JPH0696925A - Bond magnet - Google Patents

Bond magnet

Info

Publication number
JPH0696925A
JPH0696925A JP4290168A JP29016892A JPH0696925A JP H0696925 A JPH0696925 A JP H0696925A JP 4290168 A JP4290168 A JP 4290168A JP 29016892 A JP29016892 A JP 29016892A JP H0696925 A JPH0696925 A JP H0696925A
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
bonded
magnet
constituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290168A
Other languages
Japanese (ja)
Inventor
Kimiyuki Jinno
公行 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP4290168A priority Critical patent/JPH0696925A/en
Publication of JPH0696925A publication Critical patent/JPH0696925A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Abstract

PURPOSE:To obtain a bond magnet composed of a hard magnetic material using permanent magnet power having a strong coercive force and bonded with, especially, a synthetic resin, nonmagnetic metal, etc. CONSTITUTION:This magnet has the composition expressed by (T1-XMX)ZR1-Z (where, x and z respectively represent 0.01-0.28 and 0.35-0.89 and T, M, and R respectively represent Fe and/or Co and one or two kinds selected from Zr and Hf, one or two kinds selected from among B, Si, and C, and Nd and/or Pr, and one or two kinds selected from among La, Ce, Sm, Tb, Ho, Dy, and Y). In addition, the magnet is constituted by bonding permanent magnet powder having a particle size equal to the particle size when the powder is recrystallized from an amorphous state with a synthetic resin or nonmagnetic metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高保磁力を有する永久
磁石粉末を用いた硬質磁性材料、特に合成樹脂や非磁性
金属等と混合したボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard magnetic material using a permanent magnet powder having a high coercive force, and more particularly to a bond magnet mixed with a synthetic resin or a non-magnetic metal.

【0002】[0002]

【従来の技術】従来、鉄族遷移金属と半金属元素よりな
る例えばFe8020に代表されるような組成の非晶質合
金は軟質磁性材料として公知である。又、鉄族遷移金属
とランタニド元素を基本組成とする結晶質合金は硬質磁
性材料としてよく知られているところである。
2. Description of the Related Art Conventionally, an amorphous alloy composed of an iron group transition metal and a metalloid element and having a composition represented by Fe 80 B 20 , for example, has been known as a soft magnetic material. Further, a crystalline alloy having an iron group transition metal and a lanthanide element as a basic composition is well known as a hard magnetic material.

【0003】ところで、上記従来の硬質磁性材料はラン
タニド元素と鉄族遷移金属の組成が原子比で1:5から
2:17までの合金である。かかる合金をつくるには、
各元素を所定の配合組成としたのち、溶解法あるいは直
接還元法等により得ていたが、2:17系合金は組成が
複雑であり、直接還元法による製造は困難である。その
ため、現在では、各組成元素を高純度金属として用意
し、不活性ガス中の高周波炉で溶解して得る場合が多
い。しかし、この方法では溶解の途中での組成のずれが
しばしば問題となる。経験的に組成がずれ易い元素は配
合の段階でそのずれを補正すべく配慮しなければならな
い。
By the way, the above conventional hard magnetic material is an alloy in which the composition of the lanthanide element and the transition metal of the iron group is 1: 5 to 2:17 in atomic ratio. To make such an alloy,
After obtaining each element with a predetermined composition, it was obtained by a melting method, a direct reduction method, or the like. However, the composition of the 2:17 alloy is complicated, and it is difficult to manufacture it by the direct reduction method. Therefore, at present, it is often the case that each composition element is prepared as a high-purity metal and melted in a high-frequency furnace in an inert gas. However, this method often causes a problem in composition shift during melting. Empirically, elements that tend to shift in composition must be considered to correct the shift at the stage of compounding.

【0004】そして、溶解によって得られたインゴット
をもって永久磁石をつくるに当っては、焼結法による場
合には、粉砕−磁界中成形−焼結−時効という工程をと
るが、ボンド磁石用の永久磁石粉末を得るには、インゴ
ットから、溶体化処理−時効−粉砕という工程をとる。
When a permanent magnet is made from the ingot obtained by melting, when the sintering method is used, the steps of crushing, forming in a magnetic field, sintering, and aging are carried out. In order to obtain magnet powder, the steps of solution treatment, aging and crushing are performed from an ingot.

【0005】[0005]

【発明が解決しようとする課題】いずれにしても、焼結
法の場合は焼結後、ボンド磁石用の場合は溶体化処理後
に、室温まで急冷することが必要であり、試料もしくは
インゴットが大型の場合には均一急冷ということが問題
となる。
In any case, it is necessary to rapidly cool to room temperature after sintering in the case of the sintering method and after solution treatment in the case of a bonded magnet, and thus the sample or the ingot has a large size. In this case, uniform quenching becomes a problem.

【0006】本発明は、非晶質合金を出発材料として硬
質磁性材料を得るもので、上記製造上の問題を解決し、
高保磁力を有する安定した永久磁石粉末を用いたボンド
磁石である。
The present invention is to obtain a hard magnetic material by using an amorphous alloy as a starting material, and solves the above problems in production.
It is a bonded magnet using a stable permanent magnet powder having a high coercive force.

【0007】[0007]

【課題を解決するための手段】本発明は、構成成分が、
遷移金属(T)、半金属元素(M)および希土類元素
(R)からなり、これら構成成分が下記組成式、 (T1-XXZ1-Z ただし0.01≦x≦0.28 0.35≦z≦0.89 T:Feおよび/またはCo、さらにZr,Hfより選
ばれる1種もしくは2種の組合せ、M:B,Si,Cよ
り選ばれる1種もしくは2種以上の組合せ、R:Ndお
よび/またはPr、さらにLa,Ce,Sm,Tb,H
o,Dy,Yより選ばれる1種もしくは2種以上の組合
せ、より成り、非晶質再結晶粒径の大きさの結晶粒を有
する高保磁力永久磁石粉末を、合成樹脂または非磁性金
属で結合したことを特徴とするボンド永久磁石である。
According to the present invention, the constituent components are
It is composed of a transition metal (T), a metalloid element (M) and a rare earth element (R), and these constituent components have the following composition formula: (T 1-X M X ) Z R 1-Z where 0.01 ≦ x ≦ 0 .28 0.35 ≦ z ≦ 0.89 T: Fe and / or Co, and one or two kinds selected from Zr and Hf, and one or more kinds selected from M: B, Si and C. , R: Nd and / or Pr, and further La, Ce, Sm, Tb, H
a high coercive force permanent magnet powder having a crystal grain size of an amorphous recrystallized grain size, which is composed of one or a combination of two or more selected from o, Dy, and Y and is bonded with a synthetic resin or a nonmagnetic metal. This is a bonded permanent magnet characterized by the above.

【0008】上記において、半金属元素(M)は、非晶
質合金を得るのに有効な元素である。しかし、この半金
属元素(M)は磁気特性の上からは合金の飽和磁束密度
(自発磁化σも同様)を低下させる傾向があるので総量
を25%以下に抑える事が望まれ、その範囲で、上記の
ようにxおよびzの数値を決定する。
In the above, the semimetal element (M) is an element effective for obtaining an amorphous alloy. However, since this metalloid element (M) tends to reduce the saturation magnetic flux density of the alloy (same as for the spontaneous magnetization σ) from the viewpoint of magnetic characteristics, it is desirable to suppress the total amount to 25% or less. , Determine the numerical values of x and z as described above.

【0009】すなわち、後述の実施例、比較例を含む多
くの実験の結果、希土類元素(R)の含有量を規定する
係数1−zとしては、自発磁化σが高く、かつ、高い保
磁力iHcを有する永久磁石材料を得るためには、0.
65≧1−z≧0.11の範囲が望ましい。すなわち、
還移金属(T)+半金属元素(M)の含有量を規定する
係数zは、0.35≦z≦0.89の範囲が望ましいこ
とがわかった。
That is, as a result of many experiments including Examples and Comparative Examples described later, as the coefficient 1-z that defines the content of the rare earth element (R), the spontaneous magnetization σ is high and the coercive force iHc is high. In order to obtain a permanent magnet material having
The range of 65 ≧ 1-z ≧ 0.11 is desirable. That is,
It was found that the coefficient z defining the content of the transition metal (T) + metalloid element (M) is preferably in the range of 0.35 ≦ z ≦ 0.89.

【0010】そして、半金属元素(M)の総量は、本発
明の組成式においては、(x)×(z)であるから、こ
の値が0.25以下になるように(M)の係数xの上限
を規定した。すなわち、xの上限は0.25÷0.89
=0.28の式から得られる0.28とした。又、xの
下限の0.01はその有効性の限界を示すものである。
Since the total amount of the metalloid element (M) is (x) × (z) in the composition formula of the present invention, the coefficient of (M) is set so that this value becomes 0.25 or less. The upper limit of x is defined. That is, the upper limit of x is 0.25 / 0.89.
It was set to 0.28 obtained from the formula of 0.28. The lower limit of 0.01, x, indicates the limit of its effectiveness.

【0011】本発明の永久磁石をつくるには、非晶質合
金材料が用いられる。合金を非晶質化するには、目的と
する組成の合金を溶融状態から高速急冷もしくはスパッ
タ法により、イオンを基板上に到達せしめて急冷する。
こうして得た非晶質合金は、良く溶体化処理されたイン
ゴットと殆ど類似の状態にあり、非常に均一な状態であ
り、上述のように大型インゴットの場合の問題点である
急冷におけるばらつきの心配はない。
Amorphous alloy materials are used to make the permanent magnets of the present invention. In order to amorphize the alloy, the alloy having the desired composition is rapidly cooled from the molten state by high-speed rapid cooling or the sputtering method so that the ions reach the substrate and are rapidly cooled.
The amorphous alloy thus obtained is in a state almost similar to that of a well solution-treated ingot and is in a very uniform state. As described above, there is a concern about variations in rapid cooling, which is a problem in the case of a large ingot. There is no.

【0012】本発明は、かかる非晶質合金材料を適当な
温度で熱処理し、再結晶化して得られる微細な結晶粒を
有する高保磁力永久磁石粉末を、合成樹脂または非磁性
金属で結合したボンド磁石である。
The present invention is a bond in which a high coercive force permanent magnet powder having fine crystal grains obtained by heat-treating such an amorphous alloy material at an appropriate temperature and recrystallization is bonded with a synthetic resin or a nonmagnetic metal. It is a magnet.

【0013】非晶質合金材料を再結晶化して得た永久磁
石粉末は従来のようにインゴットを粉砕して得た粉末に
比べて、結晶粒の大きさが格段に小さく判然としてい
る。そのため、本発明の永久磁石粉末は実施例でも示す
ように、安定した高保磁力永久磁石粉末であり、また、
耐酸化性にすぐれており、ボンド磁石製造時の粉砕や樹
脂との混練がやり易いという特徴がある。
The permanent magnet powder obtained by recrystallizing an amorphous alloy material has a significantly smaller crystal grain size than the powder obtained by crushing an ingot as in the conventional case. Therefore, the permanent magnet powder of the present invention is a stable high coercive force permanent magnet powder as shown in Examples, and
It has excellent oxidation resistance, and is characterized in that it is easy to pulverize and knead with resin when manufacturing bonded magnets.

【0014】本発明は、容易に、しかも安定した特性の
下で提供される永久磁石粉末よりなるボンド磁石であ
る。
The present invention is a bonded magnet composed of a permanent magnet powder which is easily and stably provided.

【0015】[0015]

【実施例】つぎに実施例について説明する。EXAMPLES Next, examples will be described.

【0016】実施例1〜15 表1のNo.1〜15に示す各組成の合金試料を、アーク
溶解炉でアルゴンガス中で溶解し、アルゴンガス雰囲気
に置換された遠心急冷法による非晶質製造装置(銅製中
空円筒で外径200mm、内径180mm、長さ600
mm、回転速度2500〜4000rpm)中に噴射
し、非晶質の粉末を得た。得られた粉末を約700To
rrのアルゴンガスとともに石英管中に封入し、600
℃で12時間熱処理し、熱処理後の粉末の磁気特性を振
動磁束計により測定した。
Examples 1 to 15 Amorphous alloys prepared by the centrifugal quenching method in which alloy samples having the respective compositions shown in Nos. 1 to 15 in Table 1 were melted in an argon gas in an arc melting furnace and replaced with an argon gas atmosphere. Manufacturing equipment (a hollow copper cylinder with an outer diameter of 200 mm, an inner diameter of 180 mm, and a length of 600)
mm, rotation speed 2500-4000 rpm) to obtain an amorphous powder. The obtained powder is about 700 To
Enclose in a quartz tube together with rr argon gas,
Heat treatment was performed at 12 ° C. for 12 hours, and the magnetic properties of the powder after heat treatment were measured by an oscillating magnetometer.

【0017】[0017]

【表1】 [Table 1]

【0018】つぎに、この粉末をエポキシ樹脂と98:
2の重量比で混合し、6t/cm2の圧力で圧縮成形を
行い、その後熱硬化してボンド磁石を作成し、その磁気
特性を測定した。
Next, this powder was mixed with an epoxy resin and 98:
The mixture was mixed at a weight ratio of 2 and compression-molded at a pressure of 6 t / cm 2 , followed by thermosetting to prepare a bonded magnet, and its magnetic characteristics were measured.

【0019】微粉末およびボンド磁石の磁気特性を表2
に示す。
The magnetic properties of the fine powder and the bonded magnet are shown in Table 2.
Shown in.

【0020】[0020]

【表2】 [Table 2]

【0021】表2の結果から明らかなように、実施例1
〜15のものは微粉末として高保磁力永久磁石粉末とし
ての特性を示し、その粉末を用いたボンド磁石はすぐれ
た永久磁石特性を示す。
As is clear from the results of Table 2, Example 1
Nos. 15 to 15 show characteristics as high coercive force permanent magnet powder as fine powder, and the bonded magnet using the powder shows excellent permanent magnet characteristics.

【0022】実施例20 (Fe0.79Co0.04Zr0.01Hf0.010.150.87Nd
0.07Pr0.06なる組成の試料を、高周波溶解炉でアルゴ
ンガス中で溶解し、実施例1と同様の方法で非晶質のリ
ボンを得た。この非晶質リボンを石英管中にアルゴンガ
スとともに封入し、700℃で1時間熱処理し、熱処理
後、室温で振動型磁束計によりその磁性値を測定したと
ころ、 σ=149emu/g, iHc=9.5kOe を有する永久磁石特性が得られた。
Example 20 (Fe 0.79 Co 0.04 Zr 0.01 Hf 0.01 B 0.15 ) 0.87 Nd
A sample having a composition of 0.07 Pr 0.06 was melted in an argon gas in a high frequency melting furnace, and an amorphous ribbon was obtained by the same method as in Example 1. This amorphous ribbon was enclosed in a quartz tube together with argon gas, heat-treated at 700 ° C. for 1 hour, and the magnetic value was measured by a vibrating magnetometer at room temperature. Σ = 149 emu / g, iHc = Permanent magnet properties with 9.5 kOe were obtained.

【0023】つぎに、このリボンを振動ミルによりノル
マルヘキサン中で、平均粒径が約10〜8μmとなるよ
うに粉砕し、この粉末を10t/cm2の圧力で圧縮成
形を行い、その後真空中でエポキシ樹脂を含浸させ、熱
硬化を行いボンド磁石を作成した。その磁気特性を測定
した結果は、 Br=7.9kG, bHc=6.8kOe, (BH)max=11.9MGOe であった。
Next, this ribbon was crushed by a vibration mill in normal hexane so as to have an average particle size of about 10 to 8 μm, and this powder was compression-molded at a pressure of 10 t / cm 2 , and then in vacuum. Then, it was impregnated with an epoxy resin and heat-cured to prepare a bonded magnet. The results of measurement of the magnetic properties were Br = 7.9 kG, bHc = 6.8 kOe, (BH) max = 11.9 MGOe.

【0024】[0024]

【発明の効果】本発明は、高保磁力を有する永久磁石粉
末を合成樹脂や非磁性金属等と混合して得られたボンド
磁石である。
The present invention is a bonded magnet obtained by mixing a permanent magnet powder having a high coercive force with a synthetic resin, a non-magnetic metal or the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 // H01F 7/02 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area H01F 1/053 // H01F 7/02 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 構成成分が、遷移金属(T)、半金属元
素(M)および希土類元素(R)からなり、これら構成
成分が下記組成式、 (T1-XXZ1-Z ただし0.01≦x≦0.28 0.35≦z≦0.89 T:Feおよび/またはCo、さらにZr,Hfより選
ばれる1種もしくは2種の組合せ、 M:B,Si,Cより選ばれる1種もしくは2種以上の
組合せ、 R:Ndおよび/またはPr、さらにLa,Ce,S
m,Tb,Ho,Dy,Yより選ばれる1種もしくは2
種以上の組合せ、より成り、非晶質再結晶粒径の大きさ
の結晶粒を有する高保磁力永久磁石粉末を、合成樹脂ま
たは非磁性金属で結合したことを特徴とするボンド永久
磁石。
1. A constituent component comprises a transition metal (T), a metalloid element (M) and a rare earth element (R), and these constituent components have the following composition formula: (T 1-X M X ) Z R 1- Z However, 0.01 ≦ x ≦ 0.28 0.35 ≦ z ≦ 0.89 T: Fe and / or Co, and one or a combination of two or more selected from Zr and Hf, M: B, Si, C One or a combination of two or more selected from the following, R: Nd and / or Pr, and further La, Ce, S
1 or 2 selected from m, Tb, Ho, Dy, Y
A bonded permanent magnet comprising a combination of at least one kind of particles, and a high coercive force permanent magnet powder having a crystal grain size of an amorphous recrystallized grain size, which is bonded with a synthetic resin or a non-magnetic metal.
【請求項2】 構成成分の半金属元素(M)が、Bであ
ることを特徴とする請求項1に記載のボンド永久磁石。
2. The bonded permanent magnet according to claim 1, wherein the metalloid element (M) as a constituent component is B.
【請求項3】 構成成分の希土類元素(R)が、Ndお
よび/またはPrであることを特徴とする、請求項1に
記載のボンド永久磁石。
3. The bonded permanent magnet according to claim 1, wherein the rare earth element (R) as a constituent component is Nd and / or Pr.
【請求項4】 構成成分の半金属元素(M)が、Bであ
り、かつ、構成成分の希土類元素(R)が、Ndおよび
/またはPrであることを特徴とする、請求項1に記載
のボンド永久磁石。
4. The semimetal element (M) as a constituent is B, and the rare earth element (R) as a constituent is Nd and / or Pr. Bond permanent magnet.
JP4290168A 1992-10-28 1992-10-28 Bond magnet Pending JPH0696925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290168A JPH0696925A (en) 1992-10-28 1992-10-28 Bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290168A JPH0696925A (en) 1992-10-28 1992-10-28 Bond magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56026075A Division JPS57141901A (en) 1981-02-26 1981-02-26 Permanent magnet powder

Publications (1)

Publication Number Publication Date
JPH0696925A true JPH0696925A (en) 1994-04-08

Family

ID=17752634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290168A Pending JPH0696925A (en) 1992-10-28 1992-10-28 Bond magnet

Country Status (1)

Country Link
JP (1) JPH0696925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416903A (en) * 2021-07-06 2021-09-21 内蒙古师范大学 Application of alloy powder, hard magnetic material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314611A (en) * 1976-07-28 1978-02-09 Hitachi Metals Ltd Permanent magnetic alloy
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS647501A (en) * 1986-04-15 1989-01-11 Tdk Corp Permanent magnet and its manufacture
JPH0271506A (en) * 1988-08-05 1990-03-12 Mitsubishi Steel Mfg Co Ltd Manufacture of permanent magnet powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314611A (en) * 1976-07-28 1978-02-09 Hitachi Metals Ltd Permanent magnetic alloy
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS647501A (en) * 1986-04-15 1989-01-11 Tdk Corp Permanent magnet and its manufacture
JPS647502A (en) * 1986-04-15 1989-01-11 Tdk Corp Permanent magnet and its manufacture
JPH0271506A (en) * 1988-08-05 1990-03-12 Mitsubishi Steel Mfg Co Ltd Manufacture of permanent magnet powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416903A (en) * 2021-07-06 2021-09-21 内蒙古师范大学 Application of alloy powder, hard magnetic material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH0128489B2 (en)
US4684406A (en) Permanent magnet materials
EP0126802A1 (en) Process for producing of a permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP2774372B2 (en) Permanent magnet powder
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2753429B2 (en) Bonded magnet
JP2753432B2 (en) Sintered permanent magnet
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPH06207203A (en) Production of rare earth permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPS59132105A (en) Permanent magnet
JPH0678582B2 (en) Permanent magnet material
JPH06302417A (en) Permanent magnet and its manufacture
JP2753431B2 (en) Sintered permanent magnet
JP2753430B2 (en) Bonded magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0696925A (en) Bond magnet
JPH06124824A (en) Sintered permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP2818718B2 (en) Permanent magnet powder
JPH0325922B2 (en)
JPS6365742B2 (en)
JP3178848B2 (en) Manufacturing method of permanent magnet