JP4419245B2 - Rare earth permanent magnet and method for producing the same - Google Patents

Rare earth permanent magnet and method for producing the same Download PDF

Info

Publication number
JP4419245B2
JP4419245B2 JP2000028221A JP2000028221A JP4419245B2 JP 4419245 B2 JP4419245 B2 JP 4419245B2 JP 2000028221 A JP2000028221 A JP 2000028221A JP 2000028221 A JP2000028221 A JP 2000028221A JP 4419245 B2 JP4419245 B2 JP 4419245B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnet
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000028221A
Other languages
Japanese (ja)
Other versions
JP2001076915A (en
Inventor
武司 西内
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000028221A priority Critical patent/JP4419245B2/en
Publication of JP2001076915A publication Critical patent/JP2001076915A/en
Application granted granted Critical
Publication of JP4419245B2 publication Critical patent/JP4419245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性と耐アルカリ性に優れ、薄くて緻密なZr酸化物被膜を磁石表面に有する希土類系永久磁石および該磁石の製造方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの希土類系永久磁石は、Sm−Co系永久磁石に比べて、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。
しかしながら、希土類系永久磁石は反応性の高いRを含むため、大気中で酸化腐食されやすく、表面処理を行わずに使用した場合には、わずかな酸や水分などの影響によって表面から腐食が進行して錆が発生し、それに伴って、磁石特性の劣化やばらつきを招く。さらに、錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。
上記の点に鑑み、磁石表面に耐食性被膜として、たとえば、Si酸化物被膜、Al酸化物被膜、Ti酸化物被膜を形成することが提案されている(特開昭63−192216号公報参照)。
【0003】
【発明が解決しようとする課題】
近年、希土類系永久磁石が使用される電子業界や家電業界では、部品の小型化やダウンサイジング化が進んでおり、それに対応して、磁石自体も小型化、コストダウンが要求されている。この要求を満たすためには、磁石の表面処理も、より高い寸法精度(薄膜化、薄膜における高耐食性)で、磁石の有効体積向上を図り、かつ低コストにて行わなければならない。
また、環境に対する配慮も今日では不可欠であり、処理液や被膜自体の環境に与える影響にも配慮する必要がある。加えて磁石の洗浄に用いる洗浄剤についても、環境上望ましくない塩素系洗浄剤に代わってアルカリ系洗浄剤が注目されている。
しかしながら、これまでに知られているSi酸化物被膜などの金属酸化物被膜は耐食性には優れているものの、十分な耐アルカリ性を有していないので、アルカリ系洗浄剤で洗浄すると、被膜の劣化、ひいては磁気特性の劣化や発錆などを引き起こすという問題がある。
そこで、本発明においては、耐食性と耐アルカリ性に優れ、薄くて緻密な被膜を磁石表面に有する希土類系永久磁石および該磁石の低コストで環境への影響の少ない簡易な製造方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明者らは、優れた耐食性と耐アルカリ性を有する薄膜を得るためには、形成される被膜は、反応性の高い希土類系磁石との関係において緻密であることに加え、高い耐アルカリ性を有することが重要であるとの観点から種々の検討を行った結果、Zr酸化物被膜を磁石表面に形成すれば、優れた耐食性と耐アルカリ性を付与することができることを知見した。
【0005】
本発明は、かかる知見に基づきなされたもので、本発明の希土類系永久磁石は、請求項1記載の通り、磁石表面に粘度が100cP未満のZr化合物の溶液を塗布した後に熱処理する塗布熱分解法(但しゾル・ゲル法を除く)によって、非晶質でCの含量が100ppm〜1000ppm(wt/wt)であるZr酸化物被膜を耐食性と耐アルカリ性被膜として直接形成したことを特徴とする(但しZr酸化物被膜の上に別の被膜が積層形成されている磁石を除く)
また、請求項2記載の希土類系永久磁石は、請求項1記載の希土類系永久磁石において、前記希土類系永久磁石がR−Fe−B系永久磁石であることを特徴とする。
また、請求項3記載の希土類系永久磁石は、請求項1記載の希土類系永久磁石において、前記希土類系永久磁石がR−Fe−N系永久磁石であることを特徴とする
た、請求項記載の希土類系永久磁石は、請求項1及至6のいずれかに記載の希土類系永久磁石において、前記Zr酸化物被膜の膜厚が0.01μm〜5μmであることを特徴とする
た、本発明の耐食性と耐アルカリ性を有する希土類系永久磁石の製造方法は、請求項記載の通り、磁石表面に粘度が100cP未満のZr化合物の溶液を塗布した後に熱処理する塗布熱分解法(但しゾル・ゲル法を除く)によって、非晶質でCの含量が100ppm〜1000ppm(wt/wt)であるZr酸化物被膜を耐食性と耐アルカリ性被膜として直接形成することを特徴とする(但しZr酸化物被膜の上に別の被膜が積層形成されている磁石を除く)
【0006】
【発明の実施の形態】
本発明において、希土類系永久磁石表面にZr酸化物被膜を形成する方法としては、たとえば、磁石表面に処理液としてZr化合物の溶液を塗布した後に熱処理することによって、熱分解反応や重合反応などを起こさせることにより、Zr酸化物被膜を形成する塗布熱分解法や、プラズマ溶射法、スパッタリング法、真空蒸着法、化学蒸着法などの乾式法が挙げられるが、緻密で密着性に優れた薄膜が得られる方法であれば上記の方法に限定されるものではない。
しかしながら、塗布熱分解法は、簡便な装置で行うことができること、処理液の安定性が優れること、水を全く使用しないので被膜形成時の磁石の腐食を防ぐことができること、処理温度が比較的低温なので高温下における磁石の磁気特性の劣化を防ぐことができること、薄膜でありながら優れた耐食性と耐アルカリ性を有する緻密な被膜を形成することができること、環境上の問題が少ないことなどの利点を有するので都合がよい。
【0007】
以下に、塗布熱分解法によって希土類系永久磁石表面にZr酸化物被膜を形成する方法について説明する。
【0008】
塗布熱分解法において使用する処理液は、Zr化合物の溶液である。
ここで、Zr化合物としては、Zrのエトキシド、プロポキシド、ブトキシドなどのアルコキシド、Zrのシュウ酸塩、酢酸塩、オクチル酸塩、ステアリン酸塩、2−エチルヘキサン酸塩、アクリル酸塩、ナフテン酸塩などのカルボン酸塩、Zrとβ−ジケトン(アセチルアセトンなど)やβ−ケト酸エステル(アセト酢酸エチルなど)とのキレート化合物(アセチルアセトナートなど)、Zrの硝酸塩や塩化物に代表される無機塩、Zrのエタノールアミン錯体などを用いることができるが、処理液の安定性やコストなどを考慮すれば、Zrのプロポキシドやブトキシドなど炭素数が3〜4のアルコキシル基を有するアルコキシド、Zrの酢酸塩やオクチル酸塩などのカルボン酸塩を用いることが望ましい。
【0009】
処理液に対するZr化合物の配合割合は、0.1wt%〜30wt%(ZrO換算)の範囲が望ましい。配合割合が0.1wt%未満では十分な性能を有する膜厚を得るためには被膜形成工程を多数回繰り返す必要性を生じる恐れがあり、30wt%を超えれば処理液の粘性が高くなることによって被膜形成が困難になる恐れがあるからである。
【0010】
処理液には必要に応じて安定化剤を配合してもよい。安定化剤は、使用するZr化合物の化学的安定性などに応じて適宜選択されるものであるが、アセチルアセトンをはじめとするβ−ジケトン、アセト酢酸エチルをはじめとするβ−ケト酸エステルなど、Zrとキレートを形成するような化合物が望ましい。安定化剤を配合することにより、実際の量産工程において、Zr化合物が空気中水分と反応することによる処理液の経時的変化などを防ぐことができる。
【0011】
安定化剤の配合量は、たとえば、β−ジケトンを用いる場合、モル比(安定化剤/Zr化合物)で3以下が望ましい。モル比が3を越えると、均一な被膜形成が困難になり、緻密な被膜が得られなかったり、熱処理時にクラックが生じたりする恐れがあるためである。
【0012】
処理液を調製するために使用される有機溶媒は、Zr化合物や安定化剤を均一に溶解させることができるものであれば特段限定されるものではなく、たとえば、エタノールに代表される低級アルコール、エチレングリコールモノアルキルエーテルに代表される炭化水素エーテルアルコール、エチレングリコールモノアルキルエーテルアセテートに代表される炭化水素エーテルアルコールの酢酸エステル、エトキシエチルアセテートに代表される低級アルコールの酢酸エステル、酢酸エチルに代表される酢酸エステル、アセトンに代表されるケトンの他、エチレングリコールなどのグリコール、トルエンやキシレンなどの芳香族炭化水素、トリクロロメタンなどのハロゲン化炭化水素などが使用できる。これらは単独で使用してもよいし、二種以上を混合して使用してもよい。
【0013】
処理液の粘度は、処理液成分の組み合わせにもよるが、一般的に100cP未満とすることが望ましい。100cPを超えると、均一な被膜形成が困難になり、熱処理時にクラックが生じる恐れがあるためである。
【0014】
処理液の磁石表面への塗布方法としては、ディップコーティング法、スプレー法、スピンコート法などを用いることができる。
【0015】
磁石表面に処理液としてZr化合物の溶液を塗布した後に熱処理を行う。焼結磁石の場合、熱処理温度が450℃を越えると、磁石の磁気特性の劣化を招く恐れがある。また、熱処理温度が150℃未満では被膜の緻密化が十分に起こらない恐れがある。したがって、熱処理温度は150℃〜450℃が望ましい。
【0016】
上記の方法によれば、被膜中に100ppm〜1000ppm(wt/wt)のCが含まれ、このCの存在によって、耐食性と耐アルカリ性に優れた非晶質の被膜が得やすくなる。
【0017】
本発明は、焼結磁石やボンド磁石など種々の構成からなる希土類系永久磁石を対象とする。希土類系永久磁石における希土類元素(R)は、Nd、Pr、Dy、Ho、Tb、Smのうち少なくとも1種、あるいはさらに、La、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含むものが望ましい。
また、通常はRのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタルやジジムなど)を入手上の便宜などの理由によって用いることもできる。
【0018】
R−Fe−B系永久磁石におけるRの含量は、10原子%未満では結晶構造がα−Feと同一構造の立方晶組織となるため、高磁気特性、特に高い保磁力(HcJ)が得られず、一方、30原子%を超えるとRリッチな非磁性相が多くなり、残留磁束密度(Br)が低下して優れた特性の永久磁石が得られないので、Rの含量は組成の10原子%〜30原子%であることが望ましい。
【0019】
Feの含量は、65原子%未満ではBrが低下し、80原子%を超えると高いHcJが得られないので、65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することによって、得られる磁石の磁気特性を損なうことなしに温度特性を改善することができるが、Co置換量がFeの20%を超えると、磁気特性が劣化するので望ましくない。Co置換量が5原子%〜15原子%の場合、Brは置換しない場合に比較して増加するため、高磁束密度を得るのに望ましい。
【0020】
Bの含量は、2原子%未満では菱面体構造が主相となり、高いHcJは得られず、28原子%を超えるとBリッチな非磁性相が多くなり、Brが低下して優れた特性の永久磁石が得られないので、2原子%〜28原子%の含有が望ましい。
また、永久磁石の製造性の改善や低価格化のために、2.0wt%以下のP、2.0wt%以下のSのうち、少なくとも1種、合計量で2.0wt%以下を含有していてもよい。さらに、Bの一部を30wt%以下のCで置換することによって、磁石の耐食性を改善することができる。
【0021】
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、Gaのうち少なくとも1種の添加は、保磁力や減磁曲線の角型性の改善、製造性の改善、低価格化に効果がある。なお、その添加量は、最大エネルギー積(BH)maxを159kJ/m以上とするためには、Brが少なくとも0.9T以上必要となるので、該条件を満たす範囲で添加することが望ましい。
なお、R−Fe−B系永久磁石には、R、Fe、B以外に工業的生産上不可避な不純物を含有するものでも差し支えない。
【0022】
また、本発明において用いられるR−Fe−B系永久磁石の中で、平均結晶粒径が1μm〜80μmの範囲にある正方晶系の結晶構造を有する化合物を主相とし、体積比で1%〜50%の非磁性相(酸化物相を除く)を含むことを特徴とする永久磁石は、HcJ≧80kA/m、Br>0.4T、(BH)max≧80kJ/mを示し、(BH)maxの最大値は199kJ/m以上に達する。
【0023】
R−Fe−N系永久磁石としては、たとえば、特公平5−82041号公報記載の(Fe1−x1−y(0.07≦x≦0.3,0.001≦y≦0.2)で表されることを特徴とする永久磁石が挙げられる。
【0024】
本発明の磁石表面にZr酸化物被膜を有する希土類系永久磁石は、被膜の膜厚が非常に薄くても、密着性が強く、緻密であるので、該膜厚が0.01μm以上であれば十分な耐食性と耐アルカリ性が得られる。なお、本発明によって製造しうる被膜の膜厚の上限は限定されるものではないが、磁石自体の小型化に基づく要請から、5μm以下、好ましくは3μm以下が実用面において適した膜厚である。
ここで、必要に応じて、磁石表面への処理液の塗布、それに続く熱処理を複数回繰り返して行ってもよいことはいうまでもない。
【0025】
なお、本発明の磁石表面にZr酸化物被膜を有する希土類系永久磁石は、磁石表面にZr酸化物被膜が直接形成されたものであって、Zr酸化物被膜の上に、更に別の被膜が積層形成されていないものとする
【0026】
以下、実施例に基づいて、本発明をより詳細に説明する。以下の実施例は、焼結磁石への適用を例にとったものであるが、本発明は焼結磁石への適用に限られるものではなく、ボンド磁石に対しても適用できるものである。
【0027】
【実施例】
公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行い、17Nd−1Pr−75Fe−7B組成の23mm×10mm×6mm寸法の磁石体試験片を製造し、この試験片を用いて以下の実施例と比較例を行った。
【0028】
実施例:
処理液として、オクチル酸ジルコニウムの5wt%トルエン溶液(ZrO換算:粘度0.7cP)を調製した。
ショットブラストおよび溶剤脱脂で表面を清浄化した前記試験片に対し、ディップコーティング法にて、引き上げ速度30cm/minで処理液を塗布し、350℃で20分間熱処理を行った。この処理液の塗布と熱処理をさらに4回繰り返し(合計5回)、試験片表面にZr酸化物被膜を形成した。
得られたZr酸化物被膜(ZrO被膜:0<x≦2)の膜厚を破断面の電子顕微鏡観察により測定したところ、0.8μmであった。被膜中のC量をグロー放電質量分析装置を用いて測定したところ、380ppmであった。また、得られたZr酸化物被膜をX線回折装置を用いて構造解析した結果、該被膜は非晶質であった。
【0029】
得られたZr酸化物被膜を表面に有する磁石を、1mol/l、温度65℃のNaOH水溶液に2時間浸漬した後、水洗、乾燥を行った。その後、温度60℃×相対湿度90%の高温高湿条件下に放置し、耐食性加速試験を行った。外観観察の結果、試験開始後200時間を経過しても発錆は認められず、得られたZr酸化物被膜を表面に有する磁石は、アルカリ系水溶液に浸漬後、高温高湿条件下に長時間放置しても、要求される耐食性と耐アルカリ性を十分に満足していることがわかった。
【0030】
比較例:
処理液として、テトラエトキシシランの5wt%エタノール溶液(SiO換算:粘度1.2cP)を調製した。
ショットブラストおよび溶剤脱脂で表面を清浄化した前記試験片に対し、ディップコーティング法にて、引き上げ速度20cm/minで処理液を塗布し、200℃で20分間熱処理を行った。この処理液の塗布と熱処理をさらに4回繰り返し(合計5回)、試験片表面にSi酸化物被膜を形成した。
得られたSi酸化物被膜(SiO被膜:0<x≦2)の膜厚を破断面の電子顕微鏡観察により測定したところ、0.9μmであった。また、得られたSi酸化物被膜をX線回折装置を用いて構造解析した結果、該被膜は非晶質であった。
得られたSi酸化物被膜を表面に有する磁石を、1mol/l、温度65℃のNaOH水溶液に2時間浸漬した後、水洗、乾燥を行った。その後、温度60℃×相対湿度90%の高温高湿条件下に放置し、耐食性加速試験を行った。外観観察の結果、試験開始後100時間で錆が発生した。
【0031】
【発明の効果】
本発明の磁石表面にZr酸化物被膜を有する希土類系永久磁石は、Zr酸化物被膜の膜厚が非常に薄くても、被膜の磁石に対する密着性が高く、被膜と磁石との間での剥離、腐食が起こりにくい。また、被膜が非常に緻密であるので、ピンホールができにくい。これらの効果から、非常に優れた耐食性と耐アルカリ性を有する。
さらに、上記の利点から、膜厚が薄くても、十分な耐食性と耐アルカリ性を得ることができるので、高い寸法精度を達成でき、磁石の有効体積向上を図ることもできる。
特に塗布熱分解法にて製造した場合、簡便な装置で行うことができること、処理液の安定性が優れること、水を全く使用しないので被膜形成時の磁石の腐食を防ぐことができること、処理温度が比較的低温なので高温下における磁石の磁気特性の劣化を防ぐことができること、薄膜でありながら優れた耐食性と耐アルカリ性を有する緻密な被膜を形成することができること、環境上の問題が少ないことなどの利点を有する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth permanent magnet having a thin and dense Zr oxide film on the surface of a magnet, which is excellent in corrosion resistance and alkali resistance, and a method for producing the magnet.
[0002]
[Prior art]
Rare earth permanent magnets such as R—Fe—B permanent magnets typified by Nd—Fe—B permanent magnets and R—Fe—N permanent magnets typified by Sm—Fe—N permanent magnets are Sm -Compared to Co-based permanent magnets, resource-rich and inexpensive materials are used, and because they have high magnetic properties, R-Fe-B-based permanent magnets are used in various fields today. Has been.
However, since rare earth permanent magnets contain highly reactive R, they are prone to oxidative corrosion in the atmosphere, and when used without surface treatment, corrosion proceeds from the surface due to slight acid and moisture effects. As a result, rust is generated, which causes deterioration and variation in magnet characteristics. Furthermore, when a magnet in which rust is generated is incorporated in an apparatus such as a magnetic circuit, the rust may be scattered to contaminate peripheral components.
In view of the above points, it has been proposed to form, for example, a Si oxide film, an Al oxide film, or a Ti oxide film as a corrosion-resistant film on the magnet surface (see JP-A-63-192216).
[0003]
[Problems to be solved by the invention]
In recent years, in the electronics industry and household electrical appliance industry in which rare earth permanent magnets are used, parts are downsized and downsized, and accordingly, the magnet itself is also required to be downsized and reduced in cost. In order to satisfy this requirement, the surface treatment of the magnet must be performed with higher dimensional accuracy (thinning, high corrosion resistance in the thin film), increasing the effective volume of the magnet, and at low cost.
Also, consideration for the environment is indispensable today, and it is necessary to consider the influence of the treatment liquid and the coating itself on the environment. In addition, as for the cleaning agent used for cleaning the magnet, an alkaline cleaning agent has attracted attention in place of the environmentally undesirable chlorine-based cleaning agent.
However, metal oxide coatings such as Si oxide coatings known so far have excellent corrosion resistance, but do not have sufficient alkali resistance, so that the coating deteriorates when washed with an alkaline detergent. As a result, there is a problem of causing deterioration of magnetic properties and rusting.
Accordingly, the present invention provides a rare earth-based permanent magnet having excellent corrosion resistance and alkali resistance, having a thin and dense coating on the surface of the magnet, and a simple manufacturing method of the magnet at low cost with little environmental impact. It is aimed.
[0004]
[Means for Solving the Problems]
In order to obtain a thin film having excellent corrosion resistance and alkali resistance, the present inventors have a high alkali resistance in addition to being dense in relation to a highly reactive rare earth magnet. As a result of various investigations from the viewpoint that it is important, it was found that excellent corrosion resistance and alkali resistance can be imparted by forming a Zr oxide film on the magnet surface.
[0005]
The present invention has been made on the basis of such knowledge, and the rare earth permanent magnet of the present invention is, as described in claim 1 , coated by thermal decomposition after applying a Zr compound solution having a viscosity of less than 100 cP to the magnet surface. A Zr oxide film that is amorphous and has a C content of 100 ppm to 1000 ppm (wt / wt) is directly formed as a corrosion-resistant and alkali-resistant film by a method (excluding the sol-gel method) ( However, except for a magnet in which another film is laminated on the Zr oxide film) .
The rare earth permanent magnet according to claim 2 is the rare earth permanent magnet according to claim 1, wherein the rare earth permanent magnet is an R-Fe-B permanent magnet.
The rare earth permanent magnet according to claim 3 is the rare earth permanent magnet according to claim 1, wherein the rare earth permanent magnet is an R-Fe-N permanent magnet .
Also, rare earth metal-based permanent magnet according to claim 4, wherein, in the rare earth metal-based permanent magnet according to claim 1及至6, wherein the thickness of the Zr oxide film is 0.01μm~5μm to.
Also, method for preparing a rare earth-based permanent magnet having a corrosion resistance and alkali resistance of the present invention, as claimed in claim 5, wherein, the coating thermal decomposition method viscosity magnet surface is heat treated after coating a solution of a Zr compound of less than 100cP (However, except for the sol-gel method) , an amorphous Zr oxide film having a C content of 100 ppm to 1000 ppm (wt / wt) is directly formed as a corrosion resistance and alkali resistance film (however, Excluding magnets in which another film is laminated on the Zr oxide film) .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as a method of forming a Zr oxide film on the surface of a rare earth-based permanent magnet, for example, a thermal decomposition reaction or a polymerization reaction is performed by applying a heat treatment after applying a Zr compound solution as a treatment liquid on the magnet surface. Examples include dry coating methods such as coating pyrolysis, plasma spraying, sputtering, vacuum deposition, and chemical vapor deposition to form a Zr oxide film. The method is not limited to the above method as long as the method is obtained.
However, the coating pyrolysis method can be performed with a simple apparatus, the stability of the treatment liquid is excellent, the water is not used at all, and thus the corrosion of the magnet during film formation can be prevented, and the treatment temperature is relatively high. Since it is low temperature, it can prevent the magnetic properties of the magnet from degrading at high temperature, can form a dense film with excellent corrosion resistance and alkali resistance despite being a thin film, and has few environmental problems. Convenient because it has.
[0007]
Hereinafter, a method of forming a Zr oxide film on the surface of the rare earth permanent magnet by the coating pyrolysis method will be described.
[0008]
The treatment liquid used in the coating pyrolysis method is a Zr compound solution.
Here, as the Zr compound, alkoxides such as ethoxide of Zr, propoxide, butoxide, oxalate, acetate, octylate, stearate, 2-ethylhexanoate, acrylate, naphthenic acid of Zr Carboxylates such as salts, chelate compounds (such as acetylacetonate) of Zr with β-diketones (such as acetylacetone) and β-keto acid esters (such as ethyl acetoacetate), inorganic salts such as nitrates and chlorides of Zr A salt, an ethanolamine complex of Zr, or the like can be used, but considering the stability and cost of the treatment liquid, an alkoxide having an alkoxyl group having 3 to 4 carbon atoms, such as Zr propoxide or butoxide, It is desirable to use carboxylates such as acetates and octylates.
[0009]
The mixing ratio of Zr compound to the treatment liquid is preferably in the range of 0.1wt% ~30wt% (ZrO 2 conversion). If the blending ratio is less than 0.1 wt%, it may be necessary to repeat the film forming process many times in order to obtain a film thickness having sufficient performance. If the blending ratio exceeds 30 wt%, the viscosity of the treatment liquid increases. This is because film formation may be difficult.
[0010]
You may mix | blend a stabilizer with a process liquid as needed. Stabilizers are appropriately selected according to the chemical stability of the Zr compound used, β-diketones including acetylacetone, β-keto acid esters including ethyl acetoacetate, etc. Compounds that form chelates with Zr are desirable. By blending the stabilizer, in the actual mass production process, it is possible to prevent a change in the processing solution over time due to the reaction of the Zr compound with moisture in the air.
[0011]
For example, when β-diketone is used, the blending amount of the stabilizer is preferably 3 or less in terms of molar ratio (stabilizer / Zr compound). When the molar ratio exceeds 3, it is difficult to form a uniform film, and a dense film cannot be obtained, or cracks may occur during heat treatment.
[0012]
The organic solvent used for preparing the treatment liquid is not particularly limited as long as it can uniformly dissolve the Zr compound and the stabilizer. For example, a lower alcohol represented by ethanol, Hydrocarbon ether alcohol represented by ethylene glycol monoalkyl ether, acetate ester of hydrocarbon ether alcohol represented by ethylene glycol monoalkyl ether acetate, acetate ester of lower alcohol represented by ethoxyethyl acetate, represented by ethyl acetate In addition to acetic acid esters and ketones typified by acetone, glycols such as ethylene glycol, aromatic hydrocarbons such as toluene and xylene, and halogenated hydrocarbons such as trichloromethane can be used. These may be used alone or in combination of two or more.
[0013]
The viscosity of the treatment liquid is generally less than 100 cP, although it depends on the combination of treatment liquid components. If it exceeds 100 cP, it is difficult to form a uniform film, and cracks may occur during heat treatment.
[0014]
As a method for applying the treatment liquid to the magnet surface, a dip coating method, a spray method, a spin coating method, or the like can be used.
[0015]
After applying a Zr compound solution as a treatment liquid to the magnet surface, heat treatment is performed. In the case of a sintered magnet, if the heat treatment temperature exceeds 450 ° C., the magnetic properties of the magnet may be deteriorated. Further, when the heat treatment temperature is less than 150 ° C., there is a possibility that the film is not sufficiently densified. Therefore, the heat treatment temperature is desirably 150 ° C to 450 ° C.
[0016]
According to the above method, 100 ppm to 1000 ppm (wt / wt) of C is contained in the coating, and the presence of this C makes it easy to obtain an amorphous coating excellent in corrosion resistance and alkali resistance.
[0017]
The present invention is directed to rare earth permanent magnets having various configurations such as sintered magnets and bonded magnets. The rare earth element (R) in the rare earth based permanent magnet is at least one of Nd, Pr, Dy, Ho, Tb, Sm, or La, Ce, Gd, Er, Eu, Tm, Yb, Lu, Y. Among them, those containing at least one kind are desirable.
Usually, one type of R is sufficient, but in practice, a mixture of two or more types (such as misch metal and didymium) can also be used for reasons of convenience.
[0018]
If the content of R in the R—Fe—B permanent magnet is less than 10 atomic%, the crystal structure has the same cubic structure as that of α-Fe, so that high magnetic properties, particularly high coercive force (HcJ) can be obtained. On the other hand, if it exceeds 30 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and an excellent permanent magnet cannot be obtained. % To 30 atomic% is desirable.
[0019]
If the Fe content is less than 65 atomic%, Br decreases, and if it exceeds 80 atomic%, high HcJ cannot be obtained. Therefore, the content of 65 atomic% to 80 atomic% is desirable.
In addition, by replacing part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet. However, when the amount of Co substitution exceeds 20% of Fe, the magnetic characteristics are improved. Undesirable because it deteriorates. When the amount of Co substitution is 5 atom% to 15 atom%, Br increases as compared with the case where it is not substituted, and thus it is desirable for obtaining a high magnetic flux density.
[0020]
When the B content is less than 2 atomic%, the rhombohedral structure is the main phase, and high HcJ cannot be obtained. When the B content exceeds 28 atomic%, the B-rich nonmagnetic phase increases and Br decreases, resulting in excellent characteristics. Since a permanent magnet cannot be obtained, the content is preferably 2 atomic% to 28 atomic%.
Further, in order to improve the manufacturability of permanent magnets and to reduce the price, at least one of P of 2.0 wt% or less and S of 2.0 wt% or less is contained in a total amount of 2.0 wt% or less. It may be. Furthermore, the corrosion resistance of the magnet can be improved by replacing a part of B with C of 30 wt% or less.
[0021]
Furthermore, at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, Hf, and Ga is added. It is effective in improving the squareness of the demagnetization curve, improving manufacturability, and reducing the price. It should be noted that Br is required to be added in a range satisfying the condition because Br is required to be at least 0.9 T in order to make the maximum energy product (BH) max 159 kJ / m 3 or more.
The R—Fe—B permanent magnet may contain impurities inevitable for industrial production in addition to R, Fe, and B.
[0022]
Further, among the R—Fe—B permanent magnets used in the present invention, a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 μm to 80 μm is a main phase, and the volume ratio is 1%. Permanent magnets characterized by containing ˜50% nonmagnetic phase (excluding oxide phase) show HcJ ≧ 80 kA / m, Br> 0.4T, (BH) max ≧ 80 kJ / m 3 , ( The maximum value of BH) max reaches 199 kJ / m 3 or more.
[0023]
As the R—Fe—N permanent magnet, for example, (Fe 1-x R x ) 1-y N y (0.07 ≦ x ≦ 0.3, 0.001 ≦ 1 ) described in Japanese Patent Publication No. 5-82041. and permanent magnets characterized by y ≦ 0.2).
[0024]
The rare earth permanent magnet having a Zr oxide film on the magnet surface of the present invention has strong adhesion and is dense even if the film thickness is very thin, so that the film thickness is 0.01 μm or more. Sufficient corrosion resistance and alkali resistance can be obtained. The upper limit of the film thickness that can be produced by the present invention is not limited, but is 5 μm or less, preferably 3 μm or less, which is suitable for practical use because of the demand based on miniaturization of the magnet itself. .
Here, it goes without saying that the application of the treatment liquid to the magnet surface and the subsequent heat treatment may be repeated a plurality of times as necessary.
[0025]
Note that the rare earth metal-based permanent magnet in the magnet surface of the present invention having the Zr oxide film is, there is the Zr oxide film is formed directly on the magnet surface, on the Zr oxide film, is further coating It is assumed that they are not laminated.
[0026]
Hereinafter, based on an Example, this invention is demonstrated in detail. In the following examples, application to a sintered magnet is taken as an example, but the present invention is not limited to application to a sintered magnet, and can also be applied to a bonded magnet.
[0027]
【Example】
A known cast ingot is pulverized, and after fine pulverization, molding, sintering, heat treatment, and surface processing are performed to produce a magnet body test piece having a composition of 17Nd-1Pr-75Fe-7B and a size of 23 mm × 10 mm × 6 mm. The following examples and comparative examples were performed using
[0028]
Example:
As a treatment liquid, a 5 wt% toluene solution of zirconium octylate (ZrO 2 equivalent: viscosity 0.7 cP) was prepared.
A treatment liquid was applied by a dip coating method at a lifting speed of 30 cm / min to the test piece whose surface was cleaned by shot blasting and solvent degreasing, and heat treatment was performed at 350 ° C. for 20 minutes. This treatment liquid application and heat treatment were further repeated 4 times (5 times in total) to form a Zr oxide film on the surface of the test piece.
The resulting Zr oxide film (ZrO x film: 0 <x ≦ 2) was measured by electron microscopy the thickness of the fracture surface was 0.8 [mu] m. When the amount of C in the film was measured using a glow discharge mass spectrometer, it was 380 ppm. Further, as a result of structural analysis of the obtained Zr oxide film using an X-ray diffractometer, the film was amorphous.
[0029]
The obtained magnet having the Zr oxide film on the surface was immersed in a 1 mol / l NaOH aqueous solution at a temperature of 65 ° C. for 2 hours, and then washed and dried. Thereafter, the sample was left under high temperature and high humidity conditions of a temperature of 60 ° C. and a relative humidity of 90%, and an accelerated corrosion resistance test was performed. As a result of appearance observation, rusting was not observed even after 200 hours passed from the start of the test, and the magnet having the obtained Zr oxide coating on the surface was immersed in an alkaline aqueous solution, It was found that even after standing for a long time, the required corrosion resistance and alkali resistance were sufficiently satisfied.
[0030]
Comparative example:
A 5 wt% ethanol solution of tetraethoxysilane (SiO 2 equivalent: viscosity 1.2 cP) was prepared as a treatment liquid.
A treatment liquid was applied by a dip coating method at a pulling rate of 20 cm / min to the test piece whose surface was cleaned by shot blasting and solvent degreasing, and heat treatment was performed at 200 ° C. for 20 minutes. Application of this treatment liquid and heat treatment were further repeated 4 times (total 5 times) to form a Si oxide film on the surface of the test piece.
The film thickness of the obtained Si oxide film (SiO x film: 0 <x ≦ 2) was measured by electron microscope observation of the fracture surface and found to be 0.9 μm. Further, as a result of structural analysis of the obtained Si oxide film using an X-ray diffractometer, the film was amorphous.
The obtained magnet having the Si oxide film on the surface was immersed in a 1 mol / l NaOH aqueous solution at a temperature of 65 ° C. for 2 hours, and then washed with water and dried. Thereafter, the sample was left under high temperature and high humidity conditions of a temperature of 60 ° C. and a relative humidity of 90%, and an accelerated corrosion resistance test was performed. As a result of external observation, rust was generated 100 hours after the start of the test.
[0031]
【The invention's effect】
The rare earth-based permanent magnet having a Zr oxide film on the magnet surface of the present invention has high adhesion to the magnet even if the Zr oxide film is very thin, and peeling between the film and the magnet is difficult. Corrosion hardly occurs. Moreover, since the coating is very dense, pinholes are difficult to form. From these effects, it has very excellent corrosion resistance and alkali resistance.
Furthermore, from the above advantages, even when the film thickness is thin, sufficient corrosion resistance and alkali resistance can be obtained, so that high dimensional accuracy can be achieved and the effective volume of the magnet can be improved.
In particular, when manufactured by a coating pyrolysis method, it can be performed with a simple apparatus, the stability of the treatment liquid is excellent, the water is not used at all, and corrosion of the magnet during film formation can be prevented, the processing temperature Because it is relatively low temperature, it can prevent deterioration of the magnetic properties of the magnet under high temperature, can form a dense film with excellent corrosion resistance and alkali resistance despite being a thin film, and there are few environmental problems Has the advantage of

Claims (5)

磁石表面に粘度が100cP未満のZr化合物の溶液を塗布した後に熱処理する塗布熱分解法(但しゾル・ゲル法を除く)によって、非晶質でCの含量が100ppm〜1000ppm(wt/wt)であるZr酸化物被膜を耐食性と耐アルカリ性被膜として直接形成したことを特徴とする希土類系永久磁石(但しZr酸化物被膜の上に別の被膜が積層形成されている磁石を除く)With a coating pyrolysis method (except for the sol-gel method) in which a Zr compound solution having a viscosity of less than 100 cP is applied to the magnet surface and then heat-treated, the amorphous C content is 100 ppm to 1000 ppm (wt / wt). A rare earth permanent magnet characterized in that a certain Zr oxide film is directly formed as a corrosion-resistant and alkali-resistant film (except for a magnet in which another film is laminated on the Zr oxide film) . 前記希土類系永久磁石がR−Fe−B系永久磁石であることを特徴とする請求項1記載の希土類系永久磁石。  The rare earth permanent magnet according to claim 1, wherein the rare earth permanent magnet is an R—Fe—B permanent magnet. 前記希土類系永久磁石がR−Fe−N系永久磁石であることを特徴とする請求項1記載の希土類系永久磁石 2. The rare earth permanent magnet according to claim 1, wherein the rare earth permanent magnet is an R—Fe—N permanent magnet . 前記Zr酸化物被膜の膜厚が0.01μm〜5μmであることを特徴とする請求項1及至のいずれかに記載の希土類系永久磁石 Rare earth metal-based permanent magnet according to claim 1及至3 the thickness of the Zr oxide film is characterized in that it is a 0.01 m to 5 m. 磁石表面に粘度が100cP未満のZr化合物の溶液を塗布した後に熱処理する塗布熱分解法(但しゾル・ゲル法を除く)によって、非晶質でCの含量が100ppm〜1000ppm(wt/wt)であるZr酸化物被膜を耐食性と耐アルカリ性被膜として直接形成することを特徴とする耐食性と耐アルカリ性を有する希土類系永久磁石の製造方法(但しZr酸化物被膜の上に別の被膜が積層形成されている磁石を除く)With a coating pyrolysis method (except for the sol-gel method) in which a Zr compound solution having a viscosity of less than 100 cP is applied to the magnet surface and then heat-treated, the amorphous C content is 100 ppm to 1000 ppm (wt / wt). A method for producing a rare earth permanent magnet having corrosion resistance and alkali resistance , characterized in that a Zr oxide film is directly formed as a corrosion resistance and alkali resistance film (however, another film is laminated on the Zr oxide film). Excluding magnets) .
JP2000028221A 1999-06-28 2000-02-04 Rare earth permanent magnet and method for producing the same Expired - Lifetime JP4419245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028221A JP4419245B2 (en) 1999-06-28 2000-02-04 Rare earth permanent magnet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-181357 1999-06-28
JP18135799 1999-06-28
JP2000028221A JP4419245B2 (en) 1999-06-28 2000-02-04 Rare earth permanent magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001076915A JP2001076915A (en) 2001-03-23
JP4419245B2 true JP4419245B2 (en) 2010-02-24

Family

ID=26500581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028221A Expired - Lifetime JP4419245B2 (en) 1999-06-28 2000-02-04 Rare earth permanent magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4419245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018000214T5 (en) 2017-03-10 2019-09-05 Murata Manufacturing Co., Ltd. Magnetic powder containing SM-Fe-N-based crystal particles, sintered magnet made thereof, process for producing the magnetic powder; and method for producing the sintered magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238114B2 (en) * 2003-11-07 2009-03-11 株式会社日立製作所 Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor
JP4234581B2 (en) * 2003-12-25 2009-03-04 株式会社日立製作所 Rare earth magnet, manufacturing method thereof and motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018000214T5 (en) 2017-03-10 2019-09-05 Murata Manufacturing Co., Ltd. Magnetic powder containing SM-Fe-N-based crystal particles, sintered magnet made thereof, process for producing the magnetic powder; and method for producing the sintered magnet
US11594353B2 (en) 2017-03-10 2023-02-28 National Institute Of Advanced Industrial Science And Technology Magnetic powder containing Sm—Fe—N-based crystal particles, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet

Also Published As

Publication number Publication date
JP2001076915A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6326087B1 (en) Rare earth metal-based permanent magnet, and process for producing the same
JP3159693B1 (en) Method for producing rare earth permanent magnet having corrosion resistant coating
JP2008263208A (en) Corrosion-resistant rare earth magnet
KR100607293B1 (en) Fe-B-R BASED PERMANENT MAGNET HAVING CORROSION-RESISTANT FILM, AND PROCESS FOR PRODUCING THE SAME
US20090212893A1 (en) Corrosion resistant rare earth magnets and process for production thereof
WO1999054890A1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP4419245B2 (en) Rare earth permanent magnet and method for producing the same
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP3351768B2 (en) Method for producing Fe-BR based permanent magnet having corrosion resistant film
JP3187396B2 (en) Method for producing Fe-BR based permanent magnet having corrosion resistant film
JP3423299B2 (en) Fe-BR type permanent magnet having corrosion-resistant film
JP2004006910A (en) Rare earth-based permanent magnet
JP4548378B2 (en) Rare earth magnets
JP3234306B2 (en) Corrosion resistant permanent magnet
EP0984464B1 (en) Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film
JP3411605B2 (en) Corrosion resistant permanent magnet
JP2003224024A (en) Method for producing corrosion resistant permanent magnet
JPH10154611A (en) Excellent insulating and corrosion resistant permanent magnet and its manufacturing method
JP2006049863A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JPH097867A (en) High corrosion-resistant permanent magnet and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4419245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

EXPY Cancellation because of completion of term