JP6427862B2 - Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine - Google Patents

Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine Download PDF

Info

Publication number
JP6427862B2
JP6427862B2 JP2013221938A JP2013221938A JP6427862B2 JP 6427862 B2 JP6427862 B2 JP 6427862B2 JP 2013221938 A JP2013221938 A JP 2013221938A JP 2013221938 A JP2013221938 A JP 2013221938A JP 6427862 B2 JP6427862 B2 JP 6427862B2
Authority
JP
Japan
Prior art keywords
amorphous metal
dust core
based amorphous
powder
resin binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013221938A
Other languages
Japanese (ja)
Other versions
JP2015084353A (en
Inventor
真実 田口
真実 田口
谷川 茂穂
茂穂 谷川
野口 伸
伸 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013221938A priority Critical patent/JP6427862B2/en
Priority to US14/522,162 priority patent/US9449752B2/en
Priority to CN201410573689.7A priority patent/CN104575916B/en
Publication of JP2015084353A publication Critical patent/JP2015084353A/en
Application granted granted Critical
Publication of JP6427862B2 publication Critical patent/JP6427862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、圧粉磁心に関し、特に、アモルファス合金粉末を用いた圧粉磁心およびその製造方法に関するものである。また、当該圧粉磁心を用いたインダクタンス素子および回転電機に関するものである。   The present invention relates to a dust core, and more particularly to a dust core using an amorphous alloy powder and a method for manufacturing the same. The present invention also relates to an inductance element and a rotating electrical machine using the dust core.

環境保護や省エネルギーへの意識の高まりにより、エコ製品(例えば、太陽光発電、ハイブリッド自動車、電気自動車など)が広く普及し始めている。それらエコ製品では、高効率化のためにDC-DCコンバータやインバータが使用されており、該コンバータやインバータ内には、電圧変換や電流変動(交流成分やノイズ成分)阻止のためのインダクタンス素子(例えば、リアクトル、チョークコイル)が搭載されている。また、モータ等の回転電機においては、ステータやロータの鉄心の磁気特性が回転電機の効率に大きな影響を及ぼすことが知られている。   Due to heightened awareness of environmental protection and energy saving, eco-products (for example, solar power generation, hybrid vehicles, electric vehicles, etc.) have begun to spread widely. In these eco-products, DC-DC converters and inverters are used for high efficiency, and in the converters and inverters, inductance elements (voltage components and current fluctuation (AC components and noise components) prevention) For example, a reactor and a choke coil) are mounted. Further, in rotating electrical machines such as motors, it is known that the magnetic characteristics of the stator and rotor cores have a large effect on the efficiency of the rotating electrical machines.

エコ製品にとって、あらゆる部品の小型化は至上命題の一つである。インダクタンス素子への小型化要求に応えるため、使われる磁心に関して、形状自由度の高い圧粉磁心の重要性が高まっている。コンバータやインバータの高効率化のため、インダクタンス素子に使われる圧粉磁心には、高い磁気特性と高い機械的強度とが求められている。また、回転電機のステータコアやロータコアとして磁気特性の高い圧粉磁心を用いることで、回転電機の小型化・高効率化が可能とされている。   For eco-products, miniaturization of all parts is one of the most important issues. In order to meet the demand for downsizing the inductance element, the importance of a dust core having a high degree of freedom in shape is increasing with respect to the magnetic core used. In order to increase the efficiency of converters and inverters, powder magnetic cores used for inductance elements are required to have high magnetic properties and high mechanical strength. Further, by using a dust core having high magnetic properties as a stator core or rotor core of a rotating electrical machine, it is possible to reduce the size and increase the efficiency of the rotating electrical machine.

ここで、圧粉磁心とは、表面に電気的絶縁処理を施した軟磁性金属粉末をプレス成形した磁心である。軟磁性金属としては、従来から、Fe(純鉄)、Fe-Si(鉄−ケイ素)系合金、Fe-Si-Al(鉄−ケイ素−アルミニウム)系合金、Fe-Ni(鉄−ニッケル)系合金などの金属材料が用いられてきた。強磁性元素(Fe、Ni、Co(コバルト)など)を主成分とするアモルファス金属(アモルファス相になっている合金)は、優れた磁気特性(例えば、高い飽和磁束密度、高い透磁率、非常に低い鉄損)を示すことから磁心材料として期待されており、なかでもFe-Si-B(鉄−ケイ素−ホウ素)系アモルファス金属は、近年注目を集めている。   Here, the dust core is a magnetic core obtained by press-molding a soft magnetic metal powder whose surface is electrically insulated. Conventionally, soft magnetic metals include Fe (pure iron), Fe-Si (iron-silicon) based alloys, Fe-Si-Al (iron-silicon-aluminum) based alloys, Fe-Ni (iron-nickel) based. Metal materials such as alloys have been used. Amorphous metal (amorphous alloy) with ferromagnetic elements (Fe, Ni, Co (cobalt), etc.) as the main component has excellent magnetic properties (for example, high saturation magnetic flux density, high magnetic permeability, It has been expected as a magnetic core material because of its low iron loss). Among them, Fe-Si-B (iron-silicon-boron) -based amorphous metals have attracted attention in recent years.

アモルファス金属は、一般的に、溶融した合金を超急冷することにより作製される(例えば、単ロール液体急冷法、超急冷水アトマイズ法)。アモルファス金属は、強靱性や高耐食性や軟磁性などの利点を有する一方、非常に硬く塑性変形しづらいため成形加工性に劣るという欠点も有する。このことから、アモルファス金属粉末を圧粉磁心に適用するために、成形加工性を向上させる技術が種々検討されてきた。   Amorphous metals are generally produced by ultra-quenching a molten alloy (for example, a single roll liquid quenching method, a super-quenching water atomizing method). Amorphous metals have advantages such as toughness, high corrosion resistance, and soft magnetism, but also have the disadvantage of being inferior in moldability because they are very hard and difficult to plastically deform. For this reason, various techniques for improving the moldability have been studied in order to apply amorphous metal powder to a dust core.

例えば、特許文献1(特開2010−141183)には、平均粒径が異なる2種類以上の非晶質軟磁性合金粉末と軟化点が前記非晶質軟磁性合金粉末の結晶化温度より低い低融点ガラス粉末(ビスマス系ガラスまたはリン酸系ガラス)とを混合し、その後結着性絶縁樹脂で被覆し、さらに潤滑性樹脂を混合した後、加圧成形して成形体を作製し、その成形体に対して前記非晶質軟磁性合金粉末の結晶化温度より低い温度の焼鈍処理を大気中で行うことを特徴とする圧粉磁心が開示されている。特許文献1によると、前記焼鈍処理により非晶質軟磁性合金粉末の表面が酸化して、低融点ガラスと軟磁性合金粉末の結着強度が増加するので、常温で低圧成形を行っても機械的強度に優れた圧粉磁心を提供することができるとされている。   For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2010-141183), two or more types of amorphous soft magnetic alloy powders having different average particle sizes and softening points are lower than the crystallization temperature of the amorphous soft magnetic alloy powder. Mix with melting point glass powder (bismuth glass or phosphate glass), then coat with binder insulating resin, mix with lubrication resin, and then press mold to make molded body, then mold A dust core is disclosed in which an annealing treatment at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder is performed on the body in the air. According to Patent Document 1, the surface of the amorphous soft magnetic alloy powder is oxidized by the annealing treatment, and the binding strength between the low melting point glass and the soft magnetic alloy powder is increased. It is said that it is possible to provide a dust core excellent in mechanical strength.

一方、インダクタンス素子(例えば、リアクトル、チョークコイル)への高性能化・小型化要求により、圧粉磁心に対しても高密度化・高強度化が求められている。そのような要求に応じるため、アモルファス金属を用いた圧粉磁心においてアモルファス金属自体の成形加工性の改善を目指して、広い温度領域で過冷却液体状態を示すアモルファス金属(ガラス転移が明確に観察されるアモルファス金属)を利用した技術も種々開発されている。   On the other hand, due to demands for high performance and miniaturization of inductance elements (for example, reactors, choke coils), high density and high strength are also required for dust cores. In order to meet such requirements, an amorphous metal that exhibits a supercooled liquid state in a wide temperature range (glass transition is clearly observed) with the aim of improving the formability of the amorphous metal itself in a powder magnetic core using amorphous metal. Various technologies using amorphous metals have been developed.

例えば、特許文献2(特開2002−184616)には、ΔTx=Tx−Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す)の式で表される過冷却液体の温度間隔ΔTxが20 K以上であって、Al、Gaのいずれか一方または両方の元素Xと、P、C、Si、Bのうちの1種以上の元素Qと、Feとを含む非晶質相を主相とする組織からなる金属ガラス合金の粉末に、シリコーンエラストマーからなる結着剤とステアリン酸アルミニウムからなる潤滑剤とが添加され、加熱して固化成形されてなることを特徴とする圧粉磁心が開示されている。特許文献2によると、圧縮成形の際に金属ガラス合金粉末同士が相互に滑りやすく、圧粉磁心内部の応力・歪みを緩和しながら圧粉磁心の相対密度を向上させることができ、かつ結晶質相を析出させることがなく、高透磁率で低鉄損の圧粉磁心を構成することができるとされている。 For example, Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-184616) discloses supercooling represented by the equation: ΔT x = T x −T g (where T x is the crystallization start temperature and T g is the glass transition temperature). The temperature interval ΔT x of the liquid is 20 K or more, and includes one or both of elements X of Al and Ga, one or more elements Q of P, C, Si, and B, and Fe A metallic glass alloy powder composed of an amorphous phase as a main phase is added with a binder composed of a silicone elastomer and a lubricant composed of aluminum stearate and is solidified by heating. A dust core is disclosed. According to Patent Document 2, metallic glass alloy powders are easily slidable with each other during compression molding, and the relative density of the powder magnetic core can be improved while relaxing the stress and strain inside the powder magnetic core. It is said that a dust core having a high magnetic permeability and a low iron loss can be formed without causing phase precipitation.

また、特許文献3(特開2009−120927)には、不可避不純物を除いた組成が、組成式:(Fe1-aMa)100-w-x-y-zSiwBxCyLzで表され、前記組成式の構成元素のうち、MはCo、Niの中から選択される1種類以上の元素であり、LはAl、Cr、Moの中から選択される1種類以上の元素であり、0≦a≦0.3、4原子%≦w≦10原子%、10原子%≦x≦18原子%、1原子%≦y≦7原子%、0.3原子%≦z≦5原子%の組成比率の軟磁性非晶質合金であって、結晶化開始温度Txとガラス遷移温度Tgの温度差ΔTx(ΔTx=Tx−Tg)が20℃以上であり、かつ飽和磁束密度が1.2T以上であることを特徴とする軟磁性非晶質合金が開示されている。また、前記軟磁性非晶質合金の粉末と結合材とを含む混合物を成形してなる圧粉磁芯が開示されている。特許文献3によると、前記軟磁性非晶質合金は、非晶質形成能に優れていることから、冷却速度がさほど大きくない(103℃/秒程度)場合でも非晶質相を形成することが可能であり、また、その非晶質構造の均一性が高いことから磁気異方性を持たず、優れた軟磁気特性を有するとされている。さらに、当該軟磁性非晶質合金粉末を用いた圧粉磁芯は、小型化に適しているとされている。 In Patent Document 3 (Japanese Patent Laid-Open No. 2009-120927), the composition excluding inevitable impurities is represented by the composition formula: (Fe 1-a M a ) 100-wxyz Si w B x C y L z , Among the constituent elements of the composition formula, M is one or more elements selected from Co and Ni, L is one or more elements selected from Al, Cr and Mo, and 0 ≦ a ≦ 0.3, 4 atom% ≦ w ≦ 10 atom%, 10 atom% ≦ x ≦ 18 atom%, 1 atom% ≦ y ≦ 7 atom%, 0.3 atom% ≦ z ≦ 5 atom% A temperature difference ΔT x (ΔT x = T x −T g ) between the crystallization start temperature T x and the glass transition temperature T g is 20 ° C. or more, and the saturation magnetic flux density is 1.2 T or more. There is disclosed a soft magnetic amorphous alloy characterized in that it is. Also disclosed is a dust core formed by molding a mixture containing the soft magnetic amorphous alloy powder and a binder. According to Patent Document 3, since the soft magnetic amorphous alloy is excellent in amorphous forming ability, an amorphous phase is formed even when the cooling rate is not so high (about 10 3 ° C / second). In addition, since the amorphous structure is highly uniform, it has no magnetic anisotropy and has excellent soft magnetic properties. Furthermore, a dust core using the soft magnetic amorphous alloy powder is said to be suitable for downsizing.

特開2010−141183号公報JP 2010-141183 A 特開2002−184616号公報JP 2002-184616 A 特開2009−120927号公報JP 2009-120927 A

前述したように、アモルファス金属は非常に硬く室温でほとんど塑性変形しないため、圧粉成形体の密度を高めるには非常に高い成形圧力(例えば、1500〜2000 MPa)が必要であった。しかしながら、高い成形圧力は、それに要するプレス成形装置と金型とのコストを増大させ、圧粉磁心の製造コストを増大させるという問題がある。また、このように高い成形圧力を負荷しても、室温ではアモルファス金属を塑性変形させることが極めて困難なため、その相対密度(アモルファス金属の占積率)はせいぜい80%に留まる。   As described above, since amorphous metal is very hard and hardly plastically deforms at room temperature, a very high molding pressure (for example, 1500 to 2000 MPa) is required to increase the density of the green compact. However, there is a problem that a high molding pressure increases the cost of a press molding apparatus and a mold required for the molding pressure and increases the manufacturing cost of the dust core. Further, even when such a high forming pressure is applied, it is extremely difficult to plastically deform the amorphous metal at room temperature, so that the relative density (the space factor of the amorphous metal) remains at most 80%.

特許文献1に記載の圧粉磁心は、常温で低圧成形を行っても機械的強度に優れた圧粉磁心を提供することができるとされているが、1300 MPaの成形圧力を要しており、絶対的には十分高い圧力と言える。また、高い圧力で成形した割には圧粉磁心の密度が高まっておらず、その結果、圧粉磁心の機械的強度も十分高いとは言えない。圧粉磁心の機械的強度が不十分であると、インダクタンス素子製造時の巻線工程で、圧粉磁心が破損する要因となる。   The dust core described in Patent Document 1 is said to be able to provide a dust core with excellent mechanical strength even when low pressure molding is performed at room temperature, but requires a molding pressure of 1300 MPa. Absolutely high enough pressure. In addition, the density of the dust core is not increased despite being molded at a high pressure, and as a result, it cannot be said that the mechanical strength of the dust core is sufficiently high. If the mechanical strength of the dust core is insufficient, the dust core may be damaged in the winding process when the inductance element is manufactured.

一方、特許文献2や特許文献3に記載の圧粉磁心では、金属ガラスを用いて加熱成形しているため、成形加工性が良く比較的容易に密度を高めることができる。しかしながら、軟磁性材料として重要な磁気特性(高透磁率、低保持力、高磁束密度など)は、Fe-Si-B系アモルファス金属よりも金属ガラスの方が劣る傾向にある。これは、金属ガラスでは広い過冷却液体領域を得るために、強磁性元素以外の添加元素が多量に添加されるためである。また、金属ガラスによって高密度な成形体ができたとしても、粉末間の絶縁性の低下や、金型からの抜き作業の際に、成形体が破損するなどの問題がある。これは、金属ガラスの過冷却温度域が400℃以上の高温であり、金型と試料間の潤滑が困難になることに起因する。   On the other hand, in the powder magnetic cores described in Patent Document 2 and Patent Document 3, since heat molding is performed using metal glass, the moldability is good and the density can be increased relatively easily. However, magnetic properties (high magnetic permeability, low coercive force, high magnetic flux density, etc.) important as soft magnetic materials tend to be inferior to metallic glass compared to Fe-Si-B amorphous metals. This is because a large amount of an additive element other than the ferromagnetic element is added to obtain a wide supercooled liquid region in the metal glass. Further, even if a high-density molded body is made of metal glass, there are problems such as a decrease in insulation between the powders and damage to the molded body during the removal from the mold. This is because the supercooling temperature region of the metallic glass is a high temperature of 400 ° C. or higher, and lubrication between the mold and the sample becomes difficult.

近年、エコ製品に対する高効率化・高出力化・小型化・低コスト化の要求はますます高まっており、エコ製品に使われる各部品に対する要求も強まる一方である。そのため、従来の圧粉磁心では、各種要求に応じられなくなってきた。   In recent years, demands for higher efficiency, higher output, smaller size, and lower cost for eco-products are increasing, and the demand for each component used in eco-products is also getting stronger. For this reason, conventional powder magnetic cores cannot meet various requirements.

したがって、本発明の目的は、それらの要求を満たすべく、磁気特性に優れたFe基アモルファス金属粉末を利用した上で、圧粉磁心の更なる高密度化(例えば、アモルファス金属の占積率80%超)を実現し、優れた磁気特性と高い機械的強度とを有する圧粉磁心を提供することにある。また、そのような圧粉磁心を低コストで製造する方法を提供することにある。さらに、当該圧粉磁心を用いることによって、エコ製品部品に求められる要求を満たすインダクタンス素子および回転電機を提供することにある。   Accordingly, an object of the present invention is to use a Fe-based amorphous metal powder having excellent magnetic properties in order to satisfy these requirements, and further increase the density of the dust core (for example, the space factor of amorphous metal 80 To provide a dust core having excellent magnetic properties and high mechanical strength. Moreover, it is providing the method of manufacturing such a powder magnetic core at low cost. Furthermore, it is providing the inductance element and rotary electric machine which satisfy | fill the request | requirement requested | required of an eco-product component by using the said powder magnetic core.

本発明の一態様によると、Fe(鉄)基アモルファス金属の粉末と樹脂バインダとを主体とし、温間成形してなる圧粉磁心であって、前記Fe基アモルファス金属の結晶化温度Tx(K、ケルビン)と前記樹脂バインダの融点Tm(K)との関係が「Tm/Tx ≧0.70」であり、前記Fe基アモルファス金属粉末は、前記温間成形において塑性変形されており、その占積率が80%超99%以下である圧粉磁心を提供する。 According to one aspect of the present invention, there is provided a powder magnetic core mainly composed of Fe (iron) based amorphous metal powder and a resin binder, the crystallization temperature T x ( K, Kelvin) and the melting point T m (K) of the resin binder is “T m / T x ≧ 0.70”, and the Fe-based amorphous metal powder is plastically deformed in the warm forming, Provide a dust core whose space factor is more than 80% and less than 99%.

また本発明は、Fe基アモルファス金属の粉末と樹脂バインダとを主体とする圧粉磁心の製造方法であって、前記Fe基アモルファス金属粉末の粒子表面上に前記樹脂バインダを被覆する樹脂被覆工程と、前記樹脂バインダが被覆された前記Fe基アモルファス金属粉末に対して所定の温度・圧力で成形体を形成する温間成形工程と、前記成形体における前記Fe基アモルファス金属粉末に蓄積した歪みを緩和する歪み緩和熱処理工程とを有し、前記Fe基アモルファス金属の結晶化温度Tx(K、ケルビン)と前記樹脂バインダの融点Tm(K)との関係が「Tm/Tx ≧0.70」であり、前記温間成形工程における前記所定の温度が前記結晶化温度の0.75超0.95以下であり、前記所定の圧力が500 MPa以上1000 MPa以下であり、前記成形体における前記Fe基アモルファス金属粉末の占積率が80%超99%以下である圧粉磁心の製造方法を提供する。 The present invention is also a method for producing a powder magnetic core mainly composed of a Fe-based amorphous metal powder and a resin binder, the resin coating step of coating the resin binder on the particle surface of the Fe-based amorphous metal powder; , A warm forming step of forming a molded body at a predetermined temperature and pressure on the Fe-based amorphous metal powder coated with the resin binder, and alleviating strain accumulated in the Fe-based amorphous metal powder in the molded body The relationship between the crystallization temperature T x (K, Kelvin) of the Fe-based amorphous metal and the melting point T m (K) of the resin binder is “T m / T x ≧ 0.70”. The predetermined temperature in the warm forming step is more than 0.75 and not more than 0.95 of the crystallization temperature, the predetermined pressure is 500 MPa or more and 1000 MPa or less, and the Fe-based amorphous metal powder in the formed body Provided is a method for producing a dust core having a space factor of 80% or more and 99% or less.

本発明によれば、磁気特性に優れたFe基アモルファス金属粉末を利用した上で、圧粉成形する際にFe基アモルファス金属の粉末粒子間の絶縁を維持しながら該粉末粒子を塑性変形させることによって、従来よりも高密度化(例えば、アモルファス金属の占積率80%超)を実現することができる。その結果、優れた磁気特性と高い機械的強度とを有する圧粉磁心を提供することができる。また、そのような圧粉磁心を低コストで製造する方法を提供することができる。さらに、当該圧粉磁心を用いることによって、エコ製品部品に求められる要求を満たすインダクタンス素子および回転電機を提供することができる。   According to the present invention, the Fe-based amorphous metal powder having excellent magnetic properties is used, and the powder particles are plastically deformed while maintaining the insulation between the Fe-based amorphous metal powder particles when compacted. Therefore, it is possible to realize higher density than conventional (for example, the space factor of amorphous metal exceeds 80%). As a result, a dust core having excellent magnetic properties and high mechanical strength can be provided. Moreover, the method of manufacturing such a powder magnetic core at low cost can be provided. Furthermore, by using the dust core, an inductance element and a rotating electrical machine that satisfy the requirements for eco-product parts can be provided.

本発明に係るインダクタンス素子の一例(チョークコイル)を示す斜視模式図である。It is a perspective schematic diagram which shows an example (choke coil) of the inductance element which concerns on this invention. 本発明に係るインダクタンス素子の他の一例(リアクトル)を示す斜視模式図である。It is a perspective schematic diagram which shows another example (reactor) of the inductance element which concerns on this invention. 温間成形工程(成形温度533 K)における時間-温度チャートおよび時間-成形圧力チャートである。2 is a time-temperature chart and a time-forming pressure chart in a warm forming step (forming temperature 533 K). 温間成形工程(成形温度693 K)における時間-温度チャートおよび時間-成形圧力チャートである。4 is a time-temperature chart and a time-forming pressure chart in a warm forming step (forming temperature 693 K). 使用したFe基アモルファス金属粉末(温間成形前)を示すSEM観察像である。It is a SEM observation image which shows the used Fe group amorphous metal powder (before warm forming). 作製した圧粉磁心の断面組織の一例を示すSEM観察像である。It is a SEM observation image which shows an example of the cross-sectional structure of the produced powder magnetic core. 実験1の圧粉磁心におけるFe基アモルファス金属の占積率と成形温度との関係を示すグラフである。4 is a graph showing the relationship between the space factor of Fe-based amorphous metal and the molding temperature in the dust core of Experiment 1.

(本発明の基本思想)
球体の充填率は、該球体が変形しない真球である場合、球径分布を最適に制御したとしても理論的に78%程度が上限とされている。圧粉磁心においてアモルファス金属の占積率(相対密度)を高めるためには、原理的にアモルファス金属粒子自体を塑性変形させてアモルファス金属粒子の充填率(占積率)を高めることが望ましい。
(Basic idea of the present invention)
When the sphere is a true sphere that is not deformed, the upper limit is theoretically about 78% even if the sphere diameter distribution is optimally controlled. In order to increase the space factor (relative density) of the amorphous metal in the dust core, it is desirable in principle to plastically deform the amorphous metal particles themselves to increase the filling rate (space factor) of the amorphous metal particles.

アモルファス金属粒子は、結晶化温度(Tx)の手前近傍の温度領域で圧粉成形することで、塑性変形させられる可能性がある。例えば特許文献2では、金属ガラス合金の粉末(球状粒子)と結着剤と潤滑剤の混合物を所定の温度まで加熱して圧縮成形している。特許文献2によると、所定量の潤滑剤の添加によって潤滑剤無添加の場合に比して、圧粉磁心の密度が上昇するとされている。 Amorphous metal particles may be plastically deformed by compacting in a temperature region near the crystallization temperature (T x ). For example, in Patent Document 2, a mixture of metallic glass alloy powder (spherical particles), a binder, and a lubricant is heated to a predetermined temperature and compression molded. According to Patent Document 2, the density of the powder magnetic core is increased by adding a predetermined amount of lubricant as compared with the case where no lubricant is added.

しかしながら、その密度を金属ガラス合金の占積率(相対密度)に換算すると80%未満と考えられ、金属ガラス合金の粉末粒子自体は塑性変形していないと考えられる(もしも金属ガラス合金の粉末粒子が十分に塑性変形した場合、相対密度が真球の理論充填率を大きく超えると考えられる)。言い換えると、特許文献2の結果は、圧粉磁心においてアモルファス金属粒子を塑性変形させることの難しさを示していると見ることができる。   However, when the density is converted to the space factor (relative density) of the metallic glass alloy, it is considered to be less than 80%, and the metallic glass alloy powder particles themselves are not considered to be plastically deformed (if the metallic glass alloy powder particles Is sufficiently plastically deformed, the relative density is considered to greatly exceed the theoretical filling rate of the true sphere). In other words, it can be considered that the result of Patent Document 2 indicates the difficulty of plastically deforming amorphous metal particles in the dust core.

一方、圧粉磁心では、渦電流損低減のために圧粉成形する各粒子を電気絶縁する必要がある。そのため、アモルファス金属粒子の表面に粒子間の潤滑と電気絶縁とを兼ねる層を形成して、圧粉成形が行われる。   On the other hand, in the dust core, it is necessary to electrically insulate each particle to be dust-molded in order to reduce eddy current loss. Therefore, compaction molding is performed by forming a layer that serves as both interparticle lubrication and electrical insulation on the surface of the amorphous metal particles.

一般的に、樹脂バインダ(例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂)は、薄い被膜でも潤滑性・電気絶縁性に優れ、アモルファス金属粒子以外の物の体積を最小化できる利点を有するが、耐熱性の観点から温間プレス温度が制約される弱点がある(言い換えると、温間プレス温度を十分に上げられないため、アモルファス金属粒子を塑性変形させることが困難である)。無機バインダ(例えば、酸化物粉末)は、耐熱性に優れることから温間プレス温度を十分に高められる利点を有するが、潤滑性・電気絶縁性を確保するためにある程度の厚さが必要となり、アモルファス金属粒子の占積率向上の観点で弱点がある。すなわち、従来技術では、すべての要件(占積率・潤滑性・電気絶縁性)を満たす解が見出されていなかった。   In general, resin binders (for example, epoxy resins, phenol resins, acrylic resins) are excellent in lubricity and electrical insulation even with thin coatings, and have the advantage of minimizing the volume of objects other than amorphous metal particles, There is a weak point in which the warm press temperature is restricted from the viewpoint of safety (in other words, it is difficult to plastically deform the amorphous metal particles because the warm press temperature cannot be raised sufficiently). Inorganic binders (for example, oxide powders) have the advantage of sufficiently increasing the warm press temperature because of their excellent heat resistance, but a certain amount of thickness is required to ensure lubricity and electrical insulation, There is a weak point in terms of improving the space factor of amorphous metal particles. That is, in the prior art, a solution that satisfies all the requirements (space factor, lubricity, and electrical insulation) has not been found.

そこで、本発明者らは、磁気特性に優れたFe基アモルファス金属粉末を利用した上で、圧粉磁心を従来よりも高密度化し、かつ圧粉成形後も粉末粒子間の電気絶縁を確保できる手段について鋭意検討を行った。その結果、Fe基アモルファス金属の結晶化温度Tx(K、ケルビン)と樹脂バインダの融点Tm(K)との関係Tm/Txが所定の値以上(Tm/Tx ≧0.70)となるようにFe基アモルファス金属と樹脂バインダとを選択し、温間プレス温度を制御することに一つの解を見出した。本発明は、該知見に基づくものである。 Therefore, the present inventors can use a Fe-based amorphous metal powder having excellent magnetic properties, increase the density of the powder magnetic core than before, and ensure electrical insulation between the powder particles even after compacting. We have intensively studied the means. As a result, Fe-based amorphous metal the crystallization temperature T x (K, Kelvin) relationship T m / T x of the melting point T m (K) of the resin binder is more than the predetermined value (T m / T x ≧ 0.70 ) We selected a Fe-based amorphous metal and a resin binder so as to achieve a solution, and found one solution to control the warm press temperature. The present invention is based on this finding.

前述したように、本発明に係る圧粉磁心は、Fe基アモルファス金属の粉末と樹脂バインダとを主体とし、温間成形してなる圧粉磁心であって、前記Fe基アモルファス金属の結晶化温度Tx(K)と前記樹脂バインダの融点Tm(K)との関係が「Tm/Tx ≧0.70」であり、前記Fe基アモルファス金属粉末は、前記温間成形において塑性変形されており、その占積率が80%超99%以下であることを特徴とする。圧粉成形するアモルファス金属粒子がほぼ真球であると仮定すると、圧粉成形体における占積率80%超は、アモルファス金属粒子の少なくとも一部に塑性変形が生じたものと考えることができる。なお、該占積率は、圧粉磁心の磁気特性および機械的特性の観点から82%以上がより好ましく、85%以上が更に好ましい。 As described above, the powder magnetic core according to the present invention is a powder magnetic core mainly composed of an Fe-based amorphous metal powder and a resin binder, and is formed by warm forming, and the crystallization temperature of the Fe-based amorphous metal. The relationship between T x (K) and the melting point T m (K) of the resin binder is “T m / T x ≧ 0.70”, and the Fe-based amorphous metal powder is plastically deformed in the warm forming. The space factor is more than 80% and 99% or less. Assuming that the amorphous metal particles to be compacted are almost spherical, it can be considered that plastic deformation occurs in at least part of the amorphous metal particles when the space factor exceeds 80% in the compact. The space factor is more preferably 82% or more, and still more preferably 85% or more, from the viewpoint of the magnetic properties and mechanical properties of the dust core.

本発明は、上記の本発明に係る圧粉磁心において、次のような改良や変更を加えることができる。
(i)前記Fe基アモルファス金属の結晶化温度Txが823 K以下であり、前記樹脂バインダの融点Tmが533 K以上である。
(ii)前記Fe基アモルファス金属は、Fe-Si-B(鉄−ケイ素−ホウ素)系アモルファス金属であり、前記樹脂バインダは、ポリエーテルエーテルケトン、ポリフェニレンサルファイドおよびポリアミド66のいずれかである。
The present invention can add the following improvements and changes to the above-described powder magnetic core according to the present invention.
(I) The crystallization temperature T x of the Fe-based amorphous metal is 823 K or less, and the melting point T m of the resin binder is 533 K or more.
(Ii) The Fe-based amorphous metal is an Fe—Si—B (iron-silicon-boron) amorphous metal, and the resin binder is any one of polyether ether ketone, polyphenylene sulfide, and polyamide 66.

本発明の他の一態様によると、本発明に係るインダクタンス素子は、圧粉磁心を用いたインダクタンス素子であって、前記圧粉磁心の少なくとも一部が、上記の本発明に係る圧粉磁心であることを特徴とする。   According to another aspect of the present invention, the inductance element according to the present invention is an inductance element using a powder magnetic core, and at least a part of the powder magnetic core is the powder magnetic core according to the present invention. It is characterized by being.

本発明は、上記の本発明に係るインダクタンス素子において、次のような改良や変更を加えることができる。
(iii)前記インダクタンス素子は、リアクトルまたはチョークコイルである。
The present invention can add the following improvements and changes to the above-described inductance element according to the present invention.
(Iii) The inductance element is a reactor or a choke coil.

本発明の更に他の一態様によると、本発明に係る回転電機は、圧粉磁心を用いた回転電機であって、前記圧粉磁心の少なくとも一部が、上記の本発明に係る圧粉磁心であることを特徴とする。   According to still another aspect of the present invention, the rotating electrical machine according to the present invention is a rotating electrical machine using a dust core, wherein at least a part of the dust core is the above-described dust core according to the present invention. It is characterized by being.

本発明は、上記の本発明に係る回転電機において、次のような改良や変更を加えることができる。
(iv)前記圧粉磁心は、ステータコアおよび/またはロータコアである。
The present invention can add the following improvements and changes to the rotating electrical machine according to the present invention.
(Iv) The dust core is a stator core and / or a rotor core.

また、前述したように、本発明に係る圧粉磁心の製造方法は、Fe基アモルファス金属の粉末と樹脂バインダとを主体とする圧粉磁心の製造方法であって、前記Fe基アモルファス金属粉末の粒子表面上に前記樹脂バインダを被覆する樹脂被覆工程と、前記樹脂バインダが被覆された前記Fe基アモルファス金属粉末に対して所定の温度・圧力で成形体を形成する温間成形工程と、前記成形体における前記Fe基アモルファス金属粉末に蓄積した歪みを緩和する歪み緩和熱処理工程とを有し、前記Fe基アモルファス金属の結晶化温度Tx(K)と前記樹脂バインダの融点Tm(K)との関係が「Tm/Tx ≧0.70」であり、前記温間成形工程における前記所定の温度が前記結晶化温度の0.75超0.95以下であり、前記所定の圧力が500 MPa以上1000 MPa以下であり、前記成形体における前記Fe基アモルファス金属粉末の占積率が80%超99%以下であることを特徴とする。該占積率は、82%以上がより好ましく、85%以上が更に好ましい。 In addition, as described above, the method for manufacturing a powder magnetic core according to the present invention is a method for manufacturing a powder magnetic core mainly composed of an Fe-based amorphous metal powder and a resin binder, A resin coating step of coating the resin binder on the particle surface, a warm molding step of forming a molded body at a predetermined temperature and pressure on the Fe-based amorphous metal powder coated with the resin binder, and the molding A strain relaxation heat treatment step for relaxing strain accumulated in the Fe-based amorphous metal powder in the body, and a crystallization temperature T x (K) of the Fe-based amorphous metal and a melting point T m (K) of the resin binder, The relationship of “T m / T x ≧ 0.70”, the predetermined temperature in the warm forming step is more than 0.75 0.95 or less of the crystallization temperature, and the predetermined pressure is 500 MPa or more and 1000 MPa or less. Yes, the molded body Wherein the space factor of definitive the Fe-based amorphous metal powder is less than 80% 99%. The space factor is more preferably 82% or more, and still more preferably 85% or more.

本発明は、上記の本発明に係る圧粉磁心の製造方法において、次のような改良や変更を加えることができる。
(v)前記Fe基アモルファス金属は、Fe-Si-B系アモルファス金属であり、前記樹脂バインダは、ポリエーテルエーテルケトン、ポリフェニレンサルファイドおよびポリアミド66のいずれかである。
(vi)前記温間成形工程および/または前記歪み緩和熱処理工程における加熱がマイクロ波加熱によってなされる。
The present invention can add the following improvements and changes in the method of manufacturing a dust core according to the present invention.
(V) The Fe-based amorphous metal is an Fe-Si-B amorphous metal, and the resin binder is any one of polyether ether ketone, polyphenylene sulfide, and polyamide 66.
(Vi) The heating in the warm forming step and / or the strain relaxation heat treatment step is performed by microwave heating.

以下、本発明に係る実施形態を製造手順に沿って詳細に説明する。ただし、本発明はここで取り上げた実施形態に限定されるものではなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, an embodiment according to the present invention will be described in detail along a manufacturing procedure. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(圧粉磁心およびその製造方法)
上述したように、本発明に係る圧粉磁心は、Fe基アモルファス金属の結晶化温度Tx(K)と樹脂バインダの融点Tm(K)との関係が「Tm/Tx ≧0.70」となるように、Fe基アモルファス金属および樹脂バインダを選択する。なお、本発明において、アモルファス金属は「金属ガラス」と表現されるアモルファス材料を含むものと定義する。
(Dust core and manufacturing method thereof)
As described above, in the dust core according to the present invention, the relationship between the crystallization temperature T x (K) of the Fe-based amorphous metal and the melting point T m (K) of the resin binder is “T m / T x ≧ 0.70”. The Fe-based amorphous metal and the resin binder are selected so that In the present invention, amorphous metal is defined as including an amorphous material expressed as “metallic glass”.

一般に、Fe基アモルファス金属の結晶化温度Txは723〜1023 K程度(450〜750℃程度)の範囲にあり、塑性加工が可能となる軟化点はおよそ573〜873 K(およそ300〜600℃)の範囲である。軟化点は結晶化温度Txに依存し、結晶化温度Txの100〜130 K低い温度にある場合が多い。すなわち、結晶化温度Txの低いFe基アモルファス金属ほど、低温での塑性加工が可能となる。例えば、結晶化温度Txが723 KのFe基アモルファス金属では593〜623 K程度から塑性加工が可能となり、結晶化温度Txが1023 KのFe基アモルファス金属では893〜923 K程度から塑性加工が可能となる。 Generally, the range of the crystallization temperature T x is approximately from 723 to 1023 K Fe-based amorphous metal (about 450 to 750 ° C.), softening point becomes possible plastic working is about five hundred and seventy-three to eight hundred seventy-three K (approximately 300 to 600 ° C. ). Softening point depends on the crystallization temperature T x, often in the 100 to 130 K lower temperature crystallization temperature T x. That is, the lower the crystallization temperature T x Fe-based amorphous metal, it is possible to plastic working at low temperatures. For example, plastic processing is possible from about 593 to 623 K for Fe-based amorphous metals with a crystallization temperature T x of 723 K, and plastic processing from about 893 to 923 K for Fe-based amorphous metals with a crystallization temperature T x of 1023 K Is possible.

Fe基アモルファス金属と樹脂バインダとの組合せが「Tm/Tx ≧0.70」の関係であると、圧粉磁心の成形加工温度において、樹脂バインダを熱劣化させることなしにFe基アモルファス金属粒子を塑性変形させることができる。その結果、優れた磁気特性と高い機械的強度とを有する圧粉磁心が得られる。Fe基アモルファス金属と樹脂バインダとの組合せが「Tm/Tx <0.70」の関係になると、Fe基アモルファス金属粒子の塑性変形と樹脂バインダの熱劣化防止とを両立させることが困難になる。なお、樹脂バインダの融点を勘案すると、「Tm/Tx」の上限は0.85程度と考えられる。 If the combination of the Fe-based amorphous metal and the resin binder has a relationship of “T m / T x ≧ 0.70”, the Fe-based amorphous metal particles are not thermally degraded at the molding temperature of the dust core without the resin binder being thermally deteriorated. It can be plastically deformed. As a result, a dust core having excellent magnetic properties and high mechanical strength can be obtained. When the combination of the Fe-based amorphous metal and the resin binder has a relationship of “T m / T x <0.70”, it becomes difficult to achieve both the plastic deformation of the Fe-based amorphous metal particles and the prevention of thermal deterioration of the resin binder. In consideration of the melting point of the resin binder, the upper limit of “T m / T x ” is considered to be about 0.85.

圧粉磁心においてアモルファス金属粒子間を電気絶縁する樹脂バインダが熱劣化すると、圧粉磁心の渦電流損失が著しく増大するため、選択するFe基アモルファス金属は、できる限り低温で塑性変形可能な結晶化温度Txの低いアモルファス金属材料が好ましい。例えば、Fe基アモルファス金属の結晶化温度Txは、823 K以下が好ましく、743 K以下がより好ましい。そのようなFe基アモルファス金属として、Fe-Si-B系は優れた磁気特性(高い飽和磁束密度、高い透磁率、非常に低い鉄損)を示すことから特に好ましく、例えば、Fe-Si-B-Cr-Cアモルファス金属、Fe-Si-B-Coアモルファス金属、Fe-Si-B-Cu-Nbアモルファス金属を用いることができる。より具体的には、2605HB1(Metglas, Inc. 製、Tx=739 K)の破砕粉や同組成のアトマイズ粉末、2605SA1(Metglas, Inc.製、Tx=763 K)の破砕粉や同組成のアトマイズ粉末、あるいはKUAMET(登録商標、エプソンアトミックス株式会社、Tx=813 K)を好適に用いることができる。 If the resin binder that electrically insulates the amorphous metal particles in the dust core is thermally degraded, the eddy current loss of the dust core increases significantly, so the Fe-based amorphous metal selected can be crystallized so that it can be plastically deformed at the lowest possible temperature. low amorphous metals temperature T x is preferable. For example, the crystallization temperature T x of the Fe-based amorphous metal is preferably not more than 823 K, more preferably at most 743 K. As such an Fe-based amorphous metal, the Fe-Si-B system is particularly preferred because it exhibits excellent magnetic properties (high saturation magnetic flux density, high magnetic permeability, very low iron loss). For example, Fe-Si-B -Cr-C amorphous metal, Fe-Si-B-Co amorphous metal, Fe-Si-B-Cu-Nb amorphous metal can be used. More specifically, 2605HB1 (Metglas, Inc., T x = 739 K) crushed powder and atomized powder of the same composition, 2605SA1 (Metglas, Inc., T x = 763 K) crushed powder and the same composition Atomized powder or KUAMET (registered trademark, Epson Atmix Co., Ltd., T x = 813 K) can be preferably used.

Fe基アモルファス金属の粉末粒径に特段の限定はないが、圧粉磁心用としては、平均粒径で10μm以上200μm以下が好ましい。   Although there is no particular limitation on the powder particle diameter of the Fe-based amorphous metal, the average particle diameter is preferably 10 μm or more and 200 μm or less for a dust core.

選択する樹脂バインダは、圧粉磁心の成形加工温度で熱劣化しないように、高い耐熱性を有するものが好ましい。そのような樹脂バインダとしては、例えば、ポリエーテルエーテルケトン(PEEK、Tm=613 K)、ポリフェニレンサルファイド(PPS、Tm=563 K)またはポリアミド66(PA66、Tm=538 K)を好適に用いることができる。特にPEEKは高耐熱性であり、かつ優れた摺動特性と機械的強度とを示すので好ましい。 The resin binder to be selected preferably has high heat resistance so as not to be thermally deteriorated at the molding temperature of the dust core. As such a resin binder, for example, polyether ether ketone (PEEK, T m = 613 K), polyphenylene sulfide (PPS, T m = 563 K) or polyamide 66 (PA66, T m = 538 K) is preferably used. Can be used. In particular, PEEK is preferable because it has high heat resistance and exhibits excellent sliding characteristics and mechanical strength.

製造方法としては、まず、選択したFe基アモルファス金属の粉末と樹脂バインダとを混合し、Fe基アモルファス金属粉末の粒子表面上に樹脂バインダを被覆する樹脂被覆工程を行う。Fe基アモルファス金属粉末と樹脂バインダとの混合体積比率は、「85:15」〜「99:1」とすることが好ましい。樹脂バインダの体積比が15体積%超になると、Fe基アモルファス金属粒子の塑性変形が阻害され、圧粉磁心が十分に高密度化されず磁気特性の向上効果が得られない場合がある。樹脂バインダの体積比が1体積%未満だと、樹脂バインダが少な過ぎてアモルファス金属粒子間の電気絶縁が困難になる場合がある。   As a manufacturing method, first, a selected Fe-based amorphous metal powder and a resin binder are mixed, and a resin coating process is performed in which the resin binder is coated on the particle surface of the Fe-based amorphous metal powder. The mixing volume ratio of the Fe-based amorphous metal powder and the resin binder is preferably “85:15” to “99: 1”. If the volume ratio of the resin binder exceeds 15% by volume, the plastic deformation of the Fe-based amorphous metal particles may be hindered, and the dust core may not be sufficiently densified, and the effect of improving magnetic properties may not be obtained. If the volume ratio of the resin binder is less than 1% by volume, the resin binder may be too small to make electrical insulation between the amorphous metal particles difficult.

混合・樹脂被覆方法に特段の限定はなく、公知の方法(例えば、機械的混合法)を用いることができる。   The mixing / resin coating method is not particularly limited, and a known method (for example, a mechanical mixing method) can be used.

次に、樹脂バインダが被覆されたFe基アモルファス金属粉末に対して所定の温度・圧力でホットプレスを行って成形体を形成する温間成形工程を行う。本発明の温間成形工程は、昇温前に加圧し、昇温・保持した後、除荷・冷却する工程からなる。   Next, a warm forming process is performed in which the Fe-based amorphous metal powder coated with the resin binder is hot pressed at a predetermined temperature and pressure to form a compact. The warm forming step of the present invention comprises a step of applying pressure before raising the temperature, unloading and cooling after raising and holding the temperature.

成形温度Tは「0.75Tx<T≦0.95Tx」が好ましい。前述したように、アモルファス金属は、結晶化温度(Tx)の手前近傍の温度領域で応力付加することで、塑性変形させられる可能性がある。そこで、前述の2605HB1および2605SA1に対して、高温引張試験を行った。 The molding temperature T is preferably “0.75T x <T ≦ 0.95T x ”. As described above, the amorphous metal may be plastically deformed by applying a stress in the temperature region near the crystallization temperature (T x ). Therefore, a high-temperature tensile test was performed on the aforementioned 2605HB1 and 2605SA1.

高温引張試験は、次のようにして行った。まず、あらかじめ用意したアモルファス金属リボン(厚さ0.025 mm)に対して放電加工を施し、ダンベル形状(平行部寸法50 mm×12.5 mm×0.025 mm)の試験片を切り出した。高温引張試験条件としては、万能試験機(株式会社島津製作所製)を用い、大気雰囲気中で目標温度を室温〜693 Kの範囲とし、目標温度到達後5 min以内に引っ張り(クロスヘッド速度5 mm/min)を開始した。   The high temperature tensile test was performed as follows. First, electric discharge machining was performed on an amorphous metal ribbon (thickness 0.025 mm) prepared in advance, and a test piece having a dumbbell shape (parallel portion dimensions 50 mm × 12.5 mm × 0.025 mm) was cut out. As the high-temperature tensile test conditions, a universal testing machine (manufactured by Shimadzu Corporation) is used, and the target temperature is set in the range of room temperature to 693 K in the air atmosphere. / min) started.

高温引張試験の結果、各試験片は「0.75Tx」の温度辺りから塑性変形が開始した。この高温引張試験の結果から、Fe基アモルファス金属粒子は、成形温度Tが「T≦0.75Tx」の場合、塑性変形が困難であると考えられる。一方、成形温度Tが「0.95Tx<T」になると、一部のFe基アモルファス金属粒子が結晶化し始める場合がある。また、成形温度Tは、樹脂バインダの融点直下温度(例えば、Tm−10 K)以上で熱分解温度未満であることが好ましい。 As a result of the high-temperature tensile test, each specimen started plastic deformation around a temperature of “0.75 T x ”. From the results of this high-temperature tensile test, it is considered that the Fe-based amorphous metal particles are difficult to be plastically deformed when the molding temperature T is “T ≦ 0.75T x ”. On the other hand, when the molding temperature T becomes “0.95T x <T”, some Fe-based amorphous metal particles may start to crystallize. The molding temperature T is preferably not less than the temperature just below the melting point of the resin binder (for example, T m −10 K) and less than the thermal decomposition temperature.

成形加工における加熱方法に特段の限定はなく公知の方法を利用できるが、300 MHz〜300 GHzの電磁波によるマイクロ波加熱によってなされることがより好ましい。アモルファス金属粒子は、主に粒子の表面領域で塑性変形する。マイクロ波加熱は、Fe基アモルファス金属の各粒子の表面領域を同時にかつ優先的に加熱することができるため、昇温時間の短縮(すなわち製造コストの低減)に貢献する。また、輻射加熱に比して、樹脂バインダの過熱(樹脂バインダへの過剰の入熱)を抑制することができる。   There is no particular limitation on the heating method in the molding process, and a known method can be used. However, it is more preferable to use microwave heating with an electromagnetic wave of 300 MHz to 300 GHz. Amorphous metal particles are plastically deformed mainly in the surface area of the particles. Microwave heating can simultaneously and preferentially heat the surface region of each Fe-based amorphous metal particle, and thus contributes to shortening the temperature rise time (that is, reducing the manufacturing cost). In addition, overheating of the resin binder (excess heat input to the resin binder) can be suppressed as compared to radiant heating.

成形圧力は500 MPa以上1000 MPa以下が好ましい。成形圧力が500 MPa未満だと、Fe基アモルファス金属粒子の塑性変形が不十分になる。成形圧力が1000 MPa超では、プレス成形装置と金型とのコストが増大する。   The molding pressure is preferably 500 MPa or more and 1000 MPa or less. When the molding pressure is less than 500 MPa, the plastic deformation of the Fe-based amorphous metal particles becomes insufficient. If the molding pressure exceeds 1000 MPa, the cost of the press molding apparatus and the mold increases.

温間成形工程時の雰囲気としては、非酸化性雰囲気(実質的に酸素が非常に少ない雰囲気、例えば、窒素中、アルゴン中)が好ましい。   The atmosphere during the warm forming step is preferably a non-oxidizing atmosphere (an atmosphere having substantially very little oxygen, for example, in nitrogen or argon).

次に、成形体におけるFe基アモルファス金属粉末に蓄積した歪みを緩和する歪み緩和熱処理工程を行う。本工程の加熱方法にも特段の限定はなく公知の方法を利用できるが、上述と同様のマイクロ波加熱によってなされることがより好ましい。なお、歪み緩和熱処理工程の熱処理温度・時間は、Fe基アモルファス金属粒子が結晶化しない限り特段の限定はない。また、歪み緩和熱処理工程時の雰囲気としては、非酸化性雰囲気でもよいし大気中でもよい。   Next, a strain relaxation heat treatment step is performed to relax the strain accumulated in the Fe-based amorphous metal powder in the compact. There is no particular limitation on the heating method in this step, and a known method can be used, but it is more preferable that the heating is performed by the same microwave heating as described above. The heat treatment temperature and time in the strain relaxation heat treatment step are not particularly limited unless the Fe-based amorphous metal particles are crystallized. Further, the atmosphere during the strain relaxation heat treatment step may be a non-oxidizing atmosphere or air.

以上の製造手順により、本発明に係る圧粉磁心が得られる。   The powder magnetic core which concerns on this invention is obtained by the above manufacturing procedure.

(インダクタンス素子・回転電機)
前述した本発明に係る圧粉磁心を利用することによって、従来よりも小型化・高効率化が可能なインダクタンス素子や回転電機を提供することができる。図1は、本発明に係るインダクタンス素子の一例(チョークコイル)を示す斜視模式図である。図2は、本発明に係るインダクタンス素子の他の一例(リアクトル)を示す斜視模式図である。
(Inductance element / Rotating electric machine)
By utilizing the above-described dust core according to the present invention, it is possible to provide an inductance element and a rotating electrical machine that can be made smaller and more efficient than conventional ones. FIG. 1 is a schematic perspective view showing an example (choke coil) of an inductance element according to the present invention. FIG. 2 is a schematic perspective view showing another example (reactor) of the inductance element according to the present invention.

図1に示したように、本発明に係るチョークコイル10は、本発明の圧粉磁心11に導体線12を巻き付けたものであり、導体線12の両端には、端子13が形成されている。圧粉磁心11は、環状(いわゆるレーストラック状)の連続体になっており、その断面形状は角形でもよいし円形でもよい。チョークコイル10は、例えば、家電機器などの昇圧回路として用いられる。   As shown in FIG. 1, a choke coil 10 according to the present invention is obtained by winding a conductor wire 12 around a dust core 11 of the present invention, and terminals 13 are formed at both ends of the conductor wire 12. . The powder magnetic core 11 is an annular (so-called racetrack-like) continuous body, and the cross-sectional shape thereof may be square or circular. The choke coil 10 is used as a booster circuit for home appliances, for example.

図2に示したように、本発明に係るリアクトル20は、本発明の圧粉磁心21に導体線12を巻き付けたものであり、導体線12の両端には、端子13が形成されている。圧粉磁心21は環形状を有しているが、2個のストレート部材22と2個のU字部材23とが連結された構造となっている。部材の連結・固定は、接着剤(例えば、樹脂系接着剤)で行ってもよいし、機械的治具(例えば、バンド)で行ってもよい。リアクトル20は、例えば、ハイブリッド自動車や太陽光発電の昇圧回路として用いられる。   As shown in FIG. 2, a reactor 20 according to the present invention is obtained by winding a conductor wire 12 around a dust core 21 of the present invention, and terminals 13 are formed at both ends of the conductor wire 12. The dust core 21 has an annular shape, but has a structure in which two straight members 22 and two U-shaped members 23 are connected. The connection / fixation of the members may be performed with an adhesive (for example, a resin-based adhesive) or a mechanical jig (for example, a band). The reactor 20 is used, for example, as a booster circuit for a hybrid vehicle or solar power generation.

圧粉磁心21は、全体(ストレート部材22およびU字部材23)に本発明の圧粉磁心を用いてもよいし、透磁率を調整するためにストレート部材22に本発明の圧粉磁心を用い、U字部材23に従来の圧粉磁心(例えば、Fe-Si系圧粉磁心、Fe-Al-Si系圧粉磁心)を用いてもよい。言い換えると、本発明に係るインダクタンス素子は、その一部に本発明の圧粉磁心を用いていればよい。   The dust core 21 may use the dust core of the present invention as a whole (the straight member 22 and the U-shaped member 23), or use the dust core of the present invention for the straight member 22 in order to adjust the permeability. For the U-shaped member 23, a conventional dust core (for example, Fe-Si dust core, Fe-Al-Si dust core) may be used. In other words, the inductance element according to the present invention only needs to use the dust core of the present invention for a part thereof.

また、回転電機(例えば、モータ)においては、ステータやロータの鉄心の磁気特性が回転電機の効率に大きな影響を及ぼすことが知られている。本発明に係る圧粉磁心は、優れた磁気特性と高い機械的強度とを有することから、所望形状のステータコアやロータコアに成形することができる。すなわち、回転電機のステータコアやロータコアとして本発明の圧粉磁心を用いることで、回転電機の小型化・高効率化が可能となる。   Moreover, in a rotating electrical machine (for example, a motor), it is known that the magnetic characteristics of the stator and the rotor core greatly affect the efficiency of the rotating electrical machine. Since the dust core according to the present invention has excellent magnetic properties and high mechanical strength, it can be formed into a stator core or a rotor core having a desired shape. That is, by using the dust core of the present invention as a stator core or a rotor core of a rotating electrical machine, it is possible to reduce the size and increase the efficiency of the rotating electrical machine.

以下に具体的な実施例を示して、本発明の内容を更に詳細に説明する。ただし、以下の実施例は本発明の内容の具体例を示すものであり、本発明がこれらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to specific examples. However, the following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples.

[実験1]
(圧粉磁心の作製)
Fe基アモルファス金属の粉末として、Metglas, Inc. 製の2605HB1アモルファスリボン相当の組成を有し水アトマイズ法で作製したFe-Si-B系アモルファス金属粉末(結晶化温度Tx=739 K)を用意した。該アモルファス金属粉末をふるいにより分級し、粒径100μm以下の粉末を実験に供した。次に、樹脂バインダとしてポリエーテルエーテルケトン(PEEK、融点Tm=613 K)を用意し、10体積%となるようにアモルファス金属粉末に加え、ラボプラストミル装置(ブラベンダー社製、型式:W50EHT)で混練を行った。得られた混練粉(混練によって凝集している)を乳鉢で解砕し、平均サイズ0.5 mm以下の粒とした。
[Experiment 1]
(Production of dust core)
Fe-Si-B amorphous metal powder (crystallization temperature T x = 739 K) with a composition equivalent to 2605HB1 amorphous ribbon manufactured by Metglas, Inc. and prepared by water atomization method is prepared as Fe-based amorphous metal powder did. The amorphous metal powder was classified by sieving, and a powder having a particle size of 100 μm or less was used for the experiment. Next, polyether ether ketone (PEEK, melting point T m = 613 K) is prepared as a resin binder. In addition to amorphous metal powder so as to be 10% by volume, a lab plast mill apparatus (made by Brabender, model: W50EHT) ). The obtained kneaded powder (aggregated by kneading) was crushed in a mortar to obtain granules having an average size of 0.5 mm or less.

該解砕粒1.5 gを超硬製の金型(外径13 mm、内径8 mm)に入れ、ホットプレス装置(株式会社東京真空製、型式:GP-2300)により温間成形工程を行った。温間成形工程における時間-温度チャートおよび時間-成形圧力チャートを図3A〜図3Bに示す。図3A〜図3Bに示したように、成形圧力は800 MPaとして昇温前に負荷し、所定の成形温度まで60分間で昇温し、昇温後に20分間保持したのち直ちに除荷した。成形温度は533〜693 Kとし、雰囲気は窒素ガスとした。   1.5 g of the crushed particles were put into a cemented carbide mold (outer diameter 13 mm, inner diameter 8 mm), and a warm forming process was performed with a hot press apparatus (manufactured by Tokyo Vacuum Co., Ltd., model: GP-2300). A time-temperature chart and a time-forming pressure chart in the warm forming step are shown in FIGS. 3A to 3B. As shown in FIG. 3A to FIG. 3B, the molding pressure was set to 800 MPa, the load was applied before the temperature increase, the temperature was increased to a predetermined molding temperature in 60 minutes, the temperature was maintained for 20 minutes after the temperature increase, and then immediately unloaded. The molding temperature was 533 to 693 K, and the atmosphere was nitrogen gas.

得られた成形体(外径13 mm、内径8 mm、厚さ3 mmの円環ペレット)に対し、歪み緩和熱処理工程(大気中673 Kで1時間保持)を行い、圧粉磁心を得た。また、比較試料として市販のFe基アモルファス金属圧粉磁心を用意した。   The resulting compact (annular pellet with an outer diameter of 13 mm, an inner diameter of 8 mm, and a thickness of 3 mm) was subjected to a strain relaxation heat treatment process (held at 673 K in air for 1 hour) to obtain a dust core. . In addition, a commercially available Fe-based amorphous metal dust core was prepared as a comparative sample.

(圧粉磁心の特性評価)
(1)Fe基アモルファス金属の占積率の評価
作製した圧粉磁心の断面組織を走査型電子顕微鏡(SEM、株式会社日立製作所製、型式:S-2380N)で観察し、Fe基アモルファス金属の占積率を算出した。Fe基アモルファス金属の占積率の算出には、以下の式を用いた。結果を後述する表1に示す。
「Fe基アモルファス金属の占積率(%)=(視野に占めるFe基アモルファス金属の面積)/(視野の面積)×100」
なお、「視野の面積」は、顕微鏡(例えば、走査型電子顕微鏡や光学顕微鏡)の1視野の観察像の全面積であり、Fe基アモルファス金属の粒子が100〜300個程度含まれる面積(拡大倍率としては200〜500倍程度)に調整されることが望ましい。また、「Fe基アモルファス金属の面積」は、例えば、当該観察像を画像解析することにより求めることができる。
(Characteristic evaluation of dust core)
(1) Evaluation of space factor of Fe-based amorphous metal The cross-sectional structure of the produced dust core was observed with a scanning electron microscope (SEM, manufactured by Hitachi, Ltd., model: S-2380N). The space factor was calculated. The following formula was used to calculate the space factor of the Fe-based amorphous metal. The results are shown in Table 1 described later.
"Facing ratio of Fe-based amorphous metal (%) = (area of Fe-based amorphous metal in the field of view) / (area of field of view) x 100"
The “area of the visual field” is the total area of the observation image of one visual field of a microscope (for example, a scanning electron microscope or an optical microscope), and an area (enlarged) containing about 100 to 300 Fe-based amorphous metal particles. The magnification is preferably adjusted to about 200 to 500 times. Further, the “area of the Fe-based amorphous metal” can be obtained by, for example, image analysis of the observed image.

図4Aは、使用したFe基アモルファス金属粉末(温間成形前)を示すSEM観察像であり、図4Bは、作製した圧粉磁心の断面組織の一例を示すSEM観察像である。図4Aに示したように、温間成形前のFe基アモルファス金属粉末は、個々の粒子がいわゆる球状粒子(真球に限定されず、いびつな楕円体なども含む。表面の大部分が外に凸の曲面で構成されている粒子)であることが判る。これに対し、図4Bに示したように、本発明に係る圧粉磁心(例えば、Fe基アモルファス金属の占積率が85%以上)では、元々球状であったアモルファス金属粒子が塑性変形されている様子(略一定厚さの樹脂バインダを介して、隣り合う2つの金属粒子の界面が平行になっている領域が存在する様子)が明確に観察された。また、圧粉磁心には、空隙の残存が観察された。   FIG. 4A is an SEM observation image showing the used Fe-based amorphous metal powder (before warm forming), and FIG. 4B is an SEM observation image showing an example of a cross-sectional structure of the produced dust core. As shown in FIG. 4A, in the Fe-based amorphous metal powder before warm forming, individual particles include so-called spherical particles (not limited to true spheres but also distorted ellipsoids. Most of the surface is outside. It can be seen that the particles are composed of convex curved surfaces. On the other hand, as shown in FIG. 4B, in the powder magnetic core according to the present invention (for example, the space factor of Fe-based amorphous metal is 85% or more), the originally spherical amorphous metal particles are plastically deformed. It was clearly observed that there was a region in which the interface between two adjacent metal particles was parallel through a resin binder having a substantially constant thickness. In addition, residual voids were observed in the dust core.

SEM観察によるアモルファス金属粒子の塑性変形の有無を後述する表1に併記する。なお、塑性変形が生じていると観察され、アモルファス金属粒子の占積率が80%超の試料に対して「有」と表記し、観察した範囲では塑性変形が認められなかった試料に対しては「無」と表記した。   The presence or absence of plastic deformation of amorphous metal particles by SEM observation is also shown in Table 1 described later. For samples that were observed to be plastically deformed and that had an amorphous metal particle space factor of more than 80%, “exist” was indicated. For samples that did not show plastic deformation within the observed range, Was written as “nothing”.

(2)機械的強度の評価
作製した圧粉磁心の機械的強度を評価した。本発明では、機械的強度の指標として圧環強さを測定した。圧環強さの測定は、焼結軸受−圧環強さ試験法(JIS Z 2507)に準じて行った。圧環強さは「K=F(D-e)/(L・e2)」で与えられる。Kは圧環強さ(単位:MPa)、Fは破壊した時の最大荷重(単位:N)、Lは円環ペレットの厚さ(単位:mm)、Dは円環ペレットの外径(単位:mm)、eは円環ペレットの外径/内径差(単位:mm)である。結果を後述する表1に併記する。
(2) Evaluation of mechanical strength The mechanical strength of the produced dust core was evaluated. In the present invention, the crushing strength was measured as an index of mechanical strength. The crushing strength was measured according to the sintered bearing-crushing strength test method (JIS Z 2507). The crushing strength is given by “K = F (De) / (L · e 2 )”. K is the crushing strength (unit: MPa), F is the maximum load at break (unit: N), L is the thickness of the annular pellet (unit: mm), D is the outer diameter of the annular pellet (unit: unit) mm) and e are the outer diameter / inner diameter difference (unit: mm) of the annular pellet. The results are also shown in Table 1 described later.

(3)磁気特性の評価
作製した圧粉磁心の磁気特性を評価した。本実験では、磁気特性の指標として、一定の外部磁場を印加したときの磁束密度を測定した。磁束密度の測定は、試料振動型磁力計(VSM)を用いて行い、印加磁界10000 Oe(約795800 A/m)における磁束密度を「B100」(単位:T)と表した。結果を後述する表1に併記する。
(3) Evaluation of magnetic properties The magnetic properties of the produced dust cores were evaluated. In this experiment, the magnetic flux density when a constant external magnetic field was applied was measured as an index of magnetic characteristics. The magnetic flux density was measured using a sample vibration magnetometer (VSM), and the magnetic flux density at an applied magnetic field of 10,000 Oe (about 795800 A / m) was expressed as “B 100 ” (unit: T). The results are also shown in Table 1 described later.

Figure 0006427862
Figure 0006427862

図5は、実験1の圧粉磁心におけるFe基アモルファス金属の占積率と成形温度との関係を示すグラフである。図5、表1に示したように、Fe基アモルファス金属粉末の占積率は、成形温度の上昇に伴って増大し、約563 K以上の成形温度において望まれる高密度化(占積率80%超)が得られ、約603 K以上の成形温度において更に望まれる高密度化(占積率85%以上)が得られることが確認された。また、該占積率は、PEEKの融点である613 Kで最大となり、該融点を超えると僅かに減少するものの成形温度693 Kまで略一定の値が得られた。   FIG. 5 is a graph showing the relationship between the space factor of the Fe-based amorphous metal and the molding temperature in the dust core of Experiment 1. As shown in FIG. 5 and Table 1, the space factor of the Fe-based amorphous metal powder increases as the molding temperature rises, and the desired densification (space factor 80) is achieved at a molding temperature of about 563 K or higher. It was confirmed that further desired densification (space factor 85% or more) was obtained at a molding temperature of about 603 K or more. The space factor reached a maximum at 613 K, which is the melting point of PEEK, and decreased slightly above the melting point, but a substantially constant value was obtained up to a molding temperature of 693 K.

従来のアモルファス金属圧粉磁心(市販品)は、占積率が約70%であり、圧環強度が10〜20 MPa程度であり、磁束密度(B100)が0.4 T程度であり、鉄損(W1/10k)が100 kW/m3程度であった。なお、鉄損については後述する。 The conventional amorphous metal dust core (commercially available) has a space factor of about 70%, a crushing strength of about 10 to 20 MPa, a magnetic flux density (B 100 ) of about 0.4 T, and iron loss ( W 1 / 10k ) was about 100 kW / m 3 . The iron loss will be described later.

市販品の圧粉磁心に対し、表1に示したように、2605HB1相当組成の水アトマイズ粉末とPEEKとを用いてアモルファス金属粉末の塑性変形が認められ占積率80%超の圧粉磁心(本発明の実施例に相当)は、当該市販品の圧粉磁心に比して圧環強度が約2.5倍以上に向上し、磁束密度(B100)が約1.5倍以上に向上することが実証された。なお、アモルファス金属粉末の塑性変形が確認できなかった試料(本発明での比較例に相当)は、市販品の特性よりは高いが、その度合が小さく期待されるレベルには到達していなかった。 As shown in Table 1, a commercially available dust core is made of 2605HB1 equivalent water atomized powder and PEEK, and plastic deformation of the amorphous metal powder was observed. (Corresponding to the embodiment of the present invention), it is demonstrated that the crushing strength is improved by about 2.5 times or more and the magnetic flux density (B 100 ) is improved by about 1.5 times or more compared to the commercially available dust core. It was. In addition, the sample (corresponding to the comparative example in the present invention) in which the plastic deformation of the amorphous metal powder could not be confirmed was higher than the characteristics of the commercially available product, but the degree was small and did not reach the expected level. .

[実験2]
(圧粉磁心の作製)
Fe基アモルファス金属の粉末として、2605HB1アモルファスリボン相当の組成を有し水アトマイズ法で作製したFe-Si-B系アモルファス金属粉末(結晶化温度Tx=739 K)及びKUAMET(登録商標、エプソンアトミックス株式会社製、結晶化温度Tx=813 K)を用意した。該アモルファス金属粉末をふるいにより分級し、粒径100μm以下の粉末を実験に供した。樹脂バインダとして、PEEK(融点Tm=613 K)、ポリフェニレンサルファイド(PPS、融点Tm=563 K)及びポリアミド66(PA66、融点Tm=538 K)を用意した。それら以外は実験1と同様にして圧粉磁心を作製した。
[Experiment 2]
(Production of dust core)
Fe-Si-B amorphous metal powder (crystallization temperature T x = 739 K) and KUAMET (registered trademark, Epson Atomic) manufactured by the water atomization method and having a composition equivalent to 2605HB1 amorphous ribbon as Fe-based amorphous metal powder Manufactured by Susu Co., Ltd., and a crystallization temperature T x = 813 K) was prepared. The amorphous metal powder was classified by sieving, and a powder having a particle size of 100 μm or less was used for the experiment. As resin binders, PEEK (melting point T m = 613 K), polyphenylene sulfide (PPS, melting point T m = 563 K) and polyamide 66 (PA 66, melting point T m = 538 K) were prepared. Except for these, a dust core was produced in the same manner as in Experiment 1.

なお、Fe基アモルファス金属として2605HB1相当組成の水アトマイズ粉末を用いたものは成形温度を613〜693 Kとし、圧粉成形後の歪み緩和熱処理は大気中673 Kで1時間保持とした。Fe基アモルファス金属としてKUAMET(登録商標)を用いたものは成形温度を693〜773 Kとし、圧粉成形後の歪み緩和熱処理は大気中698 Kで3時間保持とした。圧粉磁心の諸元を後述する表2に示す。   In the case of using a water atomized powder having a composition equivalent to 2605HB1 as the Fe-based amorphous metal, the molding temperature was 613 to 693 K, and the strain relaxation heat treatment after compacting was held at 673 K in the atmosphere for 1 hour. In the case of using KUAMET (registered trademark) as the Fe-based amorphous metal, the molding temperature was 693 to 773 K, and the strain relaxation heat treatment after compacting was held at 698 K in the atmosphere for 3 hours. Table 2 shows the specifications of the dust core.

(圧粉磁心の特性評価)
作製した実験2の圧粉磁心に対して、実験1と同様に、Fe基アモルファス金属の占積率の評価および機械的強度の評価を行った。磁気特性の評価については、本実験では鉄損を測定した。鉄損の測定は、B-Hアナライザ(岩通計測株式会社製)を用いて行い、0.1 T中、10 kHzにおける鉄損を「W1/10k」(単位:kW/m3)と表した。結果を表2に併記する。
(Characteristic evaluation of dust core)
As in Experiment 1, the space factor and mechanical strength of the Fe-based amorphous metal were evaluated on the produced powder magnetic core of Experiment 2. For the evaluation of magnetic properties, iron loss was measured in this experiment. The iron loss was measured using a BH analyzer (manufactured by Iwadori Measurement Co., Ltd.), and the iron loss at 10 kHz in 0.1 T was expressed as “W 1 / 10k ” (unit: kW / m 3 ). The results are also shown in Table 2.

また、総合評価として、「占積率80%超」、「圧環強さ20 MPa超」および「鉄損100 kW/m3未満」のすべてを満たしたものを「合格」と評価し、すべてを満たせなかったものを「不合格」と評価した。結果を表2に併記する。 In addition, as a comprehensive evaluation, those satisfying all of “space factor over 80%”, “crushing strength over 20 MPa” and “iron loss less than 100 kW / m 3 ” are evaluated as “pass” and all Those that could not be satisfied were evaluated as “failed”. The results are also shown in Table 2.

Figure 0006427862
Figure 0006427862

表2に示したように、実験2の温間成形条件は、いずれも「T/Tx ≧0.75」であったことから、すべての試料においてFe基アモルファス金属の占積率が80%超となった。Tm/Txが本発明で規定する範囲内(Tm/Tx ≧0.70)である場合には、樹脂バインダを熱劣化させることなしにFe基アモルファス金属粒子を塑性変形させることができるため、市販品の圧粉磁心よりも優れた磁気特性と高い機械的強度とを有する圧粉磁心が得られ、総合評価が「合格」となった(すなわち、本発明の実施例に相当)。一方、Tm/Txが本発明で規定する範囲外であるものは、樹脂バインダが熱劣化し始めることから、機械的強度および/または磁気特性が市販品の圧粉磁心のそれらと同等以下となり、総合評価が「不合格」となった(すなわち、本発明での比較例に相当)。 As shown in Table 2, since the warm forming conditions of Experiment 2 were all “T / T x ≧ 0.75”, the space factor of the Fe-based amorphous metal exceeded 80% in all samples. became. When T m / T x is within the range specified in the present invention (T m / T x ≧ 0.70), Fe-based amorphous metal particles can be plastically deformed without thermally deteriorating the resin binder. Thus, a dust core having a magnetic property superior to that of a commercially available dust core and high mechanical strength was obtained, and the overall evaluation was “pass” (that is, equivalent to an example of the present invention). On the other hand, when T m / T x is outside the range specified in the present invention, since the resin binder starts to thermally deteriorate, the mechanical strength and / or magnetic properties are equal to or less than those of commercially available dust cores. The overall evaluation was “failed” (that is, equivalent to a comparative example in the present invention).

なお、KUAMET(登録商標)における成形温度T=773 Kは「T/Tx=773/813=0.9507…」であり、小数点以下第3位を四捨五入すると「T/Tx=0.95」と見なすことができる。また、樹脂バインダはFe基アモルファス金属よりも高い(約1桁高い)熱膨張係数を有することから、成形温度の上昇と共にFe基アモルファス金属の占積率が低下する傾向が見られた。 In addition, the molding temperature T = 773 K in KUAMET (registered trademark) is “T / T x = 773/813 = 0.9507…” and rounded off to the second decimal place, it is regarded as “T / T x = 0.95” Can do. Further, since the resin binder has a higher thermal expansion coefficient (about one digit higher) than that of the Fe-based amorphous metal, a tendency that the space factor of the Fe-based amorphous metal decreases as the molding temperature increases is observed.

より詳細に見ると、Fe基アモルファス金属として2605HB1相当組成の水アトマイズ粉末を用いた場合、いずれの樹脂バインダでも市販品の圧粉磁心よりも優れた磁気特性と高い機械的強度とが得られることが確認された。   In more detail, when water atomized powder with a composition equivalent to 2605HB1 is used as the Fe-based amorphous metal, any resin binder can provide better magnetic properties and higher mechanical strength than commercially available dust cores. Was confirmed.

Fe基アモルファス金属としてKUAMET(登録商標)を用いた場合、樹脂バインダとしてPEEKを用いれば、市販品の圧粉磁心よりも優れた磁気特性と高い機械的強度とが得られることが確認された。これは、PEEKの高い耐熱性(PEEKの熱分解温度は約773 K)が寄与していると考えられた。なお、PEEKを用い成形温度が773 K の試料は、熱分解温度に近いため、他の実施例に比して圧環強さが低下し鉄損が増大する傾向が見られた。   When KUAMET (registered trademark) was used as the Fe-based amorphous metal, it was confirmed that when PEEK was used as the resin binder, magnetic properties superior to commercially available powder magnetic cores and high mechanical strength were obtained. This was thought to be due to the high heat resistance of PEEK (the thermal decomposition temperature of PEEK was about 773 K). In addition, since the sample with a molding temperature of 773 K using PEEK was close to the thermal decomposition temperature, there was a tendency for the crushing strength to decrease and the iron loss to increase compared to other examples.

一方、Fe基アモルファス金属としてKUAMET(登録商標)を用い、樹脂バインダとしてPPSまたはPA66を用いた試料は、機械的強度および/または磁気特性が市販品の圧粉磁心のそれらと同等以下となった。これは、PPSおよびPA66はPEEKよりも耐熱性が低いことから、樹脂バインダの熱劣化に起因すると考えられた。なお、樹脂バインダの熱分解に伴って樹脂バインダの体積が減少することから、これらの試料では、成形温度の上昇と共にFe基アモルファス金属の占積率が上昇する傾向が見られた。   On the other hand, samples using KUAMET (registered trademark) as the Fe-based amorphous metal and PPS or PA66 as the resin binder had mechanical strength and / or magnetic properties equivalent to or lower than those of commercially available dust cores. . This was thought to be due to thermal degradation of the resin binder because PPS and PA66 had lower heat resistance than PEEK. In addition, since the volume of the resin binder decreases with the thermal decomposition of the resin binder, in these samples, the tendency for the space factor of the Fe-based amorphous metal to increase with increasing molding temperature was observed.

[実験3]
(圧粉磁心の作製)
Fe基アモルファス金属粉末の粒度分布が二峰分布となるように、2605HB1アモルファスリボンの粉砕粉末(平均粒径100μm、75質量%)とAW2-08(エプソンアトミックス株式会社製、結晶化温度Tx=813 K、平均粒径6μm、25質量%)とを混合した。樹脂バインダとしてPEEKを用い0.5〜16体積%となるように、該混合粉末に添加した。温間成形工程における成形温度は673 Kとした。それら以外は実験1と同様にして圧粉磁心を作製した。
[Experiment 3]
(Production of dust core)
2605HB1 amorphous ribbon ground powder (average particle size 100μm, 75% by mass) and AW2-08 (Epson Atmix Co., Ltd., crystallization temperature T x ) so that the particle size distribution of Fe-based amorphous metal powder is bimodal. = 813 K, average particle size 6 μm, 25 mass%). PEEK was used as a resin binder and added to the mixed powder so as to be 0.5 to 16% by volume. The molding temperature in the warm molding process was 673 K. Except for these, a dust core was produced in the same manner as in Experiment 1.

なお、2605HB1の粉砕粉末は、2605HB1アモルファスリボン(厚さ25μm)を粉砕したものであり、その平均粒径は、粉砕粉末を電子顕微鏡観察したときの長手方向長さの平均値である。また、本発明においては、複数のアモルファス金属粉末を混合した場合、混合したアモルファス金属粉末の内の最も低い結晶化温度を、その混合粉末の結晶化温度Txとする。同様に、複数の樹脂バインダを混合した場合、混合した樹脂バインダの内の最も低い融点を、その混合バインダの融点Tmとする。 The pulverized powder of 2605HB1 is obtained by pulverizing 2605HB1 amorphous ribbon (thickness 25 μm), and the average particle diameter is an average value of lengths in the longitudinal direction when the pulverized powder is observed with an electron microscope. In the present invention, when a mixture of a plurality of amorphous metal powder, the lowest crystallization temperature of the mixed amorphous metal powders, and the crystallization temperature T x of the mixed powder. Similarly, when a plurality of resin binders are mixed, the lowest melting point of the mixed resin binders is set as the melting point T m of the mixed binder.

すなわち、実験3においては、「Tm/Tx =0.83」および「T/Tx=0.91」となる。作製した圧粉磁心のその他の諸元を後述する表3に示す。 That is, in Experiment 3, “T m / T x = 0.83” and “T / T x = 0.91”. Other specifications of the produced dust core are shown in Table 3 described later.

(圧粉磁心の特性評価)
作製した実験3の圧粉磁心に対して、実施例1と同様に、Fe基アモルファス金属の占積率の評価および機械的強度の評価を行った。磁気特性の評価については、本実験では磁束密度評価および鉄損評価の両方を行った。結果を表3に併記する。
(Characteristic evaluation of dust core)
In the same manner as in Example 1, the space factor of the Fe-based amorphous metal and the mechanical strength were evaluated on the powder magnetic core of Experiment 3 produced. Regarding the evaluation of magnetic properties, both magnetic flux density evaluation and iron loss evaluation were performed in this experiment. The results are also shown in Table 3.

Figure 0006427862
Figure 0006427862

表3に示したように、粒度の異なるアモルファス金属粉末を混合し樹脂バインダを1〜15体積%の範囲で混合すると、実験1において成形温度を673 Kとした場合と比較して占積率をより高められることが確認された(すなわち、本発明の実施例に相当)。この結果から、結晶化温度が異なる複数種のFe基アモルファス金属の粉末を混合した場合であっても、最も結晶化温度が低いFe基アモルファス金属が塑性変形することで高密度化が可能であることが判った。   As shown in Table 3, when mixing amorphous metal powders with different particle sizes and mixing a resin binder in the range of 1 to 15% by volume, the space factor is reduced compared with the case where the molding temperature is set to 673 K in Experiment 1. It was confirmed that it was further enhanced (that is, equivalent to an embodiment of the present invention). From this result, even when multiple types of Fe-based amorphous metal powders with different crystallization temperatures are mixed, the density can be increased by plastic deformation of the Fe-based amorphous metal with the lowest crystallization temperature. I found out.

より詳細に見ると、PEEKの添加量が16体積%の場合は、鉄損は低いもののFe基アモルファス金属の占積率が80%以下になり、その結果、磁束密度が大きく低下した(本発明での比較例に相当)。一方、PEEKの添加量が0.5体積%の場合は、Fe基アモルファス金属の占積率が高く、圧環強度と磁束密度も高いが、鉄損が大きく上昇した(本発明での比較例に相当)。これは、樹脂バインダの添加量が少な過ぎてアモルファス金属粒子間の電気絶縁を十分確保することができず、渦電流損が増大したためと考えられた。   In more detail, when the amount of PEEK added is 16% by volume, the iron loss is low, but the space factor of the Fe-based amorphous metal is 80% or less, and as a result, the magnetic flux density is greatly reduced (the present invention). Equivalent to the comparative example). On the other hand, when the amount of PEEK added is 0.5% by volume, the space factor of the Fe-based amorphous metal is high, the crushing strength and the magnetic flux density are high, but the iron loss is greatly increased (corresponding to the comparative example in the present invention) . This was thought to be because the amount of resin binder added was too small to ensure sufficient electrical insulation between the amorphous metal particles, and eddy current loss increased.

[実験4]
本実験では、温間成形工程後の歪み緩和熱処理の方法として、マイクロ波加熱を利用した実験・評価を行った。加熱装置には2.45 GHzのシングルモード炉を用い、磁場中で圧粉磁心の加熱を行った。マイクロ波の初期出力は0.7 kWとし、 Fe基アモルファス金属として2605HB1相当組成の水アトマイズ粉末を用いた圧粉磁心の目標温度は673 K、KUAMET(登録商標)を用いた圧粉磁心の目標温度は698 Kとした。保持時間は20分間とした。温度の測定は、放射温度計(株式会社チノー社製、型式:IR-CAI)を用いて行った。
[Experiment 4]
In this experiment, an experiment / evaluation using microwave heating was performed as a method of strain relaxation heat treatment after the warm forming process. The 2.45 GHz single mode furnace was used as the heating device, and the dust core was heated in a magnetic field. The initial output of the microwave is 0.7 kW, the target temperature of the dust core using water atomized powder of 2605HB1 equivalent composition as Fe-based amorphous metal is 673 K, the target temperature of the dust core using KUAMET (registered trademark) is 698 K. The holding time was 20 minutes. The temperature was measured using a radiation thermometer (manufactured by Chino Co., Ltd., model: IR-CAI).

実験の結果、いずれの試料においてもマイクロ波照射と同時に20〜30℃/sの急速加熱が可能であった。さらに、マイクロ波加熱による熱処理では20分間保持でも、輻射加熱で1〜3時間保持した場合と同様に鉄損を下げることができた。すなわち、マイクロ波を加熱源とした熱処理は従来の輻射加熱に比して、処理時間を1/3以下に短縮できることが確認された。   As a result of the experiment, rapid heating at 20 to 30 ° C./s was possible simultaneously with microwave irradiation in any sample. Furthermore, in the heat treatment by microwave heating, even when held for 20 minutes, the iron loss could be reduced as in the case of holding for 1 to 3 hours by radiant heating. That is, it was confirmed that the heat treatment using a microwave as a heat source can shorten the treatment time to 1/3 or less compared with the conventional radiation heating.

なお、上記した実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   Note that the above-described embodiments have been specifically described in order to help understanding of the present invention, and the present invention is not limited to having all the configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, a part of the configuration of each embodiment can be deleted, replaced with another configuration, or added with another configuration.

10…チョークコイル、11…圧粉磁心、12…導体線、13…端子、
20…リアクトル、21…圧粉磁心、22…ストレート部材、23…U字部材。
10 ... Choke coil, 11 ... Dust core, 12 ... Conductor wire, 13 ... Terminal,
20 ... reactor, 21 ... dust core, 22 ... straight member, 23 ... U-shaped member.

Claims (7)

Fe基アモルファス金属の球状粒子からなる粉末と樹脂バインダとを主体とし、温間成形してなる圧粉磁心であって、
前記樹脂バインダは、ポリエーテルエーテルケトン、ポリフェニレンサルファイドおよびポリアミド66のいずれかであり、
前記Fe基アモルファス金属は、結晶化温度Tx(K)が763 K以下のFe-Si-B-Cr-Cアモルファス金属、Fe-Si-B-Coアモルファス金属およびFe-Si-B-Cu-Nbアモルファス金属のいずれかであり、かつ前記樹脂バインダの融点Tm(K)との関係がTm/Tx ≧0.70であり、
前記圧粉磁心は、前記温間成形によって前記Fe基アモルファス金属粉末の前記球状粒子同士が互いに押し合って塑性変形した結果、隣り合う2つの前記球状粒子同士の界面が前記樹脂バインダを介して平行になった領域を形成しており、その結果、前記Fe基アモルファス金属粉末の占積率が80%超99%以下であり、鉄損が70 kW/m3以下であり、焼結軸受−圧環強さ試験法に準じて圧環強さを測定した場合の該圧環強さが20 MPa超であることを特徴とする圧粉磁心。
A powder magnetic core mainly composed of powder composed of spherical particles of Fe-based amorphous metal and a resin binder, and formed by warm molding,
The resin binder is one of polyetheretherketone, polyphenylene sulfide and polyamide 66,
The Fe-based amorphous metal includes Fe-Si-B-Cr-C amorphous metal, Fe-Si-B-Co amorphous metal, and Fe-Si-B-Cu- having a crystallization temperature T x (K) of 763 K or less. is either Nb amorphous metal, and the relationship between the melting point T m (K) of the resin binder is a T m / T x ≧ 0.70,
In the dust core, the spherical particles of the Fe-based amorphous metal powder are pressed against each other and plastically deformed by the warm forming. As a result, the interfaces between the two adjacent spherical particles are parallel to each other through the resin binder. It forms a space made, as a result, the Fe-based amorphous metal powders space factor of is not less than 80 percent 99 percent, the iron loss Ri 70 kW / m 3 der hereinafter sintered bearing - A dust core having a crushing strength of more than 20 MPa when crushing strength is measured according to a crushing strength test method .
圧粉磁心を用いたインダクタンス素子であって、
前記圧粉磁心の少なくとも一部が、請求項1に記載の圧粉磁心であることを特徴とするインダクタンス素子。
An inductance element using a dust core,
The inductance element according to claim 1, wherein at least a part of the dust core is the dust core according to claim 1 .
請求項に記載のインダクタンス素子において、
前記インダクタンス素子は、リアクトルまたはチョークコイルであることを特徴とするインダクタンス素子。
The inductance element according to claim 2 ,
The inductance element is a reactor or a choke coil.
圧粉磁心を用いた回転電機であって、
前記圧粉磁心の少なくとも一部が、請求項1に記載の圧粉磁心であることを特徴とする回転電機。
A rotary electric machine using a dust core,
The rotating electrical machine, wherein at least a part of the dust core is the dust core according to claim 1 .
請求項に記載の回転電機において、
前記圧粉磁心は、ステータコアおよび/またはロータコアであることを特徴とする回転電機。
In the rotating electrical machine according to claim 4 ,
The rotating electrical machine characterized in that the dust core is a stator core and / or a rotor core.
Fe基アモルファス金属の球状粒子からなる粉末と樹脂バインダとを主体とする圧粉磁心の製造方法であって、
前記樹脂バインダは、ポリエーテルエーテルケトン、ポリフェニレンサルファイドおよびポリアミド66のいずれかであり、
前記Fe基アモルファス金属は、結晶化温度T x (K)が763 K以下のFe-Si-B-Cr-Cアモルファス金属、Fe-Si-B-Coアモルファス金属およびFe-Si-B-Cu-Nbアモルファス金属のいずれかであり、かつ前記樹脂バインダの融点T m (K)との関係がT m /T x ≧0.70であり、
前記Fe基アモルファス金属粉末に対して前記樹脂バインダを1体積%以上15体積%以下の範囲で混合し、前記Fe基アモルファス金属粉末の前記球状粒子の表面上に前記樹脂バインダを被覆する樹脂被覆工程と、
前記樹脂バインダが被覆された前記Fe基アモルファス金属粉末に対して、該Fe基アモルファス金属が軟化しかつ該樹脂バインダの融点以上の所定の温度および所定の圧力で成形体を形成する温間成形工程と、
前記成形体における前記Fe基アモルファス金属粉末に蓄積した歪みを緩和する歪み緩和熱処理工程とを有し
記温間成形工程は、前記所定の温度が前記結晶化温度の0.75超0.95以下かつ693 K以下であり、前記所定の圧力が500 MPa以上1000 MPa以下であり、前記Fe基アモルファス金属粉末の前記球状粒子同士が互いに押し合って塑性変形することで隣り合う2つの前記球状粒子同士の界面が前記樹脂バインダを介して平行になった領域を形成するとともに、前記成形体における前記Fe基アモルファス金属粉末の占積率を80%超99%以下とする工程であり、
その結果、前記圧粉磁心は、鉄損が70 kW/m3以下となり、焼結軸受−圧環強さ試験法に準じて圧環強さを測定した場合の該圧環強さが20 MPa超となることを特徴とする圧粉磁心の製造方法。
A method for producing a powder magnetic core mainly composed of a powder composed of spherical particles of Fe-based amorphous metal and a resin binder,
The resin binder is one of polyetheretherketone, polyphenylene sulfide and polyamide 66,
The Fe-based amorphous metal includes Fe-Si-B-Cr-C amorphous metal, Fe-Si-B-Co amorphous metal, and Fe-Si-B-Cu- having a crystallization temperature T x (K) of 763 K or less. Nb amorphous metal, and the relationship with the melting point T m (K) of the resin binder is T m / T x ≧ 0.70,
A resin coating step of mixing the resin binder with the Fe-based amorphous metal powder in a range of 1% by volume to 15% by volume and coating the resin binder on the surface of the spherical particles of the Fe-based amorphous metal powder. When,
Warm forming step in which the Fe-based amorphous metal powder is coated with the resin binder and the Fe-based amorphous metal is softened and a molded body is formed at a predetermined temperature and a predetermined pressure equal to or higher than the melting point of the resin binder. When,
A strain relaxation heat treatment step for relaxing strain accumulated in the Fe-based amorphous metal powder in the molded body ,
Before SL warm forming step, the is a predetermined temperature or less 0.75 Ultra 0.95 and 693 K of the crystallization temperature, the is a predetermined pressure 1000 MPa inclusive 500 MPa, the Fe-based amorphous metal powders The spherical particles are pressed against each other and plastically deformed to form a region in which the interface between two adjacent spherical particles is parallel via the resin binder, and the Fe-based amorphous metal in the molded body It is a process to make the space factor of the powder more than 80% and 99% or less,
As a result, the powder magnetic core has an iron loss of 70 kW / m 3 or less, and when the crushing strength is measured in accordance with the sintered bearing-crushing strength test method, the crushing strength exceeds 20 MPa. A method for producing a dust core, characterized in that:
請求項に記載の圧粉磁心の製造方法において、
前記温間成形工程および/または前記歪み緩和熱処理工程における加熱がマイクロ波加熱によってなされることを特徴とする圧粉磁心の製造方法。
In the manufacturing method of the powder magnetic core according to claim 6 ,
A method of manufacturing a dust core, wherein the heating in the warm forming step and / or the strain relaxation heat treatment step is performed by microwave heating.
JP2013221938A 2013-10-25 2013-10-25 Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine Active JP6427862B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013221938A JP6427862B2 (en) 2013-10-25 2013-10-25 Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
US14/522,162 US9449752B2 (en) 2013-10-25 2014-10-23 Dust core, method of manufacturing said dust core, and inductance element and rotary electric machine including said dust core
CN201410573689.7A CN104575916B (en) 2013-10-25 2014-10-24 Dust Core, Method of Manufacturing Said Dust Core, and Inductance Element and Rotary Electric Machine Including Said Dust Core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221938A JP6427862B2 (en) 2013-10-25 2013-10-25 Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015084353A JP2015084353A (en) 2015-04-30
JP6427862B2 true JP6427862B2 (en) 2018-11-28

Family

ID=52994597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221938A Active JP6427862B2 (en) 2013-10-25 2013-10-25 Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine

Country Status (3)

Country Link
US (1) US9449752B2 (en)
JP (1) JP6427862B2 (en)
CN (1) CN104575916B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870299B2 (en) * 2015-01-07 2024-01-09 Persimmon Technologies, Corp. Motor with composite housing
JPWO2016121950A1 (en) * 2015-01-30 2017-12-21 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, coil component, and motor
WO2016121951A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
KR20160126751A (en) * 2015-04-24 2016-11-02 삼성전기주식회사 Coil electronic component and manufacturing method thereof
US10003241B2 (en) * 2015-07-07 2018-06-19 Kabushiki Kaisha Toyota Jidoshokki Vehicle inverter device and motor-driven compressor
JP6651082B2 (en) * 2015-07-31 2020-02-19 Jfeスチール株式会社 Method for manufacturing soft magnetic powder core
WO2017086102A1 (en) * 2015-11-17 2017-05-26 アルプス電気株式会社 Method of producing dust core
US20180301269A1 (en) * 2017-04-12 2018-10-18 Intel Corporation Inductor with integrated heat dissipation structures
US10076021B1 (en) * 2017-04-12 2018-09-11 Intel Corporation Method, device and system for facilitating heat dissipation from a circuit assembly
CN107578873B (en) * 2017-09-12 2019-03-08 横店集团东磁股份有限公司 A kind of preparation method of the iron nickel molybdenum powder core of magnetic permeability μ=400
JP6702296B2 (en) * 2017-12-08 2020-06-03 株式会社村田製作所 Electronic parts
KR20210073286A (en) * 2019-12-10 2021-06-18 삼성전기주식회사 Coil component
KR20220118736A (en) * 2021-02-19 2022-08-26 엘지이노텍 주식회사 Magnetic core and coil component including the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623415B2 (en) * 1985-09-25 1994-03-30 株式会社リケン Method for producing amorphous alloy compact
JPS62226603A (en) * 1986-03-28 1987-10-05 Hitachi Metals Ltd Amophous dust core and manufacture thereof
JPS6321807A (en) * 1986-07-16 1988-01-29 Tdk Corp Electromagnetic component made from amorphous alloy powder and manufacture thereof
JPH0290601A (en) * 1988-09-28 1990-03-30 Tdk Corp Dust core
JPH10270226A (en) * 1997-03-26 1998-10-09 Masaaki Yagi Powder-molded magnetic core and manufacture therefor
JP3980828B2 (en) 2000-12-18 2007-09-26 アルプス電気株式会社 Dust core
CN1417264A (en) 2001-11-07 2003-05-14 株式会社盟德 Soft magnetic resin composition and its producfion process and formed product
CN101010756B (en) 2004-08-23 2011-06-01 日本科学冶金株式会社 Method for manufacturing magnetic core component
JP2008010672A (en) * 2006-06-29 2008-01-17 Alps Electric Co Ltd Magnetic sheet, and manufacturing method thereof
JP2008133516A (en) * 2006-11-29 2008-06-12 Nissan Motor Co Ltd Compact of amorphous metal, manufacturing method and manufacturing apparatus therefor
JP5188760B2 (en) * 2006-12-15 2013-04-24 アルプス・グリーンデバイス株式会社 Fe-based amorphous magnetic alloy and magnetic sheet
EP1933337B8 (en) * 2006-12-15 2010-09-01 Alps Green Devices Co., Ltd Fe-based amorphous magnetic alloy and magnetic sheet
JP2009120927A (en) 2007-11-19 2009-06-04 Nec Tokin Corp Soft magnetic amorphous alloy
JP2009293099A (en) * 2008-06-06 2009-12-17 Nec Tokin Corp Highly corrosion-resistant amorphous alloy
JP5372481B2 (en) 2008-12-12 2013-12-18 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
WO2010084900A1 (en) * 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
WO2011016275A1 (en) * 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
CN102693826B (en) 2011-03-24 2015-02-04 阿尔卑斯绿色器件株式会社 Powder magnetic core and manufacture method thereof
JP2012253317A (en) 2011-05-09 2012-12-20 Kobe Steel Ltd Manufacturing method of dust core, and dust core manufactured by the method
CN103946935A (en) * 2011-09-20 2014-07-23 大同特殊钢株式会社 Injection-molded reactor and compound used in same

Also Published As

Publication number Publication date
CN104575916B (en) 2017-04-12
JP2015084353A (en) 2015-04-30
CN104575916A (en) 2015-04-29
US9449752B2 (en) 2016-09-20
US20150115766A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6427862B2 (en) Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
JP6662436B2 (en) Manufacturing method of dust core
JP4944971B2 (en) Dust core and choke
JP5063861B2 (en) Composite dust core and manufacturing method thereof
WO2005020252A1 (en) Magnetic core for high frequency and inductive component using same
TW201511045A (en) Compressed powder magnetic core and manufacturing method thereof
JP7128439B2 (en) Dust core and inductor element
JP6213809B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
TW201738908A (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
JP6117504B2 (en) Manufacturing method of magnetic core
JP2004363466A (en) Complex magnetic material and method for manufacturing inductor using the same
WO2014034616A1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
JP2021182591A (en) Powder magnetic core and manufacturing method thereof
JP2017034069A (en) Powder magnetic core
JP2007220876A (en) Soft magnetic alloy consolidation object, and its manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2020053439A (en) Composite magnetic material, metal composite core, reactor, and method of manufacturing metal composite core
TWI591659B (en) Dust core, electrical and electronic components and electrical and electronic machinery
JP2014116527A (en) Method for manufacturing dust core
WO2014054093A1 (en) Dust core and process for producing same
JP7128438B2 (en) Dust core and inductor element
JP2021093405A (en) Method of manufacturing dust core
JP6415621B2 (en) Magnetic core
JPWO2020090405A1 (en) A dust molding core, a method for manufacturing the dust molding core, an inductor provided with the dust molding core, and an electronic / electrical device on which the inductor is mounted.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6427862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350