KR100213333B1 - Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith - Google Patents

Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith Download PDF

Info

Publication number
KR100213333B1
KR100213333B1 KR1019950066229A KR19950066229A KR100213333B1 KR 100213333 B1 KR100213333 B1 KR 100213333B1 KR 1019950066229 A KR1019950066229 A KR 1019950066229A KR 19950066229 A KR19950066229 A KR 19950066229A KR 100213333 B1 KR100213333 B1 KR 100213333B1
Authority
KR
South Korea
Prior art keywords
permanent magnet
composition
magnetic
phase
rare earth
Prior art date
Application number
KR1019950066229A
Other languages
Korean (ko)
Other versions
KR970051504A (en
Inventor
박언병
양충진
손영근
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019950066229A priority Critical patent/KR100213333B1/en
Publication of KR970051504A publication Critical patent/KR970051504A/en
Application granted granted Critical
Publication of KR100213333B1 publication Critical patent/KR100213333B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(단, x, y, z, w는 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다)의 조성을 갖고 강자성상인 Nd2Fe14B와 약자성상인 Fe3B 및 α-Fe가 혼재되어 있는 복합상 영구자성 조성물이 제공된다. (Where x, y, z, w are atomic% in the range of 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3) and are ferromagnetic phase Nd 2 Fe 14 B There is provided a composite permanent magnet composition in which Fe 3 B and α-Fe which are weak magnetic phases are mixed.

이같은 조성의 자성체는 잔류자화력이 극대화되고, 보자력 및 큐리온도를 개선시킨 회토류-철계 영구자석을 제공할 수 있다.The magnetic material of such a composition can provide the rare earth-iron permanent magnet with the maximum residual magnetization force and improved coercive force and Curie temperature.

상기 조성을 갖는 것을 모재로 하여 영구자석 재료를 제조하는 방법 또한 제공된다.There is also provided a method of producing a permanent magnet material having a composition as the base material.

Description

초미세립 복합상 영구자석 조성물 및 이를 모재로 한 영구자석 재료 제조방법Ultrafine Granular Composite Permanent Magnet Composition and Method of Manufacturing Permanent Magnet Material Using Its Base Material

본 발명은 높은 잔류자속 밀도와 같은 높은 에너지적을 갖는 니오디움(Nd)-철(Fe)-보론(B)계 영구자석 조성물 및 이같은 조성을 모재로 하여 영구자석을 제조하는 방법에 관한 것이며, 보다 상세히는 영구자석 재료인 강자성상 Nd2Fe14B와 약자성상 Fe3B 및 α-Fe를 서로 공존 복합화하여 보다 개선된 잔류 자화력을 갖는 초미세립 복합상의 영구자석 조성물 및 제조방법에 관한 것이다.The present invention relates to a nitrogen-based (Nd) -iron (Fe) -boron (B) -based permanent magnet composition having a high energy such as high residual magnetic flux density, and a method for producing a permanent magnet based on such a composition, in more detail The present invention relates to a permanent magnet composition and a method of preparing a superfine composite composite permanent magnet having improved residual magnetization by co-compositing ferromagnetic phase Nd 2 Fe 14 B and the weak magnetic phase Fe 3 B and α-Fe.

실용화된 영구자석 재료로는 저에너지적의 보급형 영구자석(주성분이 Fe-Co-Ni-Al-Ti-Cu인 알리코계 자석, 주성분이 BaO·Fe2O3, 혹은 SrO·6Fe2O3인 산화철 페라이트 자석), 희토류-코발트계 영구자석(조성 SmCo5, 혹은 Sm2Co17이 근간) 및 최근에 발견된 희토류계 영구자석(희토류 철계 영구자석 재료, Nd2Fe14B 조성물이 근간) 등이 실용화되어 있다.Commercially available permanent magnet materials include low-energy, low-cost, permanent magnets (alco-based magnets whose main component is Fe-Co-Ni-Al-Ti-Cu, iron oxide ferrite whose main component is BaO · Fe 2 O 3 , or SrO · 6Fe 2 O 3 . Magnets), rare earth-cobalt based permanent magnets (based on composition SmCo 5 , or Sm 2 Co 17 ) and recently discovered rare earth permanent magnets (rare earth iron based permanent magnet materials, based on Nd 2 Fe 14 B composition). It is.

상기 알리코 영구자석은 비싼 제조원가 및 복잡한 공정으로 스피커, 계량기 같은 특수용도에만 사용되고, 상기 Sm-Co계 자석은 에너지적이 높고 {(B·H)max=20-30MgOe(million gauss Oersted)}, 큐리온도가 높아(Tc=700-800℃) 영구자석 재료로는 최상이나, 비싼 제조원가 및 복잡한 제조공정으로 고온용도의 특수제품에만 제한사용한다(K.J.Strnat and Hoffer; USAF Materials Lab. Report AFML TR-65-446(1966), K.J.J.Bushow, R.A.Nastepad and F.F.Westerndrop : J.Appl. Phys., Vol. 40, (1969) p. 4029 및 D.K.Das : IEEE Trans. Magn., Vol.5, (1969) p 214).The Alico permanent magnet is used only for special purposes such as a speaker and a meter because of expensive manufacturing cost and complicated process, and the Sm-Co magnet is energy-efficient Higher (Tc = 700-800 ℃) permanent magnet material, but limited to high-temperature specialty products due to expensive manufacturing cost and complex manufacturing process (KJStrnat and Hoffer; USAF Materials Lab.Report AFML TR-65- 446 (1966), KJJ Bushow, RANastepad and FF Western drop: J. Appl. Phys., Vol. 40, (1969) p. 4029 and DKDas: IEEE Trans. Magn., Vol. 5, (1969) p 214 ).

최근 코발트 대응 희토류-철계 영구자석이 개발되어 실용화되었으며 그 대표적인 예는 강자성상 Nd2Fe14B를 근간으로 하는 희토류 화합물 영구자석 재료를 들 수 있다.Recently, cobalt-compatible rare earth-iron permanent magnets have been developed and put into practical use. A representative example thereof is a rare earth compound permanent magnet material based on ferromagnetic Nd 2 Fe 14 B.

이같은 강자성상은 Nd-Fe-B 삼원계를 중심으로 한 희토류-철-보론 화합물 조성에서, Nd6-17Fe75-80B1-3조성식 범위에서 항상 강자성상 Nd2Fe14B가 주상으로 형성되어 강력한 영구자석 재료로서 사용된다.This ferromagnetic phase always forms the ferromagnetic phase Nd 2 Fe 14 B as the main phase in the rare earth-iron-boron compound composition centered on the Nd-Fe-B ternary system, in the compositional formula of Nd 6-17 Fe 75-80 B 1-3 It is used as a strong permanent magnet material.

상기 Nd2Fe14B 상을 근간으로 하는 희토류-철계 영구자석은 Co 대신 Fe로 대체함으로써 생산비, 원료비 절감과 에너지적 {(B·H)max=25-40MGOe} 및 보자력(고유 보자력 : Hc=8-20)을 상승시켜 영구자석의 새 활로를 열었다.The rare earth-iron permanent magnet based on the Nd 2 Fe 14 B phase is replaced with Fe instead of Co, thereby reducing production cost, raw material cost and energy {(B · H) max = 25-40MGOe} and coercive force (unique coercive force: Hc = 8-20) was opened to open a new path for permanent magnets.

그러나 상기 희토류-철계 영구자석은 큐리 온도(Tc)가 310℃ 이하여서 고온용으로는 사용이 제한되며, 부식성이 커서 현재는 수지 바인더와 혼합하여 성형하는 본드 자석(resin bonded magnet) 재료로 사용되고 있다(M. Sagawa, S.Fujimura, N.Togawa, H.Yamato and Y.masuura; J. Appl. Phys., Vol. 55, (1985) p. 1964, Croat, J.J. Herbst, R.W.Lee and F.E.Pinkerton; J.Appl, Phys., Vol. 55, (1984) p. 2078).However, the rare earth-iron permanent magnet has limited curie temperature (Tc) of 310 ° C. or less, and thus is limited in use for high temperature. Therefore, the rare earth-iron permanent magnet is used as a bonded bonded magnet material which is formed by mixing with a resin binder. (M. Sagawa, S. Fujimura, N. Togawa, H. Yamato and Y. masuura; J. Appl. Phys., Vol. 55, (1985) p. 1964, Croat, JJ Herbst, RWLee and FEPinkerton; J. Appl, Phys., Vol. 55, (1984) p. 2078).

상기 희토류-철계 영구자석은 강자성상인 Nd2Fe14B를 기지조직으로 갖는 재료일수록 자기특성이 우수하나 높은 보자력(coercive force)에도 불구하고 자석의 자화력을 나타내는 잔류 자속밀도(Br=remanance)가 이론치보다 훨씬 낮은 문제점이 있다.The rare earth-iron permanent magnet has a higher magnetic property than the material having a ferromagnetic Nd 2 Fe 14 B as a matrix structure, but the residual magnetic flux density (Br = remanance) indicating the magnetization of the magnet despite the high coercive force The problem is much lower than the theoretical one.

이에 본 발명의 목적은 잔류자화력을 극대화시키고, 보자력 및 큐리온도를 상승시킨 희토류-철계 영구자석 조성물을 제공하는데 있다.Accordingly, an object of the present invention is to provide a rare earth-iron permanent magnet composition which maximizes residual magnetization force and increases coercivity and curie temperature.

본 발명의 다른 목적은 상기 희토류-철계 영구자석 조성을 갖는 모재를 사용하여 영구자석을 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing a permanent magnet using a base material having the rare earth-iron permanent magnet composition.

본 발명의 일측면에 의하면의 조성을 갖는 니오디움-철(코발트, 해프늄, 갈륨)-보론계 영구자석 조성물이 제공된다. 단, 상기 식에서 x, y, z, w는 각각 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다.According to one aspect of the invention A nidium-iron (cobalt, hafnium, gallium) -boron-based permanent magnet composition having a composition is provided. Wherein x, y, z and w are in the range of 0? X? 1, 0? Y? 3, 0? Z? 1, and 0? W?

본 발명의 다른 측면에 의하면,(단, x, y, z, w는 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다) 조성을 갖는 모재를 용해한 후 105~106℃/초의 냉각속도로 급냉시켜 비정질 자성체를 형성하고, 상기 자성체를 600~730℃ 온도에서 5-20분간 열처리함을 포함하는 희토류계-철 영구자석 재료 제조방법이 제공된다.According to another aspect of the present invention, (Where, x, y, z, w it is an atomic percent 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 a range) was dissolved in the base material 10 having a composition 5-10 Provided is a method for preparing a rare earth-iron permanent magnet material including rapidly cooling at a cooling rate of 6 ° C./sec to form an amorphous magnetic material, and heat treating the magnetic material at a temperature of 600˜730 ° C. for 5-20 minutes.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 의한 영구자석 조성물은 낮은 함량의 Nd를 사용하여 영구자석 재료내에 강자성상을 나타내는 Nd2Fe14B 상 뿐만 아니라 자화력이 현재 알려진 바로 최고값을 보이는 철(Fe)을 근간으로 하는 Fe3B 및 α-Fe를 동시에 공존케 함으로써 교환상호 작용을 발생시켜 잔류 자화력을 극대화하고, Fe 대신 약간의 Co와 Hf 및 Ga를 첨가하여 보자력 및 큐리온도 등을 상승시킨 새로운 조성물로써, 수지자석용이나 그다지 높지 않은 보자력을 요하는 영구자석 재료로 사용될 수 있다.The permanent magnet composition according to the present invention is based on Fe (Fe), which shows the highest value of magnetization as well as the Nd 2 Fe 14 B phase exhibiting a ferromagnetic phase in the permanent magnet material using a low content of Nd. The coexistence of 3 B and α-Fe simultaneously creates exchange interactions to maximize residual magnetization power, and by adding a little Co, Hf, and Ga instead of Fe to increase coercivity and Curie temperature. It can be used as a permanent magnet material that requires a very high coercive force.

본 발명에 따라 Nd-Fe-B 삼원계를 중심으로 한(단, x, y, z, w는 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다)의 새로운 조성을 갖는 영구자석 조성물은 급속 냉각하여 비정질의 자성체로 형성시킨 다음 특정조건하에 열처리하면 강자성의 특징을 갖는 Nd2Fe14B 상과 대단히 높은 포화자화력을 갖는 약자성상 Fe3B 및 α-Fe의 결정화 및 복합화가 유동됨으로써 적당한 보자력과 높은 자화력을 갖춘 Nd2Fe14B+Fe3B+α-Fe의 삼원혼합상을 형성하게 되는 것이다. 즉, 연자성상인 Fe3B의 기지에 결정립의 크기가 10-30nm이고 부피분율이 20-30%의 강자성상의 Nd2Fe14B을 생성시킴으로써 보자력, 잔류자화력 최대자기에너지 등의 우수한 자기특성을 갖는 영구자석 재료를 얻을 수 있는 것이다.According to the present invention, the Nd-Fe-B ternary system (Where x, y, z and w are atomic% in the range 0 ≦ x ≦ 1, 0 ≦ y ≦ 3, 0 ≦ z ≦ 1, 0 ≦ w ≦ 3). When formed into amorphous magnetic material and heat-treated under specific conditions, crystallization and complexation of Nd 2 Fe 14 B phase having ferromagnetic characteristics and Fe 3 B and α-Fe having extremely high saturation magnetization flows, thereby allowing proper coercive force. And a three-way mixed phase of Nd 2 Fe 14 B + Fe 3 B + α-Fe with high magnetization. That is, excellent magnetic properties such as coercive force, residual magnetic force, maximum magnetic energy, etc. are generated by producing Nd 2 Fe 14 B having a grain size of 10-30 nm and a volume fraction of 20-30% on a matrix of Fe 3 B, a soft magnetic phase. It is possible to obtain a permanent magnet material having a.

또한, 본 발명에 의하면 조성물에 Hf와 Ga를 첨가함으로써 높은 잔류 자화력을 유발하는 중요인자인 최종 결정입도를 더욱 미세화시켜 보다 높은 잔류자화력을 얻을 수 있으며, 약간의 Co를 첨가함으로써 보자력을 개선시킴과 동시에 히스테리시스루프의 각 형성을 증가시켜 보다 높은 최대 자기에너지적을 얻을 수 있는 것이다.In addition, according to the present invention, by adding Hf and Ga to the composition, the final grain size, which is an important factor causing high residual magnetization, can be further refined to obtain a higher residual magnetization force, and by adding a little Co, the coercivity is improved. At the same time increasing the angular formation of the hysteresis loop to obtain a higher maximum magnetic energy product.

본 발명에 따라(단, x, y, z, w는 앞에서 정의한 바와 같다) 조성을 갖는 자성체에서 강자성상인 Nd2Fe14B 상과 약자성체인 Fe3B 또는 α-Fe 상과의 상대적 부피분율은 첨가된 붕소(B)의 량과 급냉시의 냉각속도 및 그 후의 열처리 조건에 따라 결정된다.According to the invention (However, x, y, z, w are as defined above) In the magnetic material having a composition, the relative volume fraction between the ferromagnetic Nd 2 Fe 14 B phase and the weak magnetic Fe 3 B or α-Fe phase is added to the boron ( It is determined by the amount of B), the cooling rate during quenching and subsequent heat treatment conditions.

즉, 첨가된 붕소(B)의 량이 많을수록, 급냉속도가 증대될수록 약자성상인 Fe3B의 생성량이 증가하게 된다. Fe3B 생성량이 과다하면 보자력의 급격한 감소가 야기되고 강자성상인 Nd2Fe14B 결정립의 생성이 과다하면 보자력은 상승되나 본 발명에서 중요시하고 있는 교환 상호 작용의 감소로 인한 잔류 자속 밀도의 급격한 감소가 일어나므로 첨가되는 붕수의 량 및 냉각속도를 적절히 선택함이 요구된다.That is, as the amount of boron (B) added increases, as the quenching speed increases, the amount of Fe 3 B which is a weak magnetic phase increases. Excessive Fe 3 B content causes a sharp decrease in coercive force and excessive formation of ferromagnetic Nd 2 Fe 14 B grains increases coercive force, but drastically decreases the residual magnetic flux density due to the reduction of exchange interaction, which is important in the present invention. Since it occurs, it is required to appropriately select the amount of cooling water and the cooling rate to be added.

또한 본 발명의 조성물에 존재하고 있는 각 존재상들의 결정립 크기는 열처리 조건에 의해 큰 영향을 받는다.In addition, the grain size of each of the phases present in the composition of the present invention is greatly influenced by the heat treatment conditions.

열처리 온도가 높거나 열처리 시간이 길어지게 되면 각 존재상들의 결정립이 크게 되어 교환 상호 작용의 감소로 인해 잔류 자속밀도의 감소가 초래된다. 따라서 적절한 열처리 온도와 열처리 시간이 필요한 것이다.If the annealing temperature is high or the annealing time is long, the grains of the respective phases become large, resulting in a reduction of the residual magnetic flux density due to the reduction of the exchange interaction. Therefore, proper heat treatment temperature and heat treatment time are required.

본 발명의 조성을 갖는 자성체에서 강자성체인 Nd2Fe14B와 약자성체인 Fe3B의 부피비율은 Nd2Fe14B : Fe3B=(20-30체적%) : (70-80체적%)인 것이 바람직하다.In the magnetic body having the composition of the present invention, the volume ratio of the ferromagnetic Nd 2 Fe 14 B and the weak magnetic Fe 3 B is Nd 2 Fe 14 B: Fe 3 B = (20-30% by volume): (70-80% by volume) Is preferably.

또한 바람직한 Nd2Fe14B의 결정립의 크기는 10-30nm로 균일하게 석출하는 것이 바람직하며, Fe3B와 α-Fe의 결정립도 역시 가능한 Nd2Fe14B의 결정립 크기와 비슷하게 유지하는 것이 바람직하다.In addition, it is preferable that the size of the preferred grain size of Nd 2 Fe 14 B is uniformly precipitated at 10-30 nm, and the grain size of Fe 3 B and α-Fe is also preferably maintained as similar to that of Nd 2 Fe 14 B. .

한편, 본 발명에 의한 영구자석 재료 제조방법은,(단, 여기서, x, y, z, w는 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다) 조성을 갖는 모재를 용해시킨 다음 105-106℃/초의 냉각속도로 급냉시켜 비정질 자성체를 형성하고, 그 비정질 자성체를 600~730℃ 온도에서 5-20분간 열처리함을 포함한다.On the other hand, the permanent magnet material manufacturing method according to the present invention, Where x, y, z, w are atomic%, in the range 0 ≦ x ≦ 1, 0 ≦ y ≦ 3, 0 ≦ z ≦ 1, 0 ≦ w ≦ 3. Quenching at a cooling rate of 5 −10 6 ° C./sec to form an amorphous magnetic material, and heat treating the amorphous magnetic material at a temperature of 600˜730 ° C. for 5-20 minutes.

상기 조성을 갖는 모재의 용해는 플라즈마 아크 용해방법 등을 이용하여 행하여질 수 있으며 용해 후 인고트(ingot)를 형성시키게 된다.Dissolution of the base material having the above composition may be performed using a plasma arc melting method or the like to form an ingot after melting.

이같이 형성된 인고트(ingot)는 석영관 내에서 용해된 후 급냉 회전체 표면에 용사시킴으로써 급속 응고된 자성체 리본을 형성한다. 앞서 기술한 바와 같이 급냉 속도는 조성 자성체 화합물을 구성하는 각 상의 부피분율에 영향을 끼치는데, 즉 냉각속도가 증가할수록 조성자성체 중에서 Fe3B의 생성량이 증가하고 그 생성량이 과다하면 보자력의 급격한 감소가 초래되며 반대의 경우에는 Nd2Fe14B 결정립의 생성이 과다하게 되고 그 경우에는 보자력 상승은 도모되나 잔류 자속밀도가 급격히 감소하게 된다.The ingot thus formed is dissolved in a quartz tube and then sprayed onto the surface of the quenching rotor to form a rapidly solidified magnetic ribbon. As described above, the quenching rate affects the volume fraction of each phase constituting the compositional magnetic compound, that is, as the cooling rate increases, Fe in the compositional magnetic body is increased.3An increase in the amount of B produced and an excessive amount of B results in a sharp decrease in the coercive force and vice versa2Fe14B The formation of grains becomes excessive, in which case the coercivity rises, but the residual magnetic flux density decreases rapidly.

바람직한 냉각속도는 105~106℃/초가 좋다. 이같은 냉각속도를 얻기 위하여 냉각회전체의 표면 속도는 35-50m/초로 하는 것이 적당하다. 상기와 같은 냉각 속도로 급냉시켜 제조된 비정질 상태의 자성체 화합물은 진공 또는 비산화성 중성분위기하에서 열처리하여 초미세립의 최종 복합자성체 화합물을 얻을 수 있다.A preferred cooling rate is 10 5 ~ 10 6 ℃ / sec good. In order to achieve such a cooling rate, the surface speed of the cooling rotor is suitably set to 35-50 m / sec. The magnetic compound in an amorphous state prepared by quenching at the cooling rate as described above may be subjected to heat treatment under vacuum or a non-oxidizing medium component atmosphere to obtain an ultrafine granular final magnetic compound.

열처리 조건은 앞서 언급한 바와 같이 각 존재상의 결정립 크기에 영향을 미치므로 바람직한 열처리 온도는 각 시료의 첨가량과 첨가원소의 종류에 따라 조금씩 차이는 있으나 620-730℃ 온도에서 3-30분, 바람직하게는 620-710℃ 온도에서 5-20분 행하는 것이 바람직하다.Since the heat treatment conditions affect the grain size of each phase as mentioned above, the preferred heat treatment temperature varies slightly depending on the amount of each sample added and the type of added element, but preferably 3-30 minutes at a temperature of 620-730 ° C. It is preferable to perform 5-20 minutes at the temperature of 620-710 degreeC.

본 발명에 사용된 냉각속도가 너무 느리면 처음부터 목표하는 결정립의 크기 이상이 될 뿐만 아니라 결정립이 균일화되지 않아 교환 상호 작용력이 감소하여 열처리 온도가 너무 높거나 시간이 너무 길면, 역시 초미세립 복합상 형성에 악영향이 있다.If the cooling rate used in the present invention is too slow, not only the size of the target crystal grains from the beginning, but also the crystal grains are not uniform, so the exchange interaction force is reduced, so that if the heat treatment temperature is too high or the time is too long, the ultrafine grain composite phase is also formed. Has an adverse effect on

한편, 급냉속도가 너무 빠르면 Fe3B 상 혹은 비정질이 과도 생성되어 열처리 시간 및 온도가 상승되어 경제적인 면에서 실용화에 문제가 있다.On the other hand, if the quenching rate is too fast, the Fe 3 B phase or amorphous is excessively generated, so that the heat treatment time and temperature are increased, and there is a problem in practical use in terms of economy.

상기한 바와 같은 본 발명의 방법에 따라 얻은 초미세립의 Nd2Fe14B+Fe3B+(α-Fe) 복합상 희토류 영구자석은 등방성이나 수지자석용이나 그다지 높지 않은 보자력을 요하는 제품에 사용될 수 있는 경제적이면서도 효율적인 자성체이다.The ultrafine Nd 2 Fe 14 B + Fe 3 B + (α-Fe) composite phase rare earth permanent magnets obtained by the method of the present invention as described above can be used for isotropic, resin magnets, or products that require not too high coercivity. It is economical and efficient magnetic material.

이하, 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예 1]Example 1

Nd4Fe78.5Co3HfB18.5, Nd4Fe73.5Co3Hf0.5Ga0.5B18.5및 Nd4Fe73.5Co3GaB18.5, 조성의 희토류-철-보론계 화합물을 플라즈마 아크(plasma arc) 용해 공정으로 균일 조성이 되도록 수차례 용해하여 인고트(ingort)를 제조하였다.Rare earth-iron-boron compounds of Nd 4 Fe 78.5 Co 3 HfB 18.5 , Nd 4 Fe 73.5 Co 3 Hf 0.5 Ga 0.5 B 18.5, and Nd 4 Fe 73.5 Co 3 GaB 18.5 , are prepared by plasma arc dissolution process. An ingot was prepared by dissolving several times to obtain a uniform composition.

이같이 제조된 각 인고트(ingot)를 석영관 내에서 유도 용해하여 급냉 회전체 표면상에 용사(matallizing)시켜 급속 응고된 자성체 리본을 제조하였다. 냉각회전체 표면 속도는 40m/초였다.Each ingot prepared as described above was inductively dissolved in a quartz tube and sprayed onto the surface of the quenching rotor to prepare a rapidly solidified magnetic ribbon. The cooling rotor surface speed was 40 m / sec.

이어서 제조된 자성체 화합물을 x-ray 회절분석법으로 확인해 본 결과 비정질로 구성되어 있음을 확인하였다. 자기특성을 진동시료 자력계(vibrating sample magnetometer)로 측정결과 영구자석 재료로서 사용이 부적합하였다.Subsequently, as a result of confirming the prepared magnetic compound by x-ray diffraction analysis, it was confirmed that it was composed of amorphous material. The magnetic properties were measured using a vibrating sample magnetometer and were not suitable for use as a permanent magnet material.

따라서, 비정질의 각 리본을 655℃, 680℃, 705℃의 각 온도에서 5분간 고진공 분위기에서 열처리를 행하였다. 제조된 비정질 리본을 진공열처리 공정에 사용하는 것은 리본 표면에 희토류 금속이 날라가는 것을 제어하는데 어려움이 따르므로 시편을 4-5mm로 잘라 석영관 내에 봉입 후 열처리 공정을 통하였다.Therefore, each ribbon of amorphous was heat-processed in high vacuum atmosphere for 5 minutes at each temperature of 655 degreeC, 680 degreeC, and 705 degreeC. Using the prepared amorphous ribbon in the vacuum heat treatment process is difficult to control the flow of rare earth metal on the ribbon surface was cut into 4-5mm the specimen was encapsulated in a quartz tube and then subjected to a heat treatment process.

자기 특성은 리본 표면의 수직 및 길이방향으로 외부 자장을 가하여 측정하였다. 자기특성 측정기기는 부하자장력 16.4kOe에서 진동시료 자력계(vibrating sample magnetomer)로 측정하였다. 큐리온도(Qurie point)는 열자기 곡선 측정기(thermo gravity analyzer)를 사용해 결정하였다.Magnetic properties were measured by applying an external magnetic field in the vertical and longitudinal directions of the ribbon surface. The magnetic measuring device was measured with a vibrating sample magnetomer at a load magnetic force of 16.4 kOe. The Curie point was determined using a thermogravimetric analyzer.

상기 측정결과를 하기 표 1에 나타내었다.The measurement results are shown in Table 1 below.

상기 표 1에서 보듯이, Nd-Fe-B 조성에 코발트(Co), 해프늄(Hf) 및 갈륨(Ga)을 동시 첨가시 해프늄(Hf) 및 갈륨(Ga)은 미세화 특성을 향상시키고, 코발트(Co)는 각 형성, 보자력을 향상시켜 최대자기 에너지적을 크게 증가시킨다.As shown in Table 1, when cobalt (Co), hafnium (Hf), and gallium (Ga) are simultaneously added to the Nd-Fe-B composition, hafnium (Hf) and gallium (Ga) improve micronization characteristics, Cobalt (Co) improves the angular formation and coercivity greatly increases the maximum magnetic energy.

니오디움량을 3원자%에서 4원자%로 증가시키면 잔류 자속밀도가 다소 감소하나 강자성상 NdFeB의 결정화양이 증가하고 Fe 대신 치환된 Co 영향으로 보자력이 크게 증가함을 보였다.Increasing the amount of nidium from 3 atomic percent to 4 atomic percent decreased the residual magnetic flux density slightly, but the crystallization of NdFeB increased ferromagnetically and the coercivity increased significantly due to the effect of Co substituted for Fe.

또한 해프늄(Hf) 및 갈륨(Ga)을 각각 단독으로 첨가시에도 자기특성은 증가하나, 해프늄(Hf) 및 갈륨(Ga)의 양비를 1 : 1(0.5원자% : 0.5원자%)로 동시 첨가시 가장 우수한 자기적 특성을 나타내었다.In addition, the magnetic properties increase even when hafnium (Hf) and gallium (Ga) are added alone, but the ratio of hafnium (Hf) and gallium (Ga) is 1: 1 (0.5 atomic%: 0.5 atomic%). Simultaneous addition showed the best magnetic properties.

본 발명에서는 종래 방법의 열처리 온도 및 시간보다 더 낮은 온도 및 짧은 시간에 열처리를 하더라도 더 우수한 자기특성을 보였다.In the present invention, even when the heat treatment at a lower temperature and a shorter time than the heat treatment temperature and time of the conventional method showed better magnetic properties.

Claims (6)

의 조성을 갖고, 강자성상인 Nd2Fe14B와 약자성인 Fe3B 및 α-Fe가 서로 공존 복합화 되어 있는 니오디움-철(코발트, 해프늄, 갈륨)-보론계 영구자석 조성물. 단, 상기 식에서 x, y, z, w는 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다. Nidium-iron (cobalt, hafnium, gallium) -boron-based permanent magnet composition having a composition of Nd 2 Fe 14 B and a ferromagnetic phase of Fe 3 B and α-Fe coexist with each other. Where x, y, z and w are in the range of 0? X? 1, 0? Y? 3, 0? Z? 제1항에 있어서, 상기 강자성상인 Nd2Fe14B의 결정립 크기는 10-30nm임을 특징으로 하는 조성물.The composition of claim 1, wherein the grain size of Nd 2 Fe 14 B, the ferromagnetic phase, is 10-30 nm. 제1항 또는 제2항 중 어느 한 항에 있어서, 상기 Nd2Fe14B와 Fe3B는 Nd2Fe14B : Fe3B=(20-30체적%) : (70-80체적%) 부피비율로 혼재되어 있음을 특징으로 하는 조성물.The method according to claim 1 or 2, wherein Nd 2 Fe 14 B and Fe 3 B is Nd 2 Fe 14 B: Fe 3 B = (20-30% by volume): (70-80% by volume) A composition, characterized in that it is mixed in a volume ratio. (단, 여기서 x, y, z, w는 원자 %로서 0≤x≤1, 0≤y≤3, 0≤z≤1, 0≤w≤3 범위이다) 조성을 갖는 모재로 균일하게 용해시킨 다음, 급냉회전체 표면에서 105~106℃/초의 냉각속도로 급냉시켜 비정질 자성체를 형성시키고, 그 비정질 자성체를 600~730℃ 온도에서 3-30분간 열처리함을 포함하는 영구자석 재료 제조방법. Where x, y, z, w are atomic%, in the range 0 ≦ x ≦ 1, 0 ≦ y ≦ 3, 0 ≦ z ≦ 1, 0 ≦ w ≦ 3. , Quenching at a cooling rate of 10 5 ~ 10 6 ℃ / sec on the surface of the quenching rotor to form an amorphous magnetic material, and heat-treating the amorphous magnetic material at a temperature of 600 ~ 730 ℃ 3-30 minutes. 제4항에 있어서, 상기 급냉 회전체의 표면속도는 35-50m/초인 것을 특징으로 하는 방법.5. The method of claim 4, wherein the surface speed of the quench rotor is 35-50 m / sec. 제4항에 있어서, 상기 비정질 자성체를 620-710℃ 온도에서 5-20분간 열처리함을 특징으로 하는 방법.The method of claim 4, wherein the amorphous magnetic material is heat-treated at a temperature of 620-710 ° C. for 5-20 minutes.
KR1019950066229A 1995-12-29 1995-12-29 Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith KR100213333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950066229A KR100213333B1 (en) 1995-12-29 1995-12-29 Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950066229A KR100213333B1 (en) 1995-12-29 1995-12-29 Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith

Publications (2)

Publication Number Publication Date
KR970051504A KR970051504A (en) 1997-07-29
KR100213333B1 true KR100213333B1 (en) 1999-08-02

Family

ID=19447295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950066229A KR100213333B1 (en) 1995-12-29 1995-12-29 Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith

Country Status (1)

Country Link
KR (1) KR100213333B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414460B1 (en) * 2000-05-22 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic powder, manufacturing method of magnetic powder and bonded magnets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302972B1 (en) * 1998-12-07 2001-10-16 Sumitomo Special Metals Co., Ltd Nanocomposite magnet material and method for producing nanocomposite magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414460B1 (en) * 2000-05-22 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic powder, manufacturing method of magnetic powder and bonded magnets

Also Published As

Publication number Publication date
KR970051504A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
Hadjipanayis et al. Cobalt‐free permanent magnet materials based on iron‐rare‐earth alloys
Coehoorn et al. Novel permanent magnetic materials made by rapid quenching
US4762574A (en) Rare earth-iron-boron premanent magnets
CN1265401C (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
Schultz et al. Magnetic hardening of Sm-Fe-Mo, Sm-Fe-V and Sm-Fe-Ti magnets
US4834812A (en) Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
Gong et al. Misch‐metal‐iron based magnets
Kong et al. High‐coercivity Sm–Fe–Ga–C compounds with Th2Zn17 structure by melt spinning
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
KR100213333B1 (en) Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith
US5055129A (en) Rare earth-iron-boron sintered magnets
US4952252A (en) Rare earth-iron-boron-permanent magnets
Tsutai et al. Effect of Ga addition to NdFeCoB on their magnetic properties
Ma et al. NdFeB magnets with higher Curie temperature
Saito et al. The origin of high-saturation magnetization in Co-Zr-C melt-spun ribbons
Buschow et al. Rare earth permanent magnets
US4981513A (en) Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
KR100241026B1 (en) Permanent magnet manufacturing method by heat treatment in the magnetic field
US4878958A (en) Method for preparing rare earth-iron-boron permanent magnets
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
Strnat Current problems and trends in permanent magnet materials
Hadjipanayis A search for new phases and processing techniques for permanent magnet development
Ding et al. Magnetic hardening of melt-spun and crystallized Sm-Fe-V and Sm-(Fe, Co)-V alloys
US5015304A (en) Rare earth-iron-boron sintered magnets
US5015306A (en) Method for preparing rare earth-iron-boron sintered magnets

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080514

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee