embodiment)
As described above, the present invention is widely used for control and driving of computer peripherals, printers, etc., and the so-called permanent magnet rotor type, or permanent magnet field type brushless motor and DC motor, In order to meet the demands for further miniaturization, lightening, and high output of the small magnet motors with higher performance of electric and electronic equipment, R (crushed melt spun ribbon that does not progress much (BH) max ) -Even if the diameter is reduced by using anisotropic Nd 2 Fe 14 B rare earth magnet powder instead of a magnetically isotropic bonded magnet in which TM-B quenching powder is fixed with resin, (BH ) Disclosed is a high-performance rare earth bonded magnet for a small motor in which max does not decrease, a manufacturing method thereof, and a technique related to the small motor.

上記、小型モータに適用し得る任意の環状、或いは円弧状で、例えば、160(kJ/m3)以上の高(BH)max希土類ボンド磁石が容易に作製することができれば、近年の電気電子機器の高性能化を促す。すなわち、新規な高出力・省電力小型モータを提供することができる。何故ならば、従来のメルトスパンリボンを粉砕したR−TM−B系急冷粉末を樹脂で固定した等方性希土類ボンド磁石の(BH)maxは前述のように80(kJ/m3)である。これに対し、任意の環状、或いは円弧状で160(kJ/m3)以上の高(BH)max希土類ボンド磁石が作製できれば、モータ磁石と鉄心との空隙磁束密度は略(BH)maxの比の平方根となるから、当該小型モータの設計思想によるが、約1.4倍の高出力化、30%の小型化が見込まれるのである。 If any of the above-mentioned annular or arc shapes applicable to a small motor, for example, a high (BH) max rare earth bonded magnet of 160 (kJ / m 3 ) or more can be easily produced, electrical and electronic equipment in recent years Encourage higher performance. That is, a novel high-output / power-saving small motor can be provided. This is because the (BH) max of the isotropic rare earth bonded magnet in which R-TM-B quenching powder obtained by pulverizing a conventional melt spun ribbon is fixed with resin is 80 (kJ / m 3 ) as described above. . On the other hand, if a high (BH) max rare earth bonded magnet with an annular shape or an arc shape of 160 (kJ / m 3 ) or more can be produced, the gap magnetic flux density between the motor magnet and the iron core is approximately the ratio of (BH) max . Therefore, depending on the design philosophy of the small motor, about 1.4 times higher output and 30% reduction can be expected.

上記、小型モータのための環状から円弧状に至る多様な磁石形状と磁気特性とが両立する本発明にかかる自己組織化した高(BH)maxハイブリッド型希土類ボンド磁石とは、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]、延伸相[B]、並びに相[A]、[A´]、並びに相[B]とのケミカルコンタクト[C]を必須成分とする。そして、当該磁石の製造方法としては、
(1)単核クラスター相[A]、多核クラスター相[An]、又はそれらのクラスター相[A+An]、延伸相[B]、ケミカルコンタクト[C]によるコンパウンド中間体[I−a]、球状多核クラスター相[A´]、並びに前記2種と必要に応じて適宜加える添加剤とを混合したコンパウンド[I]の作製工程、
(2)コンパウンド圧縮による板状グリーンコンパクト[II]の作製工程、
(3)前記、グリーンコンパクト[II]を熱処理し、相[A+An]、[A´]と相[B]とをケミカルコンタクト[C]で自己組織化した磁石前駆体[III]の作製工程、
(4)前記、磁石前駆体[III]に含まれる相[B]の延伸によって環状[IVa]又は円弧状磁石[IVb]に形状変換する工程、とから成る。
The above-described self-organized high (BH) max hybrid rare earth bonded magnet according to the present invention, which is compatible with various magnet shapes ranging from an annular shape to an arc shape for a small motor and magnetic characteristics, is magnetically anisotropic. Mononuclear cluster phase [A], polynuclear cluster phase [An], or a mixed phase [A + An] thereof, which is mainly composed of crystalline polycrystalline Nd 2 Fe 14 B rare earth magnet powder [Aa], magnetic In addition, the spherical multinuclear cluster phase [A ′], the extended phase [B], and the phase [A] mainly composed of anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] , [A ′], and chemical contact [C] with phase [B] are essential components. And as a manufacturing method of the magnet,
(1) A mononuclear cluster phase [A], a polynuclear cluster phase [An], or a compound intermediate [Ia], a spherical polynuclear by the cluster phase [A + An], an extended phase [B], and a chemical contact [C]. A production step of a compound [I] in which the cluster phase [A ′] and the above-mentioned two types and additives that are appropriately added as necessary are mixed,
(2) Production process of plate-like green compact [II] by compound compression,
(3) The green compact [II] is heat-treated, and a step of producing a magnet precursor [III] in which the phases [A + An], [A ′] and the phase [B] are self-assembled with chemical contacts [C].
(4) The step of converting the shape into an annular [IVa] or an arcuate magnet [IVb] by stretching the phase [B] contained in the magnet precursor [III].

以下、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

先ず、本発明にかかる単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]は磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]と延伸相[B]、並びにケミカルコンタクト[C]と自己組織化する反応基質を有するオリゴマー[Ab]とで構成せしめる。このような磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]、並びに延伸相[B]、並びにケミカルコンタクト[C]と自己組織化する反応基質を有するオリゴマー[Ab]とで構成せしめる単核クラスター相[A]、多核クラスター相[An]の構造を図1に概念図で示す。 First, the mononuclear cluster phase [A], the multinuclear cluster phase [An], or the mixed phase [A + An] according to the present invention is a magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder. The body [Aa], the stretched phase [B], and the chemical contact [C] and the oligomer [Ab] having a reaction substrate that self-assembles are constituted. Such a magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa], a stretched phase [B], and a reaction substrate that self-assembles with a chemical contact [C] are included. The structure of the mononuclear cluster phase [A] and the multinuclear cluster phase [An] composed of the oligomer [Ab] is shown conceptually in FIG.

ただし、図において、[Aa]は通常、粒子径50〜200μmの磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体を表し、それらの六角形が一つ一つのNd2Fe14B結晶を、六角形の中の矢印は磁化容易軸(C軸)を表している。なお、この段階では多核クラスター相[An]の磁化容易軸方向は粉体毎にはランダムで磁気的に等方性であることを示している。また、図のように[Aa]を主成分とする単核クラスター相[A]、並びに多核クラスター相[An]の構造はオリゴマー[Ab]を媒介として多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]の粒子径と分級の程度に応じて単核クラスター相[A]、多核クラスター相[An]とがランダムに作製される。本発明では、両者の混合相[A+An]が通常使用される。 However, in the figure, [Aa] usually represents a magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B-based rare earth magnet powder having a particle diameter of 50 to 200 μm, and each hexagon thereof is one by one. In the Nd 2 Fe 14 B crystal, the arrow in the hexagon represents the easy magnetization axis (C axis). In this stage, the easy axis direction of the multinuclear cluster phase [An] is random and magnetically isotropic for each powder. In addition, as shown in the figure, the structure of the mononuclear cluster phase [A] containing [Aa] as a main component and the polynuclear cluster phase [An] are polycrystal aggregated Nd 2 Fe 14 B rare earths via the oligomer [Ab]. A mononuclear cluster phase [A] and a multinuclear cluster phase [An] are randomly produced according to the particle diameter and classification degree of the magnetic powder [Aa]. In the present invention, both mixed phases [A + An] are usually used.

上記、本発明にかかる磁気的に異方性の多結晶集合型異方性Nd2Fe14B系希土類磁石粉体[Aa]としては、熱間据込加工(Die−Up−Setting)によって準備された多結晶集合型異方性Nd2Fe14B系希土類磁石粉体(例えば,M.Doser,V.Panchanathan,“Pulverizing anisotropic
rapidly solidified Nd−Fe−B materials for bonded magnet”,J.Appl.Phys.70(10),15,1993:非特許文献12)、HDDR処理(水素分解/再結合)によって準備された磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体、すなわち、Nd−Fe(Co)−B系合金のNd2(Fe,Co)14B相の水素化(ydrogenation,Nd2[Fe,Co]14BHx)、650〜1000(℃)での相分解(ecomposition,NdH2+Fe+Fe2B)、脱水素(esorpsion)、再結合(ecombination)するHDDR処理(T.Takeshita and R.Nakayama:Proc.of the 10th RE Magnets and Their Applications,Kyoto,Vol.1,551 1989:非特許文献13)で作製した磁石粉体である。
The magnetically anisotropic polycrystalline aggregated anisotropic Nd 2 Fe 14 B rare earth magnet powder [Aa] according to the present invention is prepared by hot upsetting (Die-Up-Setting). Polycrystalline aggregated anisotropic Nd 2 Fe 14 B rare earth magnet powders (for example, M. Doser, V. Panchanathan, “Pulverizing anisotropic”).
rapidly solidified Nd-Fe-B materials for bonded magnet ", J. Appl. Phys. 70 (10), 15, 1993: Non-patent document 12), magnetically prepared by HDDR processing (hydrogen decomposition / recombination). polycrystalline aggregate type Nd 2 Fe 14 B based rare earth magnet powder anisotropy, i.e., Nd-Fe (Co) of -B alloy Nd 2 (Fe, Co) 14 B phase hydrogenation of (H ydrogenation, Nd 2 [Fe, Co] 14 BHx ), 650~1000 (℃) phase decomposition in (D ecomposition, NdH 2 + Fe + Fe 2 B), the dehydrogenation (D esorpsion), recombination (R ecombination) to HDDR treatment (T. Takeshita and R. Nakayama: Proc. of the 10 th RE Magnets and Their Applications, Kyoto, Vol.1,551 1989: a magnet powder prepared in Non-patent Document 13).

なお、前記磁石粉体の表面を予め光分解したZnなど不活性化処理した磁石粉体など(例えば,K.Machida,K.Noguchi,M.Nushimura,Y.Hamaguchi,G.Adachi,Proc.9th Int.Workshop on Rare−Earth Magnets and Ttheir Applications,Sendai,Japan,II,845 2000:非特許文献14,或いは,K.Machida,Y.Hamaguchi,K.Noguchi,G.Adachi,Digests of the 25th Annual conference on Magnetcs in Japan,28aC−6 2001:非特許文献15)を挙げることもできる。なお、それら磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]の4(MA/m)パルス着磁後の20℃における保磁力は1(MA/m)以上のものが望ましい。 In addition, the surface of the magnet powder is previously deactivated such as Zn that has been photodecomposed (for example, K. Macida, K. Noguchi, M. Nashimura, Y. Hamaguchi, G. Adachi, Proc. 9th). Int.Workshop on Rare-Earth Magnets and Ttheir Applications, Sendai, Japan, II, 845 2000: non-Patent Document 14, or, K.Machida, Y.Hamaguchi, K.Noguchi, G.Adachi , Digests of the 25 th Annual conference on Magnetcs in Japan, 28aC-6 2001: Non-Patent Document 15). The coercive force at 20 ° C. after 4 (MA / m) pulse magnetization of the magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] is 1 (MA / m The above is desirable.

