JPS6136362B2 - - Google Patents

Info

Publication number
JPS6136362B2
JPS6136362B2 JP53090081A JP9008178A JPS6136362B2 JP S6136362 B2 JPS6136362 B2 JP S6136362B2 JP 53090081 A JP53090081 A JP 53090081A JP 9008178 A JP9008178 A JP 9008178A JP S6136362 B2 JPS6136362 B2 JP S6136362B2
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
magnets
substitution
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53090081A
Other languages
Japanese (ja)
Other versions
JPS5516481A (en
Inventor
Ichikazu Kasai
Tatsuya Shimoda
Terutoshi Hirabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Takagi Industrial Co Ltd
Original Assignee
Suwa Seikosha KK
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK, Takagi Industrial Co Ltd filed Critical Suwa Seikosha KK
Priority to JP9008178A priority Critical patent/JPS5516481A/en
Publication of JPS5516481A publication Critical patent/JPS5516481A/en
Publication of JPS6136362B2 publication Critical patent/JPS6136362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はR―Co―Mn―Fe系合金に遷移金属、
特に周期律表でVA族に属する金属元素を添加し
て従来の永久磁石よりも大きなエネルギー積を有
する永久磁石材料に関するものである。 希土類金属とコバルトは種々の金属間化合物を
形成する。それらは、RCo13,R2Co17,RCo5
R5Co19,R2Co7,RCo3,RCo2,R2Co3,R4Co3
R24Co17,R9Co4,R3Co等である。これらの金属
間化合物中、現在永久磁石材料として用いられて
いるのは、RCo5とR2Co17である。特にRCo5系の
磁石はすでに工業的に定着して、需要は年を追つ
て伸びている。RCo5系の磁石の代表格である
SmCo5磁石は従来のアルニコ磁石、フエライト
磁石あるいは白金コバルト磁石に比べはるかに大
きいエネルギー積を有するものである。R2Co17
はRCo5よりも一般的に飽和磁化Msが高く磁石材
料としては有望であるにもかわらず、保磁力Hc
の値が低いものしか得られなかつた。それ故一時
は実用材料としての見通しがたたなかつたが、
Cuを適当量加えることにより保磁力を高めるこ
とができることが発見されてから脚光をあびるこ
ととなつた。Cu含有R2Co17系磁石は現在、R対
Coが1対7付近で最大の性能、すなわち
30MGOeが得られている。これはFeをCoと置換
して、Msを高めた結果得られたものである。 R2Co17とR2Fe17は疑2元系を構成し、R2
(Co1-xFeX)で表わすとSmの場合X=0.6程度ま
でのXの増加に伴いMsは増加し、一軸異方性も
維持される。保磁力の目安となる異方性磁場Hc
は、X=0では65KOe程度で、X=0.2を過ぎる
と低くなり始めてX=0.5では2.0KOe程度になつ
てしまう。よつて実用材料としてはFeのCoとの
置換はX=0.5が限度であろう。これらのことは
他のRについてもだいたい当てはまり、Fe置換
はX=0.5が限度と思われる。特許請求範囲でV
置を0.05<v≦0.5にしたのは以上のような理由
からである。 上記したようにR2Co17系の保磁力を得るため
には現在CoにCuを置換してなされているが、Cu
置換はR2Co17系のMsをかなり下げてしまう。実
験によればR2(Co1-2Cux)17と表わした時、X=
0.1のとき12%、X=0.2のとき25%減少してしま
う。Cuよりも保磁力を出す点では劣るがMn置換
はMsの低下を少なくし、ある程度の保磁力が得
られる点で有望である。本発明は、このような
Mnの利点を他元素をさらに添加することによ
り、一層顕著にするためになされた。すなわち
R2Co17系にMnを単独に置換したR2(Co Mn)17
では、R2(Co Cu)17系よりも保磁力が劣つてい
るが、ある種の遷移金属元素、特にV,Nb,Ta
を加えるとR2(Co Cu)17系よりも高い保磁力が
出しかもMsの値がR2(Co Cu)17よりも高いもの
が得られたという発見にもとずくものである。よ
つてR2(Co Mn)17のCoをMeで置換していつた
時、Msが上昇するのを保磁力を出すため犠性に
することなくR2(Co Cu)17系よりもさらに高い
エネルギー積を有する磁石の製造が可能となつ
た。 Rの例をSmにとり説明すると、Sm2
(Co1-xCuX)8.2では第1図に示すようにX=0.16
で7000 Oeと十分高い保磁力が得られる。Sm2
(Co1-xMnx8.2はこれに反してX=0.2までMnの
比率を高めてもiHc=3700Oeしか得られない。と
ころがVを加えたSm(Co098-xMnx V0.028.2
は、X=0.06でiHcは3400 Oe以上得られX=0.12
で7100 OeとSm2(Co1-2 Cu28.2のiHcをはるか
にしのいでいる。V添加することによりXが低い
所、すなわちMn置換によるMsの低下が少ない所
で高保磁力が出せ、Mn置換の利点をさらに特徴
づけている。 次にSm2(Co Cu)17,Sm2(Co Cu)17,Sm2
(Co Mn V)17系のCoをFe置換していつたとき
の磁気性能を調べてみた。すなわちSm(Co0.
84-y Cu0.18 Fey8.2,Sm(Co0.88-y Mn0.12
Fey8.2,Sm(Co0.86-y Mn0.12 V1.02 Fe-y8.2
例にしてyを増加していつたときの保磁力iHcと
残留磁束密度Brを測定した。結果を第2図、第
3図に示す。Cu置換のものはyが1.5を過ぎると
iHcの低下が著しいがMn置換にVを加えたものは
y=2.5までiHcの著しい低下はおこらない。一方
Brは第3図で見るようにどの組成のものも直線
的に増加している。このことはMn置換のV添加
合金は高Feの領域で十分実用的な高エネルギー
積の磁力となることを約束している。上記の磁気
特性は焼結法による磁石に最適な熱処理を施して
得たものである。同じように、Vの代りにNb,
Taを添加したり、それら3種を組み合せて添加
しても、さほど変りない結果が得られた。 次に組成をある範囲に限定した理由を述べる。
特許請求範囲で、0<u0.3としたのはMn置換
が0.3を越すと急激にMsが低下するからであり、
0.01<w0.20も同様の理由からである。また、
7.5<z8.5としたのはこの範囲でR2T17(Tは
遷移金属)の単相が得られやすいからである。 実施例 1 第1表で示されるNo.1〜No.10の組成の磁石を作
製した。
The present invention provides an R-Co-Mn-Fe alloy containing a transition metal and
In particular, it relates to permanent magnet materials that have a larger energy product than conventional permanent magnets by adding metal elements belonging to group VA in the periodic table. Rare earth metals and cobalt form various intermetallic compounds. They are RCo 13 , R 2 Co 17 , RCo 5 ,
R 5 Co 19 , R 2 Co 7 , R Co 3 , R Co 2 , R 2 Co 3 , R 4 Co 3 ,
These include R 24 Co 17 , R 9 Co 4 and R 3 Co. Among these intermetallic compounds, RCo 5 and R 2 Co 17 are currently used as permanent magnet materials. In particular, RCo 5 series magnets have already become established in industry, and demand is increasing year by year. Representative of RCo 5 series magnets
SmCo 5 magnets have a much higher energy product than traditional alnico, ferrite, or platinum cobalt magnets. R 2 Co 17
Although RCo 5 generally has a higher saturation magnetization Ms and is more promising as a magnet material, it has a lower coercive force Hc.
Only those with low values were obtained. For this reason, there was no prospect of it being used as a practical material for a time;
It came into the limelight after it was discovered that the coercive force could be increased by adding an appropriate amount of Cu. Currently, Cu-containing R 2 Co 17 magnets are
The maximum performance is achieved when Co is around 1:7, i.e.
30MGOe has been obtained. This was obtained by replacing Fe with Co and increasing Ms. R 2 Co 17 and R 2 Fe 17 constitute a pseudobinary system, and R 2
When expressed as (Co 1-x FeX), in the case of Sm, Ms increases as X increases up to about X=0.6, and uniaxial anisotropy is also maintained. Anisotropic magnetic field Hc, which is a measure of coercive force
is about 65KOe at X=0, starts to decrease after X=0.2, and reaches about 2.0KOe at X=0.5. Therefore, as a practical material, the substitution of Fe with Co would be limited to X=0.5. These things generally apply to other R's as well, and it seems that the limit for Fe substitution is X=0.5. V in patent claims
The reason for setting the value to 0.05<v≦0.5 is as above. As mentioned above, in order to obtain the coercive force of the R 2 Co 17 system, Co is currently replaced with Cu, but Cu
Substitution significantly lowers the Ms of the R 2 Co 17 system. According to experiments, when expressed as R 2 (Co 1-2 Cux) 17 , X=
When X = 0.1, it decreases by 12%, and when X = 0.2, it decreases by 25%. Although it is inferior to Cu in producing coercive force, Mn substitution is promising in that it reduces the decrease in Ms and provides a certain degree of coercive force. The present invention
This was done to make the advantages of Mn even more noticeable by further adding other elements. i.e.
The R 2 ( Co Mn) 17 system, in which Mn is substituted alone, has a lower coercive force than the R 2 (Co Cu) 17 system, but some transition metal elements, especially V, Nb,Ta
This is based on the discovery that by adding , a higher coercive force than the R 2 (Co Cu) 17 system was obtained, and a value of Ms higher than that of the R 2 (Co Cu) 17 system was obtained. Therefore, when replacing Co in R 2 (Co Mn) 17 with Me, the energy is even higher than that of the R 2 (Co Cu) 17 system without sacrificing the increase in Ms to produce coercive force. It has now become possible to manufacture magnets with a Taking Sm as an example of R, Sm 2
(Co 1- xCuX) 8. In 2 , X = 0.16 as shown in Figure 1.
A sufficiently high coercive force of 7000 Oe can be obtained. Sm 2
(Co 1- xMn x ) 8.2 , on the other hand, can only obtain iHc = 3700 Oe even if the Mn ratio is increased to X = 0.2. However, when V is added to Sm (Co 0 , 98-x Mn x V 0.02 ) 8.2 , iHc is obtained over 3400 Oe at X = 0.06 , and X = 0.12.
It far exceeds the iHc of 7100 Oe and Sm 2 (Co 1-2 Cu 2 ) 8.2 . By adding V, a high coercive force can be obtained in a place where X is low, that is, a place where there is little decrease in Ms due to Mn substitution, which further characterizes the advantage of Mn substitution. Next, Sm 2 (Co Cu) 17 , Sm 2 (Co Cu) 17 , Sm 2
(Co Mn V) We investigated the magnetic performance when replacing Co with Fe in the 17 series. That is, Sm(Co 0 .
84-y Cu 0.18 Fe y ) 8.2 , Sm (Co 0.88 -y Mn 0.12
Using Fe y ) 8.2 , Sm (Co 0.86 -y Mn 0.12 V 1.02 Fe -y ) 8.2 as an example , coercive force iHc and residual magnetic flux density Br as y is increased. was measured. The results are shown in FIGS. 2 and 3. For those with Cu substitution, when y exceeds 1.5
The iHc decreases significantly, but when V is added to the Mn substitution, the iHc does not decrease significantly until y=2.5. on the other hand
As shown in Figure 3, Br increases linearly for all compositions. This promises that the Mn-substituted V-added alloy will have a sufficiently practical high energy product magnetic force in the high Fe region. The above magnetic properties were obtained by applying optimal heat treatment to the magnet using the sintering method. Similarly, instead of V, Nb,
Even when Ta was added or a combination of the three types was added, the results did not change much. Next, the reason for limiting the composition to a certain range will be explained.
In the patent claims, 0<u0.3 is set because when Mn substitution exceeds 0.3, Ms decreases rapidly.
The reason for 0.01<w0.20 is also the same. Also,
The reason for setting 7.5<z8.5 is that a single phase of R 2 T 17 (T is a transition metal) is easily obtained in this range. Example 1 Magnets having compositions No. 1 to No. 10 shown in Table 1 were produced.

【表】 磁石の製法は、アルゴンガス中で高周波加熱炉
で溶解し、鋳型に鋳込んでインゴツトとなす。こ
れを粗粉砕後、ボールミルで5μm程度の粒径の
粉にする。その粉を15KOeの磁場中でプレス成
型して、1200℃〜1250℃の温度で焼結し、アルゴ
ン中で急冷し、冷却後1100℃〜1150℃で1時間熱
処理した後、引き続き700〜800℃で1時間、400
℃〜500℃で8〜10時間熱処理を施して磁石とな
した。このようにして得られた磁石の性能を第2
表に示す。
[Table] The method for manufacturing magnets is to melt them in a high-frequency heating furnace in argon gas, and then cast them into molds to form ingots. After coarsely pulverizing this, it is made into powder with a particle size of about 5 μm using a ball mill. The powder was press-molded in a magnetic field of 15 KOe, sintered at a temperature of 1200°C to 1250°C, rapidly cooled in argon, and after cooling, heat treated at 1100°C to 1150°C for 1 hour, and then heated to 700°C to 800°C. 1 hour, 400
It was heat-treated at 500°C to 500°C for 8 to 10 hours to form a magnet. The performance of the magnet obtained in this way was evaluated as
Shown in the table.

【表】 実施例 2 Sm(Co0.86-yMn0.12V0.02Fey8.2で表わされる
組成で、yを0〜0.31まで0.04刻みに変化させて
た結果を第2図、第3図に示す。図から明らかな
ようにiHcはy=2.5付近まで安定して高い値が得
られる。またBrはyの値につれて増加してい
る。この系の(BH)maxはy=0.20の所にあ
り、実施例で示すように27〜29MGOeという高い
値が得られた。しかし、熱処理条件のバラツキな
ど製造方法によるデータのバラツキはかなり大き
く今後量産性の研究を要する。特に粉砕、成形、
焼結に係わる工程における酸化防止、温度管理に
工夫を要する。 以上は焼結型永久磁石を中心に説明を加えたが
該磁性化合物はこれを粉末状にして非磁性結合剤
を用いて固形化することもできることは特に説明
をまたない。但し該磁性化合物は粉末を極端に細
かくすると飽和磁束を減少しまた粒径が大きすぎ
ると結合剤を加えた成形体の強度が低下する。そ
の意味において粉末は3〜50μに入ることが望ま
しい。しかしながら加工方法等を考慮して量産性
のある90%以上が前記範囲になつていることが望
ましい。永久磁石中に占める磁性化合物は多い程
磁気特性が高い。しかし焼結手段を用いないで得
なれる結合剤タイプは結合剤が減少することによ
つて強度面の低下はさけられない。結合剤タイプ
の永久磁石の一般に他部品などとアセンブルして
用いることが多く強度面の要求も強い。ここでは
結合剤が体積率(以下同じ)で10%以下では前記
使用に耐えるような強度(例えば抗折力で5Kg/
mm2)が得られない。また35%を超えて加えれば磁
気特性は著しく低下するばかりなくくたとえば液
状の有機物樹脂などを結合剤として用いる。場合
は圧粉成形が不可能である。 ここで1つの実施例を掲げると第1表No.1組成
の磁性化合物インゴツトを1200℃で均熱処理し更
に1100℃から急冷した。更に800℃で1時間の時
効処理を加えたこのインレツトをボールミルを用
いて粉砕しおよそ5〜25μの粉末を得た。該粉末
に3.5%(重量比)の液状エポキシ樹脂(一液
性)を加えて混練し約10KOeの磁場中で圧粉成
形し150℃で加熱して固化した。該永久磁石は
Br7.8KD,BHmax15.1MGOeであつた。更に磁石
中に占める磁性粉末は体積率で約69%であつた。
また磁石の抗折強度は9.5Kg/mm2であつた。 ここで結合剤はエポキシ樹脂に限定されること
はなくまた性状も粉末等の固形も可能である。次
にSn,Pb,Cu等の非磁性金属或いは合金を用い
ることも可能である。 磁性化合物は粉砕後メツキ、熱処理(窒化、硫
化等も含む)などによつて表面層を磁気的に硬化
することも結合剤使用タイプの永久磁石において
は可能である。 以上のとおり本願発明は高性能な永久磁石を提
供するものでこれを応用して高品質機器の実用化
を可能にし、また工業用以外に装身具などへの適
用もできる。
[Table] Example 2 Sm (Co 0.86 -y Mn 0.12 V 0.02 Fe y ) 8.2 The results of changing y from 0 to 0.31 in steps of 0.04 are shown in Shown in Figures 2 and 3. As is clear from the figure, a stable high value of iHc is obtained up to around y=2.5. Moreover, Br increases with the value of y. The (BH)max of this system was at y=0.20, and as shown in the examples, a high value of 27 to 29 MGOe was obtained. However, there are considerable variations in data due to manufacturing methods such as variations in heat treatment conditions, and future research on mass production is required. Especially crushing, molding,
Efforts must be made to prevent oxidation and control temperature during the sintering process. Although the above description has focused on sintered permanent magnets, it is needless to mention that the magnetic compound can also be made into powder and solidified using a non-magnetic binder. However, if the powder of the magnetic compound is extremely fine, the saturation magnetic flux will be reduced, and if the particle size is too large, the strength of the molded product to which the binder has been added will be reduced. In this sense, it is desirable that the powder has a particle size of 3 to 50 μm. However, in consideration of the processing method, etc., it is desirable that 90% or more of the material falls within the above range for mass production. The larger the amount of magnetic compounds in a permanent magnet, the higher the magnetic properties. However, the binder type that can be obtained without using sintering means inevitably suffers from a decrease in strength due to the decrease in binder. Binder-type permanent magnets are generally used by assembling them with other parts, and there are strong requirements for strength. Here, if the binder is less than 10% by volume (the same applies hereinafter), the strength to withstand the above-mentioned use (for example, 5 kg /
mm 2 ) cannot be obtained. Moreover, if it is added in excess of 35%, the magnetic properties will deteriorate significantly, and instead, for example, a liquid organic resin is used as the binder. In some cases, powder compaction is not possible. As an example, a magnetic compound ingot having the composition No. 1 in Table 1 was soaked at 1200°C and then rapidly cooled from 1100°C. This inlet, which was further aged at 800°C for 1 hour, was ground using a ball mill to obtain a powder of approximately 5-25μ. A 3.5% (by weight) liquid epoxy resin (one-component type) was added to the powder, kneaded, compacted in a magnetic field of about 10 KOe, and solidified by heating at 150°C. The permanent magnet is
Br7.8KD, BHmax15.1MGOe. Furthermore, the volume percentage of the magnetic powder in the magnet was approximately 69%.
Moreover, the bending strength of the magnet was 9.5 Kg/mm 2 . Here, the binder is not limited to epoxy resin, and may be solid such as powder. Next, it is also possible to use nonmagnetic metals or alloys such as Sn, Pb, and Cu. In permanent magnets using a binder, the surface layer of the magnetic compound can be magnetically hardened by plating, heat treatment (including nitriding, sulfiding, etc.) after pulverization. As described above, the present invention provides a high-performance permanent magnet, which enables the practical use of high-quality equipment, and can also be applied to accessories in addition to industrial use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Cu置換合金とMn置換合金そして
Mn置換V添加合金の置換量と、iHcの関係を示し
ている。第2図、第3図は各々、該3種の合金の
CoにFeを置換していつたときのiHcとBrの変化
を示している。
Figure 1 shows Cu-substituted alloy, Mn-substituted alloy, and
The relationship between the substitution amount of the Mn-substituted V-added alloy and iHc is shown. Figures 2 and 3 respectively show the three types of alloys.
It shows the changes in iHc and Br when Fe is replaced with Co.

Claims (1)

【特許請求の範囲】 1 組成が一般式 R(Co1-u-v-wMnuFevTw)z ただし 0<u0.30 0.05<v0.50 0.005<w0.20 7.5z8.5 Rは希土類金属の1種もしくは2種以上の混
合物、TはV,Nb,Taのいずれか1種もしく
は2種以上の混合物 で表わされることを特徴とする永久磁石材料。
[Claims] 1. The composition has the general formula R (Co 1-uvw Mn u Fe v T w )z where 0<u0.30 0.05<v0.50 0.005<w0.20 7.5z8.5 R is a rare earth metal. A permanent magnet material characterized in that T is represented by one type or a mixture of two or more types, and T is represented by one type or a mixture of two or more types of V, Nb, and Ta.
JP9008178A 1978-07-21 1978-07-21 Permanent magnet material Granted JPS5516481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008178A JPS5516481A (en) 1978-07-21 1978-07-21 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008178A JPS5516481A (en) 1978-07-21 1978-07-21 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPS5516481A JPS5516481A (en) 1980-02-05
JPS6136362B2 true JPS6136362B2 (en) 1986-08-18

Family

ID=13988561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008178A Granted JPS5516481A (en) 1978-07-21 1978-07-21 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS5516481A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969961A (en) * 1989-03-03 1990-11-13 General Motors Corporation Sm-Fe-V magnet alloy and method of making same

Also Published As

Publication number Publication date
JPS5516481A (en) 1980-02-05

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JPH0510806B2 (en)
JPWO2002103719A1 (en) Rare earth permanent magnet material
JPH0424401B2 (en)
EP0029071B1 (en) Process for producing permanent magnet alloy
JPH0316761B2 (en)
JPS6043900B2 (en) permanent magnet material
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
JP3222482B2 (en) Manufacturing method of permanent magnet
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JPH0146575B2 (en)
JPS6136362B2 (en)
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPS6136361B2 (en)
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPS6242982B2 (en)
JPH0152469B2 (en)
JPS59211558A (en) Permanent magnet material
JPS62213102A (en) Manufacture of rare-earth permanent magnet
JPH0535211B2 (en)
JPS6373502A (en) Manufacture of rare earth magnet
JPH0536494B2 (en)
KR930011237B1 (en) Re-magnetic materials
JP2000297306A (en) Production of magnetic powder