JP2006100434A - Method of manufacturing r-t-b based rare earth permanent magnet - Google Patents

Method of manufacturing r-t-b based rare earth permanent magnet Download PDF

Info

Publication number
JP2006100434A
JP2006100434A JP2004282689A JP2004282689A JP2006100434A JP 2006100434 A JP2006100434 A JP 2006100434A JP 2004282689 A JP2004282689 A JP 2004282689A JP 2004282689 A JP2004282689 A JP 2004282689A JP 2006100434 A JP2006100434 A JP 2006100434A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
phase forming
forming alloy
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004282689A
Other languages
Japanese (ja)
Inventor
Makoto Nakane
誠 中根
Eiji Kato
英治 加藤
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004282689A priority Critical patent/JP2006100434A/en
Publication of JP2006100434A publication Critical patent/JP2006100434A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To optimize addition modes of M element and Tb which suppress grain growth in sintering process when manufacturing R-T-B based rare earth permanent magnet of which oxygen content is reduced by a mixing method. <P>SOLUTION: The R-T-B based rare earth permanent magnet consists of a sintered body of which R<SB>2</SB>T<SB>14</SB>B<SB>1</SB>compound (R always contains Tb, R includes Y, T requires Fe or Fe and Co) is magnetic phase, with M element (M is one or more kinds of Zr, Nb, and Hf) contained in it. The manufacturing method includes a process for producing a molding containing particles consisting of main phase forming alloy containing R<SB>2</SB>T<SB>14</SB>B<SB>1</SB>compound and the particles consisting of grain boundary phase forming alloy whose main component is R and T, and a process for sintering the molding. Tb and M elements are supplied in a mode other than such mode as supplied from the main phase forming alloy containing Tb and M elements. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、R(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である)、T(TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)及びB(ホウ素)を主成分とするR−T−B系希土類永久磁石の製造方法に関する。   The present invention relates to R (R is one or more of rare earth elements, where the rare earth element is a concept including Y), T (T is at least one or more transition metals essentially comprising Fe or Fe and Co) The present invention relates to a method for producing an RTB-based rare earth permanent magnet mainly composed of (element) and B (boron).

希土類永久磁石の中でもR−T−B系希土類永久磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、需要は年々増大している。
R−T−B系希土類永久磁石の磁気特性を向上するためには、合金中の酸素量を低減することが有効である。しかし、合金中の酸素量を低減させると焼結工程において異常粒成長が起こりやすく、角形比が低下する。合金中の酸素が形成している酸化物が結晶粒の成長を抑制していたのに対し、酸素量を低減するからである。
Among rare earth permanent magnets, RTB rare earth permanent magnets have excellent magnetic properties, and Nd, which is a main component, is abundant in resources and relatively inexpensive, so that the demand is increasing year by year. .
In order to improve the magnetic properties of the R-T-B rare earth permanent magnet, it is effective to reduce the amount of oxygen in the alloy. However, if the amount of oxygen in the alloy is reduced, abnormal grain growth is likely to occur in the sintering process, and the squareness ratio is reduced. This is because the amount of oxygen is reduced while the oxide formed by oxygen in the alloy suppresses the growth of crystal grains.

特開2002−75717号公報(特許文献1)には、Co、Al、Cu、さらにZr、Nb及びHfの1種又は2種以上(以下、M元素と総称することがある)を含有するR−T−B系希土類永久磁石中に微細なZrB化合物、NbB化合物又はHfB化合物(以下、M−B化合物)を均一に分散して析出させることにより、焼結過程における粒成長を抑制し、磁気特性と焼結温度幅を改善する報告がなされている。
ここで、焼結で得られるR−T−B系希土類永久磁石の磁気特性は焼結温度に依存するところがある。その一方、工業的生産規模においては焼結炉内の全域で加熱温度を均一にすることは困難である。したがって、R−T−B系希土類永久磁石において、焼結温度が変動しても所望する磁気特性を得ることが要求される。なお、所望する磁気特性を得ることのできる温度範囲を焼結温度幅ということにする。
Japanese Patent Laid-Open No. 2002-75717 (Patent Document 1) includes R containing Co, Al, Cu, and one or more of Zr, Nb, and Hf (hereinafter sometimes collectively referred to as M element). -By uniformly dispersing and precipitating fine ZrB compounds, NbB compounds or HfB compounds (hereinafter referred to as MB compounds) in TB rare earth permanent magnets, grain growth in the sintering process is suppressed, and magnetic Reports have been made to improve the properties and sintering temperature range.
Here, the magnetic properties of the R-T-B rare earth permanent magnet obtained by sintering depend on the sintering temperature. On the other hand, on an industrial production scale, it is difficult to make the heating temperature uniform throughout the sintering furnace. Therefore, the R-T-B rare earth permanent magnet is required to obtain desired magnetic characteristics even if the sintering temperature varies. The temperature range in which the desired magnetic properties can be obtained is called the sintering temperature range.

特許文献1において、高い磁気特性のR−T−B系希土類永久磁石を得るためには、混合法を用いている。この混合法は、典型的には、R2141化合物を含む主相形成用合金と、主相間に存在する粒界相を形成するための粒界相形成用合金とを混合する。 In Patent Document 1, a mixing method is used to obtain an RTB-based rare earth permanent magnet having high magnetic properties. In this mixing method, typically, an alloy for forming a main phase containing an R 2 T 14 B 1 compound and an alloy for forming a grain boundary phase for forming a grain boundary phase existing between the main phases are mixed.

一方で、R−T−B系希土類永久磁石の保磁力を向上させることを目的として、軽希土類元素であるNd、Prに加えて、重希土類元素であるDy、Tb、Gd、Ho、Er、Tm及びYの1種以上を添加することが、例えば特公平5−10806号公報(特許文献2)に提案されている。   On the other hand, in order to improve the coercive force of the R-T-B rare earth permanent magnet, in addition to light rare earth elements Nd and Pr, heavy rare earth elements Dy, Tb, Gd, Ho, Er, The addition of one or more of Tm and Y is proposed in, for example, Japanese Patent Publication No. 5-10806 (Patent Document 2).

保磁力を向上するためには、このようにRとして重希土類元素を所定量添加すればよいが、重希土類元素の種類によって保磁力向上の効果に差異がある。元素によってR2141化合物の異方性磁界が相違するからである。Tb2141化合物が220kOe、Dy2141化合物が150kOeと、高い異方性磁界(Ha)を示すことから、保磁力向上のためには、重希土類元素としてはTb又はDy、特にTbを用いることが有効である。 In order to improve the coercive force, a predetermined amount of heavy rare earth element may be added as R as described above, but the effect of improving the coercive force varies depending on the type of heavy rare earth element. This is because the anisotropic magnetic field of the R 2 T 14 B 1 compound differs depending on the element. Since the Tb 2 T 14 B 1 compound is 220 kOe and the Dy 2 T 14 B 1 compound is 150 kOe and exhibits a high anisotropic magnetic field (Ha), Tb or Dy may be used as a heavy rare earth element to improve the coercive force. In particular, it is effective to use Tb.

特開2002−75717号公報JP 2002-75717 A 特公平5−10806号公報Japanese Patent Publication No. 5-10806

以上の従来技術に鑑み、酸素含有量が低減されたR−T−B系希土類永久磁石を混合法で製造するに際し、焼結過程における粒成長を抑制することのできるM元素、さらには重希土類元素としてのTbの添加の形態を最適化する手法を提供することを課題とする。   In view of the above prior art, when manufacturing an RTB-based rare earth permanent magnet with a reduced oxygen content by a mixing method, an M element capable of suppressing grain growth in the sintering process, and further a heavy rare earth It is an object to provide a technique for optimizing the form of addition of Tb as an element.

酸素含有量が低減されたR−T−B系希土類永久磁石を混合法で製造することを前提に、最も高い異方性磁界を得ることのできるTbの添加形態について検討を行った。この際、酸素含有量の低減による焼結過程における粒成長を制御するためのM元素の添加形態についても合わせて検討した。その結果、混合法に用いられる主相形成用合金、粒界相形成用合金のいずれに対してTb及びM元素を添加するかによって、得られるR−T−B系希土類永久磁石の磁気特性に差異があることを以下のように確認した。すなわち、TbとM元素とを主相形成用合金に共存させると、残留磁束密度及び角型性が低下する。したがって、TbとM元素は、粒界相形成用合金に共存させるか、又は主相形成用合金、粒界相形成用合金のうちで互いに異なる合金に含有させることが、残留磁束密度及び角型性の低下を抑制させる上で重要である。   On the premise that an R-T-B rare earth permanent magnet having a reduced oxygen content is manufactured by a mixing method, an addition form of Tb capable of obtaining the highest anisotropic magnetic field was examined. At this time, the addition form of M element for controlling grain growth in the sintering process by reducing the oxygen content was also examined. As a result, depending on whether the Tb and M elements are added to the main phase forming alloy or the grain boundary phase forming alloy used in the mixing method, the magnetic properties of the R-T-B rare earth permanent magnet obtained can be improved. It was confirmed that there was a difference as follows. That is, when Tb and M element coexist in the main phase forming alloy, the residual magnetic flux density and the squareness are lowered. Therefore, the Tb and M elements are allowed to coexist in the grain boundary phase forming alloy, or may be contained in different alloys among the main phase forming alloy and the grain boundary phase forming alloy. It is important in suppressing the decline in sex.

すなわち本発明は、R2141化合物(Rは希土類元素の1種又は2種以上でTbを必ず含み、希土類元素はYを包含する概念であり、TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)を磁性相とする焼結体からなり、この焼結体中にM元素(M:Zr、Nb及びHfの1種又は2種以上)を含むR−T−B系希土類永久磁石の製造方法であって、R2141化合物を含む主相形成用合金からなる粒子と、R及びTを主体とする粒界相形成用合金からなる粒子とを含む成形体を作製する工程と、この成形体を焼結する工程と、を含み、Tb及びM元素は、Tb及びM元素を含む主相形成用合金から供給する形態を除く形態で供給することを特徴とするR−T−B系希土類永久磁石の製造方法である。 That is, the present invention is an R 2 T 14 B 1 compound (R is one or more rare earth elements and includes Tb, rare earth elements include Y, and T is essential for Fe, Fe and Co) At least one transition metal element) having a magnetic phase, and the sintered body contains M element (M: one or more of Zr, Nb, and Hf). A method for producing a TB-based rare earth permanent magnet, comprising particles made of an alloy for forming a main phase containing an R 2 T 14 B 1 compound, particles made of an alloy for forming a grain boundary phase mainly composed of R and T, And a step of sintering the green body, and the Tb and M elements are supplied in a form excluding the form supplied from the main phase forming alloy containing the Tb and M elements. This is a method for producing an RTB-based rare earth permanent magnet.

Tb及びM元素を含む主相形成用合金から供給する形態として、Tb及びM元素は、粒界相形成用合金から供給することができる。また、Tb及びM元素は、主相形成用合金及び粒界相形成用合金のうちで互いに異なる合金から供給することができる。
焼結体は、R:22〜33wt%(Tb:6%以下)、B:0.5〜1.5wt%、Al:0.03〜0.30wt%、Cu:0.15wt%以下(0を含まず)、Zr:0.05〜0.30wt%、Co:2wt%以下(0を含まず)、残部実質的にFeからなる組成を有することが好ましい。
As a form supplied from the main phase forming alloy containing Tb and M elements, Tb and M elements can be supplied from the grain boundary phase forming alloy. The Tb and M elements can be supplied from different alloys among the main phase forming alloy and the grain boundary phase forming alloy.
Sintered body: R: 22 to 33 wt% (Tb: 6% or less), B: 0.5 to 1.5 wt%, Al: 0.03 to 0.30 wt%, Cu: 0.15 wt% or less (0 Zr: 0.05 to 0.30 wt%, Co: 2 wt% or less (not including 0), and the balance being substantially composed of Fe.

本発明によれば、混合法によりR−T−B系希土類永久磁石を製造することから、高い磁気特性を得ることができる。また本発明は、M元素を添加するため、酸素量を低減したとしても、結晶粒の異常な成長を抑制するとともに、焼結温度幅を広くすることができる。そして、Tb及びM元素を含む主相形成用合金から供給する形態を除く形態で供給することにより、Tb及びM元素の添加による効果を十分に享受することができる。   According to the present invention, since the RTB-based rare earth permanent magnet is manufactured by the mixing method, high magnetic characteristics can be obtained. In addition, since the M element is added in the present invention, even if the amount of oxygen is reduced, abnormal growth of crystal grains can be suppressed and the sintering temperature range can be widened. And the effect by addition of Tb and M element can fully be enjoyed by supplying in the form except the form supplied from the main phase formation alloy containing Tb and M element.

以下、本発明を詳細に説明する。
<製造方法>
はじめに、本発明によるR−T−B系希土類永久磁石の製造方法の望ましい形態について説明する。
本発明は、R2141化合物を主体とする合金(主相形成用合金)と、R及びTを主体とする合金(粒界相形成用合金)とを用いてR−T−B系希土類永久磁石を製造する。
原料金属を真空又は不活性ガス、好ましくはAr雰囲気中でストリップキャスティングすることにより、主相形成用合金及び粒界相形成用合金を得ることができる。原料金属としては、希土類金属あるいは希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。得られた母合金は、凝固偏析がある場合は必要に応じて溶体化処理を行なう。その条件は真空又はAr雰囲気下、700〜1500℃の領域で1時間以上保持すれば良い。
Hereinafter, the present invention will be described in detail.
<Manufacturing method>
First, the desirable form of the manufacturing method of the RTB system rare earth permanent magnet by this invention is demonstrated.
The present invention uses an alloy mainly composed of R 2 T 14 B 1 compound (main phase forming alloy) and an alloy mainly composed of R and T (alloy for forming grain boundary phase) to produce R-T-B. Manganese rare earth permanent magnets are manufactured.
The main phase forming alloy and the grain boundary phase forming alloy can be obtained by strip casting the raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. As the raw material metal, rare earth metals or rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. The obtained mother alloy is subjected to a solution treatment as necessary when there is solidification segregation. The conditions may be maintained for 1 hour or more in a region of 700 to 1500 ° C. under vacuum or Ar atmosphere.

主相形成用合金はR2141化合物を含む。また、粒界相形成用合金は、典型的には、主相形成用合金よりRを多く含むとともに、T元素を含む。ここで、本発明によるR−T−B系希土類永久磁石の必須元素であるTb、M元素が、主相形成用合金及び粒界相形成用合金に添加される形態はいくつかある。それを表1に示す。表1において、「○」は当該元素が添加されていることを、「−」は当該元素が添加されていないことを示している。たとえば、表1の「形態」1は、主相形成用合金にTb及びM元素がともに添加されており、かつ粒界相形成用合金にはTb及びM元素が添加されていないことを示す。また、表1の「形態」2は、主相形成用合金にTbが添加されているがM元素は添加されておらず、かつ粒界相形成用合金にはM元素は添加されているがTbは添加されていないことを示している。 The main phase forming alloy contains an R 2 T 14 B 1 compound. Further, the grain boundary phase forming alloy typically contains more R than the main phase forming alloy and also contains the T element. Here, there are several forms in which the Tb and M elements, which are essential elements of the RTB rare earth permanent magnet according to the present invention, are added to the main phase forming alloy and the grain boundary phase forming alloy. It is shown in Table 1. In Table 1, “◯” indicates that the element is added, and “−” indicates that the element is not added. For example, “Form” 1 in Table 1 indicates that both the Tb and M elements are added to the main phase forming alloy, and the Tb and M elements are not added to the grain boundary phase forming alloy. “Form” 2 in Table 1 shows that Tb is added to the main phase forming alloy but M element is not added, and M element is added to the grain boundary phase forming alloy. Tb is not added.

表1に示すように、主相形成用合金及び粒界相形成用合金にTb、M元素を添加する形態はいくつかあるが、本発明は、主相形成用合金にTb及びM元素が添加されている形態を除く。つまり、表1でいうならば、本発明は、「形態」1、3、5及び6ではなく、「形態」2、4、7、8及び9を適用してR−T−B系希土類永久磁石を製造するのである。   As shown in Table 1, although there are several forms of adding Tb and M elements to the main phase forming alloy and the grain boundary phase forming alloy, the present invention adds Tb and M elements to the main phase forming alloy. Except for the forms that are used. That is, if it says in Table 1, this invention applies "form" 2, 4, 7, 8, and 9 instead of "form" 1, 3, 5, and 6 and applies R-T-B system rare earth permanent. A magnet is manufactured.

Figure 2006100434
Figure 2006100434

本発明によるR−T−B系希土類永久磁石の製造方法において、主相形成用合金及び粒界相形成用合金は1種類である必要はなく、2種類又はそれ以上から構成されることがある。すなわち本発明は、R−T−B系希土類永久磁石を製造する際に、1種類の主相形成用合金と1種類の粒界相形成用合金を用いる場合のほかに、例えば、異なる組成を有する2種類(又はそれ以上)の主相形成用合金と1種類の粒界相形成用合金、あるいは1種類の主相形成用合金と異なる組成を有する2種類(又はそれ以上)の粒界相形成用合金を用いることができる。また、異なる組成を有する2種類(又はそれ以上)の主相形成用合金と異なる組成を有する2種類(又はそれ以上)の粒界相形成用合金を用いることもできる。2種類の主相形成用合金を用いる場合、その中の1種類の主相形成用合金にTb、M元素がともに含まれていると、本発明の範囲外となる。   In the method for producing an R-T-B rare earth permanent magnet according to the present invention, the main phase forming alloy and the grain boundary phase forming alloy need not be one type, and may be composed of two or more types. . That is, the present invention provides, for example, different compositions in addition to the case where one type of main phase forming alloy and one type of grain boundary phase forming alloy are used when producing an R-T-B type rare earth permanent magnet. Two types (or more) of the main phase forming alloy and one type of grain boundary phase forming alloy, or two types (or more) of grain boundary phases having different compositions from one type of main phase forming alloy A forming alloy can be used. Also, two (or more) grain boundary phase forming alloys having different compositions from two (or more) main phase forming alloys having different compositions may be used. When two types of main phase forming alloys are used and one of the main phase forming alloys contains both Tb and M elements, it is outside the scope of the present invention.

主相形成用合金にはR、T及びBの他に、Cu、Al、Co、さらにはM元素を含有させることができる。また、粒界相形成用合金には、R、Tの他に、B、Cu、Al、Co、さらにはM元素を含有させることができる。   In addition to R, T, and B, the main phase forming alloy can contain Cu, Al, Co, and further M element. In addition to R and T, the grain boundary phase forming alloy may contain B, Cu, Al, Co, and further M element.

主相形成用合金及び粒界相形成用合金が作製された後、これらの各母合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、各母合金を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。また、水素吸蔵を行った後に、水素を放出させ、さらに粗粉砕を行うこともできる。高磁気特性を得るために、粉砕処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えることが望ましい。そうすることにより、焼結体に含まれる酸素量を2000ppm以下に制御することができる。   After the main phase forming alloy and the grain boundary phase forming alloy are produced, each of these master alloys is ground separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, each mother alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen. Moreover, after hydrogen occlusion, hydrogen can be released and further coarse pulverization can be performed. In order to obtain high magnetic properties, it is desirable to suppress the atmosphere in each step from pulverization (recovery after pulverization) to sintering (put into a sintering furnace) to an oxygen concentration of less than 100 ppm. By doing so, the amount of oxygen contained in the sintered body can be controlled to 2000 ppm or less.

粗粉砕工程後、微粉砕工程に移る。微粉砕は、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   After the coarse pulverization process, the process proceeds to the fine pulverization process. In the fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle diameter of about several hundreds of micrometers is pulverized until the average particle diameter becomes 3 to 5 μm. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall.

微粉砕工程において主相形成用合金及び粒界相形成用合金を別々に粉砕した場合には、微粉砕された主相形成用合金粉末及び粒界相形成用合金粉末とを窒素雰囲気中で混合する。主相形成用合金粉末及び粒界相形成用合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。同様に、主相形成用合金及び粒界相形成用合金を一緒に粉砕する場合の混合比率も重量比で80:20〜97:3程度とすればよい。微粉砕時に、ステアリン酸亜鉛等の添加剤を0.01〜0.3wt%程度添加することにより、成形時に配向性の高い微粉を得ることができる。   When the main phase forming alloy and the grain boundary phase forming alloy are separately pulverized in the pulverization step, the finely pulverized main phase forming alloy powder and the grain boundary phase forming alloy powder are mixed in a nitrogen atmosphere. To do. The mixing ratio of the alloy powder for forming the main phase and the alloy powder for forming the grain boundary phase may be about 80:20 to 97: 3 by weight. Similarly, the mixing ratio when the main phase forming alloy and the grain boundary phase forming alloy are pulverized together may be about 80:20 to 97: 3 by weight. By adding about 0.01 to 0.3 wt% of additives such as zinc stearate at the time of fine pulverization, fine powder having high orientation can be obtained at the time of molding.

次いで、主相形成用合金粉末及び粒界相形成用合金粉末からなる混合粉末を、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12.0〜17.0kOeの磁場中で、0.7〜1.5t/cm2前後の圧力で行なえばよい。
磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃で1〜5時間程度焼結すればよい。
Next, a mixed powder composed of the main phase forming alloy powder and the grain boundary phase forming alloy powder is molded in a magnetic field with its crystal axis oriented by applying a magnetic field. The forming in the magnetic field may be performed at a pressure of about 0.7 to 1.5 t / cm 2 in a magnetic field of 12.0 to 17.0 kOe.
After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of a particle size and a particle size distribution, what is necessary is just to sinter at 1000-1100 degreeC for about 1 to 5 hours.

焼結後、得られた焼結体に時効処理を施すことができる。時効処理は、保磁力を制御する上で重要である。時効処理を2段に分けて行なう場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、600℃近傍の時効処理を施すとよい。   After sintering, the obtained sintered body can be subjected to an aging treatment. The aging treatment is important for controlling the coercive force. In the case where the aging treatment is performed in two stages, holding for a predetermined time at around 800 ° C. and around 600 ° C. is effective. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by the heat treatment at around 600 ° C., the aging treatment at around 600 ° C. is preferably performed when the aging treatment is performed in one stage.

<化学組成>
次に、本発明によるR−T−B系希土類永久磁石の望ましい化学組成について説明する。ここでいう化学組成は焼結後における化学組成をいう。
<Chemical composition>
Next, the desirable chemical composition of the RTB-based rare earth permanent magnet according to the present invention will be described. The chemical composition here refers to the chemical composition after sintering.

本発明によるR−T−B系希土類永久磁石は、Rを22〜33wt%含有する。
ここで、RはLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu及びYからなるグループから選択される1種又は2種以上であるが、本発明はTbを必須元素として含む。Rの量が22wt%未満であると、R−T−B系希土類永久磁石の主相となるR2141化合物の生成が十分ではない。このため、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rの量が33wt%を超えると主相であるR2141化合物の体積比率が低下し、残留磁束密度が低下する。またRが33wt%を超えるとRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なR−リッチ相が減少し、保磁力の低下を招く。したがって、Rの量は22〜33wt%とする。望ましいRの量は28〜33wt%、さらに望ましいRの量は29〜32wt%である。
The RTB-based rare earth permanent magnet according to the present invention contains 22 to 33 wt% of R.
Here, R is one or more selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, and Y. The invention contains Tb as an essential element. When the amount of R is less than 22 wt%, the production of the R 2 T 14 B 1 compound that becomes the main phase of the R-T-B rare earth permanent magnet is not sufficient. For this reason, α-Fe or the like having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when the amount of R exceeds 33 wt%, the volume ratio of the R 2 T 14 B 1 compound as the main phase decreases, and the residual magnetic flux density decreases. On the other hand, when R exceeds 33 wt%, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases and the coercive force decreases. Therefore, the amount of R is 22 to 33 wt%. A desirable amount of R is 28 to 33 wt%, and a more desirable amount of R is 29 to 32 wt%.

Ndは資源的に豊富で比較的安価であることから、Rとしての主成分をNdとすることが好ましい。またTbの含有は異方性磁界を増加させるために、保磁力を向上させる上で有効である。よって、RとしてNd及びTbを選択し、Nd及びTbの合計を25〜33wt%とすることが本発明にとって望ましい。そして、この範囲において、Tbの量は6wt%以下(ただし、0を含まず)が望ましい。Tbは、残留磁束密度及び保磁力のいずれを重視するかによって上記範囲内においてその量を定めることが望ましい。つまり、高い残留磁束密度を得たい場合にはTb量を2.0〜4.0wt%とし、高い保磁力を得たい場合にはTb量を4.0〜6.0wt%とすることが望ましい。なお、Tbの一部をDyで置換することより、低コスト化を図ることもできる。   Since Nd is abundant in resources and relatively inexpensive, it is preferable that the main component as R is Nd. Further, the inclusion of Tb is effective in improving the coercive force in order to increase the anisotropic magnetic field. Therefore, it is desirable for the present invention that Nd and Tb are selected as R and the total of Nd and Tb is 25 to 33 wt%. In this range, the amount of Tb is desirably 6 wt% or less (excluding 0). It is desirable to determine the amount of Tb within the above range depending on which of the residual magnetic flux density and the coercive force is important. That is, when it is desired to obtain a high residual magnetic flux density, the amount of Tb is desirably 2.0 to 4.0 wt%, and when it is desirable to obtain a high coercive force, the amount of Tb is desirably 4.0 to 6.0 wt%. . The cost can be reduced by replacing a part of Tb with Dy.

また、本発明によるR−T−B系希土類永久磁石は、ホウ素(B)を0.5〜1.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。ただし、Bが1.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を1.5wt%とする。望ましいBの量は0.7〜1.3wt%、さらに望ましいBの量は0.8〜1.2wt%である。   The RTB-based rare earth permanent magnet according to the present invention contains 0.5 to 1.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. However, when B exceeds 1.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 1.5 wt%. A desirable amount of B is 0.7 to 1.3 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.

本発明によるR−T−B系希土類永久磁石は、Alを0.03〜0.30wt%、Cuを0.15wt%(0を含まず)含有することができる。この範囲でAl、Cuを含有させることにより、得られるR−T−B系希土類永久磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.05〜0.25wt%、さらに望ましいAlの量は0.07〜0.22wt%である。また、Cuを添加する場合において、Cuの量は0.02〜0.12wt%とすることが望ましく、0.03〜0.08wt%とすることがより望ましい。   The RTB-based rare earth permanent magnet according to the present invention can contain 0.03 to 0.30 wt% Al and 0.15 wt% (not including 0) Cu. By containing Al and Cu in this range, it is possible to increase the coercive force, the corrosion resistance, and the temperature characteristics of the resulting RTB-based rare earth permanent magnet. In the case of adding Al, a desirable amount of Al is 0.05 to 0.25 wt%, and a more desirable amount of Al is 0.07 to 0.22 wt%. In addition, when adding Cu, the amount of Cu is preferably 0.02 to 0.12 wt%, and more preferably 0.03 to 0.08 wt%.

本発明によるR−T−B系希土類永久磁石は、M元素を0.05〜0.30wt%含有することが望ましい。R−T−B系希土類永久磁石の磁気特性向上を図るために酸素含有量を低減する際に、M元素は焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一かつ微細にする。したがって、M元素は酸素量が低い場合にその効果が顕著になる。M元素の望ましい量は0.10〜0.25wt%、さらに望ましい量は0.15〜0.25wt%である。   The RTB-based rare earth permanent magnet according to the present invention preferably contains 0.05 to 0.30 wt% of M element. When the oxygen content is reduced in order to improve the magnetic properties of the R-T-B rare earth permanent magnet, the M element exhibits the effect of suppressing abnormal growth of crystal grains during the sintering process. To make the structure uniform and fine. Therefore, the effect of M element becomes remarkable when the amount of oxygen is low. A desirable amount of M element is 0.10 to 0.25 wt%, and a more desirable amount is 0.15 to 0.25 wt%.

本発明によるR−T−B系希土類永久磁石は、その酸素量を2000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である酸化物相が増大して、磁気特性を低下させるからである。そこで本発明では、焼結体中に含まれる酸素量を、2000ppm以下、望ましくは1500ppm以下、さらに望ましくは1000ppm以下とする。ただし、単純に酸素量を低下させたのでは、粒成長抑制効果を有していた酸化物相が減少し、焼結時に十分な密度上昇を得る過程で粒成長が容易に起こる。そこで、本発明では、焼結過程での結晶粒の異常成長を抑制する効果を発揮するM元素を、R−T−B系希土類永久磁石中に所定量含有させる。   The RTB rare earth permanent magnet according to the present invention preferably has an oxygen content of 2000 ppm or less. This is because if the amount of oxygen is large, the oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. Therefore, in the present invention, the amount of oxygen contained in the sintered body is set to 2000 ppm or less, desirably 1500 ppm or less, and more desirably 1000 ppm or less. However, when the oxygen amount is simply reduced, the oxide phase having the effect of suppressing grain growth decreases, and grain growth easily occurs in the process of obtaining a sufficient density increase during sintering. Therefore, in the present invention, a predetermined amount of M element that exhibits the effect of suppressing abnormal growth of crystal grains during the sintering process is contained in the R-T-B system rare earth permanent magnet.

本発明によるR−T−B系希土類永久磁石は、Coを2wt%以下(0を含まず)、望ましくは0.1〜2wt%、さらに望ましくは0.3〜1wt%含有する。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。   The R-T-B rare earth permanent magnet according to the present invention contains 2 wt% or less of Co (not including 0), preferably 0.1 to 2 wt%, and more preferably 0.3 to 1 wt%. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

次に、具体的な実施例を挙げて本発明をさらに詳細に説明する。
1)原料合金
ストリップキャスティング法により、表2に示す6種類の合金を作製した。
Next, the present invention will be described in more detail with specific examples.
1) Raw material alloys Six types of alloys shown in Table 2 were produced by a strip casting method.

Figure 2006100434
Figure 2006100434

2)水素粉砕工程
各原料合金に室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行なう、水素粉砕処理を行なった。
高磁気特性を得るために、本実験では焼結体酸素量を2000ppm以下に抑えるために、水素処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えてある。以後、無酸素プロセスと称す。
2) Hydrogen pulverization step After each hydrogen alloy was occluded with hydrogen at room temperature, hydrogen pulverization treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere.
In order to obtain high magnetic properties, in this experiment, the atmosphere of each process from hydrogen treatment (recovery after pulverization) to sintering (put into the sintering furnace) to suppress the amount of oxygen in the sintered body to 2000 ppm or less Is suppressed to an oxygen concentration of less than 100 ppm. Hereinafter, it is referred to as an oxygen-free process.

3)粉砕工程
通常、粗粉砕と微粉砕による2段粉砕を行っているが、粗粉砕工程を無酸素プロセスで行なうことができなかったため、本実施例では粗粉砕工程を省いている。
微粉砕を行なう前に添加剤を混合する。添加剤の種類は特に限定されるものではなく、粉砕性の向上並びに成形時の配向性の向上に寄与するものを適宜選択すればよいが、本実施例ではステアリン酸亜鉛を0.03〜0.1%混合した。添加剤の混合は、例えばナウターミキサー等により5〜30分間ほど行なう程度でよい。
その後、ジェットミルを用いて合金粉末が平均粒径3〜6μm程度になるまで微粉砕を行なった。本実験では、平均粒径が4μmと5μmの2種類の粉砕粉を作製した。
当然ながら、添加剤の混合工程と微粉砕工程は、ともに無酸素プロセスで行っている。
3) Pulverization process Usually, two-stage pulverization by coarse pulverization and fine pulverization is performed, but since the coarse pulverization process could not be performed by an oxygen-free process, the coarse pulverization process is omitted in this embodiment.
Additives are mixed before milling. The type of the additive is not particularly limited, and any additive that contributes to improvement in grindability and orientation during molding may be appropriately selected. In this example, zinc stearate is added in an amount of 0.03 to 0. 1% mixed. The additive may be mixed for about 5 to 30 minutes using, for example, a Nauter mixer.
Thereafter, fine grinding was performed using a jet mill until the alloy powder had an average particle size of about 3 to 6 μm. In this experiment, two types of pulverized powders having an average particle diameter of 4 μm and 5 μm were prepared.
Naturally, both the additive mixing step and the fine pulverization step are performed in an oxygen-free process.

4)配合工程
表2に示した原料合金を、表3に示す組み合わせで配合し、混合を行った。最終組成は表3に示す通りである。この場合の混合は、例えばナウターミキサー等により5〜30分間ほど行なう程度でよい。配合工程も無酸素プロセスで行なうことが望ましい。
表3において、配合種別B、Cは、Tb及びZrを主相形成用合金から供給している。また、配合種別D及びEは、Tb及びZrを粒界相形成用合金から供給している。
4) Blending Step The raw material alloys shown in Table 2 were blended in the combinations shown in Table 3 and mixed. The final composition is as shown in Table 3. In this case, the mixing may be performed for about 5 to 30 minutes using, for example, a Nauter mixer. It is desirable to carry out the blending process by an oxygen-free process.
In Table 3, compounding types B and C supply Tb and Zr from the main phase forming alloy. In addition, the blending types D and E supply Tb and Zr from the alloy for forming the grain boundary phase.

5)成形工程
得られた混合粉末を磁場中にて成形する。具体的には、微粉末を電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12.0〜17.0kOeの磁場中で、0.7〜1.5t/cm2前後の圧力で行なえばよい。本実験では15kOeの磁場中で1.2t/cm2の圧力で成形を行い、成形体を得た。本工程も無酸素プロセスにて行なった。
6)焼結、時効工程
この成形体を真空中において1010〜1090℃で4時間焼結した後、急冷した。次いで得られた焼結体に800℃×1時間と550℃×2.5時間(ともにAr雰囲気中)の2段時効処理を施した。
5) Molding step The obtained mixed powder is molded in a magnetic field. Specifically, the fine powder is filled in a mold held by an electromagnet, and is molded in a magnetic field with its crystal axis oriented by applying a magnetic field. The forming in the magnetic field may be performed at a pressure of about 0.7 to 1.5 t / cm 2 in a magnetic field of 12.0 to 17.0 kOe. In this experiment, molding was performed at a pressure of 1.2 t / cm 2 in a magnetic field of 15 kOe to obtain a molded body. This step was also performed by an oxygen-free process.
6) Sintering and aging process This molded body was sintered in a vacuum at 1010 to 1090 ° C for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 550 ° C. × 2.5 hours (both in an Ar atmosphere).

Figure 2006100434
Figure 2006100434

得られたR−T−B系希土類永久磁石について、残留磁束密度(Br)、保磁力(HcJ)及び角形比(Hk/HcJ)をB−Hトレーサにより測定した。なお、Hkは磁気ヒステリシスループの第2象限において、磁束密度が残留磁束密度の90%になるときの外部磁界強度である。その結果を表4及び図1〜図3に示す。   About the obtained RTB-based rare earth permanent magnet, residual magnetic flux density (Br), coercive force (HcJ), and squareness ratio (Hk / HcJ) were measured with a BH tracer. Hk is the external magnetic field strength when the magnetic flux density is 90% of the residual magnetic flux density in the second quadrant of the magnetic hysteresis loop. The results are shown in Table 4 and FIGS.

Figure 2006100434
Figure 2006100434

表3及び図1〜3に示すように、Zrを含有しない配合種別AによるR−T−B系希土類永久磁石は、残留磁束密度(Br)が13.3kG以上、保磁力(HcJ)が22kOe以上、角型比(Hk/HcJ)が96%以上の特性を得ることができる焼結温度幅が20℃(1030〜1050℃)である。同様に、Zrを含むが、主相形成用合金にZr及びTbが共存する配合種別BによるR−T−B系希土類永久磁石及び配合種別CによるR−T−B系希土類永久磁石は、96%以下の角型比(Hk/HcJ)しか得ることができないため、焼結温度幅が0℃である。以上に対して、粒界相形成合金にTb及びZrを含むが、主相形成合金にはTbは含むもののZrを含まない配合種別DによるR−T−B系希土類永久磁石及び配合種別EによるR−T−B系希土類永久磁石は、残留磁束密度(Br)が13.3kG以上、保磁力(HcJ)が22kOe以上、角型比(Hk/HcJ)が96%以上の特性を得ることができる焼結温度幅が40℃(1030〜1070℃)以上である。   As shown in Table 3 and FIGS. 1 to 3, the RTB-based rare earth permanent magnet according to blending type A not containing Zr has a residual magnetic flux density (Br) of 13.3 kG or more and a coercive force (HcJ) of 22 kOe. As described above, the sintering temperature width at which the squareness ratio (Hk / HcJ) can obtain a characteristic of 96% or more is 20 ° C. (1030 to 1050 ° C.). Similarly, the RTB-based rare earth permanent magnet according to the blending type B and the RTB-based rare earth permanent magnet according to the blending type C, which contain Zr but Zr and Tb coexist in the main phase forming alloy, are 96 Since the squareness ratio (Hk / HcJ) of not more than% can be obtained, the sintering temperature width is 0 ° C. In contrast, the grain boundary phase-forming alloy contains Tb and Zr, but the main phase-forming alloy contains Tb but does not contain Zr. The RTB-based rare earth permanent magnet can obtain characteristics such as a residual magnetic flux density (Br) of 13.3 kG or more, a coercive force (HcJ) of 22 kOe or more, and a squareness ratio (Hk / HcJ) of 96% or more. The sintering temperature range which can be performed is 40 degreeC (1030-1070 degreeC) or more.

表5に焼結温度が1030℃のR−T−B系希土類永久磁石の磁気特性を対比して示している。主相形成合金にTb及びZrを含む試料No.5及び8は、試料No.2(Zr無添加)に比べて、低残留磁束密度(Br)かつ低角形比(Hk/HcJ)であることがわかる。これに対し、粒界相形成合金にTb及びZrを含むが、主相形成合金にはTbは含むがZrを含まない試料No.11及び14は、試料No.5及び8に比べ、残留磁束密度(Br)及び角形比(Hk/HcJ)が向上していることがわかる。   Table 5 shows a comparison of the magnetic properties of the R-T-B rare earth permanent magnet having a sintering temperature of 1030 ° C. Sample No. containing Tb and Zr in the main phase forming alloy Samples Nos. 5 and 8 are sample Nos. It can be seen that it has a low residual magnetic flux density (Br) and a low squareness ratio (Hk / HcJ) as compared with 2 (no Zr added). On the other hand, although the grain boundary phase forming alloy contains Tb and Zr, the main phase forming alloy contains Tb but does not contain Zr. 11 and 14 are sample Nos. It can be seen that the residual magnetic flux density (Br) and the squareness ratio (Hk / HcJ) are improved as compared with 5 and 8.

Figure 2006100434
Figure 2006100434

以上説明した通りであり、本発明によれば、40℃以上の焼結温度幅を得ることができる。さらに本発明によれば、残留磁束密度(Br)及び角形比(Hk/HcJ)の低下を伴わずに、Tbの添加による保磁力(HcJ)向上の効果を享受することができる。   As described above, according to the present invention, a sintering temperature range of 40 ° C. or more can be obtained. Furthermore, according to the present invention, it is possible to enjoy the effect of improving the coercive force (HcJ) by adding Tb without lowering the residual magnetic flux density (Br) and the squareness ratio (Hk / HcJ).

本実施の形態における焼結温度と残留磁束密度(Br)との関係を示すグラフである。It is a graph which shows the relationship between the sintering temperature and residual magnetic flux density (Br) in this Embodiment. 本実施の形態における焼結温度と保磁力(HcJ)との関係を示すグラフである。It is a graph which shows the relationship between the sintering temperature and coercive force (HcJ) in this Embodiment. 本実施の形態における焼結温度と角型比(Hk/HcJ)との関係を示すグラフである。It is a graph which shows the relationship between the sintering temperature and squareness ratio (Hk / HcJ) in this Embodiment.

Claims (4)

2141化合物(Rは希土類元素の1種又は2種以上でTbを必ず含み、希土類元素はYを包含する概念であり、TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)を磁性相とする焼結体からなり、前記焼結体中にM元素(M:Zr、Nb及びHfの1種又は2種以上)を含むR−T−B系希土類永久磁石の製造方法であって、
2141化合物を含む主相形成用合金からなる粒子と、R及びTを主体とする粒界相形成用合金からなる粒子とを含む成形体を作製する工程と、
前記成形体を焼結する工程と、を含み
Tb及びM元素は、Tb及びM元素を含む主相形成用合金から供給する形態を除く形態で供給することを特徴とするR−T−B系希土類永久磁石の製造方法。
R 2 T 14 B 1 compound (R is one or more rare earth elements and must contain Tb, rare earth elements include Y, and T is at least one element that essentially contains Fe or Fe and Co) R-T-B type rare earth comprising a sintered body having the above transition metal element) as a magnetic phase and containing M element (M: one or more of Zr, Nb and Hf) in the sintered body A method for producing a permanent magnet, comprising:
Producing a molded body comprising particles made of a main phase forming alloy containing an R 2 T 14 B 1 compound and particles made of a grain boundary phase forming alloy mainly composed of R and T;
A step of sintering the molded body, wherein the Tb and M elements are supplied in a form excluding the form supplied from the main phase forming alloy containing the Tb and M elements. A method for producing a rare earth permanent magnet.
Tb及びM元素は、前記粒界相形成用合金から供給することを特徴とする請求項1に記載のR−T−B系希土類永久磁石の製造方法。   The method for producing an R-T-B rare earth permanent magnet according to claim 1, wherein the Tb and M elements are supplied from the grain boundary phase forming alloy. Tb及びM元素は、前記主相形成用合金及び前記粒界相形成用合金の互いに異なる合金から供給することを特徴とする請求項1に記載のR−T−B系希土類永久磁石の製造方法。   The method for producing an R-T-B rare earth permanent magnet according to claim 1, wherein the Tb and M elements are supplied from different alloys of the main phase forming alloy and the grain boundary phase forming alloy. . 前記焼結体は、R:22〜33wt%(Tb:6%以下)、B:0.5〜1.5wt%、Al:0.03〜0.30wt%、Cu:0.15wt%以下(0を含まず)、Zr:0.05〜0.30wt%、Co:2wt%以下(0を含まず)、残部実質的にFeからなる組成を有することを特徴とする請求項1〜3のいずれかに記載のR−T−B系希土類永久磁石の製造方法。   The sintered body has R: 22 to 33 wt% (Tb: 6% or less), B: 0.5 to 1.5 wt%, Al: 0.03 to 0.30 wt%, Cu: 0.15 wt% or less ( 0 to 3), Zr: 0.05 to 0.30 wt%, Co: 2 wt% or less (not including 0), and the balance substantially consisting of Fe The manufacturing method of the RTB system rare earth permanent magnet in any one.
JP2004282689A 2004-09-28 2004-09-28 Method of manufacturing r-t-b based rare earth permanent magnet Withdrawn JP2006100434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282689A JP2006100434A (en) 2004-09-28 2004-09-28 Method of manufacturing r-t-b based rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282689A JP2006100434A (en) 2004-09-28 2004-09-28 Method of manufacturing r-t-b based rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2006100434A true JP2006100434A (en) 2006-04-13

Family

ID=36239974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282689A Withdrawn JP2006100434A (en) 2004-09-28 2004-09-28 Method of manufacturing r-t-b based rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2006100434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199180A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
CN104221100A (en) * 2012-03-30 2014-12-17 因太金属株式会社 Ndfeb-based sintered magnet
WO2015096583A1 (en) * 2013-12-27 2015-07-02 Byd Company Limited Rare earth permanent magnetic material and method of preparing the same
US10395822B2 (en) 2010-03-23 2019-08-27 Tdk Corporation Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199180A (en) * 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
US10395822B2 (en) 2010-03-23 2019-08-27 Tdk Corporation Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
CN104221100A (en) * 2012-03-30 2014-12-17 因太金属株式会社 Ndfeb-based sintered magnet
EP2833376A4 (en) * 2012-03-30 2015-06-03 Intermetallics Co Ltd NdFeB-BASED SINTERED MAGNET
CN104221100B (en) * 2012-03-30 2018-03-16 因太金属株式会社 NdFeB based sintered magnets
WO2015096583A1 (en) * 2013-12-27 2015-07-02 Byd Company Limited Rare earth permanent magnetic material and method of preparing the same
US10340064B2 (en) 2013-12-27 2019-07-02 Byd Company Limited Rare earth permanent magnetic material and method of preparing the same

Similar Documents

Publication Publication Date Title
JP6504044B2 (en) Rare earth permanent magnet
JP4076177B2 (en) Method for producing RTB-based rare earth permanent magnet
JP2013070062A (en) Rare-earth magnet
JPWO2005001856A1 (en) R-T-B rare earth permanent magnet and method for producing the same
JP2016152246A (en) Rare earth based permanent magnet
JP4076175B2 (en) R-T-B rare earth permanent magnet
JP4766453B2 (en) Rare earth permanent magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP4766452B2 (en) Rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP4529180B2 (en) Rare earth permanent magnet
JP2016207679A (en) R-t-b series sintered magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JP2005159053A (en) Method for manufacturing r-t-b-based permanent magnet
JP2016037611A (en) Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP4706900B2 (en) Rare earth permanent magnet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090518