一方、球状多核クラスター相[A´]は通常粒子径2〜5μmの磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]と延伸相[B]、並びにケミカルコンタクト[C]と自己組織化するオリゴマー[A´b]とで図2のように構成せしめる。なお、この段階では球状多核クラスター相[A´n]の磁化容易軸方向は粉体毎にはランダムで磁気的に等方性であることを示している。ただし、球状多核クラスター相[A´]は≦500(μm)の球状グラニュールとし、それ自体に粉末流動性を付与することが必要である。当該球状多核クラスター相[A´]は、例えば、予め磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]とオリゴマー[A´b]の有機溶媒溶液とを湿式混合、脱溶媒、圧縮、分級したのち転動流動層造粒法によって球状に仕上げることができる。ここで、圧縮とは脱溶媒した固体状の磁石粉体[A´a]とオリゴマー[A´b]との混合相[A´a+A´b]を、例えば当該オリゴマー[A´b]の融点以上に熱した等速ロール圧延機に仕込んで連続圧縮することが工業的な生産には好ましい。圧延機等によって圧縮された混合物[A´a+A´b]は転動流動層造粒によって球状グラニュールとする。とくに、転動流動層造粒の際、パルスジェット分散機構(造粒ケーシングの側壁より中心に向かってエアジェットを間欠的に噴射する)を組入れた微細造粒機構とすると、より球状に近い多核クラスター相[A´]となり、その結果、粉末流動度が発現する。 On the other hand, the spherical polynuclear cluster phase [A ′] is usually a magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] having a particle diameter of 2 to 5 μm and an extended phase [B]. , And chemical contact [C] and self-organized oligomer [A′b] as shown in FIG. At this stage, the easy axis direction of the spherical multinuclear cluster phase [A′n] is random and magnetically isotropic for each powder. However, the spherical polynuclear cluster phase [A ′] is a spherical granule of ≦ 500 (μm), and it is necessary to impart powder flowability to itself. The spherical multinuclear cluster phase [A ′] is, for example, an organic material of a magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] and an oligomer [A′b]. The solvent solution can be wet-mixed, desolvated, compressed, classified and then finished into a spherical shape by a rolling fluidized bed granulation method. Here, the compression refers to the mixed phase [A′a + A′b] of the solid magnetic powder [A′a] and the oligomer [A′b] that have been desolvated, for example, the melting point of the oligomer [A′b]. It is preferable for industrial production that the above-described heated constant-speed rolling mill is charged and continuously compressed. The mixture [A′a + A′b] compressed by a rolling mill or the like is formed into spherical granules by rolling fluidized bed granulation. In particular, when rolling fluidized bed granulation, if it is a fine granulation mechanism incorporating a pulse jet dispersion mechanism (air jet is intermittently injected from the side wall of the granulation casing toward the center), the multinuclear is more spherical A cluster phase [A ′] is obtained, and as a result, a powder fluidity is developed.

一方、磁気的に異方性の多結晶集合型異方性Nd2Fe14B系希土類磁石粉体を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]、或いは磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体を主成分とする多核クラスター相[A´]に含まれるオリゴマー[Ab]、又は[A´b]は室温で固体の、且つ分子鎖中に少なくとも2個以上のオキシラン環を有する有機化合物が好ましい。分子鎖中に少なくとも2個以上のオキシラン環を有する有機化合物としてはビスフェノール類とエピクロルヒドリン或は置換エピクロルヒドリンとにより得られるもの,或いはその他各種の方法によって得られる、例えば(化1)で表されるエポキシオリゴマーがある。 On the other hand, a mononuclear cluster phase [A], a polynuclear cluster phase [An], or a mixture thereof, mainly composed of magnetically anisotropic polycrystalline aggregate anisotropic Nd 2 Fe 14 B rare earth magnet powder Included in the oligomer [Ab] contained in the phase [A + An] or in the multinuclear cluster phase [A ′] mainly composed of magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder The oligomer [Ab] or [A′b] is preferably an organic compound that is solid at room temperature and has at least two oxirane rings in the molecular chain. As an organic compound having at least two oxirane rings in the molecular chain, those obtained by bisphenols and epichlorohydrin or substituted epichlorohydrin, or other various methods, for example, epoxy represented by (Chemical Formula 1) There are oligomers.

ただし、(化19)のR1,R2は、R1は−O−,−S−,−SO−,−SO2−,或は−CH2−,−CH2CH2−,−C(CH32−等−CpH2p(pは整数)で示されるもの、またR2は−H、或は−CH3,−C25等Cq2q+1(qは整数)で示されるものである。これ等の中で特に好ましいのはR1が−C(CH32−でR2がHものである。また、これ等は共重合体であっても差し支えない。なお、本発明にかかる前記オリゴマーとしては室温で固体、且つ高い結晶性を有するものが好ましい。その理由は単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、或いは磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]などのグラニュール状物質が集合体として良好な粉末流動性を有し、且つオリゴマーの融点以上に熱せられると図3(a)に示すように直ちに全てのクラスター相が速やかに熱解離し、図3(b)に示すように配向磁界Hによって全ての希土類磁石粉体の磁化容易軸(C軸)が特定方向への配向(再配列)を容易ならしめるためである。したがって、前記熱解離並びに再配列を更に容易ならしめるために必要に応じて各種滑剤等を適宜併用することもできる。 However, in R1 and R2 of (Chemical Formula 19), R1 is —O—, —S—, —SO—, —SO 2 —, or —CH 2 —, —CH 2 CH 2 —, —C (CH 3 ) 2 -equal-CpH 2 p (p is an integer), R2 is -H, or -CH 3 , -C 2 H 5 etc. C q H 2q + 1 (q is an integer) Is. Particularly preferred among these are those in which R1 is —C (CH 3 ) 2 — and R2 is H. These may be a copolymer. The oligomer according to the present invention is preferably one that is solid at room temperature and has high crystallinity. The reason is that mononuclear cluster phase [A], multinuclear cluster phase [An], or a mixed phase thereof [A + An], or magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder. When a granular material such as a spherical polynuclear cluster phase [A ′] containing [A′a] as a main component has good powder flowability as an aggregate and is heated to a temperature higher than the melting point of the oligomer, FIG. As shown in FIG. 3B, all the cluster phases are immediately thermally dissociated, and the easy magnetization axis (C axis) of all rare earth magnet powders is oriented in a specific direction by the orientation magnetic field H as shown in FIG. This is to facilitate (rearrangement). Accordingly, various lubricants and the like can be used in combination as necessary in order to further facilitate the thermal dissociation and rearrangement.

上記オリゴマー[Ab]、又は[A´b]の割合を0.5〜3.0(wt.%)とする。この理由は0.5(wt.%)未満では図1,2に示した本発明にかかる各種クラスター相の形成が困難となり、3.0(wt.%)以上では非磁石成分が過剰となり、その分残留磁化Jrや(BH)maxが減少するからである。 The ratio of the oligomer [Ab] or [A′b] is 0.5 to 3.0 (wt.%). The reason for this is that if it is less than 0.5 (wt.%), It becomes difficult to form various cluster phases according to the present invention shown in FIGS. This is because the residual magnetization Jr and (BH) max are reduced accordingly.

一方、混合相[A+An]と球状多核クラスター相[A´]との和に占める多核クラスター相[A´]の割合を30〜50(wt.%)とする。この理由は、図4(a)に示す配向磁界Hによる再配列ののち、配向磁界Hを印加したまま図4(b)のように圧力Pを加えて緻密化する際に、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]の直接接触を避け、単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を介して緻密化させるためである。このように、単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を介して緻密化するための当該球状多核クラスター相[A´]の割合は略3割以上必要とする。このように単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を介して緻密化すると、多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]表面の緻密化時の摩擦等による損傷や破砕が抑制され、しかも高密度グリーンコンパクト[II]とすることができるからである。ここで、多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]表面の緻密化時の摩擦等による損傷や破砕を抑制する意義は減磁曲線の角型性(Hk/Hci)の劣化や不可逆減磁率の増加を抑制するためにもある。しかしながら、単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]の割合が6割を越えるとグリーンコンパクト[II]の密度は減少傾向に転じるため、高密度化に伴う残留磁化Jrや(BH)maxの増加が期待できなくなる。 On the other hand, the ratio of the multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] is 30 to 50 (wt.%). The reason for this is that, after rearrangement by the orientation magnetic field H shown in FIG. 4 (a), when the pressure P is applied and densified as shown in FIG. The direct contact of the anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] is avoided, and the single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] is densely packed. It is for making it. Thus, the proportion of the spherical multinuclear cluster phase [A ′] for densification via the single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] needs to be approximately 30% or more. To do. Thus, when densification is performed through the single domain particle type Sm 2 Fe 17 N 3 system rare earth magnet powder [A′a], the surface density of the polycrystalline aggregated Nd 2 Fe 14 B system rare earth magnet powder [Aa] is increased. This is because damage and crushing due to friction at the time of conversion are suppressed, and a high-density green compact [II] can be obtained. Here, the significance of suppressing damage and fracture due to friction at the time of densification of the polycrystalline aggregated Nd 2 Fe 14 B-based rare earth magnet powder [Aa] is the squareness of the demagnetization curve (Hk / Hci). This is also to suppress deterioration and increase in irreversible demagnetization rate. However, when the ratio of the single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] exceeds 60%, the density of the green compact [II] starts to decrease. An increase in magnetization Jr and (BH) max cannot be expected.

上記、全てのクラスター相がコンパウンド[I]に占める割合を≦98(wt.%)、延伸相[B]の割合は≧2(wt.%)とする。相[B]の割合が2(wt.%)未満では当該相の延伸に基づく多様なモータのための最適磁石形状に形状変換することが困難となるからである。そして、当該延伸相[B]は延伸による分子鎖配向能、加えて少なくともケミカルコンタクト[C]と反応し得る反応基質を含む高分子である必要がある。当該高分子としては、例えばホモポリアミドとしてラクタム或はアミノカルボン酸より合成されるものや、ジアミンとジカルボン酸、或はそのエステルやハロゲン化物から合成されるポリアミドの1種又は2種以上とし、前記成分を2.5wt.%以上としたうえで、前記成分の連続相形成のためのケミカルコンタクトを必須成分とすることが好ましい。かかるホモポリアミドとして、ラクタム、或いはアミノカルボン酸より合成されるものと、ジアミンとジカルボン酸、或はそのエステルやハロゲン化物から合成されるものがあり、(化2)で示される。   The proportion of all the cluster phases in the compound [I] is ≦ 98 (wt.%), And the proportion of the stretched phase [B] is ≧ 2 (wt.%). This is because if the ratio of the phase [B] is less than 2 (wt.%), It is difficult to change the shape to the optimum magnet shape for various motors based on the stretching of the phase. The stretched phase [B] needs to be a polymer containing a reaction substrate capable of reacting with at least the chemical contact [C] in addition to the molecular chain orientation ability by stretching. Examples of the polymer include homopolyamides synthesized from lactam or aminocarboxylic acid, and one or more polyamides synthesized from diamine and dicarboxylic acid, or esters or halides thereof, 2.5 wt. It is preferable that the chemical contact for forming a continuous phase of the above components is an essential component. Such homopolyamides include those synthesized from lactams or aminocarboxylic acids, and those synthesized from diamines and dicarboxylic acids, or esters or halides thereof, and are represented by (Chemical Formula 2).

上記(化2)において、一般にR1,R2,R3はポリメチレン基であり、R1が−(CH2m−であるものはナイロン(m+1)であり、R2が−(CH2p−、R3が−(CH2q-2あるものはナイロンp・qである。尚、更に第3の単量体を加えた共重合体であっても差し支えない。 In the above (Chemical Formula 2), R 1 , R 2 , and R 3 are generally polymethylene groups, R 1 is — (CH 2 ) m —, which is nylon (m + 1), and R 2 is — (CH 2 ). p -, R 3 is - (CH 2) q-2 some are nylon p · q. Further, it may be a copolymer further added with a third monomer.

以上、磁気的に異方性の多結晶集合型異方性Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]、並びに相[B]と共に、本発明ではそれらを化学的結合によって自己組織化するケミカルコンタクト[C]を必須成分とする。ケミカルコンタクト[C]はクラスター相[A],[An],[A+An],及び[A´]に選択されるオリゴマー[Ab],[A´b]、並びに延伸相[B]が有する反応基質の種類によって適宜選択される。仮にオリゴマー[Ab],[A´b]がオキシラン環を有する(化1)の如きエポキシオリゴマーであり、相[B]が分子鎖中に(化2)のように(−NHCO−)なる反応基質を有する高分子とするならば、当該オリゴマー[Ab],[A´b]、並びに相[B]との直接反応も期待される。このような場合には、オリゴマー[Ab],[A´b]のみを強固に架橋せしめるエポキシ樹脂硬化剤のみを使用しても差支えない。このような物質としては、例えばジシアンジアミド及びその誘導体,カルボン酸ジヒドラジド,ジアミノマレオニトリル及びその誘導体のヒドラジドの群より選ばれた1種又は2種以上などを挙げることができる。これ等は一般に有機溶媒に難溶の高融点化合物であるが、粒子径を数ないし数10μmに調整したものが好ましい。なお、ジシアンジアミド誘導体としては、例えばo−トリルビグアニド,α−2・5−ジメチルビクアニド,α−ω−ジフェニルビグアニド,5−ヒドロキシブチル−1−ビグアニド,フェニルビグアニド,α−,ω−ジメチルビクアニドなどがある。更に、カルボン酸ジヒドラジドとしてはコハク酸ヒドラジド,アジピン酸ヒドラジド,イソフタル酸ヒドラジド,p−アキシ安息香酸ヒドラジドなどがある。一方、オリゴマー[Ab],[A´b],並びに延伸相[B]の両者と反応し得るケミカルコンタクト[C]として、例えばイソシアナート再生体を挙げることができる。イソシアナート再生体とはイソシアナート基と活性水素化合物の付加反応によって得られるもので、熱解離によって遊離イソシアナート基を再生し得る化合物の総称である。再生した遊離イソシアナート基と反応し得る反応基質としては、例えば−OH,−COOH,−NHCO−,−NHCOO−,−NHCONH−,−NH2,−NHNH2,−SH,−CHS,−CSOH,活性メチレンなどが挙げられ、ケミカルコンタクトCとして当該イソシアナート再生体を挙げるならば、逆に、これ等−OH,−COOH,−NHCO−,−NHCOO−,−NHCONH−,−NH2,−NHNH2,−SH,−CHS,−CSOH,活性メチレン等の反応基質を有するオリゴマーや高分子であればオリゴマー[Ab],[A´b],並びに相[B]として使用することができる。中でも好ましい反応基質としては−OH,−NHCO−,−NHCOO−,NHCONH−などである。なお、前記イソシアナート再生体のようにエポキシオリゴマーと完溶し、且つ常温で重合不活性な場合にはオリゴマー[Ab],[A´b]に適宜完溶させておいても差支えない。 As described above, the mononuclear cluster phase [A], the polynuclear cluster phase [An], which mainly contains the magnetically anisotropic polycrystalline aggregate anisotropic Nd 2 Fe 14 B-based rare earth magnet powder [Aa], or A mixed phase [A + An], a magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] as a main component, and a spherical multinuclear cluster phase [A ′], and Along with the phase [B], in the present invention, the chemical contact [C] that self-assembles them by chemical bonding is an essential component. Chemical contact [C] is a reaction substrate possessed by oligomers [Ab] and [A′b] selected from cluster phases [A], [An], [A + An], and [A ′], and stretched phase [B]. It is appropriately selected depending on the type. The oligomer [Ab], [A′b] is an epoxy oligomer such as (Chemical Formula 1) having an oxirane ring, and the phase [B] is (—NHCO—) in the molecular chain as (Chemical Formula 2). If the polymer has a substrate, direct reaction with the oligomer [Ab], [A′b] and the phase [B] is also expected. In such a case, it is possible to use only an epoxy resin curing agent that firmly crosslinks only the oligomers [Ab] and [A′b]. Examples of such substances include one or more selected from the group of dicyandiamide and derivatives thereof, carboxylic acid dihydrazide, diaminomaleonitrile and hydrazides of derivatives thereof. These are generally high melting point compounds that are hardly soluble in organic solvents, but those having a particle size adjusted to several to several tens of μm are preferred. Examples of the dicyandiamide derivative include o-tolylbiguanide, α-2 · 5-dimethylbiguanide, α-ω-diphenylbiguanide, 5-hydroxybutyl-1-biguanide, phenylbiguanide, α-, ω-dimethylbivic. There are anides. Further, examples of the carboxylic acid dihydrazide include succinic acid hydrazide, adipic acid hydrazide, isophthalic acid hydrazide, and p-axylbenzoic acid hydrazide. On the other hand, as the chemical contact [C] capable of reacting with both the oligomer [Ab], [A′b] and the stretched phase [B], for example, an isocyanate regenerated material can be exemplified. An isocyanate regenerator is a generic name for compounds that can be obtained by addition reaction of an isocyanate group and an active hydrogen compound and that can regenerate a free isocyanate group by thermal dissociation. The reaction substrate capable of reacting with the free isocyanate groups regenerated, for example -OH, -COOH, -NHCO -, - NHCOO -, - NHCONH -, - NH 2, -NHNH 2, -SH, -CHS, -CSOH , Active methylene, etc., and if the isocyanate regenerated product is cited as the chemical contact C, conversely, these —OH, —COOH, —NHCO—, —NHCOO—, —NHCONH—, —NH 2 , — Any oligomer or polymer having a reaction substrate such as NHNH 2 , —SH, —CHS, —CSOH, or active methylene can be used as the oligomer [Ab], [A′b], and the phase [B]. Among them, preferred reaction substrates include —OH, —NHCO—, —NHCOO—, NHCONH— and the like. In addition, when it is completely dissolved with the epoxy oligomer as in the above-mentioned isocyanate regenerated material and is inactive at room temperature, it may be appropriately dissolved in the oligomers [Ab] and [A′b].

以上、磁気的に異方性の多結晶集合型異方性Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A’a]を主成分とする球状多核クラスター相[A´]、並びに相[B]と共に、それらを化学的結合によって自己組織化するケミカルコンタクト[C]を必須成分とする本発明にかかるコンパウンド[I]からグリーンコンパクト[II]を作製する製造方法について図面を用いて以下に説明する。 As described above, the mononuclear cluster phase [A], the polynuclear cluster phase [An], which mainly contains the magnetically anisotropic polycrystalline aggregate anisotropic Nd 2 Fe 14 B-based rare earth magnet powder [Aa], or Their mixed phase [A + An], spherical multinuclear cluster phase [A ′] mainly composed of magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a], and A manufacturing method for producing a green compact [II] from a compound [I] according to the present invention having a chemical contact [C] which is self-assembled by chemical bonding together with the phase [B] as an essential component, with reference to the drawings. This will be described below.

図5(a)は本発明にかかる板状グリーンコンパクトを作製する成形型を示す写真である。図5(b)は直交磁界配向粉末成形機の外観図を示す写真である。先ず、本発明にかかるコンパウンド[I]は図5(a)のようにフィーダボックス1に収容されている。フィーダボックス1がオリゴマー[Ab],[A´b]の融点以上に熱せられたダイセット2側へ前進し、キャビティCV1,2,3,4(幅1.03mm、長さ90mm×4個)にコンパウンド[I]を充填する。その際、コンパウンド[I]をキャビティCV1,2,3,4に均質充填させるためにJIS Z2501による見掛密度≧2.6(Mg/m3)、粉末流動度≧45(sec/50g)とする必要があった。 Fig.5 (a) is a photograph which shows the shaping | molding die which produces the plate-shaped green compact concerning this invention. FIG.5 (b) is a photograph which shows the external view of an orthogonal magnetic field orientation powder molding machine. First, the compound [I] according to the present invention is accommodated in the feeder box 1 as shown in FIG. Feeder box 1 advances to die set 2 side heated to the melting point of oligomer [Ab], [A'b] or higher, and cavity CV1, 2, 3, 4 (width 1.03 mm, length 90 mm × 4 pieces) Is filled with compound [I]. At that time, in order to uniformly fill the compound [I] into the cavities CV1, 2, 3 , and 4, the apparent density according to JIS Z2501 ≧ 2.6 (Mg / m 3 ) and the powder fluidity ≧ 45 (sec / 50 g). There was a need to do.

上記、成形型キャビティに充填した当該コンパウンド[I]は、上パンチ(UP1,2,3,4)を下降した状態で成形型からの熱伝導によって単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]、並びに球状多核クラスター相[A´]に含まれるオリゴマー[A´b]の融点以上に熱せられ、全てのクラスター相は熱解離する。この例では、図5(b)のようにダイセット2を充填位置から電磁石の磁極3a,3b間に搬送する間に熱解離する。然るのち配向磁界Hを印加しながら圧力Pを加えて緻密化する。その際、ケミカルコンタクトCによる自己組織化開始温度以下、≧1.5(MA/m)の直交配向磁界Hの下、板状の板厚に相当する長手方向側面を圧縮する。   The compound [I] filled in the mold cavity is formed by the mononuclear cluster phase [A] and the multinuclear cluster phase [A] by the heat conduction from the mold while the upper punch (UP1, 2, 3, 4) is lowered. An], or the oligomer [Ab] contained in the mixed phase [A + An], and the oligomer [A′b] contained in the spherical multinuclear cluster phase [A ′] are heated above the melting point, and all the cluster phases are heated. Dissociate. In this example, as shown in FIG. 5B, the die set 2 is thermally dissociated while being transported from the filling position between the magnetic poles 3a and 3b of the electromagnet. After that, the pressure P is applied while applying the orientation magnetic field H to make it dense. At that time, the longitudinal side surface corresponding to the plate thickness is compressed under the orthogonal orientation magnetic field H of ≧ 1.5 (MA / m) below the self-assembly start temperature by the chemical contact C.

以上のような板状グリーンコンパクト[II]を作製する際、図5(a)のような複数のキャビティを有する非磁性材料で構成した成形型並びにダイセット2を用いて、板状の板厚に相当する長手方向中央の成形型キャビティの最大歪量を≦0.1(mm)とすると共に、当該板状グリーンコンパクト[II]の密度分布を≦0.1(Mg/m3)、板厚を1.0±0.5(mm)とする。 When the plate-like green compact [II] as described above is produced, a plate-like plate thickness is obtained by using a forming die and a die set 2 made of a nonmagnetic material having a plurality of cavities as shown in FIG. The maximum strain amount of the mold cavity at the center in the longitudinal direction corresponding to ≦ 0.1 (mm), and the density distribution of the plate-like green compact [II] is ≦ 0.1 (Mg / m 3 ) The thickness is 1.0 ± 0.5 (mm).

次いで自己組織化した磁石前駆体[III]を作製する際、≦160℃、大気中で板状グリーンコンパクト[II]を熱処理し、自己組織化した磁石前駆体[III]の引張強度が板状グリーンコンパクト[II]の3倍以上となるように調合する。   Next, when producing the self-organized magnet precursor [III], the plate-like green compact [II] is heat-treated in the atmosphere at ≦ 160 ° C., and the tensile strength of the self-organized magnet precursor [III] is plate-like. Prepare to be at least 3 times the Green Compact [II].

上記磁石前駆体[III]の延伸による最大圧下率は10(%)となる条件で延伸を圧延とし、当該圧延後、環状磁石[IVa]に形状変換した環状磁石[IVa]とする。とくに、外径≦25(mm)の環状磁石[IVa]とするとモータの性能向上に効果的である。また、延伸相[B]の延伸をスタンピングとし、円弧状磁石[IVb]に形状変換する。とくに、最大肉厚≦1(mm)の不等肉厚の円弧状磁石[IVb]とするとコギングトルクが抑制しながらモータの性能向上に効果的となる。このような磁石は最終的に磁化して使用されるが、1.2(MA/m)で磁化した際の20℃の最大エネルギー積(BH)maxが≧120(kJ/m3)、或いは2.0(MA/m)で磁化した際の20(℃)の最大エネルギー積(BH)maxが≧160(kJ/m3)であることが望ましい。更に、磁石の初期不可逆減磁を抑制するためには100(℃)における減磁曲線の角型(Hk/Hci)が≧0.4であることが望ましい。 The stretching is rolled under the condition that the maximum rolling reduction by stretching of the magnet precursor [III] is 10 (%), and after the rolling, the shape is converted to the annular magnet [IVa]. In particular, an annular magnet [IVa] having an outer diameter ≦ 25 (mm) is effective in improving the performance of the motor. Further, the stretching of the stretched phase [B] is stamped, and the shape is converted to the arc-shaped magnet [IVb]. In particular, when the arc-shaped magnet [IVb] having an unequal wall thickness with a maximum wall thickness ≦ 1 (mm) is effective in improving the performance of the motor while suppressing the cogging torque. Such a magnet is finally magnetized and used, but the maximum energy product (BH) max at 20 ° C. when magnetized at 1.2 (MA / m) is ≧ 120 (kJ / m 3 ), or It is desirable that the maximum energy product (BH) max at 20 (° C.) when magnetized at 2.0 (MA / m) is ≧ 160 (kJ / m 3 ). Further, in order to suppress the initial irreversible demagnetization of the magnet, it is desirable that the square shape (Hk / Hci) of the demagnetization curve at 100 (° C.) is ≧ 0.4.

以下、本発明を実施例により更に詳しく説明する。ただし、本発明は実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

1.原料に関して説明する。   1. The raw material will be described.

本実施例ではHDDR処理(水素分解/再結合)によって準備された異方性の平均粒子径80(μm)の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa](Nd12.3Dy0.3Fe64.7Co12.36.0Ga0.6Zr0.1)、RD(酸化還元)した平均粒子径3(μm)の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を使用した。 In this example, the polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] (Nd 12.3 Dy) having an anisotropic average particle size of 80 (μm) prepared by HDDR treatment (hydrogen decomposition / recombination). 0.3 Fe 64.7 Co 12.3 B 6.0 Ga 0.6 Zr 0.1 ), RD (oxidation reduction) single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] having an average particle diameter of 3 (μm) was used. .

また、本発明にかかるオリゴマー[Ab],[A´b]は(化3)で示されるエポキシ当量205〜220(g/eq),融点70−76(℃)のポリグリシジルエーテル−o−クレゾールノボラック型エポキシオリゴマー、クラスター[C]は(化4)で示される粒子径10(μm)以下で融点90〜110(℃)の潜在性エポキシ樹脂硬化剤(酸ジヒドラジド)、延伸相[B]には可塑剤を含む融点180(℃)のポリアミド−12粉末,更に、必要に応じて適宜加える添加剤として、粒子径10(μm)以下で融点約150(℃)の滑剤(ステアリン酸カルシウム)を用いた。   The oligomers [Ab] and [A′b] according to the present invention are polyglycidyl ether-o-cresol having an epoxy equivalent of 205 to 220 (g / eq) represented by (Chemical Formula 3) and a melting point of 70 to 76 (° C.). The novolak-type epoxy oligomer, cluster [C] is a latent epoxy resin curing agent (acid dihydrazide) having a particle diameter of 10 (μm) or less and a melting point of 90 to 110 (° C.) represented by (Chemical Formula 4), and a stretched phase [B]. Uses a polyamide-12 powder with a melting point of 180 (° C) containing a plasticizer, and a lubricant (calcium stearate) with a particle size of 10 (μm) or less and a melting point of about 150 (° C) as an additive to be added as necessary. It was.

(NH2NHCOCH2CH22N(CH211CONHNH2・・・(化4) (NH 2 NHCOCH 2 CH 2 ) 2 N (CH 2 ) 11 CONHNH 2.

2.希土類ボンド磁石の作製に関して説明する。   2. The production of the rare earth bonded magnet will be described.

本発明にかかる自己組織化した高(BH)maxハイブリッド型希土類ボンド磁石とは、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]、延伸相[B]、並びに相[A+An]、[A´]、並びに相[B]とのケミカルコンタクト[C]を成分とする。そして、当該磁石の製造方法としては、
(1)クラスター相[A+An]、延伸相[B]、ケミカルコンタクト[C]によるコンパウンド中間体[I−a]、球状多核クラスター相[A´]、並びに前記2種と必要に応じて適宜加える添加剤とを混合したコンパウンド[I]の作製工程と、
(2)コンパウンド圧縮による板状グリーンコンパクト[II]の作製工程と、
(3)前記グリーンコンパクト[II]を熱処理し、相[A+An]、[A´]と相[B]とをケミカルコンタクト[C]で自己組織化した磁石前駆体[III]の作製工程と、
(4)前記磁石前駆体[III]に含まれる相[B]の延伸によって環状[IVa]又は円弧状磁石[IVb]に形状変換する工程とから成る。
The self-organized high (BH) max hybrid rare earth bonded magnet according to the present invention is mainly composed of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa]. Mononuclear cluster phase [A], multinuclear cluster phase [An], or a mixed phase thereof [A + An], magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a ], And the chemical contact [C] with the spherical polynuclear cluster phase [A ′], the stretched phase [B], the phases [A + An], [A ′], and the phase [B]. And as a manufacturing method of the magnet,
(1) Cluster phase [A + An], stretched phase [B], compound intermediate [Ia] by chemical contact [C], spherical multinuclear cluster phase [A ′], and the above-mentioned two types are added as necessary. A process for producing a compound [I] mixed with an additive;
(2) Production process of plate green compact [II] by compound compression;
(3) The green compact [II] is heat-treated, and a step of producing a magnet precursor [III] in which the phases [A + An], [A ′] and the phase [B] are self-organized by chemical contacts [C];
(4) A step of transforming the shape into an annular [IVa] or an arcuate magnet [IVb] by stretching the phase [B] contained in the magnet precursor [III].

先ず、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とするた単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]の作製例を説明する。異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を60(℃)に加温したΣブレイドミキサーに所定量仕込み、オリゴマー[Ab]の50(wt.%)アセトン溶液1(wt.%)を滴下し、湿式混合した。 First, a mononuclear cluster phase [A], a polynuclear cluster phase [An], which is mainly composed of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B-based rare earth magnet powder [Aa], or those A preparation example of the mixed phase [A + An] will be described. A predetermined amount of anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] was heated to 60 (° C.) and charged into a Σ blade mixer, and 50 (wt.%) Acetone of oligomer [Ab] was charged. Solution 1 (wt.%) Was added dropwise and wet mixed.

然るのち、80(℃)に熱して脱溶媒、解砕して磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とするた単核クラスター相[A]、多核クラスター相[An]との混合相[A+An]を作製した。 After that, it is heated to 80 (° C.) to remove the solvent, pulverized, and mononuclear mainly composed of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa]. A mixed phase [A + An] with a cluster phase [A] and a multinuclear cluster phase [An] was prepared.

次いで、上記磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする混合相[A+An]、所定量の予め滑剤を分散した延伸相[B]、ケミカルコンタクト[C]とをΣブレイドミキサーに仕込み、乾式混練してコンパウンド中間体[I−a]とした。 Next, a mixed phase [A + An] containing the magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] as a main component, and a stretched phase [B in which a predetermined amount of a lubricant is dispersed in advance. The chemical contact [C] was charged into a Σ blade mixer, and dry kneaded to obtain a compound intermediate [Ia].

他方では、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]を作製した。本発明にかかる球状多核クラスター相[A´]は≦500(μm)の球状グラニュールとし、それ自体に粉末流動性を付与することが重要である。当該球状グラニュールは予め磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]とオリゴマー[A´b]の50(wt.%)アセトン溶液とを室温で湿式混合、80(℃)で脱溶媒、圧縮、分級したのち転動流動層造粒法によって仕上げた。本実施例では脱溶媒した固体状の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]とオリゴマー[A´b]との混合物[A´a+A´b]を、当該オリゴマー[A´b]の融点以上(100℃)に熱した等速ロール圧延機に仕込んで圧縮した。次いで、圧延によって圧縮した混合物[A´a+A´b]を≦500(μm)に分級した。しかし、この状態の混合物[A´a+A´b]はフレーク様の造粒体であるため粉末流動性を示さない。従って、混合物[A´a+A´b]に粉末流動性を付与するために球状とするのである。球状とするために本実施例では転動流動層造粒を採用した。とくに、本実施例では転動流動層造粒の際、パルスジェット分散機構(造粒ケーシングの側壁より中心に向かってエアジェットを間欠的に噴射する)を組入れた微細造粒機構とした。すると、図6の走査電子顕微鏡写真による外観図の如く、球状多核クラスター相[A´]となり、結果として滑剤などの添加剤を加えることなく、粉末流動性が発現した。 On the other hand, a spherical multinuclear cluster phase [A ′] composed mainly of magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] was prepared. It is important that the spherical multinuclear cluster phase [A ′] according to the present invention is a spherical granule of ≦ 500 (μm) and imparts powder flowability to itself. The spherical granule is composed of a magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] and an oligomer [A′b] in 50 (wt.%) Acetone solution. The mixture was wet-mixed at room temperature, desolvated, compressed and classified at 80 (° C.), and then finished by a rolling fluidized bed granulation method. In this example, a solvent-removed mixture [A′a + A′b] of solid single-domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] and oligomer [A′b] The mixture was charged in a constant-speed roll mill heated to a temperature equal to or higher than the melting point of the oligomer [A′b] (100 ° C.) and compressed. Subsequently, the mixture [A′a + A′b] compressed by rolling was classified into ≦ 500 (μm). However, since the mixture [A′a + A′b] in this state is a flake-like granulated body, it does not exhibit powder flowability. Accordingly, the mixture [A′a + A′b] is formed into a spherical shape in order to impart powder fluidity. In order to obtain a spherical shape, rolling fluidized bed granulation was employed in this example. In particular, in this embodiment, a fine granulation mechanism incorporating a pulse jet dispersion mechanism (air jets are intermittently ejected from the side wall of the granulation casing toward the center) during rolling fluidized bed granulation. Then, as shown in the external view of the scanning electron micrograph of FIG. 6, a spherical polynuclear cluster phase [A ′] was obtained, and as a result, powder flowability was expressed without adding an additive such as a lubricant.

図7は混合物[A´a+A´b]中に占めるオリゴマー[A´b]の割合に対する球状多核クラスター相[A´]の微粒子の割合と見掛密度の変化を示す特性図である。図の2種類の曲線は、レーザ回折粒度分布測定器による≦500(μm)の当該球状多核クラスター相[A´]に占める10(μm)以下の割合と球状多核クラスター相[A´]の見掛密度の変化を示している。図から明らかなように、球状多核クラスター相[A´]はオリゴマー[A´b]の増加に応じて10(μm)以下の割合が減少する。これは、球状多核クラスター相[A´]の収率や機械的強度の観点からオリゴマー[A´b]の適正な割合が3(wt.%)程度であることを示唆している。また、それに対応して見掛密度は増加し、オリゴマー[A´b]3(wt.%)付近ではJIS Z2501に準拠した粉末流動度は≦45(sec/50g)、見掛密度≧2.25(Mg/m3)を示した。 FIG. 7 is a characteristic diagram showing changes in the proportion of fine particles of the spherical multinuclear cluster phase [A ′] and the apparent density with respect to the proportion of the oligomer [A′b] in the mixture [A′a + A′b]. The two types of curves in the figure show a ratio of 10 (μm) or less in the spherical multinuclear cluster phase [A ′] of ≦ 500 (μm) and the spherical multinuclear cluster phase [A ′] observed by a laser diffraction particle size distribution analyzer. It shows the change in the hook density. As is apparent from the figure, the ratio of the spherical multinuclear cluster phase [A ′] is 10 (μm) or less as the oligomer [A′b] increases. This suggests that an appropriate ratio of the oligomer [A′b] is about 3 (wt.%) From the viewpoint of the yield of the spherical polynuclear cluster phase [A ′] and mechanical strength. Correspondingly, the apparent density increases, and in the vicinity of the oligomer [A′b] 3 (wt.%), The powder fluidity according to JIS Z2501 is ≦ 45 (sec / 50 g), and the apparent density ≧ 2. 25 (Mg / m 3 ).

上記のような球状多核クラスター相[A´]は最終的には、予め作製したコンパウンド中間体[I−a]とVブレンダーなどを用いて混合し、本発明にかかるコンパウンド[I]として仕上げた。なお、当該コンパウンド[I]は球状多核クラスター相[A´]の割合が50(wt.%)であっても当該コンパウンド[I]の粉末流動度は≦45(sec/50g)、見掛密度≧2.4(Mg/m3)であった。したがって、粉末成形における成形性を損なわずに球状多核クラスター相[A´]の割合を広範囲にわたって任意に設定することができる。 The spherical polynuclear cluster phase [A ′] as described above was finally mixed with a previously prepared compound intermediate [Ia] using a V blender or the like, and finished as the compound [I] according to the present invention. . The compound [I] has a powder flow rate of ≦ 45 (sec / 50 g) and an apparent density even when the ratio of the spherical multinuclear cluster phase [A ′] is 50 (wt.%). ≧ 2.4 (Mg / m 3 ). Therefore, the ratio of the spherical multinuclear cluster phase [A ′] can be arbitrarily set over a wide range without impairing the moldability in powder molding.

次に、上記コンパウンドを直交磁界配向粉末成形機の成形型キャビティに充填した。ただし、成形型の上下パンチとキャビティは100(℃)に加熱されている。   Next, the compound was filled in a mold cavity of an orthogonal magnetic field oriented powder molding machine. However, the upper and lower punches and the cavity of the mold are heated to 100 (° C.).

次いで、成形型キャビティに充填されたクラスター混合相[A+An]や球状多核クラスター相[A´]に含まれる異方性希土類磁石粉末[A1a],[A´a]を1.5(MA/m)の磁界中で配向したのち、0.55(GPa)で圧縮、脱磁、離型して厚さ略1〜2(mm)の本発明にかかる板状グリーンコンパクト[II]を得た。   Subsequently, anisotropic rare earth magnet powders [A1a] and [A′a] contained in the cluster mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] filled in the mold cavity are 1.5 (MA / m ), Followed by compression, demagnetization, and release at 0.55 (GPa) to obtain a plate-like green compact [II] according to the present invention having a thickness of about 1 to 2 (mm).

この板状グリーンコンパクト[II]を熱処理し、本発明にかかる自己組織化した分子鎖の配向に基づく形状変換が可能な堅い磁石前駆体[III]とした。なお、本実施例では、自己組織化した磁石前駆体[III]の抗張力は熱処理温度が120(℃)を越えると増加に転じ、160(℃)では室温で100〜120(kg/cm2)に達した。その値はグリーンコンパクトの抗張力を基準とすると約4倍の水準で、希土類ボンド磁石としては充分な機械的強度が発現した。この抗張力の増加は熱処理条件、ケミカルコンタクトCによる化学結合を伴うオリゴマー[Ab],[A´b]と延伸相[B]との自己組織化現象を裏づけるものである。さらに、80〜100(℃)に加熱したスタンピング整形型、延伸ロール、又はそれらの併用による2次加工によって本発明にかかる環状磁石[IVa]から円弧状磁石[IVb]に至る多様な形状の小型モータのための自己組織化したハイブリッド型希土類ボンド磁石を得た。 This plate-like green compact [II] was heat-treated to obtain a rigid magnet precursor [III] capable of shape conversion based on the orientation of the self-assembled molecular chain according to the present invention. In this example, the tensile strength of the self-organized magnet precursor [III] starts to increase when the heat treatment temperature exceeds 120 (° C.), and at 160 (° C.), 100 to 120 (kg / cm 2 ) at room temperature. Reached. The value was about four times higher than the green compact tensile strength, and sufficient mechanical strength was exhibited as a rare earth bonded magnet. This increase in tensile strength confirms the self-organization phenomenon between the oligomer [Ab], [A′b] and the stretched phase [B] accompanied by heat treatment conditions and chemical bonding by the chemical contact C. Furthermore, small shapes having various shapes ranging from the annular magnet [IVa] to the arc-shaped magnet [IVb] according to the present invention by the stamping shaping mold heated to 80 to 100 (° C.), the stretching roll, or the secondary processing by using them together. A self-organized hybrid rare earth bonded magnet for motor was obtained.

3.自己組織化した磁石前駆体[III]の特性に関して説明する。   3. The characteristics of the self-organized magnet precursor [III] will be described.

図8は本発明にかかる自己組織化した磁石前駆体[III]を構成する混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合に対し、磁石前駆体[III]の(BH)maxと密度をプロットした特性図である。ただし、延伸相[B]は2.5(wt.%)、成形型キャビティの温度は120(℃)一定、(BH)maxは4(MA/m)でバルス磁化したのちにVSM(試料振動型磁力計)、密度はアルキメデス法により測定した。 FIG. 8 shows the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] constituting the self-organized magnet precursor [III] according to the present invention. On the other hand, it is a characteristic diagram in which (BH) max and density of the magnet precursor [III] are plotted. However, the stretched phase [B] is 2.5 (wt.%), The mold cavity temperature is constant at 120 (° C.), (BH) max is 4 (MA / m), and VSM (sample vibration) Type magnetometer) and density were measured by Archimedes method.

図から明らかなように、混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合を30〜50(wt.%)とすると、(BH)maxと密度は一旦上昇したのち、減少に転ずる。本実施例での極大値は(BH)max約182(kJ/m3)、密度約6.25(Mg/m3)であった。すなわち、混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合の最適化によって高密度よりも、むしろ高い配向が達成され、ひいては高(BH)maxが得られる。別に、混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合を30〜50(wt.%)とすると、配向磁界Hによる再配列ののち、配向磁界Hを印加したまま圧力Pで緻密化する際に、磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]の直接接触を避け、単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を介して緻密化することができる。単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を介して緻密化するためには当該球状多核クラスター相[A´]は略≧30(wt.%)必要とする。このように単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を介して緻密化すると、多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]表面の緻密化時の摩擦等による損傷や破砕が抑制される。 As is apparent from the figure, when the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] is 30 to 50 (wt.%), (BH ) Max and density once increase and then decrease. The maximum values in this example were (BH) max of about 182 (kJ / m 3 ) and density of about 6.25 (Mg / m 3 ). That is, by optimizing the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′], a high orientation rather than a high density is achieved, and thus a high ( BH) max is obtained. Separately, when the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] is 30 to 50 (wt.%), The rearrangement by the orientation magnetic field H Later, when densifying with pressure P while applying an orientation magnetic field H, direct contact of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] is avoided, It can be densified via the particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a]. The spherical multinuclear cluster phase [A ′] needs to be approximately ≧ 30 (wt.%) In order to make it dense via the single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a]. . Thus, when densification is performed through the single domain particle type Sm 2 Fe 17 N 3 system rare earth magnet powder [A′a], the surface density of the polycrystalline aggregated Nd 2 Fe 14 B system rare earth magnet powder [Aa] is increased. Damage and crushing due to friction at the time of conversion are suppressed.

図9は本発明にかかる自己組織化した磁石前駆体[III]を構成する混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合に対し、当該磁石前駆体[III]の100(℃)における減磁曲線の角型性(Hk/Hci)をプロットした特性図である。図から明らかなように、高温暴露時の減磁曲線の角型性(Hk/Hci)は球状多核クラスター相[A´]の割合に応じて良化することが判る。この理由は、球状多核クラスター相[A´]の割合に応じて混合相[A+An]中の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]のグリーンコンパクト[II]を作製する際の劣化が球状多核クラスター相[A´]の介在によって抑制されるためと説明できる。 FIG. 9 shows the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] constituting the self-organized magnet precursor [III] according to the present invention. On the other hand, it is a characteristic diagram in which the squareness (Hk / Hci) of the demagnetization curve of the magnet precursor [III] at 100 (° C.) is plotted. As can be seen from the figure, the squareness (Hk / Hci) of the demagnetization curve at the time of high temperature exposure is improved according to the proportion of the spherical multinuclear cluster phase [A ′]. This is because the green compact [II] of polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] in the mixed phase [A + An] is produced according to the proportion of the spherical multinuclear cluster phase [A ′]. It can be explained that this deterioration is suppressed by the interposition of the spherical multinuclear cluster phase [A ′].

上記のような高温暴露時の角型性(Hk/Hci)の劣化が球状多核クラスター相[A´]の割合に応じて抑制されるという事実は、実質的に図10で示すグリーンコンパクト[II]を熱処理して自己組織化した磁石前駆体[III]を作製する際の(BH)maxの変化にも関連している。なお、図10で示した比較例は球状多核クラスター相[A´]を含まず、多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする混合相[A+An]のみから作製した磁石前駆体[III]の特性曲線を示している。図から明らかなように、本実施例では大気中で熱処理しても多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]表面の緻密化時の摩擦等による表面損傷や破砕が抑制されるため、実質的に(BH)maxの劣化が抑制されるのである。なお、磁石の初期不可逆減磁を抑制するためには100(℃)における減磁曲線の角型(Hk/Hci)が≧0.4であることが望ましく、そのためには自己組織化した磁石前駆体[III]を構成する混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合が略30(wt.%)必要であった。 The fact that the deterioration of the squareness (Hk / Hci) during high-temperature exposure as described above is suppressed according to the ratio of the spherical multinuclear cluster phase [A ′] is substantially the green compact [II shown in FIG. ] Is also related to the change in (BH) max when producing a self-assembled magnet precursor [III] by heat treatment. Note that the comparative example shown in FIG. 10 does not include the spherical polynuclear cluster phase [A ′], but only the mixed phase [A + An] mainly composed of polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa]. The characteristic curve of the magnet precursor [III] produced from Fig. 3 is shown. As is apparent from the figure, in this example, even if heat treatment is performed in the air, surface damage and crushing due to friction during densification of the polycrystalline aggregated Nd 2 Fe 14 B-based rare earth magnet powder [Aa] surface are suppressed. Therefore , the deterioration of (BH) max is substantially suppressed. In order to suppress the initial irreversible demagnetization of the magnet, it is desirable that the square shape (Hk / Hci) of the demagnetization curve at 100 (° C.) is ≧ 0.4, and for this purpose, a self-organized magnet precursor The ratio of the spherical multinuclear cluster phase [A ′] to the sum of the mixed phase [A + An] constituting the body [III] and the spherical multinuclear cluster phase [A ′] was required to be approximately 30 (wt.%).

他方、本発明で対象とする小型モータでは、磁石が熱せられた際に引き起こされる不可逆減磁が重要視される。そこで、球状多核クラスター相[A´]の割合を40(wt.%)とした本発明にかかる磁石前駆体[III]の暴露温度に対する不可逆減磁率の関係を図11に示す。ただし、不可逆減磁率FLは(φo−φ)/φo(ただし、φoは暴露前の磁束、φは高温暴露後の磁束)から求めた。なお、図中の比較例は球状多核クラスター相[A´]を含まず、多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする混合相[A+An]のみから作製した磁石前駆体[III]の特性曲線を示している。図から明らかなように、100℃以上の高温暴露では両者に顕著な特性差が見られ、本発明にかかる磁石前駆体[III]の不可逆減磁が小さい。また、両者の不可逆減磁率の差は、より高温での暴露で顕著となる。 On the other hand, in the small motor targeted by the present invention, irreversible demagnetization caused when the magnet is heated is regarded as important. Therefore, FIG. 11 shows the relationship of the irreversible demagnetization factor with respect to the exposure temperature of the magnet precursor [III] according to the present invention in which the ratio of the spherical multinuclear cluster phase [A ′] is 40 (wt.%). However, the irreversible demagnetizing factor FL was obtained from (φo−φ) / φo (where φo is a magnetic flux before exposure and φ is a magnetic flux after high temperature exposure). The comparative example in the figure does not include the spherical polynuclear cluster phase [A ′], and is produced only from the mixed phase [A + An] mainly composed of polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa]. The characteristic curve of the magnet precursor [III] obtained is shown. As is clear from the figure, a significant difference in characteristics is observed between the two exposed to high temperatures of 100 ° C. or higher, and the irreversible demagnetization of the magnet precursor [III] according to the present invention is small. In addition, the difference between the irreversible demagnetization rates becomes significant when exposed at a higher temperature.

そこで、混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合に対して、暴露温度100、120(℃)で各1(hr)放置した際の不可逆減磁率を図12に示す。ただし、不可逆減磁率FLは(φo−φ)/φo(ただし、φoは暴露前の磁束、φは高温暴露後の磁束)から求めた。図から明らかなように、本発明にかかる多核クラスター相[A´]が存在すると磁石の不可逆減磁を抑制できる。例えば球状多核クラスター相[A´]の割合を30〜50(wt.%)とすると100(℃)暴露後の不可逆減磁率は本発明にかかる球状多核クラスター相[A´]を含まないものに比べて1/2以下に抑制できる。   Therefore, the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] is left for 1 (hr) at exposure temperatures of 100 and 120 (° C.). FIG. 12 shows the irreversible demagnetization factor at the time. However, the irreversible demagnetizing factor FL was obtained from (φo−φ) / φo (where φo is a magnetic flux before exposure and φ is a magnetic flux after high temperature exposure). As is apparent from the figure, the irreversible demagnetization of the magnet can be suppressed when the multinuclear cluster phase [A ′] according to the present invention exists. For example, when the ratio of the spherical multinuclear cluster phase [A ′] is 30 to 50 (wt.%), The irreversible demagnetization rate after exposure to 100 (° C.) does not include the spherical multinuclear cluster phase [A ′] according to the present invention. In comparison, it can be suppressed to ½ or less.

以上の本実施例のように、本発明にかかる磁石前駆体[III]は高(BH)maxでしかも不可逆減磁に代表される磁気安定性も良化していることが明らかになった。しかしながら、他方で本発明が対象とするモータでは磁石を充分に磁化して使用することが通常求められる。 As described above, it has been clarified that the magnet precursor [III] according to the present invention has a high (BH) max and also has improved magnetic stability represented by irreversible demagnetization. However, on the other hand, in the motor targeted by the present invention, it is usually required to sufficiently magnetize and use the magnet.

一般に磁石を少ないエネルギーで磁化するには高保磁力型磁石は不利である。しかしながら、不可逆減磁に対しては逆に高保磁力型磁石が有利とされている。そこで、混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合に対する保磁力Hciの関係を調べた。   In general, a high coercivity type magnet is disadvantageous for magnetizing a magnet with a small amount of energy. However, a high coercivity magnet is advantageous for irreversible demagnetization. Therefore, the relationship of the coercive force Hci to the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] was examined.

図13は混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合に対して磁化する際に重要な室温における保磁力Hciの関係を示す特性図である。   FIG. 13 shows the relationship between the coercive force Hci at room temperature, which is important when magnetizing, with respect to the ratio of the spherical multinuclear cluster phase [A ′] in the sum of the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′]. FIG.

図から明らかなように、多核クラスター相[A´]を含まない比較例の保磁力905(kA/m)に対し、例えば球状多核クラスター相[A´]を40(wt.%)含む本実施例は860(kA/m)と約5(%)小さな値を示した。このように、高温暴露における不可逆減磁が少ない本実施例が室温での保磁力Hciの値が小さい。換言すると、本発明にかかる磁石は高(BH)max、低不可逆減磁であり、そのうえ低エネルギーでの磁化が可能であることになる。したがって、本発明が対象とする小型モータのための磁石として極めて適したものと結論づけることができる。 As is clear from the figure, the present embodiment includes, for example, 40 (wt.%) Of spherical multinuclear cluster phase [A ′] with respect to the coercive force 905 (kA / m) of the comparative example not including multinuclear cluster phase [A ′] The example showed a value as small as about 860 (kA / m) and about 5 (%). As described above, the present embodiment has a small coercive force Hci at room temperature with little irreversible demagnetization in high temperature exposure. In other words, the magnet according to the present invention is high (BH) max , low irreversible demagnetization, and can be magnetized with low energy. Therefore, it can be concluded that the present invention is extremely suitable as a magnet for a small motor.

4.環状磁石[IVa]並びに円弧状磁石[IVb]の作製に関して説明する。   4). The production of the annular magnet [IVa] and the arc-shaped magnet [IVb] will be described.

図14は厚さ0.4〜2.5(mm)の自己組織化した磁石前駆体[III]を予め4(MA/m)のパルス磁界で磁化し、等速ロール圧延したとき、圧延による表面磁束の変化を圧延後の厚さに対してプロットした特性図である。図において、○(丸印白)は圧延前、●(丸印黒)は圧延後を示すプロットである。例えば、比較例として示した範囲の結果は磁石前駆体[III]の厚さが≧2(mm)の場合の特性曲線を示している。また、CURVE−1は圧延前の磁石前駆体[III]の厚さと表面磁束の関係を示す特性曲線である。図から明らかなように、2.1〜2.5(mm)と比較的厚く仕上げた磁石前駆体[III]の表面磁束は圧延による僅かな厚さ減少で表面磁束が大きく減少している。これは、圧延していない磁石前駆体[III]の厚さに対する表面磁束曲線[CURVE−1]を基準とすると、明らかに磁石粉体[Aa]もしくは[A’a]の圧延による配向の乱れに起因する表面磁束低下と言える。これに対して、実施例しとして示した厚さ約1.3(mm)の磁石前駆体[III]の圧延による表面磁束のプロットは[CURVE−1]と殆ど一致している。したがって、この場合には明らかに磁石粉体[Aa]もしくは[A’a]の圧延による配向の乱れに起因する表面磁束低下は観測されない。換言すれば、厚さ約1〜2(mm)程度の磁石前駆体[III]であれば、圧延による配向の乱れに起因する表面磁束の低下を抑制できるということになる。例えば、直径25(mm)以下、肉厚1〜2(mm)、長さと直径の比(L/D=0.5〜1)程度の本発明が対象とするような環状磁石では圧縮、射出、押出などの作製方法に拘らず、ラジアル配向磁界の減少に基づく希土類磁石粉末の配向度の低下により、希土類ボンド磁石の高(BH)maxの減少が避けられず、円柱や立方体で試作された高(BH)max希土類ボンド磁石とは大きく特性が下回るラジアル異方性環状磁石しか作製することができなかったのであるが、本発明によれば、その課題を排除できることは明らかである。 FIG. 14 shows that when a self-organized magnet precursor [III] having a thickness of 0.4 to 2.5 (mm) is previously magnetized with a pulse magnetic field of 4 (MA / m) and is subjected to constant speed roll rolling, It is the characteristic view which plotted the change of surface magnetic flux with respect to the thickness after rolling. In the figure, a circle (white circle) is a plot before rolling, and a circle (black circle) is a plot after rolling. For example, the result in the range shown as the comparative example shows a characteristic curve when the thickness of the magnet precursor [III] is ≧ 2 (mm). CURVE-1 is a characteristic curve showing the relationship between the thickness of the magnet precursor [III] before rolling and the surface magnetic flux. As is apparent from the figure, the surface magnetic flux of the magnet precursor [III] finished relatively thick at 2.1 to 2.5 (mm) is greatly reduced by a slight thickness reduction due to rolling. When the surface magnetic flux curve [CURVE-1] with respect to the thickness of the unrolled magnet precursor [III] is used as a reference, the orientation of the magnet powder [Aa] or [A′a] is clearly disturbed by rolling. It can be said that the surface magnetic flux is reduced due to the above. On the other hand, the plot of the surface magnetic flux by rolling of the magnet precursor [III] having a thickness of about 1.3 (mm) shown as an example almost coincides with [CURVE-1]. Therefore, in this case, the surface magnetic flux reduction due to the disorder of orientation due to rolling of the magnetic powder [Aa] or [A′a] is clearly not observed. In other words, if the magnet precursor [III] has a thickness of about 1 to 2 (mm), it is possible to suppress a decrease in surface magnetic flux due to disorder of orientation due to rolling. For example, in the case of an annular magnet having a diameter of 25 (mm) or less, a wall thickness of 1 to 2 (mm), and a ratio of length to diameter (L / D = 0.5 to 1), the present invention targets compression and injection. Regardless of the manufacturing method such as extrusion, a decrease in the degree of orientation of the rare earth magnet powder due to a decrease in the radial orientation magnetic field inevitably caused a decrease in the high (BH) max of the rare earth bonded magnet, and it was prototyped in a cylinder or a cube. Although only a radially anisotropic annular magnet having characteristics that are significantly lower than those of a high (BH) max rare earth bonded magnet could be produced, it is clear that the present invention can eliminate the problem.

図15(a)は厚さ1.05(mm)、長さ90(mm)、幅4.5(mm)の磁石前駆体[III]を厚さ1.02(mm)に圧延したときの磁石の外観図を示す写真である。   FIG. 15A shows a case where a magnet precursor [III] having a thickness of 1.05 (mm), a length of 90 (mm), and a width of 4.5 (mm) is rolled to a thickness of 1.02 (mm). It is a photograph which shows the external view of a magnet.

ただし、図中[III]は磁石前駆体、[IV]は圧延後の本発明にかかるハイブリッド型希土類ボンド磁石を示している。図から明らかなように、磁石前駆体[III]は堅いが、延伸相[B]の圧延によって仕上げた本発明にかかるハイブリッド型希土類ボンド磁石[IV]は圧延方向(この場合は長手方向)が極めてしなやかになっていることが了解される。これは延伸相[B]が圧延によって機械的に圧延方向に一軸延伸された結果であり、これを、例えば図15(b)に示す写真のように積層電磁鋼板(Laminated steel core)に巻付けると本発明にかかる環状磁石[IVa]が得られる。なお、この環状磁石[IVa]は当該磁石の径によらず常に一定の(BH)max値を有するラジアル異方性の環状ハイブリッド型希土類ボンド磁石[IVa]となる。 In the figure, [III] indicates a magnet precursor, and [IV] indicates a hybrid rare earth bonded magnet according to the present invention after rolling. As is apparent from the figure, the magnet precursor [III] is hard, but the hybrid rare earth bonded magnet [IV] according to the present invention finished by rolling the stretched phase [B] has a rolling direction (in this case, the longitudinal direction). It is understood that it is extremely supple. This is a result of the stretching phase [B] being mechanically uniaxially stretched in the rolling direction by rolling, and this is wound around a laminated electrical steel sheet (Laminated steel core) as shown in the photograph of FIG. 15B, for example. And the annular magnet [IVa] concerning this invention is obtained. The annular magnet [IVa] is a radially anisotropic annular hybrid rare earth bonded magnet [IVa] having a constant (BH) max value regardless of the diameter of the magnet.

ところで、上記自己組織化した磁石前駆体[III]の延伸相[B]を圧延によって延伸する際、当該磁石前駆体[III]に大きな密度差が生じると圧延時に蛇行する原因となる。密度差が生じる原因は板状グリーンコンパクト[I]を作製する際の成形型キャビティへの均質充填や上下からの緻密化のための圧縮不均一性などが挙げられる。本実施例では板状グリーンコンパクト[II]の密度分布を略≦0.1(Mg/m3)とすれば、厚さ1.05(mm)、長さ90(mm)、幅4.5(mm)の磁石前駆体[III]を厚さ1.02(mm)に圧延したとき、圧延によって生じる蛇行(最大撓み)は略≦0.1(mm)と殆ど無視できる水準となった。 By the way, when the drawn phase [B] of the self-organized magnet precursor [III] is drawn by rolling, if a large density difference occurs in the magnet precursor [III], it causes meandering during rolling. The cause of the difference in density includes homogeneous filling into the mold cavity when the plate-like green compact [I] is produced, and compression non-uniformity for densification from above and below. In this example, if the density distribution of the plate-like green compact [II] is approximately ≦ 0.1 (Mg / m 3 ), the thickness is 1.05 (mm), the length is 90 (mm), and the width is 4.5. When the (mm) magnet precursor [III] was rolled to a thickness of 1.02 (mm), the meandering (maximum deflection) caused by the rolling was almost ≦ 0.1 (mm), which was almost negligible.

また、延伸相[B]の延伸をスタンピングとし、円弧状磁石[IVb]に形状変換することもできる。とくに、最大肉厚≦1(mm)の不等肉厚の円弧状磁石[IVb]とするとコギングトルクを抑制しながらモータの性能向上に効果的となる。このような磁石は最終的に磁化して使用されるが、1.2(MA/m)で磁化した際の20℃の最大エネルギー積(BH)maxが≧120(kJ/m3)、或いは2.0(MA/m)で磁化した際の20(℃)の最大エネルギー積(BH)maxが≧160(kJ/m3)であることが望ましい。 Further, the extension of the extension phase [B] can be used as stamping, and the shape can be converted into the arc-shaped magnet [IVb]. In particular, when the arcuate magnet [IVb] having an unequal thickness with a maximum thickness ≦ 1 (mm) is used, it is effective to improve the performance of the motor while suppressing the cogging torque. Such a magnet is finally magnetized and used, but the maximum energy product (BH) max at 20 ° C. when magnetized at 1.2 (MA / m) is ≧ 120 (kJ / m 3 ), or It is desirable that the maximum energy product (BH) max at 20 (° C.) when magnetized at 2.0 (MA / m) is ≧ 160 (kJ / m 3 ).

本発明にかかる自己組織化したハイブリッド型希土類ボンド磁石とその製造方法、並びにモータは、高出力化によるモータの高効率化の効果を有し、所謂永久磁石回転子型、永久磁石型モータ、或は永久磁石界磁型のブラシレスモータや直流モータ等として有用である。   The self-organized hybrid rare earth bonded magnet, the manufacturing method thereof, and the motor according to the present invention have the effect of increasing the motor efficiency by increasing the output, so-called permanent magnet rotor type, permanent magnet type motor, or Is useful as a permanent magnet field type brushless motor, DC motor, or the like.

単核クラスター相[A]、多核クラスター相[An]の構造を示す概念図Conceptual diagram showing the structure of mononuclear cluster phase [A] and multinuclear cluster phase [An] 多核クラスター相[A´]の構造を示す概念図Conceptual diagram showing the structure of the multinuclear cluster phase [A '] 混合相[A+An]並びに多核クラスター相[A´]の熱解離と再配列の概念図、(a)は熱解離の概念図、(b)は再配列の概念図Conceptual diagram of thermal dissociation and rearrangement of mixed phase [A + An] and multinuclear cluster phase [A ′], (a) conceptual diagram of thermal dissociation, (b) conceptual diagram of rearrangement 混合相[A+An]並びに多核クラスター相[A´]の再配列と緻密化の概念図、(a)は再配列の概念図、(b)は緻密化の概念図Conceptual diagram of rearrangement and densification of mixed phase [A + An] and multinuclear cluster phase [A ′], (a) conceptual diagram of rearrangement, (b) conceptual diagram of densification 成形型及び成形機の写真による外観図、(a)は本発明にかかる板状グリーンコンパクトを作製する成形型、(b)は直交磁界配向粉末成形機を示す外観図Fig. 2 is an external view of a molding die and a molding machine, (a) is a molding die for producing a plate-like green compact according to the present invention, and (b) is an external view of an orthogonal magnetic field oriented powder molding machine. 球状多核クラスター相[A´]の走査電子顕微鏡写真による外観図External view of Spherical Multinuclear Cluster Phase [A '] by scanning electron micrograph 球状多核クラスター相[A´]の微粒子の割合と見掛密度の変化を示す特性図Characteristic diagram showing changes in the proportion of fine particles and the apparent density of the spherical multinuclear cluster phase [A '] 球状多核クラスター相[A´]の割合と(BH)max及び密度の関係を示す特性図Characteristic diagram showing the relationship between the ratio of spherical multinuclear cluster phase [A '], (BH) max and density 球状多核クラスター相[A´]の割合と減磁曲線の角型性の関係を示す特性図Characteristic diagram showing the relationship between the ratio of the spherical multinuclear cluster phase [A '] and the squareness of the demagnetization curve 熱処理温度と(BH)maxの変化を示す特性図Characteristic diagram showing changes in heat treatment temperature and (BH) max 暴露温度と不可逆減磁率の関係を示す特性図Characteristic diagram showing the relationship between exposure temperature and irreversible demagnetization 多核クラスター相[A´]の割合と不可逆減磁率の関係を示す特性図Characteristic diagram showing the relationship between the ratio of multinuclear cluster phase [A '] and irreversible demagnetization 球状多核クラスター相[A´]の割合と室温の保磁力の関係を示す特性図Characteristic diagram showing the relationship between the ratio of spherical polynuclear cluster phase [A '] and coercivity at room temperature 圧延による表面磁束の変化を示す特性図Characteristic diagram showing changes in surface magnetic flux due to rolling 磁石前駆体[III]及び本発明の環状磁石の写真による外観図、(a)は前駆体[III]を厚さ1.02(mm)に圧延したときの外観図、(b)は積層電磁鋼板に巻付けられた本発明にかかる環状磁石[IVa]の外観図Appearance of the magnet precursor [III] and the annular magnet of the present invention as photographed, (a) is an appearance of the precursor [III] when rolled to a thickness of 1.02 (mm), and (b) is laminated electromagnetic. External view of annular magnet [IVa] according to the present invention wound around a steel plate

符号の説明Explanation of symbols

A 単核クラスター相
A´ 多核クラスター相
H 配向磁界

A Mononuclear cluster phase A 'Multinuclear cluster phase H Orientation magnetic field

Claims (36)

磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]を主成分とする単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]、磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]を主成分とする球状多核クラスター相[A´]、延伸相[B]、並びに相[A]、[A´]、並びに相[B]とのケミカルコンタクト[C]を必須成分とする自己組織化したハイブリッド型希土類ボンド磁石。 A mononuclear cluster phase [A], a polynuclear cluster phase [An], or a mixed phase thereof mainly composed of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] A + An], magnetically anisotropic single-domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] as a main component, spherical multinuclear cluster phase [A ′], stretched phase [B], In addition, a self-organized hybrid rare earth bonded magnet having the chemical contact [C] with the phases [A] and [A ′] and the phase [B] as essential components. (1)単核クラスター相[A]、多核クラスター相[An]、又はそれらのクラスター相[A+An]、延伸相[B]、ケミカルコンタクト[C]によるコンパウンド中間体[I−a]、球状多核クラスター相[A´]、並びに前記2種と必要に応じて適宜加える添加剤とを混合したコンパウンド[I]の作製工程、
(2)コンパウンド圧縮による板状グリーンコンパクト[II]の作製工程、
(3)前記、グリーンコンパクト[II]を熱処理し、相[A+An]、[A´]と相[B]とをケミカルコンタクト[C]で自己組織化した磁石前駆体[III]の作製工程、
(4)前記、磁石前駆体[III]に含まれる相[B]の延伸によって環状[IVa]又は円弧状磁石[IVb]に形状変換する工程、とから成る製造方法により得られる自己組織化したハイブリッド型希土類ボンド磁石。
(1) A mononuclear cluster phase [A], a polynuclear cluster phase [An], or a compound intermediate [Ia], a spherical polynuclear by the cluster phase [A + An], an extended phase [B], and a chemical contact [C]. A production step of a compound [I] in which the cluster phase [A ′] and the above-mentioned two types and additives that are appropriately added as necessary are mixed,
(2) Production process of plate-like green compact [II] by compound compression,
(3) The green compact [II] is heat-treated, and a step of producing a magnet precursor [III] in which the phases [A + An], [A ′] and the phase [B] are self-assembled with chemical contacts [C].
(4) Self-organized by a manufacturing method comprising the step of transforming the shape into an annular [IVa] or arc-shaped magnet [IVb] by stretching the phase [B] contained in the magnet precursor [III]. Hybrid type rare earth bonded magnet.
単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]が磁気的に異方性の多結晶集合型Nd2Fe14B系希土類磁石粉体[Aa]とオリゴマー[Ab]とで構成し、当該オリゴマー[Ab]が延伸相[B]並びにケミカルコンタクト[C]と自己組織化する反応基質を有するオリゴマーである請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 Monocrystalline cluster phase [A], polynuclear cluster phase [An], or a mixed phase [A + An] of magnetically anisotropic polycrystalline aggregated Nd 2 Fe 14 B rare earth magnet powder [Aa] and oligomer 3. The oligomer according to claim 1, wherein the oligomer [Ab] is an oligomer having a reaction substrate that self-assembles with the stretched phase [B] and the chemical contact [C]. Self-organized hybrid rare earth bonded magnet. 球状多核クラスター相[A´]が磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´a]とオリゴマー[A´b]とで構成され、当該オリゴマー[A´b]が相B並びにケミカルコンタクト[C]と自己組織化する反応基質を有するオリゴマーである請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 Spherical polynuclear cluster phase [A ′] is composed of magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A′a] and oligomer [A′b], and the oligomer 3. The self-assembled hybrid rare earth bonded magnet according to claim 1, wherein [A'b] is an oligomer having a reaction substrate that self-assembles with phase B and chemical contact [C]. 球状多核クラスター相[A´]が≦500(μm)の球状グラニュールである請求項4記載の自己組織化したハイブリッド型希土類ボンド磁石。 5. The self-organized hybrid rare earth bonded magnet according to claim 4, wherein the spherical multinuclear cluster phase [A ′] is a spherical granule of ≦ 500 (μm). 球状多核クラスター相[A´]が、予め磁気的に異方性の単磁区粒子型Sm2Fe173系希土類磁石粉体[A´]とオリゴマー[A´b]の有機溶媒溶液とを湿式混合、脱溶媒、圧縮、分級したのち転動流動層造粒法によって球状に仕上げる請求項5記載の自己組織化したハイブリッド型希土類ボンド磁石。 The spherical polynuclear cluster phase [A ′] is obtained by previously preparing a magnetically anisotropic single domain particle type Sm 2 Fe 17 N 3 rare earth magnet powder [A ′] and an organic solvent solution of an oligomer [A′b]. 6. The self-assembled hybrid rare earth bonded magnet according to claim 5, which is wet-mixed, desolvated, compressed, classified and then finished into a spherical shape by a rolling fluidized bed granulation method. 転動流動層造粒がパルスジェット分散機構(造粒ケーシングの側壁より中心に向かってエアジェットを間欠的に噴射する)を組入れた微細造粒機構である請求項6記載の自己組織化したハイブリッド型希土類ボンド磁石。 7. The self-organized hybrid according to claim 6, wherein the rolling fluidized bed granulation is a fine granulation mechanism incorporating a pulse jet dispersion mechanism (air jet is intermittently injected toward the center from the side wall of the granulation casing). Type rare earth bonded magnet. 単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]と球状多核クラスター相[A´]に含まれるオリゴマー[A´b]が室温で固体の、且つ分子鎖中に少なくとも2個以上のオキシラン環を有する有機化合物である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The oligomer [Ab] contained in the mononuclear cluster phase [A], the polynuclear cluster phase [An], or the mixed phase [A + An] thereof and the oligomer [A′b] contained in the spherical polynuclear cluster phase [A ′] The self-assembled hybrid rare earth bonded magnet according to claim 1, which is an organic compound which is solid and solid and has at least two oxirane rings in the molecular chain. 単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]、並びに球状多核クラスター相[A´]に含まれるオリゴマー[A´b]の割合が0.5〜3.0(wt.%)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 Of oligomer [Ab] contained in mononuclear cluster phase [A], multinuclear cluster phase [An], or mixed phase [A + An] thereof, and oligomer [A′b] contained in spherical multinuclear cluster phase [A ′] 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the ratio is 0.5 to 3.0 (wt.%). 単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]と球状多核クラスター相[A´]との和に占める球状多核クラスター相[A´]の割合が30〜50(wt.%)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The proportion of the spherical multinuclear cluster phase [A ′] in the sum of the mononuclear cluster phase [A], the multinuclear cluster phase [An], or the mixed phase [A + An] and the spherical multinuclear cluster phase [A ′] is 30 to 30 3. The self-organized hybrid rare earth bonded magnet according to claim 1, which is 50 (wt.%). コンパウンド[I]に占める全てのクラスターの割合が≦97.5(wt.%)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the ratio of all clusters in the compound [I] is ≦ 97.5 (wt.%). コンパウンド[I]に占める延伸相[B]の割合が≧2.5(wt.%)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the proportion of the stretched phase [B] in the compound [I] is ≧ 2.5 (wt.%). 延伸相[B]が一軸延伸による分子鎖配向能、並びに少なくともケミカルコンタクトCと反応し得る反応基質を含む高分子である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The self-organized hybrid type according to claim 1 or 2, wherein the stretched phase [B] is a polymer containing a molecular substrate orientation ability by uniaxial stretching and a reaction substrate capable of reacting at least with the chemical contact C. Rare earth bonded magnet. コンパウンド[I]がJIS Z 2501による見掛密度≧2.4(Mg/m3)、粉末流動度≧45(sec/50g)とする請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The self-organization according to claim 1 or 2, wherein the compound [I] has an apparent density of JIS Z 2501 ≧ 2.4 (Mg / m 3 ) and a powder fluidity ≧ 45 (sec / 50 g). Hybrid rare earth bonded magnet. 板状グリーンコンパクト[II]を作製する際、成形型キャビティに充填したコンパウンド[I]の単核クラスター相[A]、多核クラスター相[An]、又はそれらの混合相[A+An]に含まれるオリゴマー[Ab]、並びに球状多核クラスター相[A´]に含まれるオリゴマー[A´b]の融点以上に熱し、然るのち配向磁界を印加しながら圧縮する請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 Oligomer contained in mononuclear cluster phase [A], multinuclear cluster phase [An], or mixed phase [A + An] of compound [I] filled in the mold cavity when producing plate-like green compact [II] Either [Ab] or the oligomer [A′b] contained in the spherical multinuclear cluster phase [A ′] is heated to a melting point or higher, and then compressed while applying an orientation magnetic field. The self-organized hybrid rare earth bonded magnet as described. グリーンコンパクト[II]を作製する際、ケミカルコンタクト[C]による自己組織化開始温度以下とする請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the green compact [II] is not higher than a self-organization start temperature by chemical contact [C] when the green compact [II] is manufactured. 板状グリーンコンパクト[II]を作製する際、≧1.5(MA/m)の直交配向磁界の下、板状の板厚に相当する長手方向側面を圧縮する請求項1、請求項2、請求項14、又は請求項15のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 When producing the plate-like green compact [II], the longitudinal side surface corresponding to the plate-like plate thickness is compressed under an orthogonal orientation magnetic field of ≧ 1.5 (MA / m). The self-organized hybrid rare earth bonded magnet according to claim 14 or 15. 板状グリーンコンパクト[II]を作製する際、複数のキャビティを有する非磁性材料で構成した成形型並びにダイセットを用いる請求項1、請求項2、又は請求項16のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The self-organization according to any one of claims 1, 2, and 16, wherein a mold and a die set made of a nonmagnetic material having a plurality of cavities are used when producing the plate-like green compact [II]. Hybrid rare earth bonded magnet. 板状グリーンコンパクト[II]を作製する際、板状の板厚に相当する長手方向中央の成形型キャビティの最大歪量を≦0.1(mm)とする請求項1、請求項2、又は請求項17のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 When producing the plate-like green compact [II], the maximum strain amount of the mold cavity at the center in the longitudinal direction corresponding to the plate-like plate thickness is set to ≦ 0.1 (mm). The self-organized hybrid rare earth bonded magnet according to claim 17. 板状グリーンコンパクト[II]の密度分布が≦0.1(Mg/m3)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the density distribution of the plate-like green compact [II] is ≦ 0.1 (Mg / m 3 ). 板状グリーンコンパクト[II]の板厚が1.0±0.5(mm)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the plate-like green compact [II] has a plate thickness of 1.0 ± 0.5 (mm). 自己組織化した磁石前駆体[III]が≦160℃、大気中で板状グリーンコンパクト[II]を熱処理するものである請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The self-organized hybrid type according to any one of claims 1 and 2, wherein the self-organized magnet precursor [III] heat-treats the plate-like green compact [II] in the atmosphere at ≤160 ° C. Rare earth bonded magnet. 自己組織化した磁石前駆体[III]の引張強度が板状グリーンコンパクト[II]の3倍を越える請求項1、請求項2、又は請求項21のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The self-organized hybrid type according to any one of claims 1, 2, and 21, wherein the tensile strength of the self-organized magnet precursor [III] exceeds three times that of the plate-like green compact [II]. Rare earth bonded magnet. 磁石前駆体[III]の延伸による最大圧下率が10(%)である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 The self-organized hybrid rare earth bonded magnet according to claim 1 or 2, wherein the maximum rolling reduction due to stretching of the magnet precursor [III] is 10 (%). 磁石前駆体[III]に含まれる相Bの延伸を圧延とし、当該圧延後、環状磁石[IVa]に形状変換した請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth according to claim 1, wherein the stretching of the phase B contained in the magnet precursor [III] is rolled, and after the rolling, the shape is converted to an annular magnet [IVa]. Bond magnet. 環状磁石[IVa]が外径≦25(mm)である請求項1、請求項2、又は請求項23のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 24. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the annular magnet [IVa] has an outer diameter ≦ 25 (mm). 磁石前駆体[III]に含まれる延伸相[B]の延伸をスタンピングとし、円弧状磁石[IVb]に形状変換した請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth according to claim 1 or 2, wherein the extension of the extension phase [B] contained in the magnet precursor [III] is stamped and the shape is converted into an arc magnet [IVb]. Bond magnet. 円弧状磁石[IVb]が不等肉厚で半径方向の磁気特性が異なる請求項1、請求項2、又は請求項26のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 27. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein the arc-shaped magnet [IVb] has an unequal thickness and a different radial magnetic property. 1.2(MA/m)で磁化した際の20℃の最大エネルギー積(BH)maxが≧120kJ/m3である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid type according to claim 1, wherein a maximum energy product (BH) max at 20 ° C. when magnetized at 1.2 (MA / m) is ≧ 120 kJ / m 3. Rare earth bonded magnet. 2.0(MA/m)で磁化した際の20℃の最大エネルギー積(BH)maxが≧160kJ/m3である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid type according to claim 1, wherein a maximum energy product (BH) max at 20 ° C. when magnetized at 2.0 (MA / m) is ≧ 160 kJ / m 3. Rare earth bonded magnet. 100(℃)における減磁曲線の角型(Hk/Hci)が≧0.4である請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石。 3. The self-organized hybrid rare earth bonded magnet according to claim 1, wherein a square shape (Hk / Hci) of a demagnetization curve at 100 (° C.) is ≧ 0.4. 請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石にかかる環状磁石[IVa]を搭載したモータ。 A motor on which an annular magnet [IVa] according to the self-organized hybrid rare earth bonded magnet according to claim 1 is mounted. 請求項1、請求項2、又は請求項25のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石にかかる外径≦25(mm)の環状磁石[IVa]を搭載したモータ。 A motor equipped with an annular magnet [IVa] having an outer diameter ≦ 25 (mm) applied to the self-organized hybrid rare earth bonded magnet according to claim 1, claim 2, or claim 25. 請求項1又は請求項2のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石にかかる円弧状磁石[IVb]を搭載したブラシレスモータ。 A brushless motor on which the arc-shaped magnet [IVb] according to the self-organized hybrid rare earth bonded magnet according to claim 1 is mounted. 請求項1、請求項2、又は請求項27のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石にかかる最大肉厚≦1(mm)の円弧状磁石[IVb]を搭載したモータ。 A motor equipped with an arc-shaped magnet [IVb] having a maximum wall thickness ≦ 1 (mm) applied to the self-organized hybrid rare earth bonded magnet according to claim 1, claim 2, or claim 27. 請求項1から請求項31のいずれかに記載の自己組織化したハイブリッド型希土類ボンド磁石を製造するハイブリッド型希土類ボンド磁石の製造方法。 32. A method of manufacturing a hybrid rare earth bonded magnet for manufacturing the self-organized hybrid rare earth bonded magnet according to any one of claims 1 to 31.
JP2003392230A 2003-11-21 2003-11-21 Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor Expired - Fee Related JP4033112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392230A JP4033112B2 (en) 2003-11-21 2003-11-21 Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392230A JP4033112B2 (en) 2003-11-21 2003-11-21 Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor

Publications (2)

Publication Number Publication Date
JP2005158863A true JP2005158863A (en) 2005-06-16
JP4033112B2 JP4033112B2 (en) 2008-01-16

Family

ID=34718998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392230A Expired - Fee Related JP4033112B2 (en) 2003-11-21 2003-11-21 Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor

Country Status (1)

Country Link
JP (1) JP4033112B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022101A1 (en) * 2004-08-24 2006-03-02 Matsushita Electric Industrial Co., Ltd. Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
WO2007119393A1 (en) * 2006-03-16 2007-10-25 Matsushita Electric Industrial Co., Ltd. Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
WO2009142005A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
EP2226814A1 (en) * 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
JP4735716B2 (en) * 2006-11-27 2011-07-27 パナソニック株式会社 Permanent magnet rotor and motor using the same
CN108292562A (en) * 2015-11-19 2018-07-17 住友电气工业株式会社 Rare-earth magnet and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828988B2 (en) 2004-08-24 2010-11-09 Panasonic Corporation Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
WO2006022101A1 (en) * 2004-08-24 2006-03-02 Matsushita Electric Industrial Co., Ltd. Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
JP4710830B2 (en) * 2004-08-24 2011-06-29 パナソニック株式会社 Anisotropic rare earth bonded magnet with self-organized network boundary phase and permanent magnet type motor using the same
US8183732B2 (en) 2006-03-16 2012-05-22 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
US8072109B2 (en) 2006-03-16 2011-12-06 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
JP5169823B2 (en) * 2006-03-16 2013-03-27 パナソニック株式会社 Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
WO2007119393A1 (en) * 2006-03-16 2007-10-25 Matsushita Electric Industrial Co., Ltd. Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
EP1995854A1 (en) * 2006-03-16 2008-11-26 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
US20120032537A1 (en) * 2006-03-16 2012-02-09 Fumitoshi Yamashita Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
CN101401282B (en) * 2006-03-16 2011-11-30 松下电器产业株式会社 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
EP1995854A4 (en) * 2006-03-16 2010-04-14 Panasonic Corp Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
JP4735716B2 (en) * 2006-11-27 2011-07-27 パナソニック株式会社 Permanent magnet rotor and motor using the same
WO2009142005A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
CN102742131A (en) * 2008-05-23 2012-10-17 松下电器产业株式会社 Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
KR101206576B1 (en) * 2008-05-23 2012-11-29 파나소닉 주식회사 Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
US8371021B2 (en) 2008-05-23 2013-02-12 Panasonic Corporation Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
CN102742131B (en) * 2008-05-23 2014-12-10 松下电器产业株式会社 Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
EP2226814A1 (en) * 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
CN108292562A (en) * 2015-11-19 2018-07-17 住友电气工业株式会社 Rare-earth magnet and its manufacturing method

Also Published As

Publication number Publication date
JP4033112B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
US8329056B2 (en) Anisotropic rare earth-iron based resin bonded magnet
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
KR100237097B1 (en) Rare-earth magnetic powder, permanent magnet produced therefrom and process for for producing them
EP3041005A1 (en) Anisotropic complex sintered magnet comprising mnbi which has improved magnetic properties and method of preparing the same
WO2005124795A1 (en) Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
JP3985707B2 (en) Hybrid rare earth bonded magnet, magnetic field compression molding apparatus, and motor
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JP4710830B2 (en) Anisotropic rare earth bonded magnet with self-organized network boundary phase and permanent magnet type motor using the same
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP4529598B2 (en) Fiber-reinforced layer integrated flexible rare earth bonded magnet
JP2006049554A (en) Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP2004047872A (en) Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP4321187B2 (en) Self-organized rare earth bonded magnet, method for manufacturing the same, and small motor
JP2006080115A (en) Anisotropic rare earth/iron-based bond magnet
JP4635583B2 (en) Manufacturing method of radial anisotropic magnet motor
JP4577026B2 (en) Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
JP4706412B2 (en) Anisotropic composite magnet
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JP4701917B2 (en) Reproduction method of composite magnet containing polycrystalline aggregated anisotropic particles
JP2005272925A (en) R-t-n based magnetic powder and its manufacturing method
JP4622536B2 (en) Radial magnetic anisotropic magnet motor
JP4622767B2 (en) Manufacturing method of radial magnetic anisotropic multipole magnet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees