JP4234581B2 - Rare earth magnet, manufacturing method thereof and motor - Google Patents

Rare earth magnet, manufacturing method thereof and motor Download PDF

Info

Publication number
JP4234581B2
JP4234581B2 JP2003430850A JP2003430850A JP4234581B2 JP 4234581 B2 JP4234581 B2 JP 4234581B2 JP 2003430850 A JP2003430850 A JP 2003430850A JP 2003430850 A JP2003430850 A JP 2003430850A JP 4234581 B2 JP4234581 B2 JP 4234581B2
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
magnetic powder
magnet
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003430850A
Other languages
Japanese (ja)
Other versions
JP2005191282A (en
Inventor
祐一 佐通
又洋 小室
典行 渡部
哲朗 田湯
秀昭 小野
眞 加納
宗勝 島田
宜郎 川下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP2003430850A priority Critical patent/JP4234581B2/en
Publication of JP2005191282A publication Critical patent/JP2005191282A/en
Application granted granted Critical
Publication of JP4234581B2 publication Critical patent/JP4234581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

夲発明は、高い電気抵抗を有する希土類磁石とその製造方法に関する。また、希土類磁石を用いたモータに関する。   The present invention relates to a rare earth magnet having high electrical resistance and a method for manufacturing the same. The present invention also relates to a motor using a rare earth magnet.

永久磁石式モータに用いられる磁石としては、従来は安価なフェライト磁石が多用されていたが、回転電気の小型化および高性能化に伴い、より高性能な希土類磁石の使用量が年々増加している。代表的な希土類磁石としてはSm−Co系磁石、Nd−Fe−B系磁石が挙げられ、さらなる高性能化、低価格化を達成するための開発が進められている。   Conventionally, inexpensive ferrite magnets have been widely used as permanent magnet motors. However, the use of higher performance rare earth magnets has increased year by year as rotary electricity has become smaller and higher performance. Yes. Typical rare earth magnets include Sm—Co based magnets and Nd—Fe—B based magnets, and development to achieve further higher performance and lower costs is underway.

しかしながら、希土類磁石は金属磁石であるため電気抵抗が低い。このため、モータに組み込んだ場合の渦電流損が増大し、モータ効率を低下させる問題がある。そこで、希土類磁石自体の電気抵抗を高めて、この問題を解決する技術が各種提案されている。   However, since the rare earth magnet is a metal magnet, its electric resistance is low. For this reason, there is a problem that eddy current loss increases when incorporated in a motor, and motor efficiency is lowered. Therefore, various techniques for solving this problem by increasing the electric resistance of the rare earth magnet itself have been proposed.

例えば、希土類磁石用磁粉がSiOおよび/またはAl粒子等の無機絶縁物質で結着された構造を有する希土類磁石が提案されている(例えば、特許文献1参照)。 For example, a rare earth magnet having a structure in which rare earth magnet magnetic particles are bound with an inorganic insulating material such as SiO 2 and / or Al 2 O 3 particles has been proposed (see, for example, Patent Document 1).

特開平10−321427号公報(特許請求の範囲)JP-A-10-32427 (Claims)

前述の従来技術である、希土類磁石用磁粉がSiOおよび/またはAl粒子で結着された構造を有する希土類磁石の場合、希土類磁石用磁粉の間にSiOおよび/またはAlが存在していると、希土類磁石の電気抵抗を高めることができる。しかしながら、SiOおよび/またはAlを希土類磁石に加えると磁石特性が大きく低下してしまう。これでは、中出力から大出力のモータには適用が難しい。
従来技術は、希土類磁石の電気抵抗を上昇させることができても、その一方で磁石特性の大幅な低下を引き起こしてしまっていた。
Is the prior art described above, when the magnetic powder for the rare-earth magnet is a rare earth magnet having a sintered wearing structure of SiO 2 and / or Al 2 O 3 particles, SiO 2 and / or Al 2 O between the rare-earth magnetic powder When 3 is present, the electric resistance of the rare earth magnet can be increased. However, when SiO 2 and / or Al 2 O 3 is added to the rare earth magnet, the magnetic properties are greatly deteriorated. This is difficult to apply to motors with medium to high output.
Although the prior art can increase the electric resistance of the rare earth magnet, it has caused a significant decrease in the magnet characteristics.

本発明の目的は、高い電気抵抗を有し、しかも磁石特性の低下が少ない希土類磁石とその製造方法を提供することにある。   An object of the present invention is to provide a rare earth magnet having a high electrical resistance and less deterioration in magnet characteristics and a method for producing the same.

本発明は、希土類磁石であって、希土類磁石粒子と、該希土類磁石粒子間に存在する下記式(I)
〔化4〕
RO (I)
(式中、Rはテルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho),エルビウム(Er),ツリウム(Tm),イッテルビウム(Yb),またはルテチウム(Lu)である)で表される炭素成分を含有する非晶質の希土類酸化物を含む化合物とを有することを特徴とする。
The present invention relates to a rare earth magnet, the rare earth magnet particles and the following formula (I) existing between the rare earth magnet particles:
[Chemical formula 4]
RO x C y (I)
(Wherein R is terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), or lutetium (Lu)). And an amorphous rare earth oxide-containing compound.

また、希土類磁石粒子と、該希土類磁石粒子間に存在する下記式(I)
〔化5〕
RO (I)
(式中、Rはテルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho),エルビウム(Er),ツリウム(Tm),イッテルビウム(Yb),またはルテチウム(Lu)である)で表される炭素成分を含有する非晶質の希土類酸化物を含む化合物とを有する希土類磁石の製造方法において、下記式(II)
〔化6〕
RL (II)
(ここで、Lは有機物の配位子であり、(CO(CH)CHCO(CH))イオン、(CO(C(CH)CHCO(C(CH))イオン、(CO(C)CHCO(C(CH))イオン、(CO(CF)CHCO(CF))イオン等のβ−ジケトナトイオン等の陰イオンの有機基である)で表される希土類錯体を有機溶媒に溶解した溶液と希土類磁石用磁粉とを混合する工程と、この混合物に対して脱酸素中で熱処理を施す工程とを有することを特徴とする。
Further, rare earth magnet particles and the following formula (I) existing between the rare earth magnet particles:
[Chemical formula 5]
RO x C y (I)
(Wherein R is terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), or lutetium (Lu)). In a method for producing a rare earth magnet having an amorphous rare earth oxide-containing compound, the following formula (II)
[Chemical formula 6]
RL 3 (II)
(Wherein L is an organic ligand, (CO (CH 3 ) CHCO (CH 3 )) ion, (CO (C (CH 3 ) 3 ) CHCO (C (CH 3 ) 3 )) Anion, an organic group of an anion such as β-diketonato ion such as (CO (C 3 F 7 ) CHCO (C (CH 3 ) 3 )) ion or (CO (CF 3 ) CHCO (CF 3 )) ion And (2) a step of mixing a solution in which a rare earth complex represented by (1) is dissolved in an organic solvent and a magnetic powder for a rare earth magnet, and a step of subjecting the mixture to a heat treatment in deoxygenation.

本発明により、高い電気抵抗を有し、しかも磁石特性の低下が抑制された希土類磁石が提供された。   According to the present invention, a rare earth magnet having high electrical resistance and suppressing deterioration of magnet characteristics is provided.

希土類磁石の磁石特性の低下を抑えるには、希土類磁石粒子の体積分率を上げることが必要である。一方で、希土類磁石の電気抵抗を高める必要がある。これらの両方を満足させるために、希土類磁石粒子の一粒一粒を、磁石特性の低下を抑えることが可能で、かつ、電気抵抗の大きい材料で覆うことを見出し、本発明に至った。   In order to suppress the deterioration of the magnet characteristics of the rare earth magnet, it is necessary to increase the volume fraction of the rare earth magnet particles. On the other hand, it is necessary to increase the electric resistance of the rare earth magnet. In order to satisfy both of these, it has been found that each of the rare earth magnet particles can be covered with a material that can suppress the deterioration of the magnet characteristics and has high electric resistance, and has led to the present invention.

希土類磁石粒子は、一般に、金属および有機化合物との反応、表面酸化等の化学的変化を生じ易く、これにより磁石特性が低下する。このことから、希土類磁石粒子の表面コーティング剤には、磁石作成後に磁石特性を維持可能で、かつ電気抵抗の高いものが望まれる。本発明者らは、前記一般式(I)で表される非晶質の炭素成分含有希土類酸化物が、この要求を満たすことを明らかにした。   Rare earth magnet particles generally tend to cause chemical changes such as reaction with metals and organic compounds, surface oxidation, and the like, thereby deteriorating magnet properties. For this reason, it is desired that the surface coating agent for rare earth magnet particles has high electrical resistance and can maintain magnet characteristics after the magnet is produced. The present inventors have clarified that the amorphous carbon component-containing rare earth oxide represented by the general formula (I) satisfies this requirement.

また、前記一般式(I)で表される炭素成分含有希土類酸化物でコートするに当たって、体積分率を大きくすることなく磁石特性を保持するには、前記一般式(II)で表される希土類錯体を用い、湿式処理によりコートするのが有効であることを見出した。これは湿式処理を行うことで、希土類磁石粒子表面に非晶質のROを均一かつ薄い膜で被覆することができるからである。RLを溶解する溶媒として、アルコール系の低沸点溶媒を用いることで、希土類磁石粒子表面を変質させることなく、希土類磁石粒子表面に非晶質のROを生成させることが可能になる。また、配位子であるLに500℃以下の低温かつ無酸素の状態で分解除去が可能なβ−ジケトナトイオンの有機基を用いることで、希土類磁石粒子表面に炭素化合物が生成するのを抑えることが可能になる。この要件を満たすβ−ジケトナトイオンには、(CO(CH)CHCO(CH))イオン、(CO(C(CH)CHCO(C(CH))イオン、(CO(C)CHCO(C(CH))イオン、(CO(CF)CHCO(CF))イオン等がある。 In addition, in coating with the carbon component-containing rare earth oxide represented by the general formula (I), the rare earth represented by the general formula (II) can be used to maintain the magnet characteristics without increasing the volume fraction. It has been found that it is effective to use a complex and coat by wet processing. This is because the surface of the rare earth magnet particles can be coated with amorphous RO x C y with a uniform and thin film by performing wet processing. By using an alcohol-based low-boiling solvent as a solvent for dissolving RL 3 , amorphous RO x C y can be generated on the surface of the rare earth magnet particle without altering the surface of the rare earth magnet particle. . Further, by using an organic group of β-diketonato ion that can be decomposed and removed at a low temperature of 500 ° C. or less and oxygen-free as L as a ligand, it is possible to suppress the formation of a carbon compound on the surface of rare earth magnet particles. Is possible. Β-diketonato ions that satisfy this requirement include (CO (CH 3 ) CHCO (CH 3 )) ion, (CO (C (CH 3 ) 3 ) CHCO (C (CH 3 ) 3 )) ion, (CO (C 3 F 7 ) CHCO (C (CH 3 ) 3 )) ions, (CO (CF 3 ) CHCO (CF 3 )) ions, and the like.

前記一般式(I)で表される非晶質のROを表面に生成させた希土類磁石粒子からなる磁石は、600℃より高温になると熱的に不安定となる。しかし、600℃以下の熱処理を該希土類磁石に施しても、室温での磁石特性は熱処理前後で変化が小さかった。また、非晶質のROによる表面処理膜は、磁粉を圧縮成形しても表面処理膜が粉々にならず、磁粉表面に残るため、該希土類磁石用磁粉を用いて圧縮成形した磁石に対する磁気特性の安定化と電気的高抵抗化に有効であることが分かった。 A magnet made of rare earth magnet particles on the surface of which amorphous RO x C y represented by the general formula (I) is formed becomes thermally unstable when the temperature is higher than 600 ° C. However, even when the rare earth magnet was subjected to a heat treatment at 600 ° C. or lower, the magnet properties at room temperature showed little change before and after the heat treatment. In addition, the surface treatment film made of amorphous RO x C y does not shatter even if the magnetic powder is compression-molded, and remains on the surface of the magnetic powder. Therefore, the magnet is compression-molded using the rare earth magnet magnetic powder. It is found that it is effective in stabilizing the magnetic properties and increasing electrical resistance.

図1は、本発明による希土類磁石を示している。希土類磁石1は希土類磁石粒子2と非晶質の炭素成分含有希土類酸化物3によって構成される。希土類磁石粒子は、強磁性の主相および他成分からなる。希土類磁石がNd−Fe−B系磁石である場合には、主相はNdFe14B相である。磁石特性の向上を考慮すると、希土類磁石(希土類磁石粒子)の原料となる希土類磁石用磁粉は、HDDR法や熱間塑性加工を用いて調製された異方性希土類磁石用磁粉であることが好ましい。希土類磁石用磁粉がHDDR法や熱間塑性加工を用いて調製された異方性希土類磁石用磁粉である場合は、図2に示すような多数の結晶粒4の集合体となる。なお、図2は、図1におけるAの部分を拡大したものである。このとき、結晶粒4が単磁区粒径以下の平均粒径を有していると、保磁力を向上させる上で好適である。希土類磁石は、Nd−Fe−B系磁石の他に、Sm−Co系磁石などが挙げられる。得られる希土類磁石の磁石特性や、製造コストなどを考慮すると、Nd−Fe−B系磁石が好ましい。ただし、Nd−Fe−B系磁石に限定されるものではない。場合によっては、希土類磁石中に2種以上の希土類磁石粒子が混在していてもよい。例えば、異なる組成比を有するNd−Fe−B系磁石が2種以上含まれてもよく、Nd−Fe−B系磁石とSm−Co系磁石とが混在していてもよい。 FIG. 1 shows a rare earth magnet according to the invention. The rare earth magnet 1 is composed of rare earth magnet particles 2 and an amorphous carbon component-containing rare earth oxide 3. Rare earth magnet particles are composed of a ferromagnetic main phase and other components. When the rare earth magnet is an Nd—Fe—B based magnet, the main phase is an Nd 2 Fe 14 B phase. In consideration of improvement in magnet characteristics, the rare earth magnet magnetic powder used as a raw material for the rare earth magnet (rare earth magnet particles) is preferably an anisotropic rare earth magnet magnetic powder prepared by the HDDR method or hot plastic working. . When the rare earth magnet magnetic powder is an anisotropic rare earth magnet magnetic powder prepared by the HDDR method or hot plastic working, an aggregate of a large number of crystal grains 4 as shown in FIG. FIG. 2 is an enlarged view of a portion A in FIG. At this time, if the crystal grains 4 have an average grain size equal to or smaller than the single magnetic domain grain size, it is preferable to improve the coercive force. Examples of the rare earth magnet include Sm—Co based magnets in addition to Nd—Fe—B based magnets. Considering the magnet characteristics of the obtained rare earth magnet and the manufacturing cost, Nd—Fe—B type magnets are preferable. However, it is not limited to Nd—Fe—B magnets. In some cases, two or more kinds of rare earth magnet particles may be mixed in the rare earth magnet. For example, two or more types of Nd—Fe—B magnets having different composition ratios may be included, and Nd—Fe—B magnets and Sm—Co magnets may be mixed.

なお、本発明において「Nd−Fe−B系磁石」とは、NdやFeの一部が他の元素で置換されている形態も包含する概念である。Ndは、Dy、Tb等のような他の希土類元素の一種または二種以上で置換されていてもよい。置換は、原料合金の配合量を調整することによって行うことができる。この置換によって、Nd−Fe−B系磁石の保磁力向上が図れる。置換されるNdの量は、Ndに対して、0.01atom%以上、50atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。50atom%を越えると、残留磁束密度を高レベルで維持できなくなる恐れがある。   In the present invention, the “Nd—Fe—B magnet” is a concept including a form in which a part of Nd or Fe is substituted with another element. Nd may be substituted with one or more of other rare earth elements such as Dy, Tb and the like. The substitution can be performed by adjusting the blending amount of the raw material alloy. By this replacement, the coercive force of the Nd—Fe—B magnet can be improved. The amount of Nd to be substituted is preferably 0.01 atom% or more and 50 atom% or less with respect to Nd. If it is less than 0.01 atom%, the effect of substitution may be insufficient. If it exceeds 50 atom%, the residual magnetic flux density may not be maintained at a high level.

一方、Feは、Co等の他の遷移金属で置換されていてもよい。この置換によって、Nd−Fe−B系磁石のキュリー温度(Tc)を上昇させ、使用温度範囲を拡大させることができる。置換されるFeの量は、Feに対して、0.01atom%以上、30atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。30atom%を越えると、保磁力の低下が大きくなる恐れがある。   On the other hand, Fe may be substituted with other transition metals such as Co. By this replacement, the Curie temperature (Tc) of the Nd—Fe—B magnet can be increased and the operating temperature range can be expanded. The amount of Fe to be substituted is preferably 0.01 atom% or more and 30 atom% or less with respect to Fe. If it is less than 0.01 atom%, the effect of substitution may be insufficient. If it exceeds 30 atom%, the coercive force may decrease significantly.

希土類磁石粒子の平均粒径は、1〜500μmが好ましい。平均粒径が1μm未満であると、磁粉の比表面積が大きく、酸化劣化による影響が大きいため、希土類磁石の磁石特性の低下が懸念される。一方、希土類磁石粒子の平均粒径が500μmより大きいと、製造時の圧力によって磁石粉が砕け、十分な電気抵抗を得ることが難しくなる。加えて、異方性希土類磁石用磁粉を原料として異方性磁石を製造する場合には、500μmを越えるサイズにわたり、希土類磁石用磁粉における主相(Nd−Fe−B系磁石においては、NdFe14B相)の配向方向を揃えることが難しい。希土類磁石粒子の粒径は、磁石の原料である希土類磁石用磁粉の粒径を調節することによって制御される。なお、希土類磁石粒子の平均粒径はSEM像から算出することができる。 The average particle diameter of the rare earth magnet particles is preferably 1 to 500 μm. If the average particle size is less than 1 μm, the specific surface area of the magnetic powder is large, and the influence of oxidative degradation is large, so there is a concern that the magnet characteristics of the rare earth magnet will deteriorate. On the other hand, if the average particle diameter of the rare earth magnet particles is larger than 500 μm, the magnet powder is crushed by the pressure during production, and it becomes difficult to obtain sufficient electric resistance. In addition, when an anisotropic magnet is manufactured using magnetic powder for anisotropic rare earth magnet as a raw material, the main phase in the magnetic powder for rare earth magnet (Nd 2 in Nd-Fe-B magnets) exceeds 500 μm. It is difficult to align the orientation direction of (Fe 14 B phase). The particle size of the rare earth magnet particles is controlled by adjusting the particle size of the rare earth magnet magnetic powder that is the raw material of the magnet. The average particle diameter of the rare earth magnet particles can be calculated from the SEM image.

本発明は、等方性磁石粉から製造される等方性磁石、異方性磁石粉をランダム配向させた等方性磁石、および異方性磁石粉を一定方向に配向させた異方性磁石のいずれにも適用可能である。高エネルギー積を有する磁石が必要であれば、異方性磁石粉を原料とし、これを磁場中配向させた異方性磁石が好適である。   The present invention relates to an isotropic magnet manufactured from isotropic magnet powder, an isotropic magnet in which anisotropic magnet powder is randomly oriented, and an anisotropic magnet in which anisotropic magnet powder is oriented in a certain direction. It is applicable to any of these. If a magnet having a high energy product is required, an anisotropic magnet using anisotropic magnet powder as a raw material and oriented in a magnetic field is suitable.

希土類磁石用磁粉は、製造する希土類磁石の組成に応じて、原料を配合して製造する。主相がNdFe14B相であるNd−Fe−B系磁石を製造する場合には、Nd、Fe、およびBを所定量配合する。希土類磁石用磁粉には、公知の手法を用いて製造したものを用いてもよいし、市販品を用いても良い。好ましくは、HDDR法や熱間組成加工を利用したUPSET法を用いて製造された異方性希土類磁石用磁粉を用いる。このような異方性希土類磁石用磁粉は、多数の結晶粒の集合体となっている。異方性希土類磁石用磁粉を構成する結晶粒は、その平均粒径が単磁区臨界粒子径以下であると、保磁力を向上させる上で好適である。具体的には、結晶粒の平均粒径は、500nm以下であるとよい。なお、HDDR法とは、Nd−Fe−B系合金を水素化させることにより、主相であるNdFe14B化合物をNdH、α−Fe、およびFeBの三相に分解させ、その後、強制的な脱水素処理によって再びNdFe14Bを生成させる手法である。UPSET法とは、超急冷法により作製したNd−Fe−B系合金を、粉砕、仮成型後、熱間で塑性加工する手法である。 The rare earth magnet magnetic powder is produced by blending raw materials according to the composition of the rare earth magnet to be produced. When producing an Nd—Fe—B based magnet whose main phase is an Nd 2 Fe 14 B phase, a predetermined amount of Nd, Fe, and B is blended. As the magnetic powder for rare earth magnets, those produced using a known method may be used, or commercially available products may be used. Preferably, magnetic powder for anisotropic rare earth magnets manufactured using the HDDR method or the UPSET method utilizing hot composition processing is used. Such magnetic powder for anisotropic rare earth magnet is an aggregate of a large number of crystal grains. The crystal grains constituting the magnetic powder for anisotropic rare earth magnet are suitable for improving the coercive force when the average particle diameter is not more than the single domain critical particle diameter. Specifically, the average grain size of the crystal grains is preferably 500 nm or less. In the HDDR method, the Nd—Fe—B alloy is hydrogenated to decompose the Nd 2 Fe 14 B compound as the main phase into three phases of NdH 3 , α-Fe, and Fe 2 B, Thereafter, Nd 2 Fe 14 B is generated again by forced dehydrogenation. The UPSET method is a technique in which an Nd—Fe—B alloy produced by an ultra-quenching method is subjected to plastic working hot after pulverization and temporary molding.

表面処理後の異方性希土類磁石用磁粉は成形型中に充填される。成形型の形状は特に限定されず、磁石が適用される部位に応じて決定すると良い。成形型に充填する際には、適当な圧力を加えて仮成形するとよい。仮成形の圧力は0.5〜5t/cm程度である。なお、用いる希土類磁石用磁粉が異方性磁石粉である場合には、希土類磁石用磁粉を磁場配向させながら仮成形することによって、異方性の希土類磁石を得ることができる。原料磁石粉の磁化容易軸を揃えた状態で成形することで、配向方向での残留磁化を大きくでき、磁石のエネルギー積を向上させることができる。なお、加える配向磁場は10〜20kOe程度である。 The magnetic powder for anisotropic rare earth magnet after the surface treatment is filled in a mold. The shape of the mold is not particularly limited, and may be determined according to the part to which the magnet is applied. When filling the mold, an appropriate pressure may be applied for temporary molding. The pressure for temporary molding is about 0.5 to 5 t / cm 2 . In addition, when the rare earth magnet magnetic powder to be used is an anisotropic magnet powder, an anisotropic rare earth magnet can be obtained by temporarily forming the rare earth magnet magnetic powder while aligning the magnetic field. By forming the raw magnet powder with the easy magnetization axes aligned, the residual magnetization in the orientation direction can be increased, and the energy product of the magnet can be improved. The orientation magnetic field applied is about 10 to 20 kOe.

成形型中に充填された表面処理後の異方性希土類磁石用磁粉を成形して、バルク磁石を得る。なお、上述の仮成形によって表面処理後の異方性希土類磁石用磁粉を固める作業は、本発明における「成形」には該当しないものとする。仮成形後に行う本成形は、磁石製造に通常用いられる公知の装置を用いることができる。好ましくは、熱間成形によって成形することが好ましい。熱間成形法を用いて成形した場合には、原料である希土類磁石用磁粉を十分に塑性変形させ、高密度な希土類磁石を得ることができる。熱間成形方法は特に規定しない。例えばホットプレスを用いることができる。成形の圧力は1〜10t/cm程度である。また、成形温度は500〜600℃で、プレス時間は5〜30分が適当である。500℃以下で成形を行うと磁石の密度が充分ではなく、また、600℃を超える温度で成形を行うと磁粉とその周りを覆う希土類酸化物が反応し保磁力の低下につながる。通常の熱間成形雰囲気は10Pa以下の真空または不活性ガスフローの雰囲気である。 The magnetic powder for the anisotropic rare earth magnet after the surface treatment filled in the mold is molded to obtain a bulk magnet. In addition, the operation | work which hardens the magnetic powder for anisotropic rare earth magnets after surface treatment by the above-mentioned temporary forming shall not correspond to the "molding" in this invention. For the main forming performed after the temporary forming, a known apparatus usually used for magnet production can be used. Preferably, it is preferable to form by hot forming. In the case of forming by using the hot forming method, the magnetic powder for rare earth magnet as a raw material can be sufficiently plastically deformed to obtain a high-density rare earth magnet. The hot forming method is not particularly defined. For example, a hot press can be used. The molding pressure is about 1 to 10 t / cm 2 . The molding temperature is 500 to 600 ° C., and the pressing time is suitably 5 to 30 minutes. If molding is performed at 500 ° C. or lower, the density of the magnet is not sufficient, and if molding is performed at a temperature exceeding 600 ° C., the magnetic powder reacts with the rare earth oxide covering the periphery, leading to a decrease in coercive force. A normal hot forming atmosphere is a vacuum of 10 Pa or less or an inert gas flow atmosphere.

成形後には、加工(切断、研磨など)、表面処理(保護膜の形成、塗装など)、着磁などの処理を行う。   After molding, processing (cutting, polishing, etc.), surface treatment (protection film formation, painting, etc.), magnetization, etc. are performed.

希土類磁石の加工には各種公知技術を適宜適用できる。即ち、研削(外面研削、内面研削、平面研削、成形研削)、切断(外周切断、内周切断)、ラッピング、面取りなどの加工を実施できる。加工用具としては、ダイヤモンド、GC砥石、外内周切断機、外内周研削機、平面研削機、NC旋盤、フライス盤、マニシングセンターなどを用いることができる。   Various known techniques can be appropriately applied to the processing of the rare earth magnet. That is, processing such as grinding (external grinding, internal grinding, surface grinding, forming grinding), cutting (peripheral cutting, inner peripheral cutting), lapping, and chamfering can be performed. As the processing tool, diamond, GC grindstone, outer / inner peripheral cutting machine, outer / inner peripheral grinder, surface grinder, NC lathe, milling machine, machining center and the like can be used.

着磁は、静磁場またはパルス磁場によって行うことができる。飽和に近い着磁状態を得るための目安は、自発保磁力の2倍以上、望ましくは4倍程度の着磁磁場強度である。   Magnetization can be performed by a static magnetic field or a pulsed magnetic field. A standard for obtaining a magnetization state close to saturation is a magnetization magnetic field strength of at least twice the spontaneous coercive force, preferably about four times.

本発明による、希土類磁石粒子表面の絶縁性を向上させた希土類磁石を用いてなるモータについて説明する。参考までに図3に本発明の高抵抗希土類磁石が適用された集中巻の表面磁石型モータの1/4断面図を示す。図中の符号は、11がu相巻線、12がu相巻線、13がv相巻線、14がv相巻線、15がw相巻線、16がw相巻線、17がアルミニウムケース、18がステータ、19が磁石、20がロータ鉄、21が軸である。本発明の希土類磁石は、高い電気抵抗を有し、その上、磁石特性にも優れる。このため、本発明の希土類磁石を用いて製造されたモータは、モータの連続出力を高めることが容易に可能であり、中出力から大出力のモータとして好適といえる。また、本発明の希土類磁石を用いて製造されたモータは、磁石特性が優れるため、製品の小型軽量化が図れる。例えば、自動車用部品に適用した場合には、車体の軽量化に伴う燃費の向上が可能である。電気自動車やハイブリッド電気自動車の駆動用モータとしても有効である。これまではスペースの確保が困難であった場所にも駆動用モータを搭載することが可能となり、電気自動車やハイブリッド自動車の汎用化に大きな役割を果たすと考えられる。   A motor using a rare earth magnet with improved insulation on the surface of rare earth magnet particles according to the present invention will be described. For reference, FIG. 3 shows a quarter sectional view of a concentrated winding surface magnet type motor to which the high resistance rare earth magnet of the present invention is applied. In the drawing, 11 is a u-phase winding, 12 is a u-phase winding, 13 is a v-phase winding, 14 is a v-phase winding, 15 is a w-phase winding, 16 is a w-phase winding, 17 is An aluminum case, 18 is a stator, 19 is a magnet, 20 is a rotor iron, and 21 is a shaft. The rare earth magnet of the present invention has a high electric resistance and also has excellent magnet characteristics. For this reason, the motor manufactured using the rare earth magnet of the present invention can easily increase the continuous output of the motor, and can be said to be suitable as a medium output to large output motor. Moreover, since the motor manufactured using the rare earth magnet of the present invention has excellent magnet characteristics, the product can be reduced in size and weight. For example, when applied to automotive parts, fuel efficiency can be improved as the vehicle body becomes lighter. It is also effective as a drive motor for electric vehicles and hybrid electric vehicles. Drive motors can be installed in places where it was difficult to secure space so far, and it will play a major role in the generalization of electric vehicles and hybrid vehicles.

以下、実施例について説明する。
[実施例1]
Examples will be described below.
[Example 1]

希土類磁石用磁粉には、公知のHDDR法を用いて調製したNd−Fe−B系異方性磁石用磁粉を用いた。具体的な手順は以下の通りである。まず、成分組成がNd12.6Fe残部Co17.46.5Ga0.3Al0.5Zr0.1よりなる鋳塊を準備した。この鋳塊を1120℃で20時間保持して均質化した。均質化した鋳塊は、水素雰囲気中で室温500℃まで昇温させて保持し、さらに、850℃まで昇温させて保持した。引き続いて、850℃の真空雰囲気中に保持した後、冷却して、微細な強磁性相の再結晶集合組織(結晶粒)を有する合金を得た。この合金をジョークラッシャーおよびブラウンミルを用いてアルゴンガス中で粉体化し、平均粒径300μm以下の希土類磁石用磁粉とした。 As the magnetic powder for rare earth magnets, magnetic powder for Nd—Fe—B based anisotropic magnets prepared using a known HDDR method was used. The specific procedure is as follows. First, an ingot having a component composition of Nd 12.6 Fe balance Co 17.4 B 6.5 Ga 0.3 Al 0.5 Zr 0.1 was prepared. The ingot was homogenized by holding at 1120 ° C. for 20 hours. The homogenized ingot was heated to a room temperature of 500 ° C. and held in a hydrogen atmosphere, and further heated to 850 ° C. and held. Subsequently, the alloy was held in a vacuum atmosphere at 850 ° C. and then cooled to obtain an alloy having a recrystallized texture (crystal grains) of a fine ferromagnetic phase. This alloy was pulverized in an argon gas using a jaw crusher and a brown mill to obtain a magnetic powder for a rare earth magnet having an average particle size of 300 μm or less.

希土類磁石用磁粉のRO表面処理は、希土類錯体であるジスプロシウム2,4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解した溶液を用いて行った。 RO x C y surface treatment of the magnetic powder for the rare-earth magnet was carried out using a solution of dysprosium pentanedionate Nate 1g is a rare earth complex in isopropyl alcohol 100 ml.

(1)希土類磁石用磁粉1kgに対し、7500mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対して、真空中で150℃、1時間と、350℃、1時間および600℃、30分の熱処理を行った。 (1) 7500 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat-treated in vacuum at 150 ° C. for 1 hour, 350 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、異方性希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the magnetic powder for anisotropic rare earth magnet was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は10分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積および電気抵抗率を測定した。磁石密度は希土類磁石の寸法および質量から求めた。磁石特性は試験片を40kOeで着磁後、振動試料型磁力計(理研電子社製BHV−525)を用いて測定した。また、電気抵抗率は、KYOWARIKEN社製K705RMを用い4探針法により測定した。RO中のR、O及びCの元素分析については磁石をfocused ion beamを用いて20nm程度にスライスして、RO中の5点を選び元素分析を行い平均した値を用いた。結果を表1に示す。 The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured. The magnet density was determined from the size and mass of the rare earth magnet. Magnet characteristics were measured using a vibrating sample magnetometer (BHV-525 manufactured by Riken Denshi Co., Ltd.) after magnetizing the test piece with 40 kOe. The electrical resistivity was measured by a four-probe method using K705RM manufactured by KYOWARIKEN. RO x C y in R, the elemental analysis of O and C by slicing a magnet to about 20nm using a focused ion beam, use an average value performed elemental analysis to select the five points in RO x C y It was. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。   The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.

一方、本発明のRO表面処理は、保磁力が19.4kOeを有するNd12.4Fe残部Dy0.6Co206.2Ga0.4Al1.5Zr0.1の成分組成を有する異方性HDDR磁粉にも有効であることが分かった。即ち、該磁石用磁粉に対して本実施例1と同様にして作製した磁石は磁石密度7.0g/cm、保磁力18.7kOe、最大エネルギー積17MGOe、電気抵抗率2000μΩcmの特性値を有した。このことから、Nd−Fe−B系異方性磁石用磁粉に対して、本発明を用いることにより磁粉の特性を損なうことなく、高電気抵抗を有する磁石の作製を可能にした。
[実施例2]
On the other hand, the RO x C y surface treatment of the present invention is carried out with Nd 12.4 Fe balance Dy 0.6 Co 20 B 6.2 Ga 0.4 Al 1.5 Zr 0.1 having a coercive force of 19.4 kOe. It was found that it is also effective for anisotropic HDDR magnetic powder having a component composition. That is, a magnet produced in the same manner as in Example 1 with respect to the magnetic powder for magnet has characteristic values of magnet density 7.0 g / cm 3 , coercive force 18.7 kOe, maximum energy product 17 MGOe, and electrical resistivity 2000 μΩcm. did. From this, it became possible to produce a magnet having a high electrical resistance without impairing the properties of the magnetic powder by using the present invention for the magnetic powder for Nd-Fe-B based anisotropic magnet.
[Example 2]

希土類磁石用磁粉のRO表面処理において、希土類錯体であるホルミウム2,2,6,6−テトラメチル−3,5−ヘプタンジオネイト1.6gをイソプロピルアルコール300mlに溶解した溶液を用いた。 In RO x C y surface treatment of the magnetic powder for the rare-earth magnets, using a solution of holmium 2,2,6,6-tetramethyl-3,5-heptanedionate Nate 1.6g is a rare earth complex in isopropyl alcohol 300ml .

(1)希土類磁石用磁粉1kgに対し、21000mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で190℃、1時間と、500℃、1時間および600℃、30分の熱処理を行った。 (1) 21,000 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat-treated in a vacuum at 190 ° C. for 1 hour, 500 ° C., 1 hour, and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は10分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。
[実施例3]
The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.
[Example 3]

希土類磁石用磁粉のRO表面処理において、希土類錯体であるツリウム2,2,6,6−テトラメチル−3,5−ヘプタンジオネイト1.6gをメチルアルコール300mlに溶解した溶液を用いた。 In RO x C y surface treatment of the magnetic powder for the rare-earth magnets, using a solution of thulium 2,2,6,6-tetramethyl-3,5-heptanedionate Nate 1.6g is a rare earth complex in methyl alcohol 300ml .

(1)希土類磁石用磁粉1kgに対し、21000mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で180℃、1時間と、450℃、1時間および600℃、30分の熱処理を行った。 (1) 21,000 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat-treated in vacuum at 180 ° C. for 1 hour, 450 ° C., 1 hour, and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は20分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 20 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。
[実施例4]
The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.
[Example 4]

希土類磁石用磁粉のRO表面処理において、希土類錯体であるイッテルビウム6,6,7,7,8,8,8−ヘプタフルオロ−2,2−ジメチル−3,5−オクタンジオネイト2.30gをエチルアルコール200mlに溶解した溶液を用いた。 In RO x C y surface treatment of the magnetic powder for the rare-earth magnet, ytterbium 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedionato Nate 2 is a rare earth complex. A solution obtained by dissolving 30 g in 200 ml of ethyl alcohol was used.

(1)希土類磁石用磁粉1kgに対し、13500mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で170℃、1時間と、400℃、1時間および600℃、30分の熱処理を行った。 (1) 13500 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat treated in vacuum at 170 ° C. for 1 hour, 400 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は10分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。
[実施例5]
The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.
[Example 5]

希土類磁石用磁粉のRO表面処理において、希土類錯体であるエルビウム(111)2,4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解した溶液を用いた。 In RO x C y surface treatment of the magnetic powder for the rare-earth magnets, using a solution of erbium (111) 2,4-pentanedionate Nate 1g is a rare earth complex in isopropyl alcohol 100 ml.

(1)希土類磁石用磁粉1kgに対し、7200mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で150℃、1時間と、350℃、1時間および600℃、30分の熱処理を行った。 (1) 7200 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat-treated in vacuum at 150 ° C. for 1 hour, 350 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は10分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。
[実施例6]
The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.
[Example 6]

希土類磁石用磁粉のRO表面処理において、希土類錯体であるジスプロシウム2,4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解した溶液を用いた。 In RO x C y surface treatment of the magnetic powder for the rare-earth magnets, using a solution of dysprosium pentanedionate Nate 1g is a rare earth complex in isopropyl alcohol 100 ml.

(1)希土類磁石用磁粉1kgに対し、2500mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で150℃、1時間と、350℃、1時間および600℃、30分の熱処理を行った。 (1) To 1 kg of magnetic powder for rare earth magnet, 2500 ml of RO x C y surface treatment solution was added and stirred to remove the solvent. The treated magnetic powder was heat-treated in vacuum at 150 ° C. for 1 hour, 350 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は550℃、保持時間は10分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 550 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。
[実施例7]
The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.
[Example 7]

希土類磁石用磁粉には、公知のUPSET法を用いて調製したNd−Fe−B系異方性磁石粉末を用いた。具体的な手順は以下の通りである。まず、成分組成がNd13.7Fe残部Co6.75.5Ga0.6よりなる鋳塊を準備した。この鋳塊を高周波溶解し、溶湯を周速度30m/sで回転する片ロールに噴射することにより、Nd−Fe−B系超急冷薄帯を得た。これを乳鉢により粉砕し、平均粒径350μm以下に調製した。次に、粉砕された超急冷薄帯を軟鋼製の円筒状容器に充填し、容器内を真空引きした後、円筒状容器を密閉した。この容器を800℃に高周波加熱した後、プレス機を用いて一軸に圧縮した。続いて、容器からNd−Fe−B系磁石材料を取り出し、コーヒーミルを用いて平均粒径300μm以下の希土類粉末とした。 Nd—Fe—B-based anisotropic magnet powder prepared using a known UPSET method was used as the rare earth magnet magnetic powder. The specific procedure is as follows. First, an ingot having a component composition of Nd 13.7 Fe balance Co 6.7 B 5.5 Ga 0.6 was prepared. The ingot was melted at a high frequency, and the molten metal was sprayed onto a piece roll rotating at a peripheral speed of 30 m / s to obtain an Nd—Fe—B-based ultra-quenched ribbon. This was pulverized with a mortar to prepare an average particle size of 350 μm or less. Next, the pulverized ultra-quenched ribbon was filled into a cylindrical container made of mild steel, the inside of the container was evacuated, and the cylindrical container was sealed. The container was heated at a high frequency to 800 ° C. and then compressed uniaxially using a press. Subsequently, the Nd—Fe—B magnet material was taken out from the container, and a rare earth powder having an average particle size of 300 μm or less was obtained using a coffee mill.

希土類磁石用磁粉のRO表面処理には、希土類錯体であるジスプロシウム2,4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解した溶液を用いた。 For the RO x C y surface treatment of the magnetic powder for rare earth magnet, a solution in which 1 g of dysprosium 2,4-pentanedionate, which is a rare earth complex, was dissolved in 100 ml of isopropyl alcohol was used.

(1)希土類磁石用磁粉1kgに対し、7500mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で150℃、1時間と、350℃、1時間および600℃、30分の熱処理を行った。 (1) 7500 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat-treated in vacuum at 150 ° C. for 1 hour, 350 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は15分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 15 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積、電気抵抗率ともに優れた特性を有していることが分かった。   The obtained rare earth magnet was found to have excellent characteristics in both maximum energy product and electrical resistivity.

また、実施例1〜7において、ROの組成x及びyは測定範囲の平均値であり、バラツキの範囲は1≦x≦4、0≦y≦20であった。
(比較例1)
RO表面処理を施していない希土類磁石用磁粉を用いて、実施例1と同様の方法で希土類磁石を作製した。
In Examples 1 to 7, the composition x and y of RO x C y were average values in the measurement range, and the range of variation was 1 ≦ x ≦ 4 and 0 ≦ y ≦ 20.
(Comparative Example 1)
A rare earth magnet was produced in the same manner as in Example 1 using the magnetic powder for rare earth magnet not subjected to the RO x C y surface treatment.

(1)表面処理を施していない希土類磁石用磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (1) A rare earth magnet magnetic powder not subjected to surface treatment was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(2)前記(1)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は600℃、保持時間は10分、成形圧力は10t/cmとした。 (2) The temporary molded body produced in (1) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 600 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、および電気抵抗率を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、最大エネルギー積に関して優れた特性を有していた。しかしながら、希土類磁石用磁粉に対してRO表面処理を施していないため、電気抵抗率に関しては低い値であった。
(比較例2)
希土類錯体であるジスプロシウム2,4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解した溶液を用いて、希土類磁石用磁粉のRO表面処理を行った。
The obtained rare earth magnet had excellent characteristics with respect to the maximum energy product. However, since the RO x C y surface treatment was not applied to the rare earth magnet magnetic powder, the electrical resistivity was a low value.
(Comparative Example 2)
Using a solution of dysprosium pentanedionate Nate 1g is a rare earth complex in isopropyl alcohol 100 ml, was RO x C y surface treatment of the rare-earth magnetic powder.

(1)希土類磁石用磁粉1kgに対し、7500mlのRO表面処理溶液を添加し、攪拌し、溶媒を除去した。その処理磁粉に対し、真空中で150℃、1時間と、350℃、1時間および600℃、30分の熱処理を行った。 (1) 7500 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder, and the solvent was removed by stirring. The treated magnetic powder was heat-treated in vacuum at 150 ° C. for 1 hour, 350 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は800℃、保持時間は10分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 800 ° C., the holding time was 10 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、電気抵抗率に関して優れた特性を有していた。しかしながら、最大エネルギー積に関しては悪い値の希土類磁石となった。これは、希土類磁石用磁粉表面に生成させたRO膜中に不純物として炭素原子がR原子に対して原子数として約10倍存在していたことが原因と考えられる。RO膜中に不純物として炭素原子が多量に含まれていたため、800℃の高温で成形した磁石は熱的に不安定となり、磁石特性が大きく低下したと考えられる。
(比較例3)
希土類錯体であるジスプロシウム2,4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解した溶液を用いて、希土類磁石用磁粉のRO表面処理を行った。
The obtained rare earth magnet had excellent characteristics with respect to electrical resistivity. However, the rare earth magnet has a bad value regarding the maximum energy product. This is presumably because carbon atoms existed as impurities about 10 times as many atoms as R atoms in the RO x C y film formed on the surface of the rare earth magnet magnetic powder. Since a large amount of carbon atoms were contained as impurities in the RO x C y film, the magnet molded at a high temperature of 800 ° C. was considered to be thermally unstable, and the magnetic properties were greatly deteriorated.
(Comparative Example 3)
Using a solution of dysprosium pentanedionate Nate 1g is a rare earth complex in isopropyl alcohol 100 ml, was RO x C y surface treatment of the rare-earth magnetic powder.

(1)希土類磁石用磁粉1kgに対し、7500mlのRO表面処理溶液を添加し、攪拌した。その処理磁粉に対し、真空中で150℃、1時間と、350℃、1時間および600℃、30分の熱処理を行った。 (1) 7500 ml of RO x C y surface treatment solution was added to 1 kg of rare earth magnet magnetic powder and stirred. The treated magnetic powder was heat-treated in vacuum at 150 ° C. for 1 hour, 350 ° C., 1 hour and 600 ° C. for 30 minutes.

(2)前記(1)で作製した処理磁粉を成形型に充填した。続いて、成形型中の混合体に磁場をかけることによって、希土類磁石用磁粉を磁場配向させながら仮成形した。配向磁場は10kOe、仮成形圧力は0.5t/cmとした。 (2) The treated magnetic powder produced in (1) was filled in a mold. Subsequently, by applying a magnetic field to the mixture in the mold, the rare earth magnet magnetic powder was temporarily molded while being magnetically oriented. The orientation magnetic field was 10 kOe, and the temporary molding pressure was 0.5 t / cm 2 .

(3)前記(2)で作製した仮成形体をAr中での熱間成形によって成形し、バルクの希土類磁石を得た。成形には熱源を有する成形装置を用いた。成形温度は400℃、保持時間は20分、成形圧力は10t/cmとした。 (3) The temporary molded body produced in the above (2) was molded by hot molding in Ar to obtain a bulk rare earth magnet. A molding apparatus having a heat source was used for molding. The molding temperature was 400 ° C., the holding time was 20 minutes, and the molding pressure was 10 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積、電気抵抗率及び元素分析を実施例1と同様の方法で測定した。結果を表1に示す。   The density, coercive force, maximum energy product, electrical resistivity, and elemental analysis of the obtained rare earth magnet were measured in the same manner as in Example 1. The results are shown in Table 1.

得られた希土類磁石は、電気抵抗率に関しては優れた特性を有していた。しかしながら最大エネルギー積に関しては良好な値が得られなかった。これは成形温度が400℃と低いために磁粉の硬度が高く、磁石としての密度が低かったからと考えられる。   The obtained rare earth magnet had excellent characteristics with respect to electrical resistivity. However, good values were not obtained for the maximum energy product. This is presumably because the molding temperature was as low as 400 ° C., the hardness of the magnetic powder was high, and the density as a magnet was low.

Figure 0004234581
[実施例8]
Figure 0004234581
[Example 8]

実施例1で得た希土類磁石を表面磁石型モータ(ステータ12極、ロータ8極)に適用した。図3は作製した集中巻の表面磁石モータの1/4断面図である。ステータ18は電磁鋼板の積層体とした。ロータ鉄20の上に図示するような形状の磁石19を配置した。実施例1の希土類磁石を用いて製造されたモータは、連続出力が1.5kWであった。本発明の希土類磁石は、電気抵抗が高く渦電流損失が低いため、磁石発熱が少なく、熱設計において有利である。しかも、優れた磁石特性を有する。このため、モータの連続出力を容易に高め得ることが示された。
(比較例4)
比較例1で得た希土類磁石を用いた以外は実施例8と同様にしてモータを製造した。製造されたモータは、連続出力が1.0kWであった。
The rare earth magnet obtained in Example 1 was applied to a surface magnet type motor (12 stator poles, 8 rotor poles). FIG. 3 is a quarter cross-sectional view of the produced concentrated winding surface magnet motor. The stator 18 was a laminated body of electromagnetic steel sheets. A magnet 19 having a shape as illustrated on the rotor iron 20 was disposed. The motor manufactured using the rare earth magnet of Example 1 had a continuous output of 1.5 kW. Since the rare earth magnet of the present invention has high electric resistance and low eddy current loss, the magnet rarely generates heat, which is advantageous in thermal design. Moreover, it has excellent magnet characteristics. For this reason, it was shown that the continuous output of a motor can be raised easily.
(Comparative Example 4)
A motor was manufactured in the same manner as in Example 8 except that the rare earth magnet obtained in Comparative Example 1 was used. The manufactured motor had a continuous output of 1.0 kW.

本発明により、磁石特性が優れ、しかも電気抵抗の高い希土類磁石が実現した。これにより、希土類磁石を用いたモータのモータ効率を高めることが可能になった。   According to the present invention, a rare earth magnet having excellent magnet characteristics and high electric resistance has been realized. As a result, the motor efficiency of a motor using a rare earth magnet can be increased.

本発明の一実施例による希土類磁石の断面模式図。The cross-sectional schematic diagram of the rare earth magnet by one Example of this invention. 図1におけるAの部分の拡大図。The enlarged view of the part of A in FIG. 本発明の一実施例による表面磁石型モータの1/4断面図。1 is a quarter sectional view of a surface magnet motor according to an embodiment of the present invention.

符号の説明Explanation of symbols

1…希土類磁石、2…希土類磁石粒子、3…非晶質の炭素成分含有希土類酸化物、4…結晶粒、19…磁石。   DESCRIPTION OF SYMBOLS 1 ... Rare earth magnet, 2 ... Rare earth magnet particle, 3 ... Amorphous carbon component containing rare earth oxide, 4 ... Crystal grain, 19 ... Magnet

Claims (9)

希土類磁石粒子と、該希土類磁石粒子間に存在する下記式(I)
〔化1〕
RO (I)
(式中、Rはテルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho),エルビウム(Er),ツリウム(Tm),イッテルビウム(Yb),またはルテチウム(Lu)であり、x及びyは、1≦x≦4、0<y≦20である
で表される炭素成分を含有する非晶質の希土類酸化物を含む化合物とを有することを特徴とする希土類磁石。
Rare earth magnet particles and the following formula (I) existing between the rare earth magnet particles
[Chemical formula 1]
RO x C y (I)
(Wherein, R terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), Ri ytterbium (Yb), or lutetium (Lu) Der, x and y, 1 ≦ x ≦ 4, 0 <y ≦ 20 )
And a compound containing an amorphous rare earth oxide containing a carbon component represented by:
前記希土類磁石粒子の平均粒径が1〜500μmであることを特徴とする請求項1に記載の希土類磁石。   The rare earth magnet according to claim 1, wherein the rare earth magnet particles have an average particle diameter of 1 to 500 μm. 前記希土類磁石用磁粉がNd−Fe−B系磁粉であることを特徴とする請求項1又は2に記載の希土類磁石。   The rare earth magnet according to claim 1 or 2, wherein the rare earth magnet magnetic powder is an Nd-Fe-B based magnetic powder. 前記希土類磁石が、異方性磁石であることを特徴とする請求項1〜3のいずれか1項に記載の希土類磁石。   The rare earth magnet according to claim 1, wherein the rare earth magnet is an anisotropic magnet. 希土類磁石粒子と、該希土類磁石粒子間に存在する下記式(I)
〔化2〕
RO (I)
(式中、Rはテルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho),エルビウム(Er),ツリウム(Tm),イッテルビウム(Yb),またはルテチウム(Lu)であり、x及びyは、1≦x≦4、0<y≦20である
で表される炭素成分を含有する非晶質の希土類酸化物を含む化合物とを有する希土類磁石の製造方法において、下記式(II)
〔化3〕
RL (II)
(ここで、Lは有機物の配位子であり、500℃以下の低温かつ無酸素の状態で分解除去が可能なβ−ジケトナトイオンの有機基である)
で表される希土類錯体を有機溶媒に溶解した溶液と希土類磁石用磁粉とを混合する工程と、この混合物に対して脱酸素中で熱処理を施す工程とを有することを特徴とする希土類磁石の製造方法。
Rare earth magnet particles and the following formula (I) existing between the rare earth magnet particles
[Chemical formula 2]
RO x C y (I)
(Wherein, R terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), Ri ytterbium (Yb), or lutetium (Lu) Der, x and y, 1 ≦ x ≦ 4, 0 <y ≦ 20 )
And a compound containing an amorphous rare earth oxide containing a carbon component represented by the following formula (II):
[Chemical formula 3]
RL 3 (II)
(Where, L is a ligand of the organic is 500 ° C. or less of low temperature and oxygen-free conditions in decomposition and removal is possible β- Jiketonatoio down organic group)
A rare earth magnet comprising: a step of mixing a solution of a rare earth complex represented by formula (2) dissolved in an organic solvent and a magnetic powder for a rare earth magnet; and a step of heat-treating the mixture in a deoxygenated state. Method.
前記熱処理は150〜600℃の温度で行うことを特徴とする請求項に記載の希土類磁石の製造方法。 The method for producing a rare earth magnet according to claim 5 , wherein the heat treatment is performed at a temperature of 150 to 600 ° C. 前記熱処理を経た前記希土類磁石用磁粉を成形金型に充填する工程と、前記希土類磁石用磁粉を磁場配向させながら仮成形する仮成形工程と、前記希土類磁石用磁粉を成形する本成形工程とを有することを特徴とする請求項又はに記載の希土類磁石の製造方法。 Filling the mold with the rare earth magnet magnetic powder that has undergone the heat treatment, a temporary molding step of temporarily molding the rare earth magnet magnetic powder while orienting the magnetic powder, and a main molding step of molding the rare earth magnet magnetic powder. method for producing a rare earth magnet according to claim 5 or 6, characterized in that it has. 前記本成形工程は、熱間成形によって500〜600℃の成形温度で前記希土類磁石用磁粉を成形することを特徴とする請求項に記載の希土類磁石の製造方法。 8. The method of manufacturing a rare earth magnet according to claim 7 , wherein the main forming step forms the rare earth magnet magnetic powder at a forming temperature of 500 to 600 [deg.] C. by hot forming. 請求項1〜に記載のいずれかの希土類磁石を用いることを特徴とするモータ。
以上
Motor, which comprises using one of the rare-earth magnet according to claim 1-4.
more than
JP2003430850A 2003-12-25 2003-12-25 Rare earth magnet, manufacturing method thereof and motor Expired - Fee Related JP4234581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430850A JP4234581B2 (en) 2003-12-25 2003-12-25 Rare earth magnet, manufacturing method thereof and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430850A JP4234581B2 (en) 2003-12-25 2003-12-25 Rare earth magnet, manufacturing method thereof and motor

Publications (2)

Publication Number Publication Date
JP2005191282A JP2005191282A (en) 2005-07-14
JP4234581B2 true JP4234581B2 (en) 2009-03-04

Family

ID=34789103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430850A Expired - Fee Related JP4234581B2 (en) 2003-12-25 2003-12-25 Rare earth magnet, manufacturing method thereof and motor

Country Status (1)

Country Link
JP (1) JP4234581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695001A (en) * 2017-10-20 2019-04-30 鞍钢股份有限公司 Novel rare earth hot work die steel and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872109B2 (en) * 2008-03-18 2012-02-08 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP5417632B2 (en) 2008-03-18 2014-02-19 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP5261747B2 (en) * 2008-04-15 2013-08-14 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP2012004576A (en) * 2011-07-25 2012-01-05 Nitto Denko Corp Permanent magnet and method of producing the same
JP5392440B1 (en) * 2012-02-13 2014-01-22 Tdk株式会社 R-T-B sintered magnet
DE112013000959T5 (en) 2012-02-13 2014-10-23 Tdk Corporation Sintered magnet based on R-T-B

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669009A (en) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron based magnet
JPH1083908A (en) * 1996-09-09 1998-03-31 Shin Etsu Chem Co Ltd High-resistance rare-earth magnet and manufacture thereof
JP2000297306A (en) * 1999-04-13 2000-10-24 Tokin Corp Production of magnetic powder
JP4419245B2 (en) * 1999-06-28 2010-02-24 日立金属株式会社 Rare earth permanent magnet and method for producing the same
JP4371188B2 (en) * 2000-08-22 2009-11-25 信越化学工業株式会社 High specific electric resistance rare earth magnet and method for manufacturing the same
JP2003051418A (en) * 2001-01-22 2003-02-21 Sumitomo Metal Ind Ltd Method for recycling rare-earth magnet scrap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695001A (en) * 2017-10-20 2019-04-30 鞍钢股份有限公司 Novel rare earth hot work die steel and preparation method thereof
CN109695001B (en) * 2017-10-20 2020-09-29 鞍钢股份有限公司 Novel rare earth hot work die steel and preparation method thereof

Also Published As

Publication number Publication date
JP2005191282A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4525072B2 (en) Rare earth magnet and manufacturing method thereof
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
US7147686B2 (en) Rare earth magnet, method for manufacturing the same, and motor using rare earth magnet
KR101245465B1 (en) Rare-earth permanent magnet, process for preparing the same and permanent magnet rotating machine
JP4374962B2 (en) Rare earth magnet and manufacturing method thereof, and motor using rare earth magnet
JP4737431B2 (en) Permanent magnet rotating machine
TWI413137B (en) Functionally graded rare earth permanent magnet
EP2254131B1 (en) MANUFACTURING METHOD OF A Nd-BASED SINTERED MAGNET
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
CN102054556B (en) Permanent magnet
JP4867632B2 (en) Low loss magnet and magnetic circuit using it
JP5125818B2 (en) Magnetic compact and manufacturing method thereof
JP4238114B2 (en) Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor
EP3118971B1 (en) Rotary electrical machine and vehicle
JP2005191187A (en) Rare-earth magnet and its manufacturing method
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP2012212808A (en) Manufacturing method of rear earth sintered magnet
JP7379837B2 (en) RTB series permanent magnet
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP4234581B2 (en) Rare earth magnet, manufacturing method thereof and motor
JP2009283568A (en) Magnet molded body and its method for manufacturing
JP2004031780A (en) Rare earth magnet, its manufacturing method and motor using the same
JP2005191281A (en) Rare earth magnet and its production process, and motor
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine
KR960002489B1 (en) Manufacturing method of permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees