JP2007250605A - Method for manufacturing r-t-b-based rare-earth permanent magnet - Google Patents

Method for manufacturing r-t-b-based rare-earth permanent magnet Download PDF

Info

Publication number
JP2007250605A
JP2007250605A JP2006068538A JP2006068538A JP2007250605A JP 2007250605 A JP2007250605 A JP 2007250605A JP 2006068538 A JP2006068538 A JP 2006068538A JP 2006068538 A JP2006068538 A JP 2006068538A JP 2007250605 A JP2007250605 A JP 2007250605A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
alloy
earth permanent
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006068538A
Other languages
Japanese (ja)
Inventor
Makoto Nakane
誠 中根
Fumitaka Baba
文崇 馬場
Kiwa Otsuka
喜和 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006068538A priority Critical patent/JP2007250605A/en
Publication of JP2007250605A publication Critical patent/JP2007250605A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-T-B-based rare-earth permanent magnet for improving mass-productivity of a high performance R-T-B-besed rare-earth permanent magnet. <P>SOLUTION: The manufacturing method includes the steps of manufacturing an R-T-B alloy that is mainly formed of R<SB>2</SB>T<SB>14</SB>B phase with inclusion of Co, Zr, and Cu, and an R-T alloy that is mainly formed of R and T; obtaining a mixture formed of powder of R-T-B alloy and powder of R-T alloy; producing a mold of the predetermined shape formed of the mixture; and obtaining a sintered material by sintering the mold. In the step of obtaining the mixture, ≥50% Co included in the mixture is supplied from powder of the R-T-B alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、R(RはYを含む希土類元素の1種又は2種以上)、T(TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)及びB(ホウ素)を主成分とする磁気特性に優れたR−T−B系希土類永久磁石の製造方法に関するものである。   In the present invention, R (R is one or more of rare earth elements including Y), T (T is at least one transition metal element in which Fe or Fe and Co are essential) and B (boron). The present invention relates to a method for producing an RTB-based rare earth permanent magnet having excellent magnetic properties as a main component.

希土類永久磁石の中でもR−T−B系希土類永久磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、需要は年々、増大している。R−T−B系希土類永久磁石の磁気特性を向上するための研究開発も精力的に行われており、例えば、R−T−B系希土類永久磁石に0.02〜0.5at%のCuを添加することにより、磁気特性の向上と熱処理条件を改善する報告がなされている(例えば、特許文献1参照。)。しかしながら、高性能磁石に要求されるような高磁気特性、具体的には高い保磁力(HcJ)及び残留磁束密度(Br)を得るには不十分であった。   Among the rare earth permanent magnets, RTB rare earth permanent magnets are excellent in magnetic properties, and Nd as a main component is abundant in resources and relatively inexpensive. Yes. Research and development for improving the magnetic properties of RTB-based rare earth permanent magnets has also been vigorously conducted. For example, an RTB-based rare earth permanent magnet has a Cu content of 0.02 to 0.5 at%. There has been a report of improving the magnetic properties and heat treatment conditions by adding (see, for example, Patent Document 1). However, it has been insufficient to obtain the high magnetic properties required for high performance magnets, specifically, high coercive force (HcJ) and residual magnetic flux density (Br).

R−T−B系希土類永久磁石をさらに高性能化するためには、合金中の酸素量を低下させることが必要である。しかし、合金中の酸素量を低下させると焼結工程において異常粒成長が起こりやすく、角形比が低下する。合金中の酸素が形成している酸化物が結晶粒の成長を抑制しているためである。
そこで磁気特性を向上する手段として、Co、Al、Cu、さらにZr、Nb又はHfを含有するR−T−B系希土類永久磁石中に微細なZrB化合物、NbB化合物又はHfB化合物(以下、M−B化合物)を均一に分散して析出させることにより、焼結過程における粒成長を抑制し、磁気特性と焼結温度幅を改善する報告がなされている(例えば、特許文献2参照。)。しかしながら、特許文献2に開示される実施例3−1では焼結温度幅が20℃程度と狭く、量産炉などで高い磁気特性を得るには、さらに焼結温度幅を広げることが望ましい。
そこで、特許文献3によれば、Zrの分散性を良好なものとし、かつZrが特定の元素(具体的にはCu、Co、Nd)とともに濃度の高い領域を形成させることで、得られる永久磁石の角形比(Hk/HcJ)が90%以上となる焼結温度幅を、40℃以上とすることができるとの報告がなされている。
そして、特許文献4によれば、Zrの分散性を良好なものとするには、R14B系金属間化合物を主体とする主相形成用の合金と、主相間に存在する粒界相形成用の合金とを混合して希土類永久磁石を得る製造方法において、主相形成用の合金にZrを含有させるのが良いとしている。さらに、主相形成用の合金には、Zrに加えて、Cu及びAlの1種又は2種を同時に添加する方法が良いことを提唱している。
In order to further improve the performance of the RTB-based rare earth permanent magnet, it is necessary to reduce the amount of oxygen in the alloy. However, when the amount of oxygen in the alloy is reduced, abnormal grain growth is likely to occur in the sintering process, and the squareness ratio is reduced. This is because the oxide formed by oxygen in the alloy suppresses the growth of crystal grains.
Therefore, as means for improving the magnetic characteristics, a fine ZrB compound, NbB compound or HfB compound (hereinafter referred to as M-) is contained in an RTB-based rare earth permanent magnet containing Co, Al, Cu, and Zr, Nb or Hf. It has been reported that by uniformly dispersing and precipitating the (B compound), grain growth in the sintering process is suppressed and magnetic characteristics and sintering temperature range are improved (for example, see Patent Document 2). However, in Example 3-1, disclosed in Patent Document 2, the sintering temperature range is as narrow as about 20 ° C., and it is desirable to further widen the sintering temperature range in order to obtain high magnetic properties in a mass production furnace or the like.
Therefore, according to Patent Document 3, Zr has good dispersibility, and a permanent region obtained by forming a region having a high concentration of Zr together with a specific element (specifically, Cu, Co, Nd). It has been reported that the sintering temperature width at which the magnet squareness ratio (Hk / HcJ) is 90% or more can be 40 ° C. or more.
Further, according to Patent Document 4, in a favorable dispersibility of Zr is an alloy for the main phase formed mainly of R 2 T 14 B intermetallic compound, grain boundaries existing between the main phase In the manufacturing method of obtaining a rare earth permanent magnet by mixing with an alloy for phase formation, it is preferable that Zr is contained in the alloy for main phase formation. Further, it is proposed that a method of simultaneously adding one or two of Cu and Al in addition to Zr to the alloy for forming the main phase is good.

特開平1−219143号公報(第1頁)JP-A-1-219143 (first page) 特開2002−75717号公報(第1頁)JP 2002-75717 A (first page) 国際公開第2004/029995号パンフレットInternational Publication No. 2004/029995 Pamphlet 国際公開第2004/029998号パンフレットInternational Publication No. 2004/029998 Pamphlet

しかしながら、上記したような従来の手法では、得られるR−T−B系希土類永久磁石の保磁力変化に影響が大きい時効熱処理の温度幅によって、磁気特性のばらつきが大きいという問題がある。
焼結で得られるR−T−B系希土類永久磁石の磁気特性は、焼結後の時効熱処理の条件に大きく依存するところがある。工業的生産規模においては、炉内の全域で加熱温度を均一にすることは困難である。このため、R−T−B系希土類永久磁石において、炉内の温度分布範囲内程度には熱処理温度が変動しても所望する磁気特性を得ることが要求される。
しかしながら、良好な保磁力が得られる適正な時効温度の幅(以下、これを時効適正温度幅と称する)が狭いと、炉内の温度分布の影響を受け、良好な保磁力を有するR−T−B系希土類永久磁石が得られる率が低くなり、生産性を向上させるのが困難となる。
本発明は、このような技術的課題に基づいてなされたもので、高特性のR−T−B系希土類永久磁石の量産性を向上させることのできるR−T−B系希土類永久磁石の製造方法を提供することを目的とする。
However, the conventional methods as described above have a problem that the magnetic characteristics vary greatly due to the temperature range of the aging heat treatment that has a great influence on the change in coercive force of the obtained RTB-based rare earth permanent magnet.
The magnetic properties of the R-T-B rare earth permanent magnet obtained by sintering depend greatly on the conditions of aging heat treatment after sintering. On an industrial production scale, it is difficult to make the heating temperature uniform throughout the furnace. For this reason, in an R-T-B rare earth permanent magnet, it is required to obtain desired magnetic characteristics even if the heat treatment temperature varies within a temperature distribution range in the furnace.
However, if the appropriate aging temperature range in which good coercive force can be obtained (hereinafter referred to as aging appropriate temperature range) is narrow, it is affected by the temperature distribution in the furnace, and has a good coercive force RT. The rate at which -B rare earth permanent magnets are obtained becomes low, and it becomes difficult to improve productivity.
The present invention has been made on the basis of such a technical problem, and manufacture of an R-T-B rare earth permanent magnet capable of improving the mass productivity of a high-performance R-T-B rare earth permanent magnet. It aims to provide a method.

かかる目的のもと、本発明のR−T−B系希土類永久磁石の製造方法は、R14B相(ただし、RはYを含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)からなる主相と、主相よりRを多く含む粒界相とを含む焼結体からなるR−T−B系希土類永久磁石の製造方法であって、R14B相を主体とし、Co、Zr、Cuを含むR−T−B合金からなる粉末、及びR及びTを主体とするR−T合金からなる粉末の混合物を得る工程と、前記の混合物からなる所定形状の成形体を作製する工程と、成形体を焼結して焼結体を得る工程と、を備え、混合物を得る工程にて、混合物に含まれるCo量の50%以上をR−T−B合金からなる粉末から供給することを特徴とする。 For this purpose, the method for producing an R-T-B rare earth permanent magnet of the present invention has an R 2 T 14 B phase (where R is one or more of rare earth elements including Y, and T is Fe. Or an R—T—B-based rare earth comprising a sintered body comprising a main phase composed of one or more transition metal elements essential for Fe and Co) and a grain boundary phase containing more R than the main phase. A method for manufacturing a permanent magnet, comprising a powder composed of an R-T-B alloy mainly composed of an R 2 T 14 B phase and containing Co, Zr, Cu, and an RT alloy mainly composed of R and T. A step of obtaining a mixture, comprising: a step of obtaining a mixture of powder; a step of producing a molded body of a predetermined shape made of the mixture; and a step of obtaining a sintered body by sintering the molded body. 50% or more of the amount of Co contained in is supplied from powder made of RTB alloy. That.

このような製法は、焼結体の組成が、R:28〜33wt%、B:0.5〜1.5wt%、Al:0.03〜0.3wt%、Cu:0.15wt%以下(0を含まず)、Co:2wt%以下(0を含まず)、Zr:0.05〜0.25wt%、残部実質的にFeからなる高特性のR−T−B系希土類永久磁石を製造する際に用いるのに適している。
このような製法を採用することで、焼結体に含まれる酸素量が2000ppm以下であるR−T−B系希土類永久磁石を製造できる。また、その焼結体に含まれる炭素量は300〜2000ppmとすることができる。
また、このような製法によれば、R−T−B合金からなる粉末に、Co、Zr、Cuを含み、さらに混合物に含まれるCo量の50%以上を含むことで、焼結体の角形比Hk/HcJ(HcJは保磁力、Hkは、磁気ヒステリシスル−プの第2象限において、残留磁束密度に対する磁化の割合が90%になるときの外部磁界強度。)が90%以上である焼結体、すなわちR−T−B系希土類永久磁石を、より広い熱処理温度範囲で製造することが可能となる。
In such a manufacturing method, the composition of the sintered body is R: 28 to 33 wt%, B: 0.5 to 1.5 wt%, Al: 0.03 to 0.3 wt%, Cu: 0.15 wt% or less ( 0%), Co: 2 wt% or less (not including 0), Zr: 0.05 to 0.25 wt%, and a high-performance R—T—B system rare earth permanent magnet consisting essentially of Fe is manufactured. Suitable for use.
By adopting such a manufacturing method, an RTB-based rare earth permanent magnet in which the amount of oxygen contained in the sintered body is 2000 ppm or less can be manufactured. The amount of carbon contained in the sintered body can be 300 to 2000 ppm.
Further, according to such a manufacturing method, the powder made of the RTB alloy contains Co, Zr, and Cu, and further contains 50% or more of the amount of Co contained in the mixture. The ratio Hk / HcJ (HcJ is the coercive force, Hk is the external magnetic field strength when the ratio of the magnetization to the residual magnetic flux density is 90% in the second quadrant of the magnetic hysteresis loop) is 90% or more. A bonded body, that is, an R-T-B rare earth permanent magnet can be manufactured in a wider heat treatment temperature range.

本発明によれば、高い角形比を有したR−T−B系希土類永久磁石を得ることのできる熱処理温度幅を広げることが可能となり、これによって高特性を有したR−T−B系希土類永久磁石の量産性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to extend the heat treatment temperature range which can obtain the RTB system rare earth permanent magnet which has a high squareness ratio, and, thereby, the RTB system rare earth which has the high characteristic. The mass productivity of permanent magnets can be improved.

<組織>
本発明によって得られるR−T−B系希土類永久磁石は、よく知られているように、R14B相(RはYを含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする遷移金属元素の1種又は2種以上)からなる主相と、この主相よりRを多く含む粒界相とを少なくとも含む焼結体から構成される。
<Organization>
As is well known, the R-T-B rare earth permanent magnet obtained by the present invention has an R 2 T 14 B phase (R is one or more of rare earth elements including Y, and T is Fe or It is composed of a sintered body including at least a main phase composed of one or more transition metal elements including Fe and Co) and a grain boundary phase containing more R than the main phase.

<化学組成>
次に、本発明によるR−T−B系希土類永久磁石の望ましい化学組成について説明する。ここでいう化学組成は焼結後における化学組成をいう。
本発明のR−T−B系希土類永久磁石は、希土類元素(R)を25〜35wt%含有する。
ここで、希土類元素は、Yを含む希土類元素(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb及びLu)の1種又は2種以上である。希土類元素の量が25wt%未満であると、R−T−B系希土類永久磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、希土類元素が35wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。また希土類元素が酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、希土類元素の量は25〜35wt%とする。望ましい希土類元素の量は28〜33wt%、さらに望ましい希土類元素の量は29〜32wt%である。
<Chemical composition>
Next, the desirable chemical composition of the RTB-based rare earth permanent magnet according to the present invention will be described. The chemical composition here refers to the chemical composition after sintering.
The RTB-based rare earth permanent magnet of the present invention contains 25 to 35 wt% of a rare earth element (R).
Here, the rare earth element is one or more of Y-containing rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu). If the amount of the rare earth element is less than 25 wt%, the R 2 T 14 B phase that is the main phase of the R—T—B system rare earth permanent magnet is not sufficiently generated, and α-Fe having soft magnetism is precipitated, The coercive force is significantly reduced. On the other hand, if the rare earth element exceeds 35 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, the rare earth element reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for generating the coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of rare earth elements is 25 to 35 wt%. A desirable rare earth element amount is 28 to 33 wt%, and a more desirable rare earth element amount is 29 to 32 wt%.

Ndは資源的に豊富で比較的安価であることから、希土類元素としての主成分をNdとすることが好ましい。またDyの含有はR14B相の異方性磁界を向上させ、保磁力を向上させる上で有効である。よって、希土類元素としてNd及びDyを選択し、Nd及びDyの合計を25〜33wt%とすることが望ましい。そして、この範囲において、Dyの量は0.1〜12wt%が望ましい。Dyは、残留磁束密度及び保磁力のいずれを重視するかによって上記範囲内においてその量を定めることが望ましい。つまり、高い残留磁束密度を得たい場合にはDy量を0.1〜3.5wt%とし、高い保磁力を得たい場合にはDy量を3.5〜12wt%とすることが望ましい。 Since Nd is abundant in resources and relatively inexpensive, it is preferable to use Nd as the main component as a rare earth element. The inclusion of Dy is effective in improving the anisotropic magnetic field of the R 2 T 14 B phase and improving the coercive force. Therefore, it is desirable that Nd and Dy are selected as the rare earth elements, and the total of Nd and Dy is 25 to 33 wt%. In this range, the amount of Dy is preferably 0.1 to 12 wt%. It is desirable to determine the amount of Dy within the above range depending on which of the residual magnetic flux density and the coercive force is important. That is, when it is desired to obtain a high residual magnetic flux density, the Dy amount is preferably 0.1 to 3.5 wt%, and when a high coercive force is desired, the Dy amount is desirably 3.5 to 12 wt%.

また、本発明のR−T−B系希土類永久磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。ただし、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。   The RTB-based rare earth permanent magnet of the present invention contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. However, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.

本発明のR−T−B系希土類永久磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる永久磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.08wt%である。   The RTB-based rare earth permanent magnet of the present invention can contain one or two of Al and Cu in the range of 0.02 to 0.5 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, the corrosion resistance, and the temperature characteristics of the obtained permanent magnet. In the case of adding Al, a desirable amount of Al is 0.03 to 0.3 wt%, and a more desirable amount of Al is 0.05 to 0.25 wt%. In addition, in the case of adding Cu, the desirable amount of Cu is 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0.08 wt%.

本発明のR−T−B系希土類永久磁石は、Zrを0.03〜0.25wt%の範囲で含有することが望ましい。ZrはR−T−B系希土類永久磁石の磁気特性向上を図るために酸素量を低減する際に、焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一かつ微細にする。したがって、Zrは酸素量が低い場合にその効果が顕著になる。Zrの望ましい量は0.1〜0.23wt%、さらに望ましい量は0.15〜0.2wt%である。   The RTB-based rare earth permanent magnet of the present invention desirably contains Zr in the range of 0.03 to 0.25 wt%. Zr exhibits the effect of suppressing the abnormal growth of crystal grains during the sintering process when reducing the oxygen content in order to improve the magnetic properties of the R-T-B rare earth permanent magnet, and the structure of the sintered body To make it uniform and fine. Therefore, Zr has a remarkable effect when the amount of oxygen is low. A desirable amount of Zr is 0.1 to 0.23 wt%, and a more desirable amount is 0.15 to 0.2 wt%.

本発明のR−T−B系希土類永久磁石は、その酸素量を2000ppm以下とする。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させる。そこで本発明では、焼結体中に含まれる酸素量を、2000ppm以下、望ましくは1500ppm以下、さらに望ましくは1000ppm以下とする。   The RTB-based rare earth permanent magnet of the present invention has an oxygen content of 2000 ppm or less. If the amount of oxygen is large, the rare-earth oxide phase, which is a non-magnetic component, increases and the magnetic properties are degraded. Therefore, in the present invention, the amount of oxygen contained in the sintered body is set to 2000 ppm or less, desirably 1500 ppm or less, and more desirably 1000 ppm or less.

本発明のR−T−B系希土類永久磁石は、Coを4.0wt%以下(0を含まず)、望ましくは0.1〜2.0wt%、さらに望ましくは0.3〜0.7wt%含有する。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。   In the R-T-B rare earth permanent magnet of the present invention, Co is 4.0 wt% or less (not including 0), preferably 0.1 to 2.0 wt%, more preferably 0.3 to 0.7 wt%. contains. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

<製造方法>
次に、本発明によるR−T−B系希土類永久磁石の好適な製造方法について説明する。
本実施の形態では、R14B相を主体とする主相用合金と、RとTを主成分とする粒界相用合金とを用いて本発明にかかる希土類永久磁石を製造する方法について示す。
<Manufacturing method>
Next, the suitable manufacturing method of the RTB system rare earth permanent magnet by this invention is demonstrated.
In the present embodiment, a method for producing a rare earth permanent magnet according to the present invention using an alloy for a main phase mainly composed of R 2 T 14 B phase and an alloy for a grain boundary phase mainly composed of R and T Show about.

はじめに、真空又は不活性ガス、好ましくはAr雰囲気中でストリップキャスティングすることにより、主相用合金及び粒界相用合金を得る。
主相用合金には、希土類元素、Fe、Co、Zr、Cu及びBの他に、Alを含有させることができ、また、粒界相用合金にも、希土類元素、Fe、Coの他に、Cu及びAlを含有させることができる。
ここで、主相を構成する主相用合金には、Coについて、最終組成物中のCo含有量の50%以上を添加するのが好ましい。主相用合金に添加するCoを増やすことで、最終的に得られるR−T−B系希土類永久磁石の角形比を高めることができる。ここで、主相を構成する主相用合金へのCo添加量の好ましい範囲は、最終組成物中のCo含有量の60%以上であり、より好ましい範囲は80%以上である。
さらに、主相用合金には、Co、Zr、Cuを必須の添加とするのが好ましい。これにより、熱処理、特に時効処理における適正温度幅を広げることが可能となる。
First, the main phase alloy and the grain boundary phase alloy are obtained by strip casting in a vacuum or an inert gas, preferably in an Ar atmosphere.
In addition to the rare earth elements, Fe, Co, Zr, Cu and B, the main phase alloy can contain Al. In addition to the rare earth elements, Fe and Co, the grain boundary phase alloy can also be contained. Cu and Al can be contained.
Here, it is preferable to add 50% or more of the Co content in the final composition to Co in the main phase alloy constituting the main phase. By increasing the amount of Co added to the main phase alloy, the squareness ratio of the R-T-B rare earth permanent magnet finally obtained can be increased. Here, a preferable range of the amount of Co added to the main phase alloy constituting the main phase is 60% or more of the Co content in the final composition, and a more preferable range is 80% or more.
Furthermore, it is preferable that Co, Zr, and Cu are essential additions to the main phase alloy. This makes it possible to widen the appropriate temperature range in heat treatment, particularly aging treatment.

主相用合金及び粒界相用合金が作製された後、これらの原料合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。
粗粉砕工程後、微粉砕工程に移る。微粉砕には、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。
After the main phase alloy and the grain boundary phase alloy are made, these raw material alloys are ground separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloys are coarsely pulverized until each particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen.
After the coarse pulverization process, the process proceeds to the fine pulverization process. In the fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle size of about several hundreds of μm is pulverized until the average particle size becomes 3 to 5 μm. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall.

微粉砕工程において主相用合金及び粒界相用合金を別々に粉砕した場合には、微粉砕された主相用合金粉末及び粒界相用合金粉末とを窒素雰囲気中で混合する。主相用合金粉末及び粒界相用合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。主相用合金及び粒界相用合金を一緒に粉砕する場合の混合比率も同様である。微粉砕時に、脂肪酸アミド、脂肪酸、金属石鹸等の潤滑剤を0.01〜0.3wt%程度添加することにより、成形時に配向性の高い微粉を得ることができる。
次いで、主相用合金粉末及び粒界相用合金粉末からなる混合粉末を、電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12〜17kOe(960〜1360kA/m)の磁場中で、0.7〜1.5ton/cm(70〜150MPa前後の圧力で行なえばよい。
When the main phase alloy and the grain boundary phase alloy are separately pulverized in the fine pulverization step, the finely pulverized main phase alloy powder and the grain boundary phase alloy powder are mixed in a nitrogen atmosphere. The mixing ratio of the main phase alloy powder and the grain boundary phase alloy powder may be about 80:20 to 97: 3 by weight. The same applies to the mixing ratio when the main phase alloy and the grain boundary phase alloy are pulverized together. By adding about 0.01 to 0.3 wt% of a lubricant such as fatty acid amide, fatty acid or metal soap during fine pulverization, fine powder with high orientation can be obtained during molding.
Next, a mixed powder composed of the main phase alloy powder and the grain boundary phase alloy powder is filled in a mold held by an electromagnet and molded in a magnetic field with its crystal axis oriented by applying a magnetic field. The forming in the magnetic field may be performed in a magnetic field of 12 to 17 kOe (960 to 1360 kA / m) at a pressure of about 0.7 to 1.5 ton / cm 2 (about 70 to 150 MPa).

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃で1〜5時間程度焼結すればよい。
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行なう場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、600℃近傍の時効処理を施すとよい。
After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of a particle size and a particle size distribution, what is necessary is just to sinter at 1000-1100 degreeC for about 1 to 5 hours.
After sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. In the case where the aging treatment is performed in two stages, holding for a predetermined time at around 800 ° C. and around 600 ° C. is effective. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by the heat treatment at around 600 ° C., the aging treatment at around 600 ° C. is preferably performed when the aging treatment is performed in one stage.

次に、具体的な実施例を挙げて本発明をさらに詳細に説明する。   Next, the present invention will be described in more detail with specific examples.

1)原料合金
表1、表2に示すように、Co、Cu、Zrの含有量が異なる組成の原料合金(主相用合金及び粒界相用合金)をストリップキャスト法により作製した。なお、表1と表2では、原料合金におけるDyの含有量が異なっている。
1) Raw material alloys As shown in Tables 1 and 2, raw material alloys (main phase alloy and grain boundary phase alloy) having different compositions of Co, Cu, and Zr were produced by strip casting. In Table 1 and Table 2, the content of Dy in the raw material alloy is different.

Figure 2007250605
Figure 2007250605

Figure 2007250605
Figure 2007250605

2)水素粉砕工程
原料合金に対して室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行なう、水素粉砕処理を行なった。
高磁気特性を得るべく、本実施例では、水素粉砕(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えてある。
2) Hydrogen pulverization step After the hydrogen was occluded in the raw material alloy at room temperature, hydrogen pulverization treatment was performed in which dehydrogenation was performed in an Ar atmosphere at 600 ° C for 1 hour.
In this embodiment, in order to obtain high magnetic properties, the atmosphere in each step from hydrogen pulverization (recovery after pulverization) to sintering (put into the sintering furnace) is suppressed to an oxygen concentration of less than 100 ppm.

3)混合・粉砕工程
通常、粗粉砕と微粉砕による2段粉砕を行っているが、本実施例では粗粉砕工程を省いている。
微粉砕を行なう前に粉砕助剤としてオレイン酸アミドを0.1wt%添加し、表3、表4に示す組合せで主相用合金と粒界相用合金とをナウターミキサーで30分間混合した。なお、主相用合金である合金aと粒界相用合金である合金bとの混合比率は、95:5である。
その後、ジェットミルにて平均粒径4μmになるまで微粉砕を行なった。
3) Mixing / Pulverizing Step Usually, two-stage pulverization by coarse pulverization and fine pulverization is performed, but in this example, the coarse pulverization step is omitted.
Before pulverization, 0.1 wt% of oleic amide was added as a grinding aid, and the main phase alloy and the grain boundary phase alloy were mixed for 30 minutes with a Nauta mixer in the combinations shown in Tables 3 and 4. . The mixing ratio of the alloy a which is the main phase alloy and the alloy b which is the grain boundary phase alloy is 95: 5.
Thereafter, fine pulverization was performed with a jet mill until the average particle size became 4 μm.

Figure 2007250605
Figure 2007250605

Figure 2007250605
Figure 2007250605

4)成形工程
得られた微粉末を15kOe(1200kA/m)の配向磁場中で1.2ton/cm(120MPa)の圧力で成形を行い、成形体を得た。
5)焼結、時効工程
この成形体を真空中において、表3、4に示す焼結温度で4時間焼結した後、急冷した。次いで得られた焼結体に850℃×1時間と570℃×1時間(ともにAr雰囲気中)の2段時効処理を施した。
4) Molding step The obtained fine powder was molded at a pressure of 1.2 ton / cm 2 (120 MPa) in an orientation magnetic field of 15 kOe (1200 kA / m) to obtain a molded body.
5) Sintering and aging process This compact was sintered in a vacuum at the sintering temperatures shown in Tables 3 and 4 for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment of 850 ° C. × 1 hour and 570 ° C. × 1 hour (both in an Ar atmosphere).

得られた永久磁石の化学組成は、表3に示すR−T−B系希土類永久磁石の場合、21.8wt%Nd−8.4wt%Dy−0.2wt%Al−0.1wt%Cu−1.0wt%B−0.2wt%Zr−0.5wt%Co−bal.Feであり、表4に示すR−T−B系希土類永久磁石の場合は、25.0wt%Nd−5.0wt%Dy−0.2wt%Al−0.1wt%Cu−1.0wt%B−0.2wt%Zr−0.5wt%Co−bal.Feとした。なお、各磁石の酸素量、窒素量を表3、表4に示すが、酸素量は0.08wt%以下、窒素量は0.03wt%以下と低い値となっている。   The chemical composition of the obtained permanent magnet is 21.8 wt% Nd-8.4 wt% Dy-0.2 wt% Al-0.1 wt% Cu- in the case of the RTB-based rare earth permanent magnet shown in Table 3. 1.0 wt% B-0.2 wt% Zr-0.5 wt% Co-bal. In the case of the R-T-B rare earth permanent magnet shown in Table 4, it is 25.0 wt% Nd-5.0 wt% Dy-0.2 wt% Al-0.1 wt% Cu-1.0 wt% B -0.2 wt% Zr-0.5 wt% Co-bal. Fe. In addition, although the oxygen amount and nitrogen amount of each magnet are shown in Tables 3 and 4, the oxygen amount is as low as 0.08 wt% or less and the nitrogen amount is as low as 0.03 wt% or less.

得られた永久磁石についてB−Hトレーサにより磁気特性を測定した。その結果を表3、表4に示す。なお、表3、表4において、Brは残留磁束密度、HcJは保磁力を示す。また、角形比(Hk/HcJ)は磁石性能の指標となるものであり、磁気ヒステリシスル−プの第2象限における角張の度合いを表す。なおHkは、磁気ヒステリシスル−プの第2象限において、残留磁束密度に対する磁化の割合が90%になるときの外部磁界強度である。   Magnetic properties of the obtained permanent magnet were measured with a BH tracer. The results are shown in Tables 3 and 4. In Tables 3 and 4, Br represents the residual magnetic flux density, and HcJ represents the coercive force. Further, the squareness ratio (Hk / HcJ) is an index of magnet performance and represents the degree of angularity in the second quadrant of the magnetic hysteresis loop. Hk is the external magnetic field strength when the ratio of magnetization to the residual magnetic flux density is 90% in the second quadrant of the magnetic hysteresis loop.

表3、表4において、保磁力(HcJ)を比較すると、Coの主相合金への供給割合が50%以上となる配合種別C、D、E、H、I、J、Kにおいては、Coの主相合金への供給割合が50%を下回る配合種別A、B、F、Gに比較し、より広い焼結温度範囲で、高い保磁力(HcJ)を維持できており、高い角形比を確保することができる。
特に、表3に示す組成の場合、その焼結温度に関わらず、Coの主相合金への供給割合が50%以上となる配合種別C、D、Eにおいては、Coの主相合金への供給割合が50%を下回る配合種別A、Bに比較し、角形比の絶対値自体が向上している。
また、表4に示す組成の場合、Coの主相合金への供給割合が50%となる配合種別Hにおいては、焼結温度が1130℃となると角型比が低下しているため、好ましいCoの主相合金への供給割合は60%以上であることがわかる。さらに、Coの主相合金への供給割合が70%となる配合種別Iにおいては、焼結温度が1130℃で角型比が若干低下しているため、さらに好ましいCoの主相合金への供給割合は80%以上であることがわかる。
このように、Coの主相合金への供給割合が50%以上とすることで、高い角形比を、より広い焼結温度範囲で維持することができ、これは、工業的生産において実用的なものとすることができる。
In Tables 3 and 4, when the coercive force (HcJ) is compared, in the blending types C, D, E, H, I, J, and K in which the supply ratio of Co to the main phase alloy is 50% or more, Co Compared with the blending types A, B, F, and G in which the supply ratio to the main phase alloy is less than 50%, a high coercive force (HcJ) can be maintained in a wider sintering temperature range, and a high squareness ratio is achieved. Can be secured.
In particular, in the case of the composition shown in Table 3, regardless of the sintering temperature, in the combination types C, D, and E in which the supply ratio of Co to the main phase alloy is 50% or more, The absolute value of the squareness ratio itself is improved as compared with the blending types A and B in which the supply ratio is less than 50%.
Further, in the case of the composition shown in Table 4, in the combination type H in which the supply ratio of Co to the main phase alloy is 50%, the squareness ratio is decreased when the sintering temperature is 1130 ° C. It can be seen that the supply ratio to the main phase alloy is 60% or more. Furthermore, in the blending type I in which the supply ratio of Co to the main phase alloy is 70%, since the squareness ratio is slightly reduced at the sintering temperature of 1130 ° C., more preferable supply of Co to the main phase alloy is achieved. It turns out that a ratio is 80% or more.
Thus, when the supply ratio of Co to the main phase alloy is 50% or more, a high squareness ratio can be maintained in a wider sintering temperature range, which is practical in industrial production. Can be.

続いて、上記と同様にして得た主相用合金である合金aと粒界相用合金である合金bを、表4に示した配合種別F〜Kで配合し、微粉砕した後、得られた微粉末を15kOe(1200kA/m)の配向磁場中で1.2ton/cm(120MPa)の圧力で成形を行い、成形体を得た。
この後、この成形体を、真空中において、焼結温度1090℃で4時間焼結した後、急冷した。次いで得られた焼結体に、表5に示すような条件で、2段時効処理を施した。このとき、1段目と2段目の温度保持時間は各1時間とした。
Subsequently, alloy a, which is the main phase alloy obtained in the same manner as described above, and alloy b, which is the grain boundary phase alloy, are blended according to blending types F to K shown in Table 4 and finely pulverized. The obtained fine powder was molded at a pressure of 1.2 ton / cm 2 (120 MPa) in an orientation magnetic field of 15 kOe (1200 kA / m) to obtain a molded body.
Thereafter, the compact was sintered in a vacuum at a sintering temperature of 1090 ° C. for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment under the conditions shown in Table 5. At this time, the temperature holding time for the first and second stages was 1 hour each.

Figure 2007250605
Figure 2007250605

得られた永久磁石についてB−Hトレーサにより磁気特性を測定した。その結果を表5に示す。
表5において、保磁力(HcJ)を比較すると、2段目の時効処理において高い保磁力(HcJ)を確保できる温度幅が、Coの主相合金への供給割合が50%以上となる配合種別H、I、Kにおいては60℃程度の幅を確保できるのに対し、Coの主相合金への供給割合が50%を下回る配合種別Gでは、40℃程度となっているのがわかる。
このように、Coの主相合金への供給割合が50%以上とすることで、高い角形比を、より広い熱処理温度範囲で維持することができ、これにより生産性を高めて、工業的生産において実用的なものとすることができる。
Magnetic properties of the obtained permanent magnet were measured with a BH tracer. The results are shown in Table 5.
In Table 5, when the coercive force (HcJ) is compared, the temperature range in which a high coercive force (HcJ) can be secured in the second stage aging treatment is a blending type in which the supply ratio of Co to the main phase alloy is 50% or more. It can be seen that H, I, and K can secure a range of about 60 ° C., whereas the blending type G in which the supply ratio of Co to the main phase alloy is less than 50% is about 40 ° C.
As described above, when the supply ratio of Co to the main phase alloy is 50% or more, a high squareness ratio can be maintained in a wider heat treatment temperature range, thereby improving productivity and industrial production. It can be made practical.

続いて、上記と同様にして得た主相用合金である合金aと粒界相用合金である合金bを、表6に示した配合種別L〜Oで配合し、微粉砕した後、得られた微粉末を15kOe(1200kA/m)の配向磁場中で1.2ton/cm(120MPa)の圧力で成形を行い、成形体を得た。ここで、表2に示したように、配合種別L、Mは、主相用合金にZrを含まず、配合種別N、Oは主相用合金にCuを含まない組成とした。
この後、この成形体を、真空中において、焼結温度1090℃で4時間焼結した後、急冷した。次いで得られた焼結体に、表5に示すような条件で、2段時効処理を施した。このとき、1段目と2段目の温度保持時間は各1時間とした。
Subsequently, alloy a, which is the main phase alloy obtained in the same manner as described above, and alloy b, which is the grain boundary phase alloy, are blended according to the blending types L to O shown in Table 6 and finely pulverized. The obtained fine powder was molded at a pressure of 1.2 ton / cm 2 (120 MPa) in an orientation magnetic field of 15 kOe (1200 kA / m) to obtain a molded body. Here, as shown in Table 2, the blending types L and M did not contain Zr in the main phase alloy, and the blending types N and O did not contain Cu in the main phase alloy.
Thereafter, the compact was sintered in a vacuum at a sintering temperature of 1090 ° C. for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment under the conditions shown in Table 5. At this time, the temperature holding time for the first and second stages was 1 hour each.

Figure 2007250605
Figure 2007250605

得られた永久磁石についてB−Hトレーサにより磁気特性を測定した。その結果を表6に示す。
表5、表6において、保磁力(HcJ)を比較すると、Zr、Cuを主相用合金に含む配合種別I、Kに対し、ZrまたはCuを主相用合金に含まない配合種別L〜Oは、2段目の時効処理において高い保磁力(HcJ)を確保できる温度幅が、40℃程度と狭くなっているのがわかる。
このようにして、Coだけでなく、Zr、Cuの主相合金への添加を必須としたうえで、Coの主相合金への供給割合を50%以上とすることで、高い角形比を、より広い熱処理温度範囲で維持することができるのがわかり、これにより生産性を高めて、工業的生産において実用的なものとすることができる。
Magnetic properties of the obtained permanent magnet were measured with a BH tracer. The results are shown in Table 6.
In Tables 5 and 6, when the coercive force (HcJ) is compared, formulation types L to O that do not contain Zr or Cu in the main phase alloy with respect to formulation types I and K that contain Zr and Cu in the main phase alloy. It can be seen that the temperature range in which a high coercive force (HcJ) can be secured in the second aging treatment is as narrow as about 40 ° C.
In this way, not only Co but also the addition of Zr, Cu to the main phase alloy is essential, and by making the supply ratio of Co to the main phase alloy 50% or more, a high squareness ratio is obtained. It can be seen that it can be maintained over a wider heat treatment temperature range, thereby increasing productivity and making it practical in industrial production.

Claims (5)

14B相(ただし、RはYを含む希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)からなる主相と、前記主相よりRを多く含む粒界相とを含む焼結体からなるR−T−B系希土類永久磁石の製造方法であって、
14B相を主体とし、Co、Zr、Cuを含むR−T−B合金からなる粉末、及びR及びTを主体とするR−T合金からなる粉末の混合物を得る工程と、
前記混合物からなる所定形状の成形体を作製する工程と、
前記成形体を焼結して焼結体を得る工程と、を備え、
前記混合物を得る工程にて、前記混合物に含まれるCo量の50%以上を前記R−T−B合金からなる粉末から供給することを特徴とするR−T−B系希土類永久磁石の製造方法。
R 2 T 14 B phase (where R is one or more of rare earth elements including Y, T is one or more transition metal elements essential for Fe, Fe and Co) And an R-T-B rare earth permanent magnet manufacturing method comprising a sintered body including a grain boundary phase containing more R than the main phase,
Obtaining a mixture of a powder composed mainly of an R 2 T 14 B phase and composed of an R—T—B alloy containing Co, Zr, and Cu, and a powder composed of an R—T alloy mainly composed of R and T;
Producing a molded body having a predetermined shape made of the mixture;
And sintering the molded body to obtain a sintered body,
In the step of obtaining the mixture, 50% or more of the amount of Co contained in the mixture is supplied from the powder made of the R-T-B alloy, and a method for producing an R-T-B rare earth permanent magnet .
前記焼結体の組成が、R:28〜33wt%、B:0.5〜1.5wt%、Al:0.03〜0.3wt%、Cu:0.15wt%以下(0を含まず)、Co:2wt%以下(0を含まず)、Zr:0.03〜0.25wt%、残部実質的にFeからなることを特徴とする請求項1に記載のR−T−B系希土類永久磁石の製造方法。   The composition of the sintered body was R: 28 to 33 wt%, B: 0.5 to 1.5 wt%, Al: 0.03 to 0.3 wt%, Cu: 0.15 wt% or less (excluding 0) R—T—B-based rare earth permanent according to claim 1, wherein Co: 2 wt% or less (excluding 0), Zr: 0.03 to 0.25 wt%, and the balance being substantially Fe. Magnet manufacturing method. 前記焼結体に含まれる酸素量が2000ppm以下であることを特徴とする請求項1または2に記載のR−T−B系希土類永久磁石の製造方法。   The method for producing an RTB-based rare earth permanent magnet according to claim 1 or 2, wherein the amount of oxygen contained in the sintered body is 2000 ppm or less. 前記焼結体に含まれる炭素量が300〜2000ppmであることを特徴とする請求項1から3のいずれかに記載のR−T−B系希土類永久磁石の製造方法。   4. The method for producing an RTB-based rare earth permanent magnet according to claim 1, wherein the amount of carbon contained in the sintered body is 300 to 2000 ppm. 前記焼結体の角形比Hk/HcJ(HcJは保磁力、Hkは、磁気ヒステリシスル−プの第2象限において、磁化が残留磁束密度の90%になるときの外部磁界強度。)が90%以上であることを特徴とする請求項1から4のいずれかに記載のR−T−B系希土類永久磁石の製造方法。   The sintered body has a squareness ratio Hk / HcJ (HcJ is the coercive force, Hk is the external magnetic field strength when the magnetization is 90% of the residual magnetic flux density in the second quadrant of the magnetic hysteresis loop). It is the above, The manufacturing method of the RTB system rare earth permanent magnet in any one of Claim 1 to 4 characterized by the above-mentioned.
JP2006068538A 2006-03-14 2006-03-14 Method for manufacturing r-t-b-based rare-earth permanent magnet Withdrawn JP2007250605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068538A JP2007250605A (en) 2006-03-14 2006-03-14 Method for manufacturing r-t-b-based rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068538A JP2007250605A (en) 2006-03-14 2006-03-14 Method for manufacturing r-t-b-based rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2007250605A true JP2007250605A (en) 2007-09-27

Family

ID=38594615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068538A Withdrawn JP2007250605A (en) 2006-03-14 2006-03-14 Method for manufacturing r-t-b-based rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2007250605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150604A (en) * 2008-12-25 2010-07-08 Tdk Corp Method for producing rare earth sintered magnet
EA014583B1 (en) * 2010-03-15 2010-12-30 Ооо "Фрязинские Магнитные Технологии" Composition for manufacturing caked permanent magnet, caked permanent magnet and method for producing thereof
JP2015023243A (en) * 2013-07-23 2015-02-02 Tdk株式会社 Rare earth magnet, electric motor, and device with electric motor
JP2023509225A (en) * 2020-06-11 2023-03-07 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150604A (en) * 2008-12-25 2010-07-08 Tdk Corp Method for producing rare earth sintered magnet
EA014583B1 (en) * 2010-03-15 2010-12-30 Ооо "Фрязинские Магнитные Технологии" Composition for manufacturing caked permanent magnet, caked permanent magnet and method for producing thereof
JP2015023243A (en) * 2013-07-23 2015-02-02 Tdk株式会社 Rare earth magnet, electric motor, and device with electric motor
JP2023509225A (en) * 2020-06-11 2023-03-07 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP7418598B2 (en) 2020-06-11 2024-01-19 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods

Similar Documents

Publication Publication Date Title
JP5310923B2 (en) Rare earth magnets
JP6156375B2 (en) Sintered magnet
JP5115511B2 (en) Rare earth magnets
JPWO2005001856A1 (en) R-T-B rare earth permanent magnet and method for producing the same
JP4766453B2 (en) Rare earth permanent magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP4766452B2 (en) Rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4529180B2 (en) Rare earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2017135268A (en) Hybrid magnet
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005159053A (en) Method for manufacturing r-t-b-based permanent magnet
JP2005286173A (en) R-t-b based sintered magnet
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JP4706900B2 (en) Rare earth permanent magnet manufacturing method
JP2005286176A (en) R-t-b-based sintered magnet and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602