JP2005272925A - R-t-n based magnetic powder and its manufacturing method - Google Patents

R-t-n based magnetic powder and its manufacturing method Download PDF

Info

Publication number
JP2005272925A
JP2005272925A JP2004086965A JP2004086965A JP2005272925A JP 2005272925 A JP2005272925 A JP 2005272925A JP 2004086965 A JP2004086965 A JP 2004086965A JP 2004086965 A JP2004086965 A JP 2004086965A JP 2005272925 A JP2005272925 A JP 2005272925A
Authority
JP
Japan
Prior art keywords
magnetic powder
powder
magnetic
pulverization
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004086965A
Other languages
Japanese (ja)
Inventor
Mikio Shindo
幹夫 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004086965A priority Critical patent/JP2005272925A/en
Publication of JP2005272925A publication Critical patent/JP2005272925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high-performance R-T-N based magnetic powder which has high thermal stability and excellent weather resistance and can be oriented to a higher degree than heretofore and also to provide its manufacturing method. <P>SOLUTION: The method for manufacturing the R-T-N based magnetic powder comprises the following steps: a step of mixing R-T-N based coarse powder (wherein, R is one or more kinds among rare earth elements including Y and necessarily contains Sm; and T is Fe or Fe and Co and contains inevitable impurities) into an organic solvent; a step of pulverizing the R-T-N based coarse powder; and a step of drying the resultant pulverized powder. The pulverization of the R-T-N based coarse powder is carried out by adding a surfactant to the organic solvent, and, in this pulverizing step, phosphoric acid is added in a stage midway through the progress of the pulverization of the R-T-N based coarse powder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁石応用品分野、例えば各種の回転機、静電現像方式のプリンタや複写機等に用いるマグネットロール、ボイスコイルモータやリニアモータ等に代表される各種のアクチュエータ、音響用スピーカ、ブザー、センサー、吸着又は磁界発生装置等に適用される磁石に用いられるR−T−N系磁粉の製造方法およびR−T−N系磁粉に関する。   The present invention is in the field of applied magnet products, for example, various types of rotating machines, magnet rolls used in electrostatic development type printers and copiers, various actuators represented by voice coil motors and linear motors, acoustic speakers, buzzers, The present invention relates to a method for producing an R-TN-based magnetic powder used for a magnet applied to a sensor, an adsorption or magnetic field generator, and the R-TN-based magnetic powder.

硬磁性磁粉と樹脂を結合したボンド磁石は、粉末冶金的方法によって製造される焼結磁石に比べて、形状自由度・寸法精度が高く、生産性に優れるという特徴を有する。例えば、希土類元素(R)、遷移金属(T)及び窒素(N)からなるR−T−N系ボンド磁石や希土類元素、遷移金属及び硼素(B)からなるR−T−B系ボンド磁石はフェライト焼結磁石に比べて形状自由度に富み、加工性に優れるうえ、高い磁気特性を有することから、各種磁石応用品分野への採用が検討されている。特に2−17型結晶構造に代表されるR−T−N系磁粉は、他の磁石材料に比べて異方性磁界が高く、その磁気特性のポテンシャルが高いことから、各種用途への採用に向けて開発が進められている。   Bonded magnets obtained by combining hard magnetic powder and resin have characteristics of higher shape flexibility and higher dimensional accuracy and superior productivity than sintered magnets manufactured by a powder metallurgical method. For example, an R-TN bond magnet composed of a rare earth element (R), a transition metal (T) and nitrogen (N) or an R-T-B bond magnet composed of a rare earth element, a transition metal and boron (B) Compared to ferrite sintered magnets, it has a higher degree of freedom in shape, is excellent in workability, and has high magnetic properties. Therefore, its application to various magnet application fields has been studied. In particular, RTN-based magnetic powder represented by the 2-17 type crystal structure has a higher anisotropic magnetic field than other magnet materials and has a high potential for its magnetic properties. Development is underway.

しかしながら、保磁力発現のために微粉砕を行うR−T−N系磁粉は、化学的に活性な希土類元素と酸化しやすいFeを主成分とするために、磁粉製造工程において酸化によって磁気特性が劣化し、本来有する磁気特性を十分に発揮していなかった。また、R−T−N系磁粉を用いたボンド磁石においても、同様の理由により錆びが発生しやすいという問題を抱える他、異方性化等、磁石性能を向上する手段の開発が不十分であることから、その磁気特性は期待される水準にあるとは言えなかった。この磁粉が酸化しやすいという問題に対して、従来のR−T−N系磁石の製造方法として、例えば特許文献1には、磁石合金粉を粉砕するに際し、燐酸を添加することによって、希土類元素を含む鉄系磁石合金粉の耐候性を改善する方法が開示されている。   However, R-TN magnetic powders that are finely pulverized to develop a coercive force are mainly composed of chemically active rare earth elements and easily oxidized Fe. It deteriorated and did not fully demonstrate the magnetic properties that it originally had. In addition, bond magnets using R-TN magnetic particles have the problem that rust is likely to occur for the same reason, and development of means for improving magnet performance such as anisotropy is insufficient. For this reason, the magnetic properties were not at the expected level. In order to solve the problem that the magnetic powder is easily oxidized, as a conventional method for producing an R-TN magnet, for example, Patent Document 1 discloses that rare earth elements are added by adding phosphoric acid when pulverizing magnet alloy powder. A method for improving the weather resistance of iron-based magnet alloy powders containing iron is disclosed.

また、磁気特性の向上に関しては、とくに異方性シート状R−T−N系磁石の主要な成形法である押し出し成形では、バインダーとして用いられるエラストマー成分の粘性が高いため、数μmの粒径であるR−T−N系微粉では、磁粉が凝集して成形時の配向性が不十分で、BHmaxの高い磁石は得られないという問題があった。これを回避するための手段として、例えば特許文献2に開示されるように、配向性を高めるために磁粉とエラストマー成分との混練時に界面活性剤が添加されている。また、特許文献3には界面活性剤を所定量添加し、微粉砕・乾燥し、平均粒径1.5〜3.5μmでかつ磁粉表面に磁粉質量に対してC:0.5〜1.5%、H:0.1〜0.5%となる界面活性剤を表面に有する磁粉の製造方法により、配向性の高い磁粉が得られることが開示されている。
特開2002−124406号公報((0032)〜(0034),表1) 特開2001−115044号公報((0035)〜(0036)) 特開2003−293002号公報((0020),表1)
In addition, regarding the improvement of magnetic properties, in particular, in extrusion molding, which is the main molding method for anisotropic sheet-shaped RTN magnets, the viscosity of the elastomer component used as a binder is high, so that the particle size is several μm. In the R-T-N fine powder, the magnetic powder is aggregated and the orientation during molding is insufficient, and there is a problem that a magnet having a high BH max cannot be obtained. As a means for avoiding this, as disclosed in Patent Document 2, for example, a surfactant is added during the kneading of the magnetic powder and the elastomer component in order to enhance the orientation. In Patent Document 3, a predetermined amount of a surfactant is added, pulverized and dried, the average particle size is 1.5 to 3.5 μm, and the surface of the magnetic powder is C: 0.5 to 1. It is disclosed that magnetic powder with high orientation can be obtained by a method for producing magnetic powder having a surface active agent of 5% and H: 0.1 to 0.5%.
JP 2002-124406 A ((0032) to (0034), Table 1) JP 2001-115044 ((0035) to (0036)) JP 2003-293002 A ((0020), Table 1)

上述の特許文献1は高耐候性磁石粉の製造方法を開示し、特許文献2および3は配向性を高めた磁石等の製造方法を開示するが、いずれも高耐候性・高熱安定性と高配向性を同時に実現する方法を提供するには至っていない。R−T−N系磁粉は、酸化しやすいという根本的な課題を抱えることから、この問題を解決すべき高耐候性・高熱安定性を具備しつつ、いっそう高い配向性・磁気特性を兼ね備えることが、磁石材料としてのR−T−N系磁粉には必要とされる。すなわち、本発明が解決しようとする課題は、熱安定性が高く、耐候性に優れ、同時に従来より高配向化が可能な高性能なR−T−N系磁粉およびその製造方法を提供することである。   The above-mentioned Patent Document 1 discloses a method for producing a highly weather-resistant magnet powder, and Patent Documents 2 and 3 disclose a method for producing a magnet or the like with improved orientation, both of which have high weather resistance, high thermal stability and high performance. It has not yet provided a method for realizing the orientation simultaneously. Since R-TN magnetic powder has a fundamental problem of being easily oxidized, it has both high weatherability and high thermal stability that should solve this problem, and also has higher orientation and magnetic properties. However, it is required for an R-TN-based magnetic powder as a magnet material. That is, the problem to be solved by the present invention is to provide a high-performance RTN-based magnetic powder having high thermal stability, excellent weather resistance, and at the same time capable of higher orientation than before, and a method for producing the same. It is.

上記課題を解決した本発明は、有機溶媒中にR−T−N系粗粉(ただし、RはYを含めた希土類元素の1種または2種以上でありSmを必ず含む元素、TはFeまたはFeとCo、不可避の不純物を含む)を混入する工程と、該R−T−N系粗粉の微粉砕を行う工程と、該微粉砕粉を乾燥する工程とからなるR−T−N系磁粉の製造方法であって、該有機溶媒中に界面活性剤を添加してR−T−N系粗粉を微粉砕するとともに、該微粉砕の工程において該R−T−N系粗粉の粉砕が進行する途中の段階でリン酸を添加することを特徴とするものである。
かかる製造方法により、平均粒径が1.0〜3.5μmの異方性磁粉でありながら、R−T−N系磁粉の磁粉質量に対して、0.5〜1.5質量%のC,および0.1〜0.5質量%のHが該磁粉表面に存在し、Brが1.3T以上であり、かつ磁粉を湿度90%温度80℃の大気中に24時保持した際の保磁力の低下率が50%以下の高耐候性、高耐熱性と高配向性を併せ持ったR−T−N系磁粉の提供が可能となった。
The present invention that has solved the above problems is an R-TN-based coarse powder in an organic solvent (where R is one or more of rare earth elements including Y and an element that always contains Sm, and T is Fe. R—T—N comprising a step of mixing Fe and Co (including inevitable impurities), a step of finely pulverizing the RTN-based coarse powder, and a step of drying the finely pulverized powder. A method for producing a magnetic powder comprising adding a surfactant in the organic solvent to finely pulverize the RTN fine powder, and in the fine pulverization step, the RTN fine powder The phosphoric acid is added at a stage in the middle of the pulverization.
With this manufacturing method, 0.5 to 1.5% by mass of C to 0.5% by mass with respect to the magnetic powder mass of the R-TN magnetic powder while being an anisotropic magnetic powder with an average particle diameter of 1.0 to 3.5 μm. , And 0.1 to 0.5 mass% of H is present on the surface of the magnetic powder, Br is 1.3 T or more, and the magnetic powder is kept at 24 hours in an atmosphere of 90% humidity and 80 ° C. It has become possible to provide an R-T-N type magnetic powder having both high weather resistance, high heat resistance and high orientation with a magnetic force reduction rate of 50% or less.

また、前記R−T−N系磁粉の製造方法において、微粉砕粉終了後の有機溶媒に再度界面活性剤を追添加、攪拌することによって、いっそう配向性の高いR−T−N系磁粉を提供することができる。   Further, in the method for producing the R-TN magnetic powder, an R-T-N magnetic powder having higher orientation is obtained by adding a surfactant again to the organic solvent after the finely pulverized powder is added and stirring. Can be provided.

また、粉砕に媒体攪拌ミルを用いることによって、微粉砕の工程において粉砕が進行する途中の段階で、簡易にリン酸を添加することができる。かかる媒体攪拌ミルを用いることによって、リン酸の添加を随時行うことができるとともに、リン酸と界面活性剤を磁粉に確実に作用させることができる。   In addition, by using a medium stirring mill for pulverization, phosphoric acid can be easily added at a stage in the course of pulverization in the fine pulverization step. By using such a medium stirring mill, phosphoric acid can be added as needed, and phosphoric acid and a surfactant can be reliably acted on the magnetic powder.

本発明によれば、界面活性剤を含む磁粉を媒体攪拌ミルによって微粉砕し、微粉砕中にリン酸を所定量添加し、所定の粒径に粉砕後、乾燥することによって、高い耐候性および耐熱性ならびに良好な高配向性を併せ持った磁粉さらにはそれを配合してなる高性能のボンド磁石を提供することができる。   According to the present invention, a magnetic powder containing a surfactant is finely pulverized by a medium agitating mill, a predetermined amount of phosphoric acid is added during the fine pulverization, and after pulverizing to a predetermined particle size, drying is achieved. It is possible to provide a magnetic powder having both heat resistance and good high orientation, and a high-performance bonded magnet formed by blending it.

本発明の製造方法の例として図1にそのフローチャート図を示す。図1に示すように、本発明では、有機溶媒中でR−T−N系粗粉の微粉砕を行う際、有機溶媒中に界面活性剤をあらかじめ所定量添加して微粉砕するとともに、該微粉砕の工程において粉砕が進行する途中の段階で所定量のリン酸を添加し、得られたスラリーを乾燥することを特徴とする。ここで、粉砕が進行する途中の段階でのリン酸の添加は、微粉砕工程の途中において断続的にしてもよいし、連続的にしてもよい。また、断続的とは、1回または2回以上に分けて添加することを意味する。このように界面活性剤を初めに磁粉に添加しておき、次に粉砕中にリン酸を添加する方法により、磁粉表面にリン酸塩と同時に界面活性剤を被覆させることができ、耐候性・耐熱性と配向性に優れた2−17型硬質磁性相等の単結晶粒の集合体からなる磁粉が得られる。   As an example of the manufacturing method of the present invention, FIG. As shown in FIG. 1, in the present invention, when pulverizing R-TN system coarse powder in an organic solvent, a predetermined amount of a surfactant is added in advance in the organic solvent and pulverized. A predetermined amount of phosphoric acid is added at a stage in the course of pulverization in the fine pulverization step, and the resulting slurry is dried. Here, the addition of phosphoric acid in the middle of the pulverization may be performed intermittently or continuously during the fine pulverization process. Moreover, intermittent means that it is added in one or two or more times. Thus, by adding the surfactant to the magnetic powder first, and then adding phosphoric acid during pulverization, the surface of the magnetic powder can be coated with the surfactant at the same time as the phosphate. Magnetic powder comprising an aggregate of single crystal grains such as a 2-17 type hard magnetic phase excellent in heat resistance and orientation can be obtained.

界面活性剤は、R−T−N系粗粉を有機溶媒中で微粉砕する前に添加することによって、磁粉の表面に均一に付着し、その結果磁粉の配向性向上に寄与する。また、界面活性剤は磁粉粉砕前に添加するだけでなく、リン酸添加、粉砕後のスラリーに後添加することも可能であり、かかる後添加によってさらに磁粉の配向性を改善することができる。しかし、界面活性剤を粉砕の初めに添加せず、後添加のみの場合では、磁粉表面への界面活性剤の付着が不均一となるため、配向性が低くなり、(BH)maxが低下する。   The surfactant is uniformly adhered to the surface of the magnetic powder by adding the R-TN system coarse powder before being finely pulverized in an organic solvent, and as a result, contributes to improving the orientation of the magnetic powder. Further, the surfactant can be added not only before the magnetic powder pulverization, but also post-added to the slurry after addition of phosphoric acid and pulverization, and the post-addition can further improve the orientation of the magnetic powder. However, in the case where the surfactant is not added at the beginning of the pulverization but only after the addition, the adhesion of the surfactant to the surface of the magnetic powder becomes non-uniform, resulting in low orientation and a decrease in (BH) max. .

一方、リン酸添加は、粉砕中において、R−T−N系磁粉の平均粒径が10μm以下に粉砕された後から断続的、あるいは連続的に添加することが望ましい。すなわち、リン酸は微粉砕中に添加することが肝要である。これにより磁粉表面に均一にリン酸塩皮膜を形成でき、耐候性が向上する。リン酸添加を粉砕前に行うと、粒径の粗いうちにリン酸が磁粉と過剰に反応してしまい、粉砕が進むにつれてリン酸濃度が低下しするため、粉砕により後から現れた新生面へのリン酸反応が不十分となり、最終的に均一なリン酸塩皮膜を形成することができず、耐候性が低下する。リン酸添加を粉砕終了後に行うと、磁粉同士が再付着、再凝集し、配向性が悪くなり、(BH)maxが低下する。また、リン酸の添加は、粉砕の後半に数回に分けて行うことがより好ましい。更にリン酸添加後に0.02〜0.10mol/kgのNaOHを溶かしたエタノール溶液等を添加し、中和することが望ましい。中和剤としてはアルコールに溶かした場合にアルカリ性を呈するものであればよく、特にこれを限定するものではないが、中和反応によって磁化を低下させる沈殿物を多量に形成しないものが好ましい。R−T−N系磁粉は、最終的に得る粒径が1.0〜3.5μmである。よってリン酸の添加は最低でも平均粒径が3.5μm超の時点で添加することが好ましい。さらに好ましくは平均粒径が5μm以上、さらには7μm以上の時点で添加することが好ましい。   On the other hand, it is desirable to add phosphoric acid intermittently or continuously after the average particle size of the R-TN magnetic powder is pulverized to 10 μm or less during pulverization. That is, it is important to add phosphoric acid during pulverization. Thereby, a phosphate film can be uniformly formed on the surface of the magnetic powder, and the weather resistance is improved. If phosphoric acid is added before pulverization, phosphoric acid reacts excessively with the magnetic powder while the particle size is coarse, and the phosphoric acid concentration decreases as pulverization proceeds. The phosphoric acid reaction becomes insufficient, and finally a uniform phosphate film cannot be formed, and the weather resistance is lowered. When phosphoric acid addition is performed after the pulverization is completed, the magnetic particles are reattached and reaggregated, the orientation is deteriorated, and (BH) max is lowered. Moreover, it is more preferable to add phosphoric acid in several steps in the latter half of the pulverization. Furthermore, it is desirable to neutralize by adding an ethanol solution or the like in which 0.02 to 0.10 mol / kg NaOH is dissolved after adding phosphoric acid. The neutralizing agent is not particularly limited as long as it exhibits alkalinity when dissolved in alcohol, but is preferably one that does not form a large amount of precipitates that lower the magnetization by a neutralization reaction. The final particle size of the R-TN magnetic powder is 1.0 to 3.5 μm. Therefore, it is preferable to add phosphoric acid when the average particle size exceeds 3.5 μm. More preferably, it is preferably added when the average particle size is 5 μm or more, more preferably 7 μm or more.

このように本発明においては界面活性剤とリン酸を添加する順序とタイミングが重要であって、上記以外の方法では高耐候性と高配向性を兼ね備えた磁粉を得ることはできない。すなわち、リン酸の果たす皮膜形成による耐候性等向上の機能および界面活性剤の果たす配向性向上の機能を考慮すれば、リン酸による皮膜形成終了後に、界面活性剤を添加するほうが一見好ましいとも考えられるが、かかる構成では高耐候性と高配向性を同時に実現することはできないのである。換言すれば、本発明は、従来の常識では想到しえない構成によって、磁粉の高耐候性・耐熱性と高配向性を同時に実現するものである。   Thus, the order and timing of adding the surfactant and phosphoric acid are important in the present invention, and magnetic powder having both high weather resistance and high orientation cannot be obtained by methods other than those described above. In other words, considering the function of improving the weather resistance, etc., achieved by the film formation performed by phosphoric acid and the function of improving the orientation achieved by the surfactant, it is considered that it is seemingly preferable to add the surfactant after the film formation by phosphoric acid is completed. However, with such a configuration, high weather resistance and high orientation cannot be realized at the same time. In other words, the present invention simultaneously achieves high weather resistance / heat resistance and high orientation of magnetic powder with a configuration unthinkable by conventional common sense.

本発明において用いる界面活性剤としては、例えば化学式CH(CHCOOHで表せられるラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などがある。また、オイレン酸やイソステアリン酸なども適宜使用することができる。
また、界面活性剤の添加量はR−T−N系磁粉質量に対して1.0〜5.0質量%が好ましい。このとき磁粉表面に存在する炭素含有量は0.5〜1.5質量%となる。この炭素量は高周波加熱赤外吸収法を用いて特定することができる。界面活性剤が1.0質量%未満では界面活性剤がR−T−N粉末表面に均一に付着できず、配向性が十分でなくなる。界面活性剤が5.0質量%超では硬磁性を有するR−T−N相の体積比が減少してBrが小さくなる。更にバインダーとの接合が弱くなり、成形体強度が弱くなる。界面活性剤がR−T−N系磁粉質量に対して1.0〜5.0質量%添加されることで、R−T−N系磁粉のBrが1.3T以上のものが得られる。以下、%と単に記載しているものは質量百分率を意味する。
Examples of the surfactant used in the present invention include lauric acid, myristic acid, palmitic acid and stearic acid represented by the chemical formula CH 3 (CH 2 ) x COOH. In addition, oleic acid, isostearic acid, and the like can be used as appropriate.
Further, the addition amount of the surfactant is preferably 1.0 to 5.0 mass% with respect to the mass of the R-TN magnetic powder. At this time, the carbon content present on the surface of the magnetic powder is 0.5 to 1.5 mass%. This amount of carbon can be specified using a high-frequency heating infrared absorption method. If the surfactant is less than 1.0% by mass, the surfactant cannot uniformly adhere to the surface of the RTN powder, and the orientation is not sufficient. When the surfactant is more than 5.0% by mass, the volume ratio of the R—T—N phase having hard magnetism decreases and Br becomes small. Further, the bonding with the binder is weakened, and the strength of the molded product is weakened. When the surfactant is added in an amount of 1.0 to 5.0% by mass with respect to the mass of the R—T—N system magnetic powder, the Br of the R—T—N system magnetic powder is 1.3 T or more. Hereinafter, what is simply described as% means mass percentage.

リン酸添加量はR−T−N系磁粉重量に対して0.1〜0.3mol/kgが望ましい。0.1mol/kg未満では、磁粉の表面全体に渡ってリン酸塩の皮膜を形成することが困難となり、耐候性が低下する。一方、0.3mol/kg超では磁粉の腐食が顕著になり、Hcjが低下する。このリン酸添加を行うことで、高温高湿試験(湿度90%温度80℃の大気中に24時保持した際の保磁力の低下率を測定)を行っても、保磁力の低下が50%以下、さらには30%以下、さらには10%以下に抑制できる。   The amount of phosphoric acid added is preferably 0.1 to 0.3 mol / kg with respect to the weight of the R-TN magnetic powder. If it is less than 0.1 mol / kg, it becomes difficult to form a phosphate film over the entire surface of the magnetic powder, and the weather resistance decreases. On the other hand, if it exceeds 0.3 mol / kg, the corrosion of the magnetic powder becomes prominent and Hcj decreases. By performing this phosphoric acid addition, even if a high-temperature and high-humidity test (measurement of the decrease in coercivity when held in the atmosphere of 90% humidity and 80 ° C. for 24:00), the decrease in coercivity is 50%. Hereinafter, it can be further suppressed to 30% or less, and further to 10% or less.

本発明において、磁粉表面のリン酸塩と界面活性剤を含む被覆相は、R−T−N系磁粉の表面に5〜500nmの厚みで、R−T−N系磁粉を包むように存在するものである。   In the present invention, the coating phase containing phosphate and a surfactant on the surface of the magnetic powder is present on the surface of the R-TN magnetic powder in a thickness of 5 to 500 nm so as to wrap the R-TN magnetic powder. It is.

窒化処理後は磁粉の平均粒径が10μm以上であり、このままではHcjが実用的な磁石としては小さい。Hcjを高めるためには、磁粉の粒径を粉砕によって小さくする必要がある。また、本発明においては、粉砕機として媒体攪拌ミルを使用することが好ましい。この粉砕機を使用する利点は、粉砕中にリン酸等を任意に添加することが容易であることにある。また、磁粉の表面にリン酸塩と界面活性剤の被膜を確実に形成することができる。すなわち、他の粉砕手段として、ボールミル、ジェットミル、振動ミル、アトライター等を用いることで平均粒径を3.5μm以下にすることができるが、リン酸添加を粉砕中に行い、かつ均一に反応させるという観点からは媒体攪拌ミルを用いた湿式粉砕とすることが望ましい。ここで、媒体攪拌ミルとは、有機溶剤等の溶媒中に30〜100μm程の被粉砕物(R−T−N系磁石用合金粗粉)と媒体(例えばジルコニア等の粉砕用球体)を入れ、モータ等の回転動力により収納容器を動かさずに内部の溶媒、被粉砕粉、媒体のみを強制的に攪拌することによって被粉砕物を粉砕するミルのことであり、媒体の径としては0.3〜2mmのものを使用した。さらに好ましい媒体の径は0.5〜1.5mmである。媒体攪拌ミルでは粉砕時に磁粉が分散しやすく、均一な粉砕が実現されるので粒度分布がシャープとなる。これにより粉砕後の平均粒径が1.5〜3.5μmであるとともに、0.9〜6.0μmのものが80%以上となる粒度分布のシャープなR−T−N系磁粉を得ることができる。粒度分布がシャープになることで固有保磁力Hcjの低い粗大粉が減るので、更に保磁力が高く減磁曲線の角形性のよい磁粉を得ることが可能となる。   After the nitriding treatment, the average particle size of the magnetic powder is 10 μm or more, and Hcj is small as a practical magnet as it is. In order to increase Hcj, it is necessary to reduce the particle size of the magnetic powder by pulverization. Moreover, in this invention, it is preferable to use a medium stirring mill as a grinder. The advantage of using this pulverizer is that it is easy to arbitrarily add phosphoric acid or the like during pulverization. In addition, a phosphate and surfactant film can be reliably formed on the surface of the magnetic powder. That is, by using a ball mill, jet mill, vibration mill, attritor or the like as another pulverizing means, the average particle size can be reduced to 3.5 μm or less, but phosphoric acid is added during pulverization and uniformly. From the viewpoint of reaction, wet grinding using a medium stirring mill is desirable. Here, the medium agitation mill is a medium to be pulverized (alloy coarse powder for R-TN system magnet) and a medium (for example, pulverizing spheres such as zirconia) in a solvent such as an organic solvent. , A mill that pulverizes the object to be pulverized by forcibly stirring only the solvent, pulverized powder, and medium inside without moving the storage container by the rotational power of a motor or the like. The thing of 3-2 mm was used. A more preferable diameter of the medium is 0.5 to 1.5 mm. In the medium agitating mill, the magnetic powder is easily dispersed during pulverization, and uniform pulverization is realized, so that the particle size distribution becomes sharp. As a result, an R-TN-based magnetic powder having a sharp particle size distribution in which the average particle size after pulverization is 1.5 to 3.5 [mu] m and 0.9 to 6.0 [mu] m is 80% or more is obtained. Can do. As the particle size distribution becomes sharp, coarse powder having a low intrinsic coercive force Hcj is reduced, so that magnetic powder having a higher coercive force and good demagnetization curve squareness can be obtained.

本発明のR−T−N系磁粉の微粉砕後における平均粒径は1.0〜3.5μmが好ましい。平均粒径が1.0μm未満では、比表面積の増大による酸化物相の増加、あるいは磁場を印加して異方性磁石を製造する場合には配向性が悪くなるためBrが低下し、平均粒径が3.5μm超では固有保磁力Hcjが著しく低下する。平均粒径は1.3〜2.8μmがより好ましく、1.5〜2.5μmが特に好ましい。   The average particle size after fine pulverization of the R—T—N magnetic powder of the present invention is preferably 1.0 to 3.5 μm. When the average particle size is less than 1.0 μm, the increase in the specific surface area, or when an anisotropic magnet is produced by applying a magnetic field, the orientation deteriorates, so that Br decreases. When the diameter exceeds 3.5 μm, the intrinsic coercive force Hcj is remarkably reduced. The average particle size is more preferably 1.3 to 2.8 μm, particularly preferably 1.5 to 2.5 μm.

本発明の製造方法で得られたR−T−N系磁粉を用いて成形することで、耐候性が良好で、従来より高いBHmaxを持つ磁石を製造することができる。この磁石には例えば2−17型硬質磁性相の単結晶粒の集合体からなる磁粉、およびバインダーが含まれ、バインダー中に磁粉が分散された形態となり、成形時に磁場を印加することにより個々の磁粉が回転して磁化容易軸(c軸)が高配向し、BHmaxの高い異方性磁石を製造することができる。   By molding using the R—T—N system magnetic powder obtained by the production method of the present invention, a magnet having good weather resistance and higher BHmax than the conventional one can be produced. This magnet includes, for example, magnetic powder composed of an aggregate of single crystal grains of 2-17 type hard magnetic phase, and a binder. The magnetic powder is dispersed in the binder. An anisotropic magnet having a high BHmax can be manufactured by rotating the magnetic powder so that the easy magnetization axis (c-axis) is highly oriented.

次に、本発明の粉砕に供する磁粉の製造方法について説明する。RはYを含めた希土類元素の1種または2種以上であり、Smを必ず含む。R含有量は20〜30%が好ましく、22〜28%がより好ましい。R含有量が20%未満では室温のHcjが397.9kA/m(5kOe)未満になり、30%超では(BH)maxが大きく低下する。さらに、室温のHcj≧397.9kA/m(5kOe)を得るために、Rに占めるSmの比率を50%以上にするのが好ましく、95%以上にするのがより好ましい。また、RはSmの他、La及び不可避的R成分を含むことができる。La含有量が5%超では(BH)maxの低下が顕著になるため、La含有量は5%以下にするのが好ましく、3%以下にするのがより好ましい。なお、Y、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの群から選択される少なくとも1種が不可避的R成分に該当する。Smミッシュメタル等の安価な混合希土類合金をR用原料合金として用いることもできる。   Next, the manufacturing method of the magnetic powder used for the grinding | pulverization of this invention is demonstrated. R is one or more of rare earth elements including Y, and Sm is necessarily included. The R content is preferably 20 to 30%, more preferably 22 to 28%. If the R content is less than 20%, the Hcj at room temperature is less than 397.9 kA / m (5 kOe), and if it exceeds 30%, (BH) max is greatly reduced. Furthermore, in order to obtain Hcj ≧ 397.9 kA / m (5 kOe) at room temperature, the ratio of Sm to R is preferably 50% or more, and more preferably 95% or more. R can contain La and unavoidable R components in addition to Sm. If the La content exceeds 5%, the decrease in (BH) max becomes significant, so the La content is preferably 5% or less, and more preferably 3% or less. Note that at least one selected from the group of Y, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu corresponds to the inevitable R component. An inexpensive mixed rare earth alloy such as Sm misch metal can also be used as a raw material alloy for R.

Feの一部をCoで置換することによりキュリー点、磁化及び耐酸化性が向上する。Co含有量は20%未満とするのが好ましく、10%未満とするのがより好ましい。20%超では磁化の低下が大きくなり好ましくない。またFeの一部をGa、Al、Zn、Sn、Cr、Ni、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Pd、C、Cu、Si及びGeの群から選択される少なくも1種の元素で置換することにより磁気特性や耐食性を向上できるので好ましい。これら元素の含有量の合計は10%未満が好ましい。10%超では磁化の低下が顕著になる。また、本発明の異方性磁粉には製造上混入が避けられないF、Na、Mg、Ca及びLiの群から選択される少なくも1種の不可避的不純物元素を合計で5%以下含有することが許容される。   Replacing part of Fe with Co improves the Curie point, magnetization and oxidation resistance. The Co content is preferably less than 20%, and more preferably less than 10%. If it exceeds 20%, the decrease in magnetization becomes large, which is not preferable. Further, a small part of Fe is selected from the group of Ga, Al, Zn, Sn, Cr, Ni, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Pd, C, Cu, Si, and Ge. Is also preferable because it can improve magnetic properties and corrosion resistance by substituting with one element. The total content of these elements is preferably less than 10%. If it exceeds 10%, the decrease in magnetization becomes remarkable. Further, the anisotropic magnetic powder of the present invention contains a total of 5% or less of at least one unavoidable impurity element selected from the group of F, Na, Mg, Ca and Li, which is inevitably mixed in production. It is acceptable.

また、磁粉中の窒素(N)含有量は2.5〜4.0%が好ましい。窒素含有量が2.5%未満または4.0%超ではHcj及び(BH)maxが大きく低下し、有用な磁気特性を得ることが困難になる。   Further, the nitrogen (N) content in the magnetic powder is preferably 2.5 to 4.0%. If the nitrogen content is less than 2.5% or more than 4.0%, Hcj and (BH) max are greatly reduced, making it difficult to obtain useful magnetic properties.

窒化に供するR−T系母合金は、例えば高周波溶解法、アーク溶解法、ストリップキャスト法または還元/拡散法(RD法)により作製することができる。   The RT mother master alloy used for nitriding can be produced by, for example, a high frequency melting method, an arc melting method, a strip casting method, or a reduction / diffusion method (RD method).

高周波溶解法、アーク溶解法、又はストリップキャスト法等の溶解法により作製したR−Fe系母合金は、不活性ガス(窒素を除く)雰囲気中で1010〜1280℃×1〜40時間加熱する均質化熱処理を行い、次いで室温まで冷却することによりαFeやSmFe等の偏析相を低減することができる。均質化熱処理の条件が1010℃未満、1時間未満では拡散が十分ではないためαFeやSmFe等が残留し、1280℃超、40時間超では均質化熱処理の効果が飽和し、Sm等の蒸発による組成ずれが顕著になる。 R-Fe based master alloy prepared by melting method such as high frequency melting method, arc melting method or strip casting method is homogeneously heated at 1010 to 1280 ° C for 1 to 40 hours in an inert gas (excluding nitrogen) atmosphere A segregation phase such as αFe or SmFe 3 can be reduced by performing a heat treatment and then cooling to room temperature. If the condition of the homogenization heat treatment is less than 1010 ° C. and less than 1 hour, the diffusion is not sufficient, so αFe, SmFe 3, etc. remain. The composition shift due to becomes remarkable.

還元/拡散法によりR−T系母合金を作製する場合の好ましい製造条件を以下に説明する。まず、R酸化物粉末、及び平均粒径が約50μmのFe粉末を用い、本発明の磁粉に対応するR−T系母合金の主要成分組成に配合し、さらに前記配合物中のR酸化物が化学反応式上100%還元される量(化学量論的必要量)の0.5〜2倍に相当する量の還元剤(金属Ca)を前記配合物に添加し、混合する。次に混合物を不活性ガス雰囲気中で1000〜1300℃×1〜20時間加熱してR酸化物を還元し、次いで還元したR、Feを十分に相互拡散させた後室温まで冷却する。還元剤の添加量が化学量論的必要量の0.5倍未満では工業生産上有益な還元反応が実現されず、2倍超では最終的に得られる磁粉に残留するCa量が増大し磁気特性の低下を招く。また前記加熱条件が1000℃未満、1時間未満では工業生産上有益な還元/拡散反応が進行せず、1300℃超、20時間超では還元/拡散反応炉の劣化が顕著になる。得られた反応生成物を洗浄液中に投入し、CaO等の反応副生成物を洗い流した後、脱水及び真空での加熱乾燥を行い、還元/拡散法によるR−T系母合金が得られる。
このR−T系母合金には不可避的に所定量のCaが混入する。Ca含有量は通常0.4%以下になり、洗浄及び乾燥条件を適宜選択することにより0.2%以下にすることができ、特に0.1%以下にすることができる。このRD洗浄後の微粉砕前の粗粉(平均粒径10μm以上)における酸素含有量は通常0.8%以下になり、洗浄及び乾燥条件を適宜選択することにより0.4%以下にすることができ、特に0.2%以下にすることができる。
Preferred production conditions for producing an RT master alloy by the reduction / diffusion method will be described below. First, an R oxide powder and an Fe powder having an average particle size of about 50 μm are blended into the main component composition of an RT master alloy corresponding to the magnetic powder of the present invention, and further the R oxide in the blend Is added to the above mixture in an amount corresponding to 0.5 to 2 times the amount (100% required for stoichiometry) to be reduced 100% in the chemical reaction formula, and mixed. Next, the mixture is heated in an inert gas atmosphere at 1000 to 1300 ° C. for 1 to 20 hours to reduce the R oxide, and then the reduced R and Fe are sufficiently interdiffused and then cooled to room temperature. If the amount of the reducing agent added is less than 0.5 times the stoichiometrically required amount, a reduction reaction beneficial for industrial production cannot be realized, and if it exceeds 2 times, the amount of Ca remaining in the finally obtained magnetic powder increases and magnetism is increased. Degradation of characteristics is caused. When the heating condition is less than 1000 ° C. and less than 1 hour, the reduction / diffusion reaction beneficial for industrial production does not proceed, and when it exceeds 1300 ° C. and more than 20 hours, the reduction / diffusion reactor deteriorates significantly. The obtained reaction product is put into a cleaning liquid, and reaction by-products such as CaO are washed away, followed by dehydration and heat drying in a vacuum to obtain an RT-based master alloy by a reduction / diffusion method.
A predetermined amount of Ca is inevitably mixed in the RT master alloy. The Ca content is usually 0.4% or less, and can be 0.2% or less, particularly 0.1% or less, by appropriately selecting the washing and drying conditions. The oxygen content in the coarse powder before pulverization after RD washing (average particle size of 10 μm or more) is usually 0.8% or less, and should be 0.4% or less by appropriately selecting the washing and drying conditions. In particular, it can be made 0.2% or less.

窒化について説明する。水素が1〜95体積%で残部が窒素からなる(水素+窒素)の混合ガス、あるいはNHの体積%が10〜90%で残部水素からなる(NH+水素)の混合ガスの雰囲気中で300〜650℃×0.1〜30時間加熱するガス窒化を採用するのが好ましい。300℃未満、0.1時間未満では窒化が事実上行われず、650℃超、30時間超では逆にRN相やαFe、アモルファス相を生成し磁気特性が顕著に低下する。ガス窒化の加熱条件は400〜550℃×0.5〜20時間がより好ましい。窒化ガスの圧力は0.2×10〜1.0×10Pa(0.2〜9.87atm)が好ましく、0.5×10〜0.5×10Pa(0.49〜4.94atm)がより好ましい。0.2×10Pa(0.2atm)未満では窒化反応が非常に遅くなり、1.0×10Pa(9.87atm)超では高圧ガス設備によるコスト増を招く。 The nitriding will be described. In an atmosphere of a mixed gas of 1 to 95% by volume of hydrogen and the balance of nitrogen (hydrogen + nitrogen), or a mixed gas of 10% to 90% of the volume of NH 3 and a balance of hydrogen (NH 3 + hydrogen) It is preferable to employ gas nitriding which is heated at 300 to 650 ° C. for 0.1 to 30 hours. When the temperature is less than 300 ° C. and less than 0.1 hour, nitriding is practically not performed. When the temperature exceeds 650 ° C. and more than 30 hours, RN phase, αFe, and amorphous phase are generated, and the magnetic properties are remarkably deteriorated. The heating conditions for gas nitriding are more preferably 400 to 550 ° C. × 0.5 to 20 hours. The pressure of the nitriding gas is preferably 0.2 × 10 5 to 1.0 × 10 6 Pa (0.2 to 9.87 atm), and 0.5 × 10 5 to 0.5 × 10 6 Pa (0.49 to 4.94 atm) is more preferable. If it is less than 0.2 × 10 5 Pa (0.2 atm), the nitriding reaction is very slow, and if it exceeds 1.0 × 10 6 Pa (9.87 atm), the cost of the high-pressure gas equipment increases.

窒化後に、真空雰囲気中又は不活性ガス雰囲気中(窒素ガスを除く)で300〜600℃×0.5〜50時間の熱処理を行うと残留磁束密度、Hcj及び(BH)maxを高めることができる。   After nitriding, residual magnetic flux density, Hcj and (BH) max can be increased by performing heat treatment at 300 to 600 ° C. for 0.5 to 50 hours in a vacuum atmosphere or an inert gas atmosphere (excluding nitrogen gas). .

本発明のR−T−N系磁粉の主相は2-17型結晶構造を有する硬質磁性相が好ましく、不可避的に存在するαFe及び/又は不純物相(酸化物等)、R−T−N系磁粉表面に生成したリン酸塩と界面活性剤を含む相以外は2−17型結晶構造を有する硬質磁性相のみからなるのが好ましい。
室温のHcj≧716.4kA/m(9kOe)を得るために、本発明の異方性磁粉に存在するαFeの比率を、平均面積率で5%以下にする必要があり、3%以下とするのが好ましく、1%以下とするのが特に好ましい。
硬質磁性相、及び不可避的に存在するαFe等の同定、並びに各相の面積比率の算出は、電子顕微鏡又は光学顕微鏡等により撮影した異方性磁粉の断面組織写真、電子回折結果、並びにX線回折結果等を考慮して求める。例えば、対象とする異方性磁粉粒子の断面組織を撮影した透過型電子顕微鏡写真及びその断面組織の同定結果を符合させて求めることができる。
The main phase of the RTN magnetic powder of the present invention is preferably a hard magnetic phase having a 2-17 type crystal structure, and unavoidable αFe and / or impurity phases (oxides, etc.), RTN It is preferable to consist only of a hard magnetic phase having a 2-17 type crystal structure other than the phase containing phosphate and surfactant generated on the surface of the system magnetic powder.
In order to obtain Hcj ≧ 716.4 kA / m (9 kOe) at room temperature, the ratio of αFe present in the anisotropic magnetic powder of the present invention needs to be 5% or less in terms of average area ratio, and 3% or less. Of these, 1% or less is particularly preferable.
The identification of hard magnetic phases and unavoidable αFe, and the calculation of the area ratio of each phase were performed using a cross-sectional structure photograph of an anisotropic magnetic powder photographed by an electron microscope or an optical microscope, an electron diffraction result, and an X-ray. Obtained in consideration of diffraction results. For example, it can be obtained by matching a transmission electron micrograph of the cross-sectional structure of the target anisotropic magnetic powder particles and the identification result of the cross-sectional structure.

本発明の磁粉を用いた磁石は、アクリル系ゴムのようなエラストマー成分に必要に応じて界面活性剤を含ませたバインダーを混合させた着磁性エラストマー組成物を成形材料とする。例えばこれを加熱しながらカレンダーロールにて圧延してシート状とし、シートの厚み方向に磁界を印加して磁粉の配向と着磁を行う方法、磁場中で押し出し成形するといった方法等により、本発明の磁粉の特徴を生かした高耐候性、高熱安定性、高特性のボンド磁石を得ることができる。   The magnet using the magnetic powder of the present invention uses as a molding material a magnetized elastomer composition in which an elastomer component such as acrylic rubber is mixed with a binder containing a surfactant as required. For example, the present invention is rolled by a calender roll while heating to form a sheet, and a method of applying a magnetic field in the thickness direction of the sheet to align and magnetize the magnetic powder, a method of extruding in a magnetic field, etc. It is possible to obtain a bonded magnet having high weather resistance, high thermal stability, and high characteristics utilizing the characteristics of magnetic powder.

以下実施例により本発明を説明するが、本発明はそれら実施例により限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
高周波溶解によりSm24.4Fe75.6(質量%)の母合金溶湯を作製し、鋳型鋳造した。得られたインゴットをアルゴンガス雰囲気中、1100℃で10時間加熱し、次いで室温まで冷却する均質化熱処理を行った。このSm17相を主相とする合金をN雰囲気中で125μm以下に粉砕(粗粉砕)、分級した後、分圧35kPaのNHと分圧65kPaのHの混合ガス中にて430℃で10時間窒化処理し、Sm17を主相とする組成(Sm24.4Fe75.696.63.4(質量%)の粉末を得た。このときの平均粒径は24μm(Sympatec社製、HELOS・RODOSにより測定)であった。この磁粉はThZn17型結晶構造の硬質磁性相からなる。次に、この粉末に界面活性剤としてステアリン酸をSmFeN粉末に対して2wt%混合し、媒体撹拌ミルにて湿式粉砕した。溶媒はIPA、媒体は0.8mmの径のジルコニア(ZrO)を用いた。ミルの周速度を10m/secとし、60分間粉砕した。このときリン酸水溶液とIPAの混合溶液(0.15mol/kg)を粉砕開始から30分後から5分おきに6回に分けて添加した。引き続いてNaOH顆粒(0.04mol/kg)をエタノールに溶かした溶液を添加して中和した。こうして得られたスラリーを150℃で2時間、真空中で乾燥させた。ステアリン酸とリン酸の添加条件を表1に示す。次に、VSM用の銅容器中に所定量の微粉砕をした磁粉とパラフィンワックスとを充填し、密封した。その後、銅容器を1.59MA/m(20kOe)の平行磁場を印加したまま80℃に加熱してパラフィンワックスを溶かし、磁粉を配向させ、室温まで冷却して磁粉を固定した。次いで最大印加磁場1.59MA/m(20kOe)のVSMを用いて、磁粉の室温の磁気特性を測定した。得られた測定値を100%磁粉のみに換算(理論密度を7.65Mg/m)した結果を磁粉の他の諸特性と共に表2に示す。表中の0.9〜6.0μm磁粉比率とは、粒度分布測定において、0.9μm以上かつ6.0μm以下の粒径の磁粉が全体に占める割合を示す。この比率と平均粒径はHELOS・RODOSによって測定した。また、表1中のHcj低下率とは、耐候性の評価として、得られた磁粉を80℃、湿度90%の条件で24時間保持した後のHcjの低下率を示したものである。
(Example 1)
A mother alloy melt of Sm 24.4 Fe 75.6 (mass%) was prepared by high frequency melting, and casted in a mold. The obtained ingot was heated in an argon gas atmosphere at 1100 ° C. for 10 hours, and then subjected to a homogenization heat treatment for cooling to room temperature. The alloy having the Sm 2 F 17 phase as the main phase is pulverized (coarsely pulverized) to 125 μm or less in an N 2 atmosphere, classified, and then mixed in a mixed gas of NH 3 having a partial pressure of 35 kPa and H 2 having a partial pressure of 65 kPa. Nitriding was performed at 430 ° C. for 10 hours to obtain a powder having a composition (Sm 24.4 Fe 75.6 ) 96.6 N 3.4 (mass%) containing Sm 2 F 17 N 3 as a main phase. The average particle size at this time was 24 μm (manufactured by Sympatec, measured by HELOS · RODOS). This magnetic powder is composed of a hard magnetic phase having a Th 2 Zn 17 type crystal structure. Next, 2 wt% of stearic acid as a surfactant was mixed with this powder with respect to the SmFeN powder, and wet pulverized with a medium stirring mill. The solvent was IPA, and the medium was zirconia (ZrO 2 ) having a diameter of 0.8 mm. The peripheral speed of the mill was 10 m / sec and pulverized for 60 minutes. At this time, a mixed solution of phosphoric acid aqueous solution and IPA (0.15 mol / kg) was added in 6 portions every 5 minutes 30 minutes after the start of grinding. Subsequently, a solution obtained by dissolving NaOH granules (0.04 mol / kg) in ethanol was added for neutralization. The slurry thus obtained was dried in vacuum at 150 ° C. for 2 hours. Table 1 shows the addition conditions of stearic acid and phosphoric acid. Next, a predetermined amount of finely pulverized magnetic powder and paraffin wax were filled in a VSM copper container and sealed. Thereafter, the copper container was heated to 80 ° C. while applying a parallel magnetic field of 1.59 MA / m (20 kOe) to dissolve the paraffin wax, orient the magnetic powder, and cooled to room temperature to fix the magnetic powder. Next, room temperature magnetic properties of the magnetic powder were measured using a VSM with a maximum applied magnetic field of 1.59 MA / m (20 kOe). Table 2 shows the results obtained by converting the measured values into 100% magnetic powder only (theoretical density is 7.65 Mg / m 3 ) together with other characteristics of the magnetic powder. The 0.9 to 6.0 μm magnetic powder ratio in the table indicates the ratio of the magnetic powder having a particle diameter of 0.9 μm or more and 6.0 μm or less to the whole in the particle size distribution measurement. This ratio and average particle diameter were measured by HELOS · RODOS. Moreover, the Hcj reduction rate in Table 1 indicates the Hcj reduction rate after the obtained magnetic powder was held at 80 ° C. and a humidity of 90% for 24 hours as an evaluation of weather resistance.

(実施例2,比較例1〜6)
さらに、上記実施例1において微粉砕終了後に更にステアリン酸を1質量%追添加した場合(実施例2)の添加条件および結果をそれぞれ表1および表2に示す。また、比較として、実施例1においてステアリン酸、リン酸を両方とも添加しない場合(比較例1)、ステアリン酸のみ添加した場合(比較例2)、リン酸のみ添加した場合(比較例3)、ステアリン酸のみを粉砕終了後に添加した場合(比較例4)、粉砕中にリン酸添加し、粉砕後にステアリン酸を添加した場合(比較例5)、粉砕の前のIPAに一度にリン酸を添加し、その後磁粉を入れて粉砕した場合(比較例6)の添加条件および結果を併せて表1および表2に示す。
(Example 2, Comparative Examples 1-6)
Further, Table 1 and Table 2 show the addition conditions and results in the case where 1 mass% of stearic acid was further added after completion of fine grinding in Example 1 (Example 2), respectively. For comparison, when both stearic acid and phosphoric acid are not added in Example 1 (Comparative Example 1), when only stearic acid is added (Comparative Example 2), when only phosphoric acid is added (Comparative Example 3), When only stearic acid is added after grinding (Comparative Example 4), phosphoric acid is added during grinding, and when stearic acid is added after grinding (Comparative Example 5), phosphoric acid is added to IPA before grinding at once. Table 1 and Table 2 together show the addition conditions and results when the magnetic powder was added and pulverized (Comparative Example 6).

Figure 2005272925
Figure 2005272925

Figure 2005272925
Figure 2005272925

次いで、実施例1と2、比較例1〜6のR−T−N系磁粉を用いてシート状磁石を成形した。シート状磁石の成形においては、前記の磁粉の92.0質量部に対してアルキルアクリレート系のアクリル樹脂を7.2質量部添加した。安定剤には芳香族系のアミン系酸化防止剤を0.2質量部用いた。さらに表面処理材としてシランカップリング剤を0.6質量部添加した。これらを混練機において加熱しながら混練した。混練物を冷却後、粒径5mm以下に粉砕し、シート成形用のコンパウンドを得た。このコンパウンドを50〜150℃に温度調整されたカレンダーロールにより引き伸ばし、厚さ1.2mmのシート状磁石成形体とした。この成形体を100mm×100mmの寸法で切断し、その後、平坦な面同士でプレス可能な磁場印加装置に設置し、1kPaの圧力中で両面を約15〜50℃の温度で加熱し、1.59MA/m(20kOe)の配向磁場をシートの厚み方向に印加した。さらに前記と逆の方向にも同様の条件で磁場を印加した。これを繰り返し、厚み方向に5回磁場を印加した。この成形体をBHトレーサーで測定した磁気特性の値を表3に示す。さらにこの磁石の熱安定性として、大気中120℃の条件で24時間保持した後の不可逆減磁率を表3示す。界面活性剤、リン酸とも無添加の場合(比較例1)に比べて、本発明の実施例1と2の工程の場合で、磁気特性、熱安定性、耐候性が大幅に改善され、高磁気特性、高熱安定性・高耐候性が同時に実現されていることを確認した。逆に、界面活性剤またはリン酸のいずれか一つのみを添加した場合やこれらを両方添加したものであってもその添加時期が本発明と異なる場合の比較例においては、高磁気特性と高熱安定性等を同時に実現するものは得られなかった。   Subsequently, the sheet-like magnet was shape | molded using the RTN type magnetic powder of Examples 1 and 2, and Comparative Examples 1-6. In forming the sheet-like magnet, 7.2 parts by mass of an alkyl acrylate acrylic resin was added to 92.0 parts by mass of the magnetic powder. As a stabilizer, 0.2 parts by mass of an aromatic amine-based antioxidant was used. Further, 0.6 part by mass of a silane coupling agent was added as a surface treatment material. These were kneaded while being heated in a kneader. The kneaded product was cooled and then pulverized to a particle size of 5 mm or less to obtain a compound for forming a sheet. This compound was stretched by a calender roll whose temperature was adjusted to 50 to 150 ° C. to obtain a sheet-like magnet molded body having a thickness of 1.2 mm. This molded body is cut into a size of 100 mm × 100 mm, and then placed in a magnetic field application device capable of pressing flat surfaces, and both surfaces are heated at a temperature of about 15 to 50 ° C. in a pressure of 1 kPa. An orientation magnetic field of 59 MA / m (20 kOe) was applied in the thickness direction of the sheet. Further, a magnetic field was applied in the opposite direction to that described above under the same conditions. This was repeated and a magnetic field was applied 5 times in the thickness direction. Table 3 shows the values of the magnetic properties of the molded body measured with a BH tracer. Further, Table 3 shows the irreversible demagnetization rate after being kept in the atmosphere at 120 ° C. for 24 hours as the thermal stability of the magnet. Compared to the case where neither surfactant nor phosphoric acid is added (Comparative Example 1), the magnetic properties, thermal stability, and weather resistance are greatly improved in the case of the steps of Examples 1 and 2 of the present invention. It was confirmed that magnetic properties, high thermal stability and high weather resistance were realized at the same time. Conversely, when only one of surfactant or phosphoric acid is added, or even when both are added, the comparative example in which the addition time is different from the present invention, high magnetic properties and high heat No one that could achieve stability and the like at the same time was obtained.

Figure 2005272925
Figure 2005272925

実施例1の工程で、ステアリン酸の代わりにラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、イソステアリン酸を用いた場合(実施例3〜7)の磁粉の評価結果およびシート磁石の評価結果をそれぞれ表4および5に示す。これらの界面活性剤においてもステアリン酸と同様に高磁気特性、高熱安定性・高耐候性が同時に実現されていることがわかる。   In the process of Example 1, when lauric acid, myristic acid, palmitic acid, oleic acid, and isostearic acid are used instead of stearic acid (Examples 3 to 7), the evaluation results of the magnetic powder and the evaluation results of the sheet magnet are respectively shown. Tables 4 and 5 show. It can be seen that these surfactants also achieve high magnetic properties, high thermal stability and high weather resistance at the same time as stearic acid.

Figure 2005272925
Figure 2005272925

Figure 2005272925
Figure 2005272925

本発明の磁粉製造方法の一例の概略を示したフローチャート図である。It is the flowchart figure which showed the outline of an example of the magnetic powder manufacturing method of this invention.

Claims (6)

有機溶媒中にR−T−N系粗粉(ただし、RはYを含めた希土類元素の1種または2種以上でありSmを必ず含む元素、TはFeまたはFeとCo、不可避の不純物を含む)を混入する工程と、該R−T−N系粗粉の微粉砕を行う工程と、該微粉砕粉を乾燥する工程とからなるR−T−N系磁粉の製造方法であって、該有機溶媒中に界面活性剤を添加してR−T−N系粗粉を微粉砕するとともに、該微粉砕の工程において該R−T−N系粗粉の粉砕が進行する途中の段階でリン酸を添加することを特徴とするR−T−N系磁粉の製造方法。 R-TN-based coarse powder in an organic solvent (where R is one or more of rare earth elements including Y and must contain Sm, T is Fe or Fe and Co, unavoidable impurities) A process for mixing the R-TN system coarse powder, a process for finely pulverizing the R-TN system coarse powder, and a process for drying the fine pulverized powder, A surfactant is added to the organic solvent to finely pulverize the RTN-based coarse powder, and at the stage where the pulverization of the RTN-based coarse powder proceeds in the fine pulverization step. A method for producing an R-TN magnetic powder comprising adding phosphoric acid. 請求項1に記載のR−T−N系磁粉の製造方法において、該リン酸を添加するのは、該R−T−N系粗粉の粒径が10μm以下に粉砕された段階であることを特徴とするR−T−N系磁粉の製造方法。 The method for producing an R-TN magnetic powder according to claim 1, wherein the phosphoric acid is added at a stage where the particle size of the R-TN coarse powder is pulverized to 10 µm or less. The manufacturing method of the R-T-N type magnetic powder characterized by these. 請求項1に記載のR−T−N系磁粉の製造方法において、微粉砕終了後の有機溶媒に再度界面活性剤を添加し、前記R−T−N系磁粉と共に攪拌することを特徴とするR−T−N系磁粉の製造方法。 The method for producing an R-TN magnetic powder according to claim 1, wherein a surfactant is added again to the organic solvent after the pulverization is completed, and the resultant is stirred together with the R-TN magnetic powder. Manufacturing method of RTN magnetic powder. 請求項1または2に記載のR−T−N系磁粉の製造方法において、粉砕の手段として媒体攪拌ミルを用いたことを特徴とするR−T−N系磁粉の製造方法。 The method for producing an R-TN magnetic powder according to claim 1 or 2, wherein a medium stirring mill is used as a pulverizing means. R−T−N系磁粉の磁粉質量に対して、0.5〜1.5質量%のC,および0.1〜0.5質量%のHが該磁粉表面に存在し、Brが1.3T以上であり、かつ磁粉を湿度90%温度80℃の大気中に24時保持した際の保磁力の低下率が50%以下であることを特徴とするR−T−N系磁粉。 0.5 to 1.5 mass% of C and 0.1 to 0.5 mass% of H are present on the surface of the magnetic powder with respect to the magnetic powder mass of the R-TN magnetic powder, and Br is 1. An R-TN magnetic powder having a coercive force decrease rate of 3T or more and a magnetic powder held in an atmosphere of 90% humidity and 80 ° C for 24 hours is 50% or less. 請求項5に記載のR−T−N系磁粉において、該R−T−N系磁粉は平均粒径が1.0〜3.5μmの異方性磁粉であることを特徴とするR−T−N系磁粉。
6. The RTN-based magnetic powder according to claim 5, wherein the RTN-based magnetic powder is an anisotropic magnetic powder having an average particle size of 1.0 to 3.5 μm. -N-based magnetic powder.
JP2004086965A 2004-03-24 2004-03-24 R-t-n based magnetic powder and its manufacturing method Pending JP2005272925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086965A JP2005272925A (en) 2004-03-24 2004-03-24 R-t-n based magnetic powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086965A JP2005272925A (en) 2004-03-24 2004-03-24 R-t-n based magnetic powder and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005272925A true JP2005272925A (en) 2005-10-06

Family

ID=35172903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086965A Pending JP2005272925A (en) 2004-03-24 2004-03-24 R-t-n based magnetic powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005272925A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022294A (en) * 2012-07-20 2014-02-03 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2014099368A (en) * 2012-11-15 2014-05-29 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolytic secondary battery use, and manufacturing method thereof
JP2014103267A (en) * 2012-11-20 2014-06-05 Jfe Steel Corp Method of producing powder for dust core and powder for dust core
WO2018173782A1 (en) * 2017-03-22 2018-09-27 株式会社 東芝 Permanent magnet, dynamo-electric machine and vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022294A (en) * 2012-07-20 2014-02-03 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2014099368A (en) * 2012-11-15 2014-05-29 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolytic secondary battery use, and manufacturing method thereof
JP2014103267A (en) * 2012-11-20 2014-06-05 Jfe Steel Corp Method of producing powder for dust core and powder for dust core
WO2018173782A1 (en) * 2017-03-22 2018-09-27 株式会社 東芝 Permanent magnet, dynamo-electric machine and vehicle

Similar Documents

Publication Publication Date Title
Sugimoto Current status and recent topics of rare-earth permanent magnets
US8329056B2 (en) Anisotropic rare earth-iron based resin bonded magnet
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
WO2007119553A1 (en) Process for producing rare-earth permanent magnet material
JP2006303436A (en) Rare earth permanent magnet
WO1999062081A1 (en) Nitride type rare-earth permanent magnet material and bonded magnet using the same
JP2012212808A (en) Manufacturing method of rear earth sintered magnet
CN104347217A (en) Coercive-force-enhanced NdFeB thermal deformation magnet as well as preparation method and application thereof
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2005272925A (en) R-t-n based magnetic powder and its manufacturing method
JP2010062326A (en) Bond magnet
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JP2005093731A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2002075715A (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2004296875A (en) Process for producing flexible hybrid rare earth bonded magnet, magnet and motor
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JP2006080115A (en) Anisotropic rare earth/iron-based bond magnet