JPH09186011A - Anisotropic bond magnet - Google Patents

Anisotropic bond magnet

Info

Publication number
JPH09186011A
JPH09186011A JP7353312A JP35331295A JPH09186011A JP H09186011 A JPH09186011 A JP H09186011A JP 7353312 A JP7353312 A JP 7353312A JP 35331295 A JP35331295 A JP 35331295A JP H09186011 A JPH09186011 A JP H09186011A
Authority
JP
Japan
Prior art keywords
magnet
powder
magnet powder
molding
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7353312A
Other languages
Japanese (ja)
Other versions
JP3623583B2 (en
Inventor
Nobutsugu Mino
修嗣 三野
Masahiro Asano
正宏 浅野
Hideji Tsujimoto
秀治 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP35331295A priority Critical patent/JP3623583B2/en
Publication of JPH09186011A publication Critical patent/JPH09186011A/en
Application granted granted Critical
Publication of JP3623583B2 publication Critical patent/JP3623583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bond magnet which does not generate cracks in magnet powder at the time of molding, and is excellent in heat resistance, resistance to weather and magnetic characteristics. SOLUTION: R-Fe-B based alloy ingot or coarse crushed powder obtained by grinding the ingot is made anisotropic magnet powder having recrystallization grain aggregate structure of tetragonal system R2 Fe14 B phase having a specific average recrystallization grain diameter, by an H2 treatment method under a specified heat treatment condition. Before the compounding and mixing with binder resin, or at the same time of compounding and mixing, or after compounding and mixing, a specified amount of very fine liquid quench R-Fe-B based permanent magnet fine powder is compounded and mixed with the anisotropic magnetic powder. By molding and hardening, the liquid quench R-Fe-B based permanent magnet fine powder is predominantly buried in magnetic powder gap at the time of molding, the hole ratio in the bond magnet is reduced, permeation of O2 and H2 O in the magnet is restrained, cracks in the magnet powder is prevented at the time of molding, and very active metal fracture in the bond magnet is reduced, so that heat resistance and resistance to weather are improved, and at the same time, Br, (BH)max, and rectangularity are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、耐熱性、耐候性
と共に磁気特性、特に残留磁束密度(以下Brとい
う)、最大磁気エネルギー積(以下(BH)maxとい
う)および角型性のすぐれた異方性ボンド磁石に係り、
R−Fe−B系合金鋳塊あるいは前記鋳塊を粉砕して得
られた粗粉砕粉を特定の熱処理条件のH2処理法によ
り、特定の平均再結晶粒径を有する正方晶のR2Fe14
B相の再結晶粒集合組織を有する異方性磁石粉末とな
し、これに特定量の微細な液体急冷R−Fe−B系磁石
粉末およびバインダーの樹脂を配合混合後、成形して得
られた耐熱性、耐候性並びにBr、(BH)max、角
型性のすぐれた異方性ボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent heat resistance and weather resistance as well as magnetic properties, in particular, residual magnetic flux density (hereinafter referred to as Br), maximum magnetic energy product (hereinafter referred to as (BH) max) and squareness. Related to the anisotropic bond magnet,
An R-Fe-B alloy ingot or a coarsely crushed powder obtained by crushing the ingot is subjected to an H 2 treatment method under a specific heat treatment condition to obtain a tetragonal R 2 Fe having a specific average recrystallized grain size. 14
An anisotropic magnet powder having a B-phase recrystallized grain texture was prepared, and a specific amount of a fine liquid quenched R-Fe-B magnet powder and a binder resin were mixed and mixed, and then obtained by molding. The present invention relates to an anisotropic bonded magnet having excellent heat resistance, weather resistance, Br, (BH) max, and squareness.

【0002】[0002]

【従来の技術】一般にボンド磁石は焼結磁石に比して、
磁気特性では劣るにもかかわらず、機械的強度にすぐ
れ、且つ形状の自由度が高いこと等より、近年、その利
用範囲が急速に拡大している。かかるボンド磁石は、磁
石粉末と有機バインダー、金属バインダー等により結合
して成形されるが、ボンド磁石の磁気特性は使用する磁
石粉末の磁気特性に左右される。
2. Description of the Related Art In general, a bonded magnet is compared with a sintered magnet,
In spite of its inferior magnetic properties, its use has been rapidly expanding in recent years due to its excellent mechanical strength and its high degree of freedom in shape. Such a bonded magnet is formed by bonding with a magnet powder and an organic binder, a metal binder, or the like. The magnetic properties of the bonded magnet depend on the magnetic properties of the magnet powder used.

【0003】ボンド磁石用磁石粉末としては、(1)R
−Fe−B系鋳塊を機械的粉砕法、あるいはH2吸蔵崩
壊法により得られた磁石粉末や、あるいは、(2)液体
急冷法やアトマイズ法によって、溶融合金から超急冷し
て得られた磁石粉末が利用されている。
[0003] As magnet powder for bonded magnets, (1) R
-A magnet powder obtained by mechanical pulverization method or H 2 occlusion collapse method or a (2) liquid quenching method or an atomizing method, which is obtained by ultra-quenching a molten alloy from an Fe-B-based ingot. Magnet powder is used.

【0004】前者の(1)磁石粉末では、R2Fe14
相が粒内破壊して粉砕されるので、R2Fe14B相がR
リッチ相で囲まれた組織にならず、R2Fe14B相の一
部にRリッチ相が一部付着した組織となり、また、粉砕
時に磁石粉末に歪が残留するため、粉砕のままでは保磁
力iHcは3kOe以下に低下し、歪取り熱処理した磁
石粉末やR2Fe14B相粒界部にRリッチ相を形成させ
る集合粉末とした磁石粉末でも、ボンド磁石用粉末とし
て使用した場合、成型圧力の増加に伴って、ボンド磁石
のiHcは大幅に低下し、また、バインダーの硬化時に
も磁気特性が低下する欠点がある。
In the former (1) magnet powder, R 2 Fe 14 B
The R 2 Fe 14 B phase becomes R
The structure does not become a structure surrounded by the rich phase, but becomes a structure in which the R-rich phase is partially adhered to a part of the R 2 Fe 14 B phase, and distortion remains in the magnet powder at the time of pulverization. When the magnetic force iHc is reduced to 3 kOe or less and the magnet powder subjected to the strain relief heat treatment or the aggregated powder that forms an R-rich phase at the R 2 Fe 14 B phase boundary is used as a bonded magnet powder, As the pressure is increased, the iHc of the bonded magnet is significantly reduced, and the magnetic properties are also reduced when the binder is cured.

【0005】一方、後者の(2)磁石粉末の場合は、個
々のR2Fe14B相の結晶粒の結晶方向が任意で粉末の
磁気特性が等方性であるため、ボンド磁石自体も等方性
であるため、高磁気特性が望めず、実用的には用途が制
限される問題がある。
[0005] On the other hand, in the case of the latter (2) magnet powder, since the crystal direction of each crystal grain of each R 2 Fe 14 B phase is arbitrary and the magnetic properties of the powder are isotropic, the bond magnet itself is also the same. Since it is anisotropic, high magnetic properties cannot be expected, and there is a problem that its use is practically limited.

【0006】また、低価格かつ、高性能なボンド磁石を
得るためにフェライト磁石粉末に高性能のR−Fe−B
系磁石粉末を添加配合した高性能ボンド磁石が提案され
ているが、前記R−Fe−B系磁石粉末は超急冷粉、あ
るいは鋳塊粉砕粉の等方性の磁石粉末であり、磁気特性
の改善向上は小さかった(特開昭61−284906
号、特開昭63−287003号、特開平2−7820
4号、特開平3−181104号、特開平3−2223
03号)。
Further, in order to obtain a low-priced and high-performance bonded magnet, ferrite magnet powder has high-performance R-Fe-B.
High-performance bonded magnets in which a system magnet powder is added and blended have been proposed, but the R—Fe—B system magnet powder is an isotropic magnet powder such as ultra-quenched powder or crushed ingot powder, Improvement Improvement was small (Japanese Patent Laid-Open No. 61-284906).
JP-A-63-287003, JP-A-2-7820
4, JP-A-3-181104, and JP-A-3-2223.
03).

【0007】[0007]

【発明が解決しようとする課題】そこで、最近、異方性
ボンド用磁石粉末として、R−Fe−B系合金鋳塊ある
いは粉砕後の粗粉砕粉を特定の熱処理条件のH2処理法
により、R2Fe14B正方晶相からなる再結晶集合組織
となした異方性R−Fe−B系磁石粉末が提案されてい
る(特開平1−132106号)。
[SUMMARY OF THE INVENTION Therefore, recently, as a magnetic powder for an anisotropic bonded, with H 2 treatment for a specific heat treatment conditions for R-Fe-B alloy ingot or coarse pulverized powder after pulverization, anisotropic R-Fe-B magnet powder without the recrystallization texture consisting of R 2 Fe 14 B tetragonal phase has been proposed (Japanese Patent Laid-Open No. 1-132106).

【0008】前記異方性磁石粉末を用いて異方性ボンド
磁石を製造する方法としては、前記磁石粉末にバインダ
ーとして溶剤にて液状化した樹脂を添加配合後、溶剤を
蒸発させて前記粉末を乾燥後、圧縮成形し、さらにバイ
ンダー硬化のためのキュア熱処理する工程などが一般に
知られている。
As a method of producing an anisotropic bonded magnet using the anisotropic magnet powder, a resin liquefied with a solvent as a binder is added to the magnet powder, and then the solvent is evaporated to form the powder. After drying, compression molding and a curing heat treatment for curing the binder are generally known.

【0009】しかし、原料粉末の異方性磁石粉末は非常
に酸化され易いうえ、予め磁石粉末をカップリング処理
等で粉末表面を被覆しても、成形時の応力によって磁石
粉末には割れが発生し、活性な金属面が露出してより酸
化され易くなり、また、成形したボンド磁石は密度が低
くて空孔部が多く、前記空孔部にO2、H2Oが容易に侵
入してボンド磁石が酸化し、磁気特性が時間とともに劣
化する問題があった。さらに成形時に磁石粉末が割れる
ことは、磁石粉末へ多量の歪を導入することを意味し、
保磁力および角型性の劣化を生じる観点からも好ましく
なかった。
However, the anisotropic magnet powder as a raw material powder is very easily oxidized, and even if the powder surface is coated in advance by a coupling process or the like, cracks occur in the magnet powder due to stress during molding. However, the active metal surface is exposed to be oxidized more easily, and the formed bonded magnet has a low density and a large number of pores, and O 2 and H 2 O easily enter the pores. There is a problem that the bonded magnet is oxidized and the magnetic properties deteriorate with time. Further, cracking of the magnet powder during molding means introducing a large amount of strain into the magnet powder,
It is not preferable from the viewpoint of deteriorating coercive force and squareness.

【0010】この発明は、上述の異方性ボンド磁石の問
題を解消し、成形時に磁石粉末に割れを生ずることな
く、耐熱性、耐候性と共に磁気特性、特にBr、(B
H)maxおよび角型性のすぐれた異方性ボンド磁石の
提供を目的としている。
The present invention solves the above-mentioned problems of anisotropic bonded magnets, does not cause cracks in the magnet powder during molding, and has heat resistance and weather resistance as well as magnetic properties, especially Br, (B
It is intended to provide an anisotropic bonded magnet having excellent H) max and squareness.

【0011】[0011]

【課題を解決するための手段】従来の異方性ボンド磁石
の問題点を解決すべく、発明者らは、成形したボンド磁
石中の空孔部を減少させる方法について、種々検討を加
えた結果、前記磁石粉末にバインダーとして樹脂を配合
混合する前、もしくは配合混合と同時に、あるいは配合
混合した後に、特定量の微細な液体急冷R−Fe−B系
永久磁石粉末を配合混合することにより、液体急冷R−
Fe−B系磁石微粉末は成形時に磁石粉末間隙、あるい
は薄く樹脂にて被覆された磁石粉末間隙に優先的に充填
され、かかる現象により、ボンド磁石中の空孔率が減少
すること、また、磁石粉末間隙を占める液体急冷R−F
e−B系磁石粉末は成形時に生じる磁石粉末局部への応
力集中を緩和し、磁石粉末の割れを抑制することを知見
した。
In order to solve the problems of conventional anisotropic bonded magnets, the inventors have conducted various studies on a method of reducing voids in a molded bonded magnet. , Before and / or at the same time as the compounding and mixing of the resin as a binder to the magnet powder, or after the compounding and mixing, by mixing and mixing a specific amount of a fine liquid quenching R-Fe-B based permanent magnet powder, Rapid cooling R-
The Fe-B magnet fine powder is preferentially filled in the magnet powder gap or the magnet powder gap thinly coated with resin at the time of molding, and such a phenomenon reduces the porosity in the bonded magnet. Liquid quenching R-F occupying magnet powder gap
It has been found that the e-B magnet powder alleviates stress concentration on the local part of the magnet powder that occurs during molding and suppresses cracking of the magnet powder.

【0012】また、発明者らは、1)空孔部の減少によ
って、磁石内部へのO2、H2Oの侵入が防止され、耐熱
性、耐候性が顕著に向上すること、2)従来空孔部であ
った部分が液体急冷R−Fe−B系永久磁石粉末によっ
て、置換されるため、そのため磁気特性、とくにBr、
(BH)maxが向上すること、3)さらに磁石粉末の
割れ抑制によって、ボンド磁石中の非常に活性な金属破
面が減少するので、耐熱性、耐候性は一段と向上し、
4)また、歪の導入も抑制されるので、磁気特性、特に
角型性が向上すること、5)かかる作用効果が相乗さ
れ、ボンド磁石の耐熱性、耐候性の向上、および磁気特
性の改善向上に有効なることを知見し、この発明を完成
した。
The inventors have also found that 1) the reduction of voids prevents O 2 and H 2 O from penetrating into the interior of the magnet, and significantly improves heat resistance and weather resistance. Since the portion which was the void portion is replaced by the liquid-quenched R—Fe—B-based permanent magnet powder, the magnetic characteristics, especially Br,
(BH) max is improved, 3) Furthermore, by suppressing cracking of the magnet powder, the number of highly active metal fracture surfaces in the bonded magnet is reduced, so that heat resistance and weather resistance are further improved,
4) In addition, the introduction of strain is suppressed, so that the magnetic properties, particularly the squareness, are improved. 5) The action and effect are synergized, and the heat resistance and weather resistance of the bonded magnet are improved, and the magnetic properties are improved. The inventors have found that it is effective for improvement and completed the present invention.

【0013】すなわち、この発明は、平均再結晶粒径が
0.05μm〜50μmのR2Fe14B正方晶相からな
る再結晶粒の集合組織を有する異方性R−Fe−B系磁
石粉末と、前記磁石粉末との合計に対して0.9〜49
wt%の液体急冷R−Fe−B系磁石微粉末と1〜10
wt%の樹脂とからなり、従来ボンド磁石の空隙部であ
った前記磁石粉末間隙に液体急冷R−Fe−B系磁石粉
末を充填させたことを特徴とする異方性ボンド磁石であ
る。
That is, according to the present invention, an anisotropic R-Fe-B magnet powder having a recrystallized grain structure composed of an R 2 Fe 14 B tetragonal phase having an average recrystallized grain size of 0.05 μm to 50 μm. And 0.9 to 49 with respect to the total of the magnet powder.
1% to 10% by weight of liquid quenching R-Fe-B magnet fine powder
An anisotropic bonded magnet, characterized in that it is made of a resin of wt% and is filled with liquid quenching R—Fe—B based magnet powder, which is a void of a bonded magnet in the past.

【0014】[0014]

【発明の実施の形態】この発明において、R2Fe14
正方晶相からなる再結晶集合組織の磁石粉末は、R−F
e−B系合金鋳塊あるいは前記鋳塊を粗粉砕して得られ
た粗粒を均質化処理するか、または、均質化処理せずに
2ガス雰囲気中で昇温し、温度750℃〜950℃に
30分〜8時間のH2ガス雰囲気中に保持した後、引き
続いて温度750℃〜950℃に5分〜4時間の真空雰
囲気中に保持した後、冷却し、粉砕して得られるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, R 2 Fe 14 B
A magnet powder having a recrystallization texture composed of a tetragonal phase is R-F.
The EB alloy ingot or the coarse particles obtained by coarsely pulverizing the ingot are homogenized or heated in an H 2 gas atmosphere without homogenization, and the temperature is increased to 750 ° C. It is obtained by keeping in a H 2 gas atmosphere at 950 ° C. for 30 minutes to 8 hours and subsequently in a vacuum atmosphere at 750 ° C. to 950 ° C. for 5 minutes to 4 hours, then cooling and pulverizing. Things.

【0015】かかる異方性R−Fe−B系磁石粉末の平
均粒度を5μm〜500μmに限定した理由は、5μm
未満では酸化し易く作業中に燃える恐れがあり、また、
500μmを超えると磁石粉末として実用的ではないの
で好ましくないことにあり、好ましい平均粒度は10μ
m〜300μmである。
The reason why the average particle size of the anisotropic R-Fe-B magnet powder is limited to 5 μm to 500 μm is 5 μm.
If it is less, it is easily oxidized and may burn during work,
If it exceeds 500 μm, it is not practical because it is not practical as a magnet powder.
m to 300 μm.

【0016】また、異方性R−Fe−B系磁石粉末の平
均再結晶粒径は、0.05μm未満では着磁が困難とな
り、50μmを超えるとiHc(保磁力)が5kOe以
下となり、磁気特性が低下するため、0.05μm〜5
0μmの範囲とし、好ましい平均再結晶粒径は0.1μ
m〜10μmである。
If the average recrystallized grain size of the anisotropic R-Fe-B magnet powder is less than 0.05 μm, it becomes difficult to magnetize, and if it exceeds 50 μm, the iHc (coercive force) becomes 5 kOe or less, and the magnetism is decreased. Since the characteristics deteriorate, 0.05 μm to 5 μm
0 μm, and the preferred average recrystallized particle size is 0.1 μm.
m to 10 μm.

【0017】この発明において、特定の異方性R−Fe
−B系磁石粉末に配合混合する液体急冷R−Fe−B系
磁石粉末の平均粒度は、1.0μm未満では実際の製造
上困難かつ粉末の磁気特性の低下を生じ、また、50μ
mを超えると成形時の空孔低減効果や、応力緩和効果、
すなわち磁石粉末の割れ抑制効果が少なく、耐熱性、耐
候性並びに磁気特性向上の効果が少ないので好ましくな
く、液体急冷R−Fe−B系磁石粉末の粒度は1.0μ
m〜50μmとする。好ましい液体急冷R−Fe−B系
磁石粉末の粒度は1.0μm〜10μmである。
In the present invention, a specific anisotropic R-Fe is used.
If the average particle size of the liquid-quenched R-Fe-B magnet powder mixed and mixed with the -B magnet powder is less than 1.0 μm, it is difficult in actual production and the magnetic properties of the powder are deteriorated.
If it exceeds m, the effect of reducing voids during molding, stress relaxation effect,
That is, the effect of suppressing cracking of the magnet powder is small, and the effect of improving heat resistance, weather resistance and magnetic properties is small, which is not preferable, and the particle size of the liquid-quenched R-Fe-B magnet powder is 1.0 μm.
m to 50 μm. The particle size of the preferable liquid quenched R-Fe-B magnet powder is 1.0 μm to 10 μm.

【0018】また、液体急冷R−Fe−B系磁石粉末の
配合量は、磁石粉末との合計に対して、0.9wt%未
満では空孔率低減効果、すなわち耐熱性、耐候性ならび
に磁気特性の改善効果が得られず、また49wt%を超
えるとボンド磁石の磁気特性を劣化するので、0.9w
t%〜49wt%とする。好ましい液体急冷R−Fe−
B系磁石粉末の配合量は1wt%〜30wt%である。
If the content of the liquid-quenched R-Fe-B magnet powder is less than 0.9 wt% with respect to the total amount of the magnet powder, the porosity-reducing effect, that is, heat resistance, weather resistance and magnetic properties are obtained. Is not obtained, and if it exceeds 49 wt%, the magnetic characteristics of the bonded magnet deteriorate, so 0.9 w
t% to 49 wt%. Preferred liquid quench R-Fe-
The compounding amount of the B-based magnet powder is 1 wt% to 30 wt%.

【0019】また、バインダーとしての樹脂の配合量
は、1wt%未満ではボンド磁石の強度が十分に得られ
ず、また10wt%を超えると磁気特性の劣化を招来す
るので好ましくないため、樹脂の配合量は1wt%〜1
0wt%とする。樹脂としては、熱硬化性あるいは熱可
塑性の公知の樹脂で良く、固状の樹脂は溶媒にて液状化
バインダーとして使用してもよく、溶媒はボンド磁石の
成形前に加熱揮発してもよい。また、ボンド磁石の成形
は圧縮成形の他、射出成形や押し出し成形など公知の方
法いずれでも良い。
If the amount of the resin as the binder is less than 1 wt%, the strength of the bonded magnet cannot be sufficiently obtained, and if it exceeds 10 wt%, the magnetic properties are deteriorated, which is not preferable. The amount is 1 wt% to 1
It is set to 0 wt%. The resin may be a known thermosetting or thermoplastic resin, a solid resin may be used as a liquefied binder in a solvent, and the solvent may be heated and volatilized before molding the bonded magnet. The molding of the bond magnet may be performed by any known method such as injection molding or extrusion molding in addition to compression molding.

【0020】この発明の異方性R−Fe−B系磁石粉末
に用いる希土類元素Rは、組成の10原子%〜30原子
%を占めるが、Nd,Pr,Dy,Ho,Tbのうち少
なくとも1種、あるいはさらに、La,Ce,Sm,G
d,Er,Eu,Tm,Yb,Lu,Yのうち少なくと
も1種を含むものが好ましい。また、通常Rのうち1種
をもって足りるが、実用上は2種以上の混合物(ミッシ
ュメタル、シジム等)を入手上の便宜等の理由により用
いることができる。なお、このRは純希土類元素でなく
てもよく、工業上入手可能な範囲で製造上不可避な不純
物を含有するものでも差し支えない。
The rare earth element R used in the anisotropic R—Fe—B based magnet powder of the present invention accounts for 10 to 30 atomic% of the composition, and at least one of Nd, Pr, Dy, Ho, and Tb. Seeds, or even La, Ce, Sm, G
Those containing at least one of d, Er, Eu, Tm, Yb, Lu and Y are preferable. Further, although one of R is usually sufficient, in practice, a mixture of two or more kinds (Misch metal, cydim, etc.) can be used for reasons of availability. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0021】Rは、上記系磁石粉末における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、Rは、10原子
%〜30原子%の範囲が望ましい。
R is an essential element in the above system magnet powder, and if it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as α-iron, so that high magnetic properties, especially high coercive force cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is desirably in the range of 10 at% to 30 at%.

【0022】Bは、上記系磁石粉末における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above system magnet powder. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. Increase in non-magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0023】Feは、上記系磁石粉末において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損なうことなく、温度特性を改善するこ
とができるが、Co置換量がFeの20%を超えると、
逆に磁気特性が劣化するため、好ましくない。Coの置
換量がFeとCoの合計量で5原子%〜15原子%の場
合は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned system magnet powder. If it is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 atomic%, a high coercive force cannot be obtained. % To 80 atomic%.
Also, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet, but when the Co substitution amount exceeds 20% of Fe,
On the contrary, the magnetic characteristics are deteriorated, which is not preferable. When the amount of substitution of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

【0024】また、R,B,Feのほか、工業的生産上
不可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B, and Fe, the presence of unavoidable impurities in industrial production can be tolerated. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0025】さらに、Al,Ti,V,Cr,Mn,B
i,Nb,Ta,Mo,W,Sb,Ge,Ga,Sn,
Zr,Ni,Si,Zn,Hfのうち少なくとも1種
は、磁石粉末に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。なお、添加量の上限は、ボンド
磁石の(BH)maxを14MGOe以上とするには、
(Br)が少なくとも8kG以上必要となるため、該条
件を満たす範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Ga, Sn,
At least one of Zr, Ni, Si, Zn, and Hf is added to the magnet powder because it is effective for improving the coercive force and the squareness of the demagnetization curve or improving the productivity and reducing the price. be able to. In addition, the upper limit of the addition amount is such that the (BH) max of the bonded magnet is 14 MGOe or more.
Since (Br) requires at least 8 kG or more, a range satisfying the condition is desirable.

【0026】配合混合に用いる液体急冷R−Fe−B系
磁石粉末は、商品名MQPで称される磁石粉末(平均粒
径約150μm)を数〜数10μmまで微粉砕して得
る。液体急冷R−Fe−B系磁石粉末の組成は、R(但
しRはYを含む希土類元素のうち少なくとも1種)8原
子%〜30原子%、B2原子%〜28原子%、Fe42
原子%〜90原子%を主成分とし、合金溶湯急冷のまま
で5μm以下の微細な結晶質からなる磁気異方性を有す
る複合組織より構成され、主相が正方晶化合物であるこ
とが望ましい。
The liquid-quenched R-Fe-B magnet powder used for blending and mixing is obtained by finely pulverizing magnet powder referred to by trade name MQP (average particle size: about 150 μm) to several to several tens of μm. The composition of the liquid-quenched R-Fe-B magnet powder is R (where R is at least one of rare earth elements including Y) 8 atom% to 30 atom%, B2 atom% to 28 atom%, Fe42
It is preferable that the main phase is a tetragonal compound, which is composed of a compound structure having a magnetic anisotropy of 5 μm or less and having a crystallinity of 5 μm or less as the main component of the alloy melt in an amount of at% to 90 at%.

【0027】また、液体急冷R−Fe−B系磁石粉末に
は、超急冷により非晶質あるいは非晶質と超微細結晶と
の混合組織からなるテープやリボンを再結晶化処理した
磁気的に等方性である等方性R−Fe−B系磁石粉末を
用いることができる。また、同様に超急冷により非晶質
と軟磁性結晶材料との中間状態で磁気的に等方性である
等方性R−Fe−B系磁石粉末を用いることができる。
The liquid-quenched R-Fe-B magnet powder is magnetically obtained by recrystallizing a tape or ribbon having an amorphous structure or a mixed structure of amorphous and ultrafine crystal by ultra-quenching. An isotropic R-Fe-B based magnet powder that is isotropic can be used. Similarly, isotropic R—Fe—B magnet powder that is magnetically isotropic in an intermediate state between an amorphous material and a soft magnetic crystalline material by ultra-quenching can be used.

【0028】液体急冷R−Fe−B系磁石粉末の組成
は、Rは、8原子%未満では高磁気特性、特に高保磁力
が得られず、30原子%を越えると残留磁束密度(B
r)が低下してすぐれた特性の永久磁石材料が得られな
いため、8原子%〜30原子%の範囲とし、Bは、2原
子%未満では高い保磁力(iHc)は得られず、28原
子%を越えるとBリッチな非磁性相が多くなり、残留磁
束密度(Br)が低下するため、2原子%〜28原子%
の範囲とし、Feは、42原子%未満では残留磁束密度
(Br)が低下し、90原子%を越えると高い保磁力が
得られないので、42原子%〜90原子%の含有とし、
Feの一部をCoで置換したり、種々の添加元素を添加
できる。
With respect to the composition of the liquid-quenched R-Fe-B magnet powder, when R is less than 8 atom%, high magnetic properties, particularly high coercive force cannot be obtained, and when R exceeds 30 atom%, the residual magnetic flux density (B
Since r) is lowered and a permanent magnet material having excellent characteristics cannot be obtained, the range is 8 atom% to 30 atom%, and if B is less than 2 atom%, a high coercive force (iHc) cannot be obtained. If it exceeds atomic%, the B-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases, so 2 atomic% to 28 atomic%
When the content of Fe is less than 42 atomic%, the residual magnetic flux density (Br) decreases, and when it exceeds 90 atomic%, a high coercive force cannot be obtained. Therefore, the content of Fe is set to 42 atomic% to 90 atomic%.
A part of Fe can be replaced by Co, or various additive elements can be added.

【0029】なお、この発明においては、前記液体急冷
R−Fe−B系磁石微粉末の他に、フェライト磁石粉
末、R−Fe−B系ナノコンポジット磁石微粉末、R−
Co系磁石微粉末、R−Fe−N系磁石微粉末を複合混
合してもよい。
In the present invention, in addition to the liquid quenching R-Fe-B magnet fine powder, ferrite magnet powder, R-Fe-B nanocomposite magnet fine powder, R-
The Co-based magnet fine powder and the R-Fe-N-based magnet fine powder may be mixed and mixed.

【0030】[0030]

【実施例】【Example】

実施例1 原料として真空溶解炉にて溶解鋳造し、表1に組成を表
すR−Fe−B系磁石用合金鋳塊を得た。これらの合金
鋳塊を温度1120℃、時間10時間でAr雰囲気中に
て均質化処理を行った。前記鋳塊を加熱炉に挿入し、7
60TorrのH2ガスとして、加熱炉内の温度を室温
から温度850℃に上昇し、引き続いて温度850℃に
3時間保持した後、850℃に1時間保持して脱H2
行って、真空度1×10-5Torrになるまで排気冷却
した。その後、鋳塊をAr雰囲気中で300μm以下に
なるまで粉砕して、R−Fe−B系磁石粉末を得た。得
られた磁石粉末は平均結晶粒径0.5μmのR2Fe14
B正方晶相からなる再結晶粒の集合組織を有する異方性
磁石粉末であった。
Example 1 As a raw material, melt casting was performed in a vacuum melting furnace to obtain an alloy ingot for an R-Fe-B magnet whose composition is shown in Table 1. These alloy ingots were homogenized at a temperature of 1120 ° C. for 10 hours in an Ar atmosphere. Insert the ingot into the heating furnace,
As H 2 gas of 60 Torr, the temperature in the heating furnace was raised from room temperature to a temperature of 850 ° C., and subsequently kept at a temperature of 850 ° C. for 3 hours, then kept at 850 ° C. for 1 hour to perform H 2 removal, and a vacuum was applied. The exhaust gas was cooled to 1 × 10 −5 Torr. After that, the ingot was crushed in an Ar atmosphere to 300 μm or less to obtain an R—Fe—B based magnet powder. The obtained magnet powder was R 2 Fe 14 having an average crystal grain size of 0.5 μm.
The anisotropic magnet powder had a recrystallized grain texture composed of a B tetragonal phase.

【0031】液体急冷R−Fe−B系永久磁石微粉末に
は、組成がNd12at%−B5.4at%−Co5a
t%−残部Feからなる平均粒径約150μmのMQP
−B磁粉(商品名、米国ゼネラルモーターズ社製)を用
いた。該磁粉をボールミルにより微粉砕して得た平均粒
度2.7μmの液体急冷Nd−Fe−B系磁石微粉末
を、前述の工程で得られた平均粒径150μmの前記異
方性磁石粉末との合計に対して10wt%配合後、V型
混合器にて30分間混合し、さらに、バインダーとして
3wt%のエポキシ樹脂を配合混合後、真空乾燥し、1
2kOeの磁場中で成形圧7ton/cm2で成形後、
温度170℃に1時間保持して硬化し、異方性ボンド磁
石を得た。
The liquid quenching R-Fe-B system permanent magnet fine powder has a composition of Nd12 at% -B5.4 at% -Co5a.
MQP with an average particle size of about 150 μm
-B magnetic powder (trade name, manufactured by General Motors, USA) was used. A liquid quenched Nd-Fe-B based magnet fine powder having an average particle size of 2.7 μm obtained by finely pulverizing the magnetic powder with a ball mill is used as the anisotropic magnet powder having an average particle size of 150 μm obtained in the above-mentioned step. After blending 10 wt% with respect to the total, mixing in a V-type mixer for 30 minutes, further blending and mixing 3 wt% epoxy resin as a binder, and then vacuum drying, 1
After molding at a molding pressure of 7 ton / cm 2 in a magnetic field of 2 kOe,
The temperature was maintained at 170 ° C. for 1 hour to cure, and an anisotropic bonded magnet was obtained.

【0032】得られた異方性ボンド磁石の磁気特性、角
型性および空孔率と耐候性試験結果を表2に表す。ここ
で、空孔率は、異方性R−Fe−B系磁石粉末、液体急
冷R−Fe−B系磁石粉末ならびに樹脂の密度と配合
比、および成形したボンド磁石の実測密度から計算によ
って求めた。
Table 2 shows the magnetic properties, squareness, porosity, and weather resistance test results of the obtained anisotropic bonded magnet. Here, the porosity is obtained by calculation from the density and the compounding ratio of the anisotropic R—Fe—B magnet powder, the liquid quenched R—Fe—B magnet powder and the resin, and the measured density of the molded bond magnet. It was

【0033】また、耐熱性、耐候性試験の試験条件は大
気中で100℃×1000時間の条件で、試験中の磁束
の経時変化を測定した。なお、磁束の経時変化試験方法
は試験片を着磁した後、磁束を測定し、ついで大気中に
て100℃に1000時間放置後、再び試験片を着磁し
磁束を測定し、再着磁によっても復元しない減磁率、す
なわち永久的な減磁率を算出した。この永久的な減磁は
磁石の腐食等による変質に起因するものであり、耐熱
性、耐候性向上の判定指標となり得る。
The test conditions for the heat resistance and weather resistance tests were 100 ° C. × 1000 hours in the atmosphere, and the change with time of the magnetic flux during the test was measured. The test method for the change of magnetic flux over time is to measure the magnetic flux after magnetizing the test piece, then leave it in the atmosphere at 100 ° C for 1000 hours, magnetize the test piece again, measure the magnetic flux, and remagnetize it. A demagnetization rate that does not restore even after the measurement, that is, a permanent demagnetization rate was calculated. This permanent demagnetization is caused by deterioration due to corrosion of the magnet or the like, and can be a judgment index for improving heat resistance and weather resistance.

【0034】実施例2 実施例1にて得られた磁石粉末にバインダーとして3w
t%のエポキシ樹脂を配合混合後、真空乾燥し、次い
で、実施例1に記載の液体急冷Nd−Fe−B系磁石微
粉末を前記磁石粉末との合計に対して10wt%配合混
合する以外は、実施例1と同一の製造条件にて異方性ボ
ンド磁石を作製し、得られた異方性ボンド磁石の磁気特
性、空孔率および耐候性試験結果を表2に表す。
Example 2 3 w as a binder was added to the magnet powder obtained in Example 1.
After mixing and mixing t% epoxy resin and vacuum drying, and then mixing and mixing the liquid-quenched Nd-Fe-B magnet fine powder described in Example 1 with 10 wt% based on the total of the magnet powder. An anisotropic bonded magnet was prepared under the same manufacturing conditions as in Example 1, and the magnetic properties, porosity, and weather resistance test results of the obtained anisotropic bonded magnet are shown in Table 2.

【0035】実施例3 実施例1にて得られた組成No.2の磁石粉末に、実施
例1に記載の液体急冷Nd−Fe−B系磁石微粉末を、
前記磁石粉末との合計に対して0〜50wt%の範囲で
配合量を変えて混合する以外は実施例1と同一の製造条
件にて異方性ボンド磁石を作成し、得られた異方性ボン
ド磁石の磁気特性を図1に、空孔率および耐候性試験結
果を図2に表す。
Example 3 Composition No. obtained in Example 1 2 to the magnet powder of No. 2, the liquid-quenched Nd-Fe-B based magnet fine powder described in Example 1,
Anisotropic bond magnet was prepared under the same manufacturing conditions as in Example 1 except that the compounding amount was changed in the range of 0 to 50 wt% with respect to the total of the magnet powder, and the anisotropy obtained was obtained. The magnetic properties of the bonded magnet are shown in FIG. 1, and the porosity and weather resistance test results are shown in FIG.

【0036】実施例4 実施例1にて得られた組成No.2の磁石粉末に、ボー
ルミル粉砕時間を変えて作成した1.2μm、2.7μ
m、3.5μm、4.9μm、6.5μm、9.7μm
の各平均粒径の液体急冷Nd−Fe−B系磁石微粉末を
それぞれ、前記磁石粉末との合計に対して10wt%配
合混合する以外は実施例1と同一の製造条件にて異方性
ボンド磁石を作成し、得られた異方性ボンド磁石の磁気
特性を図3に、空孔率と耐候性試験結果を図4に示す。
Example 4 Composition No. obtained in Example 1 1.2μm, 2.7μ made by changing the ball mill grinding time to the magnet powder of No. 2
m, 3.5 μm, 4.9 μm, 6.5 μm, 9.7 μm
Anisotropic bond under the same manufacturing conditions as in Example 1 except that 10 wt% of the liquid-quenched Nd-Fe-B-based magnet fine powder of each average particle diameter is mixed and mixed with the total of the magnet powder. A magnetic property of the obtained anisotropic bonded magnet is shown in FIG. 3, and porosity and weather resistance test results are shown in FIG.

【0037】比較例1 実施例1にて得られた磁石粉末に液体急冷R−Fe−B
系永久磁石粉末を配合混合しない以外は実施例1と同一
の製造条件にて異方性ボンド磁石を作成し、得られた異
方性ボンド磁石の磁気特性、角型性および空孔率と耐候
性試験結果を表2に表す。
Comparative Example 1 Liquid quenching R-Fe-B was added to the magnet powder obtained in Example 1.
An anisotropic bonded magnet was prepared under the same manufacturing conditions as in Example 1 except that the permanent magnet powder was not mixed and mixed, and the magnetic properties, squareness, porosity and weather resistance of the obtained anisotropic bonded magnet were obtained. The sex test results are shown in Table 2.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】この発明による異方性ボンド磁石は、R
−Fe−B系合金鋳塊あるいは前記鋳塊を粉砕して得ら
れた粗粉砕粉を、特定の熱処理条件のH2処理法によ
り、特定の平均再結晶粒径を有する正方晶のR2Fe14
B相の再結晶粒集合組織を有する異方性磁石粉末とな
し、所定量の微細な液体急冷R−Fe−B系永久磁石粉
末とバインダーの樹脂を配合混合後、成形して得られた
もので、実施例に明らかなように、耐熱性、耐候性並び
に磁気特性にすぐれている。
The anisotropic bonded magnet according to the present invention has an R
A —Fe—B-based alloy ingot or a coarsely pulverized powder obtained by crushing the ingot is subjected to an H 2 treatment method under specific heat treatment conditions to obtain a tetragonal R 2 Fe having a specific average recrystallized grain size. 14
Anisotropic magnet powder having a B-phase recrystallized grain texture, obtained by compounding and mixing a predetermined amount of a fine liquid quenching R-Fe-B system permanent magnet powder and a binder resin, and molding the mixture. As is clear from the examples, it has excellent heat resistance, weather resistance and magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】混合した液体急冷Nd−Fe−B系永久磁石粉
末(平均粒度2.7μm)の量(wt%)と得られたボ
ンド磁石の磁気特性との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount (wt%) of mixed liquid quenching Nd—Fe—B based permanent magnet powder (average particle size 2.7 μm) and the magnetic properties of the obtained bonded magnet.

【図2】混合した液体急冷Nd−Fe−B系永久磁石粉
末(平均粒度2.7μm)の量(wt%)と得られたボ
ンド磁石の空孔率(%)及び耐候性試験後の永久減磁率
(%)との関係を示すグラフである。
FIG. 2 shows the amount (wt%) of mixed liquid-quenched Nd—Fe—B based permanent magnet powder (average particle size 2.7 μm), the porosity (%) of the obtained bonded magnet, and the permanent property after a weather resistance test. It is a graph which shows the relationship with a demagnetization rate (%).

【図3】10wt%混合した液体急冷Nd−Fe−B系
永久磁石粉末の平均粒径(μm)と得られたボンド磁石
の磁気特性との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the average particle size (μm) of liquid rapidly cooled Nd—Fe—B based permanent magnet powder mixed with 10 wt% and the magnetic properties of the obtained bonded magnet.

【図4】10wt%混合した液体急冷Nd−Fe−B系
永久磁石粉末の平均粒径(μm)と得られたボンド磁石
の空孔率(%)及び耐候性試験後の永久減磁率(%)と
の関係を示すグラフである。
FIG. 4 is an average particle diameter (μm) of a liquid-quenched Nd—Fe—B system permanent magnet powder mixed with 10 wt%, a porosity (%) of the obtained bonded magnet, and a permanent demagnetization rate (%) after a weather resistance test. ) Is a graph showing the relationship with.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均再結晶粒径が0.05μm〜50μ
mのR2Fe14B正方晶相からなる再結晶粒の集合組織
を有する異方性R−Fe−B系磁石粉末と、前記磁石粉
末との合計に対して0.9〜49wt%の液体急冷R−
Fe−B系磁石粉末と1〜10wt%の樹脂とからなる
異方性ボンド磁石。
An average recrystallized grain size of 0.05 μm to 50 μm.
liquid of 0.9 to 49 wt% with respect to the total of the anisotropic R-Fe-B magnet powder having the recrystallized grain texture of the R 2 Fe 14 B tetragonal phase of m and the magnet powder. Rapid cooling R-
An anisotropic bonded magnet comprising Fe-B based magnet powder and 1 to 10 wt% of resin.
JP35331295A 1995-12-27 1995-12-27 Anisotropic bonded magnet Expired - Lifetime JP3623583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35331295A JP3623583B2 (en) 1995-12-27 1995-12-27 Anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35331295A JP3623583B2 (en) 1995-12-27 1995-12-27 Anisotropic bonded magnet

Publications (2)

Publication Number Publication Date
JPH09186011A true JPH09186011A (en) 1997-07-15
JP3623583B2 JP3623583B2 (en) 2005-02-23

Family

ID=18429999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35331295A Expired - Lifetime JP3623583B2 (en) 1995-12-27 1995-12-27 Anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3623583B2 (en)

Also Published As

Publication number Publication date
JP3623583B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
EP0657899B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JPH0316761B2 (en)
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JP3604853B2 (en) Manufacturing method of anisotropic bonded magnet
JP3641021B2 (en) High coercive force iron-based permanent magnet and bonded magnet
JP3623564B2 (en) Anisotropic bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JPH09312230A (en) Manufacturing anisotropic bond magnet
JP3670424B2 (en) Method for manufacturing anisotropic bonded magnet
JP3623583B2 (en) Anisotropic bonded magnet
JP3703903B2 (en) Anisotropic bonded magnet
JP3652752B2 (en) Anisotropic bonded magnet
JPH09330842A (en) Manufacture of anisotropic bond magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS62257703A (en) Resin-bonded magnetic material
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP2925840B2 (en) Fe-BR bonded magnet
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

EXPY Cancellation because of completion of term