JP4150983B2 - Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof - Google Patents

Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof Download PDF

Info

Publication number
JP4150983B2
JP4150983B2 JP14223198A JP14223198A JP4150983B2 JP 4150983 B2 JP4150983 B2 JP 4150983B2 JP 14223198 A JP14223198 A JP 14223198A JP 14223198 A JP14223198 A JP 14223198A JP 4150983 B2 JP4150983 B2 JP 4150983B2
Authority
JP
Japan
Prior art keywords
magnet
powder
electrical resistivity
alloy
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14223198A
Other languages
Japanese (ja)
Other versions
JPH11329809A (en
Inventor
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP14223198A priority Critical patent/JP4150983B2/en
Publication of JPH11329809A publication Critical patent/JPH11329809A/en
Application granted granted Critical
Publication of JP4150983B2 publication Critical patent/JP4150983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【0001】
【発明の属する技術分野】
この発明は、希土類(但しYを含む)と遷移金属とボロンを主成分とする永久磁石(以下RTB磁石という)の改良に係り、磁石内部が従来の均一組成、構造と異なり組成などが順次異なる傾斜構造を有し、磁化方向に電気抵抗率の傾斜機能を付与した新しい永久磁石とその製造方法に関する。
【0002】
【従来の技術】
近年、電機機器用モータ、発電機の小型、軽量化、高効率化、省エネルギー化の流れからRTB磁石を使用した構成が採用されてきた。また同様の理由により、電気自動車のモータや発電機にも使われている。
【0003】
RTB磁石は、磁石自体の電気抵抗率が低いために磁石内部に渦電流を発生しやすく、磁気効率の低下の原因となっている。そこで一般的には、モータの鉄心材料、例えば珪素鋼板のように、最終的な磁石形状に加工した後、磁石表面に絶縁皮膜を塗布することにより、渦電流を低減する対策が取られている。
【0004】
【発明が解決しようとする課題】
しかし、従来の絶縁皮膜は、磁石表面のみを絶縁するため、使用分野、用途、使用条件に対応できない問題があった。
【0005】
一方、RTB磁石自体の組成などの変更によって電気抵抗率を高めると、磁気特性が低下するため、RTB磁石自体の改良により、電気抵抗率を高めるための構成や手段は提案されていなかった。
【0006】
例えば、モータ用の磁石の場合、磁界が作用する空隙側のみでも電気抵抗率が高いと渦電流の発生を抑制できると予測されるが、従来、かかる磁石の容易磁化方向に電気抵抗率の傾斜機能を持つRTB磁石に関して、何らの提案もされていなかった。
【0007】
この発明は、上述したRTB磁石の電気抵抗率に関する問題点に鑑み、磁石の磁化方向に電気抵抗率の傾斜機能を有する永久磁石とその製造方法の提供を目的とするものである。
【0008】
【課題を解決するための手段】
発明者らは、例えば磁界が作用する空隙側の所要部分のみ電気抵抗率が高い磁石から構成され、モータ用の磁石として最適な電気抵抗率の傾斜機能を有する永久磁石を目的に種々検討した結果、通常の高性能RTB磁石用原料粉末層の上に高電気抵抗率の磁石が得られる組成や粒度の異なる原料粉末を複数層積層し、積層方向に配向して成形した成形体を焼結して磁石化すると、磁石全体の磁気特性の低下が少なく、かつ所望の電気抵抗値を有する焼結RTB磁石が得られ、目的が達成できることを知見した。
【0009】
発明者らは、さらに電気抵抗率の傾斜機能を有する永久磁石の製造方法について種々検討した結果、成形体を作製する方法として、原料粉末の成形に際し、金型内に組成や粒度の異なる合金粉末を複数層積層して充填し、積層方向に配向して磁場中成形する方法、または、磁石主体となる合金粉末からなる所要厚みの母層成形体と、高電気抵抗率用の原料粉末からなる所要厚みの積層用成形体を作製して、これを母層上に複数層積層したり、母層の両面に積層するなどの方法により、成形体を容易に作製でき、所要の傾斜機能を有する焼結永久磁石を製造できることを知見し、この発明を完成した。
【0010】
【発明の実施の形態】
希土類元素(但しYを含む)Rは、組成の10原子%〜30原子%を占めるが、Nd,Pr,Dy,Ho,Tbのうち少なくとも1種、あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくとも1種を含むものが好ましい。また、通常Rのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタル、シジム等)を入手上の便宜等の理由により用いることができる。なお、このRは純希土類元素でなくてもよく、工業上入手可能な範囲で製造上不可避な不純物を含有するものでも差し支えない。
【0011】
Rは、上記系磁石粉末における必須元素であって、10原子%未満では結晶構造がα−鉄と同一構造の立方晶組織となるため、高磁気特性、特に高保磁力が得られず、30原子%を超えるとRリッチな非磁性相が多くなり、残留磁束密度(Br)が低下してすぐれた特性の永久磁石が得られない。よって、Rは、10原子%〜30原子%の範囲が望ましい。
【0012】
ボロンBは、上記系磁石粉末における必須元素であって、2原子%未満では菱面体構造が主相となり、高い保磁力(iHc)は得られず、28原子%を超えるとBリッチな非磁性相が多くなり、残留磁束密度(Br)が低下するため、すぐれた永久磁石が得られない。よって、Bは2原子%〜28原子%の範囲が望ましい。
【0013】
遷移金属、特にFeは、上記系磁石粉末において必須元素であり、65原子%未満では残留磁束密度(Br)が低下し、80原子%を超えると高い保磁力が得られないので、Feは65原子%〜80原子%の含有が望ましい。Feの一部をCoで置換することは、得られる磁石の磁気特性を損なうことなく、温度特性を改善することができるが、Co置換量がFeの20%を超えると、逆に磁気特性が劣化するため、好ましくない。Coの置換量がFeとCoの合計量で5原子%〜15原子%の場合は、(Br)は置換しない場合に比較して増加するため、高磁束密度を得るために好ましい。
【0014】
上記の主要成分の他、工業的生産上不可避的不純物の存在を許容でき、例えばC,P,S,Cuなど、さらにはAl,Ti,V,Cr,Mn,Bi,Nb,Ta,Mo,W,Sb,Ge,Ga,Sn,Zr,Ni,Si,Zn,Hfのうち少なくとも1種は、磁石粉末に対してその保磁力、減磁曲線の角型性を改善あるいは製造性の改善、低価格化に効果があるため添加することができる。特に、磁気特性を高めるために少量の添加元素としてCo,Al,Si,Mo,Ta,Wを添加することも有効である。
【0015】
磁石用原料には、所要のR−Fe−B系合金を溶解し、鋳造後に粉砕する溶解粉砕法、Ca還元にて直接粉末を得る直接還元拡散法、所要のR−Fe−B系合金を溶解ジェットキャスターでリボン箔を得てこれを粉砕・焼鈍する急冷合金法、所要のR−Fe−B系合金を溶解し、これをガスアトマイズで粉末化して熱処理するガスアトマイズ法、所要原料金属を粉末化したのち、メカニカルアロイングにて微粉末化して熱処理するメカニカルアロイ法及び所要のR−Fe−B系合金を水素中で加熱して分解並びに再結晶させる方法(HDDR法)などの各種製法で得た等方性、異方性粉末が利用できる。
【0016】
この発明によるRTB磁石の製造方法については通常の粉末焼結法を用いる。この発明の磁石の特徴は傾斜組成を形成させるため、数種類の粒度及び/又は組成の異なる合金粉末を作製し、例えば金型成形の場合は、合金粉末のプレス成形時に各粉末を磁化方向(NS方向)に層状に金型内に充填することにより、焼結後の製品は電気抵抗率が磁化方向に変化するという傾斜構造を持つものである。
【0017】
この発明によるRTB磁石の傾斜構造は、例えば図1に示すごとく、電気抵抗率が低い主体の母層1と電気抵抗率が高い傾斜層2,3,4からなる。具体的には各層において焼結後の密度が異なるかあるいは成分の違いにより電気抵抗率が各層で異なる構造である。
【0018】
すなわち、通常のRTB磁石合金粉末部分である母層1は電気抵抗率が通常品と同じく電気抵抗率が低いが、一方粒度、組成を変えた傾斜層2,3,4は電気抵抗率を高くできる。連続的に電気抵抗率を変えるにためには傾斜層を多層配置することが望ましいが、実用的には2層、3層程度でも十分に機能させることができる。
【0019】
また、傾斜層の厚みは、磁石の用途、要求される特性、機能、形状、さらに傾斜層の層数など種々の条件から適宜選定されるもので、例えばある種のモータの場合、実際にモータ等に使用される最大の回転数、いいかえれば周波数により表皮効果が異なるため、これらの条件に応じて傾斜層の厚みを変える必要がある。通常は傾斜層の厚みは1mmから15mm、好ましくは2mmから10mmである。
【0020】
なお、この傾斜層は通常は、磁気回路の空隙側、モータの例ではロータとステータの間の空間の渦電流の発生する側のみでよいが、モータの構造によっては母層の両面に形成させるいわゆるサンドイッチ構造も有効である。
【0021】
この発明において、粒度及び/又は組成の異なる合金粉末としては、母層に対して粒度の大きい合金粉末(電気抵抗率が高い)や、母層に対して希土類またはボロン量の多い組成の合金粉末(電気抵抗率が高い)等が適用でき、これらを適宜組み合せて使用することができる。
【0022】
この発明による磁石は、磁石自体に電気抵抗率の傾斜機能を持たせることを可能にしたことで、従来のごとく、モータに用いられる永久磁石表面に絶縁皮膜を塗布することなく、磁石製造工程中かかる機能を付与できる、工程の省力化が可能である。また、任意に傾斜機能を付加することができるため、使用分野、用途、使用条件により種々の傾斜機能を具現できる。
【0023】
【実施例】
実施例1
28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.8μm(粉末a)、4.8μm(粉末b)、6.9μm(粉末c)、12.5μm(粉末d)の4種の粉砕合金粉末を作製した。
【0024】
プレス成型用の金型に層状にそれぞれ母層として粉末aを20mm、傾斜層としては粉末b、粉末c、粉末dの各粉末をこの順序に各々2mmの高さに充填し、総充填厚みを26mmにしたのち、プレス成型して成形体を作製した。さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を作製した。
【0025】
比較例1
比較例として、28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.8ミクロンの粉砕粉末を作製し、プレス成型用の金型に26mmの高さに充填したのち、プレス成型して成形体を作製した。さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を得た。
【0026】
実施例1と比較例1の焼結磁石の各層を層状に切り出して、四端子法で電気抵抗率を測定した結果を表1に示す。実施例1に明らかな如く、磁気特性は若干低下するものの電気抵抗率の飛躍的向上が達成されたことがわかる。
【0027】
実施例2
28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.8μm(粉末e)、4.8μm(粉末f)の2種の粉砕合金粉末を作製した。
【0028】
プレス成型用の金型に層状に母層として粉末eは20mm、傾斜層として粉末fは2mmの高さに充填し、総充填高さを22mmにした後、プレス成型して成形体を作製した。さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を得た。
【0029】
比較例2
比較例として、28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.8ミクロンの粉砕粉末を作製し、プレス成型用の金型に22mmの高さに充填したのち、プレス成型し、さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を作製した。
【0030】
実施例2と比較例2の焼結磁石の各層を層状に切り出して、四端子法で電気抵抗率を測定した結果、並びに実施例2と比較例2の焼結磁石の磁気特性を測定した結果を表1に示す。
【0031】
実施例3
28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.8μm(粉末g)、12.5μm(粉末h)の2種の粉砕粉末を作製した。
【0032】
プレス成型用の金型に層状に母層として粉末gは20mm、傾斜層として粉末hは2mmの高さに充填し、総充填高さを22mmにした後、プレス成型して成形体を作製した。さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を得た。
【0033】
比較例3
比較例として、28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.8μmの粉砕粉末を作製し、プレス成型用の金型に22mmの高さに充填したのち、プレス成型し、さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を作製した。
【0034】
実施例3と比較例3の焼結磁石の各層を層状に切り出しての四端子法で電気抵抗率を測定した結果と、実施例3と比較例3の磁気特性を測定した結果を表1に示す。
【0035】
実施例4
母層の合金Aとして、28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成、傾斜層の合金Bとして、29wt%Nd−3.5wt%Dy−1.4wt%B−0.2wt%Si−0.5wt%Al−0.4wt%Ti−0.7wt%W−balFeの組成を各々真空溶解にて作製し、ボールミル粉砕により合金A粉末、合金B粉末ともに2.9μmの粉砕粉末を作製した。
【0036】
プレス成型用の金型に層状に母層として合金A粉末は20mm、傾斜層として合金B粉末は2mmの高さに充填し、総充填高さを22mmにしたのち、プレス成型し、さらに高純度アルゴン雰囲気中で1080℃×3時間焼結し、600℃×3時間で熱処理して焼結磁石を作製した。
【0037】
比較例4
比較例として、28wt%Nd−3.5wt%Dy−1.1wt%B−0.2wt%Si−0.5wt%Al−0.4wt%W−balFeの組成の合金を真空溶解にて作製し、ボールミル粉砕により2.9μmの粉砕粉末を作製し、プレス成型用の金型に22mmの高さに充填したのち、プレス成型し、さらに高純度アルゴン雰囲気中で1100℃×3時間焼結し、580℃×3時間で熱処理して焼結磁石を作製した。
【0038】
実施例4と比較例4の焼結磁石の各層を層状に切り出しての四端子法で電気抵抗率を測定した結果と、実施例4と比較例4の磁気特性を測定した結果を表1に示す。
【0039】
【表1】

Figure 0004150983
【0040】
【発明の効果】
この発明による磁石はRTBを主成分としているため、基本的に高い磁気特性を実現でき、さらに磁化容易方向に電気抵抗率の勾配を有するので、渦電流の発生を低減できる効果を有している。また、例えばモータ等の場合、いわゆる表皮効果によって、渦電流は周波数に応じて変化することから、磁石表面側、すなわちロータとステータとの間の空隙側に近いほど渦電流が大きいため、渦電流の大きさに応じて傾斜層の厚みを変えることによって、より最適な構成、機能を付与でき、渦電流の低減が可能となる。
【0041】
この発明による磁石は、全て母層からなるものに比較して磁気特性の若干の低下が否めないが、電気抵抗率の向上の効果により、渦電流の発生が大きいモータ、発電機用途に極めて有効である。さらに表皮効果は、モータや発電機の回転数及びサイズで変化するが、傾斜層数、傾斜層厚みを変えることにより、種々のモータ、発電機への最適なる適用が可能である。
【図面の簡単な説明】
【図1】この発明による電気抵抗率の傾斜機能を有する永久磁石の構成を示す模式図である。
【符号の説明】
1 母層
2,3,4 傾斜層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvements in permanent magnets (hereinafter referred to as RTB magnets) mainly composed of rare earths (including Y), transition metals, and boron, and the inside of the magnet is different from the conventional uniform composition, and the composition is sequentially different. The present invention relates to a new permanent magnet having an inclined structure and having an electric resistivity gradient function in the magnetization direction and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, a configuration using RTB magnets has been adopted because of the trend of miniaturization, weight reduction, high efficiency, and energy saving of motors and generators for electrical equipment. For the same reason, it is also used for electric motors and generators.
[0003]
RTB magnets tend to generate eddy currents inside the magnet because the electrical resistivity of the magnet itself is low, causing a reduction in magnetic efficiency. Therefore, in general, measures are taken to reduce eddy currents by applying an insulating film to the magnet surface after processing into a final magnet shape, such as a motor core material, for example, a silicon steel plate. .
[0004]
[Problems to be solved by the invention]
However, since the conventional insulating film insulates only the magnet surface, there is a problem that it cannot cope with the field of use, application, and use conditions.
[0005]
On the other hand, when the electrical resistivity is increased by changing the composition of the RTB magnet itself, the magnetic properties are deteriorated. Therefore, no configuration or means for increasing the electrical resistivity has been proposed by improving the RTB magnet itself.
[0006]
For example, in the case of a magnet for a motor, it is predicted that the generation of eddy current can be suppressed if the electric resistivity is high only on the gap side where the magnetic field acts. No proposal has been made regarding a RTB magnet having a function.
[0007]
SUMMARY OF THE INVENTION In view of the above-described problems related to the electrical resistivity of an RTB magnet, an object of the present invention is to provide a permanent magnet having a gradient function of electrical resistivity in the magnetization direction of the magnet and a method for manufacturing the permanent magnet.
[0008]
[Means for Solving the Problems]
As a result of various investigations for the purpose of a permanent magnet having a gradient function of an electric resistivity that is optimal as a magnet for a motor, for example, the inventors have composed of a magnet having a high electric resistivity only in a required portion on the air gap side where a magnetic field acts. , Sintering a molded body formed by stacking multiple layers of raw material powders with different compositions and particle sizes on a normal raw material powder layer for high performance RTB magnets, and orienting them in the stacking direction As a result, it has been found that a sintered RTB magnet having a desired electrical resistance value can be obtained with little decrease in the magnetic properties of the entire magnet, and the object can be achieved.
[0009]
The inventors have further studied various methods for producing a permanent magnet having a gradient function of electrical resistivity, and as a method for producing a molded body, alloy powders having different compositions and particle sizes are formed in the mold when forming the raw material powder. A method in which a plurality of layers are stacked, filled, oriented in the laminating direction and molded in a magnetic field, or a mother layer molded body of a required thickness composed of an alloy powder mainly composed of a magnet and a raw material powder for high electrical resistivity A molded body for lamination having a required thickness is prepared, and a molded body can be easily produced by a method such as laminating a plurality of layers on the mother layer or laminating both surfaces of the mother layer, and has a required gradient function. The present invention was completed by discovering that a sintered permanent magnet can be produced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Rare earth elements (including Y) R occupy 10 atomic% to 30 atomic% of the composition, but at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Those containing at least one of Er, Eu, Tm, Yb, Lu, and Y are preferred. In addition, one type of R is usually sufficient, but in practice, a mixture of two or more types (Misch metal, shidim, etc.) can be used for reasons of convenience. The R may not be a pure rare earth element, and may contain impurities that are inevitable in production within a commercially available range.
[0011]
R is an essential element in the above system magnet powder, and if it is less than 10 atomic%, the crystal structure has a cubic structure having the same structure as α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained, and 30 atoms. If it exceeds 50%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is preferably in the range of 10 atomic% to 30 atomic%.
[0012]
Boron B is an essential element in the above-mentioned system magnet powder. If it is less than 2 atomic%, the rhombohedral structure is the main phase, and a high coercive force (iHc) cannot be obtained. If it exceeds 28 atomic%, B-rich nonmagnetic Since the number of phases increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atomic% to 28 atomic%.
[0013]
A transition metal, particularly Fe, is an essential element in the above-described magnet powder, and if it is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 atomic%, a high coercive force cannot be obtained. The content is preferably from atomic percent to 80 atomic percent. Replacing part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. However, if the amount of Co substitution exceeds 20% of Fe, the magnetic characteristics are reversed. Since it deteriorates, it is not preferable. When the substitution amount of Co is 5 atom% to 15 atom% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is performed, and thus it is preferable for obtaining a high magnetic flux density.
[0014]
In addition to the main components described above, the presence of impurities unavoidable for industrial production can be allowed. For example, C, P, S, Cu, etc., Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, At least one of W, Sb, Ge, Ga, Sn, Zr, Ni, Si, Zn, and Hf improves the coercive force of the magnet powder, the squareness of the demagnetization curve, or improves the manufacturability. It can be added because it is effective in reducing the price. In particular, it is also effective to add Co, Al, Si, Mo, Ta, and W as a small amount of additive elements in order to improve magnetic characteristics.
[0015]
For the raw materials for magnets, the required R—Fe—B alloy is melted and dissolved and pulverized after casting, the direct reduction diffusion method for obtaining powder directly by Ca reduction, and the required R—Fe—B alloy. A rapid cooling alloy method in which a ribbon foil is obtained with a melting jet caster and then pulverized and annealed, a required R-Fe-B alloy is melted, a gas atomization method in which this is pulverized and heat treated, and a required raw material metal is pulverized After that, it is obtained by various manufacturing methods such as mechanical alloying method in which fine powder is formed by mechanical alloying and heat treatment and required R-Fe-B alloy is heated in hydrogen to decompose and recrystallize (HDDR method). Isotropic and anisotropic powders can be used.
[0016]
As a method for manufacturing the RTB magnet according to the present invention, an ordinary powder sintering method is used. A feature of the magnet of the present invention is that in order to form a gradient composition, several kinds of alloy powders having different particle sizes and / or compositions are produced. For example, in the case of mold forming, each powder is magnetized in the direction of magnetization (NS The product after sintering has an inclined structure in which the electrical resistivity changes in the magnetization direction by filling the mold in layers in the direction).
[0017]
As shown in FIG. 1, for example, the inclined structure of the RTB magnet according to the present invention comprises a main layer 1 having a low electrical resistivity and inclined layers 2, 3, and 4 having a high electrical resistivity. Specifically, the density after sintering is different in each layer, or the electrical resistivity is different in each layer due to the difference in components.
[0018]
That is, the mother layer 1 which is a normal RTB magnet alloy powder part has a low electrical resistivity as in the normal product, while the graded layers 2, 3 and 4 having different particle sizes and compositions have a high electrical resistivity. it can. In order to continuously change the electrical resistivity, it is desirable to arrange the inclined layers in multiple layers. However, practically, even two or three layers can sufficiently function.
[0019]
In addition, the thickness of the inclined layer is appropriately selected from various conditions such as the application of the magnet, required characteristics, function, shape, and the number of inclined layers. For example, in the case of a certain type of motor, the actual motor Since the skin effect varies depending on the maximum number of revolutions used for the above, in other words, the frequency, it is necessary to change the thickness of the inclined layer according to these conditions. Usually, the thickness of the inclined layer is 1 mm to 15 mm, preferably 2 mm to 10 mm.
[0020]
This inclined layer is usually only on the air gap side of the magnetic circuit, in the example of the motor, only on the side where the eddy current is generated in the space between the rotor and the stator, but depending on the motor structure, it is formed on both sides of the mother layer. A so-called sandwich structure is also effective.
[0021]
In the present invention, alloy powders having different particle sizes and / or compositions include alloy powders having a large particle size with respect to the mother layer (high electrical resistivity), and alloy powders having a composition with a large amount of rare earth or boron with respect to the mother layer. (High electrical resistivity) can be applied, and these can be used in appropriate combination.
[0022]
The magnet according to the present invention enables the magnet itself to have a function of inclining electrical resistivity, so that the magnet manufacturing process can be performed without applying an insulating film to the surface of the permanent magnet used in the motor as in the prior art. It is possible to save labor of the process that can provide such a function. In addition, since a tilt function can be arbitrarily added, various tilt functions can be implemented depending on the field of use, application, and use conditions.
[0023]
【Example】
Example 1
An alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting, and ball milling was performed. Four types of pulverized alloy powders of 2.8 μm (powder a), 4.8 μm (powder b), 6.9 μm (powder c), and 12.5 μm (powder d) were produced.
[0024]
The mold for press molding is layered in the order of 20 mm of powder a as a mother layer, powder b, powder c, and powder d as slant layers in this order to a height of 2 mm each, and the total filling thickness is After the thickness was about 26 mm, a molded body was produced by press molding. Further, sintering was performed in a high purity argon atmosphere at 1100 ° C. for 3 hours, and heat treatment was performed at 580 ° C. for 3 hours to produce a sintered magnet.
[0025]
Comparative Example 1
As a comparative example, an alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting. Then, a 2.8-micron pulverized powder was produced by ball milling, filled in a press-molding die to a height of 26 mm, and press-molded to produce a compact. Further, sintering was performed in a high purity argon atmosphere at 1100 ° C. for 3 hours, and heat treatment was performed at 580 ° C. for 3 hours to obtain a sintered magnet.
[0026]
Table 1 shows the results of cutting out each layer of the sintered magnets of Example 1 and Comparative Example 1 into layers and measuring the electrical resistivity by the four-terminal method. As is apparent from Example 1, it can be seen that a dramatic improvement in electrical resistivity was achieved, although the magnetic properties were slightly reduced.
[0027]
Example 2
An alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting, and ball milling was performed. Two kinds of pulverized alloy powders of 2.8 μm (powder e) and 4.8 μm (powder f) were produced.
[0028]
In a mold for press molding, the powder e is filled to 20 mm as a mother layer and the powder f as an inclined layer is filled to a height of 2 mm, the total filling height is about 22 mm, and press molding is performed to produce a molded body. did. Further, sintering was performed in a high purity argon atmosphere at 1100 ° C. for 3 hours, and heat treatment was performed at 580 ° C. for 3 hours to obtain a sintered magnet.
[0029]
Comparative Example 2
As a comparative example, an alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting. Then, pulverized powder of 2.8 microns was prepared by ball milling, filled in a press mold to a height of 22 mm, press molded, and further sintered at 1100 ° C. for 3 hours in a high purity argon atmosphere. A sintered magnet was produced by heat treatment at 580 ° C. for 3 hours.
[0030]
As a result of cutting out each layer of the sintered magnets of Example 2 and Comparative Example 2 into layers and measuring the electrical resistivity by the four-terminal method, and the results of measuring the magnetic properties of the sintered magnets of Example 2 and Comparative Example 2 Is shown in Table 1.
[0031]
Example 3
An alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting, and ball milling was performed. Two kinds of pulverized powders of 2.8 μm (powder g) and 12.5 μm (powder h) were produced.
[0032]
Powder g is 20mm as a base layer in layers in a mold for press molding, powder h is filled to a height of 2mm as an inclined layer, after the total filling height of about 22 mm, a molded body by press molding did. Further, sintering was performed in a high purity argon atmosphere at 1100 ° C. for 3 hours, and heat treatment was performed at 580 ° C. for 3 hours to obtain a sintered magnet.
[0033]
Comparative Example 3
As a comparative example, an alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting. Then, a 2.8 μm pulverized powder was produced by ball milling, filled in a press mold to a height of 22 mm, press molded, and further sintered at 1100 ° C. for 3 hours in a high purity argon atmosphere. A sintered magnet was produced by heat treatment at 580 ° C. for 3 hours.
[0034]
Table 1 shows the results of measuring the electrical resistivity by the four-terminal method by cutting out the layers of the sintered magnets of Example 3 and Comparative Example 3 into layers, and the results of measuring the magnetic properties of Example 3 and Comparative Example 3. Show.
[0035]
Example 4
As the parent layer alloy A, composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe, graded layer alloy B The composition of 29 wt% Nd-3.5 wt% Dy-1.4 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% Ti-0.7 wt% W-balFe was dissolved in each vacuum. The pulverized powder of 2.9 μm was prepared for both the alloy A powder and the alloy B powder by ball milling.
[0036]
In a mold for press molding, the alloy A powder is filled to a height of 20 mm as a mother layer, and the alloy B powder is filled to a height of 2 mm as an inclined layer. The total filling height is about 22 mm, and then press molding is performed. Sintered in a pure argon atmosphere at 1080 ° C. for 3 hours and heat treated at 600 ° C. for 3 hours to produce a sintered magnet.
[0037]
Comparative Example 4
As a comparative example, an alloy having a composition of 28 wt% Nd-3.5 wt% Dy-1.1 wt% B-0.2 wt% Si-0.5 wt% Al-0.4 wt% W-balFe was prepared by vacuum melting. Then, a pulverized powder of 2.9 μm was prepared by ball milling, filled in a press mold at a height of 22 mm, press molded, and further sintered at 1100 ° C. for 3 hours in a high purity argon atmosphere. A sintered magnet was produced by heat treatment at 580 ° C. for 3 hours.
[0038]
Table 1 shows the results of measuring the electrical resistivity by the four-terminal method by cutting out the layers of the sintered magnets of Example 4 and Comparative Example 4 into layers, and the results of measuring the magnetic properties of Example 4 and Comparative Example 4. Show.
[0039]
[Table 1]
Figure 0004150983
[0040]
【The invention's effect】
Since the magnet according to the present invention has RTB as a main component, it can basically realize high magnetic characteristics, and further has an effect of reducing the generation of eddy current because it has a gradient of electrical resistivity in the direction of easy magnetization. . For example, in the case of a motor or the like, the eddy current changes depending on the frequency due to the so-called skin effect. By changing the thickness of the gradient layer in accordance with the size of the layer, a more optimal configuration and function can be provided, and eddy current can be reduced.
[0041]
The magnet according to the present invention cannot be denied a slight decrease in magnetic properties as compared with the one composed entirely of the mother layer, but it is extremely effective for motors and generators that generate large eddy currents due to the effect of improving electrical resistivity. It is. Furthermore, the skin effect varies depending on the rotation speed and size of the motor or generator, but by changing the number of inclined layers and the thickness of the inclined layers, it can be optimally applied to various motors and generators.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a permanent magnet having an electrical resistivity gradient function according to the present invention.
[Explanation of symbols]
1 Mother layer 2, 3, 4 Inclined layer

Claims (2)

希土類(但しYを含む)、遷移金属及びボロンを主成分とする、同一組成で粒度が 2.8 μ m 12.5 μ m の範囲で異なる合金粉末からなる複数の粉末層が、磁石の磁化方向に積層されて焼結された焼結磁石であり、該磁化方向に電気抵抗率の傾斜機能を有する永久磁石。 Rare earth (except including Y), the main component of a transition metal and boron, a plurality of powder layers the particle size of the same composition are made of different alloys powders in a range of 2.8 μ m ~ 12.5 μ m is laminated on the magnetization direction of the magnet A permanent magnet which is a sintered magnet that has been sintered, and has an electric resistivity gradient function in the magnetization direction. 希土類(但しYを含む)、遷移金属及びボロンを主成分とし、同一組成で粒度が 2.8 μ m 12.5 μ m の範囲で異なる複数種の合金粉末を準備する工程、前記複数種の合金粉末を、プレス成形用の金型内に、磁化予定方向に所要厚みに積層する工程、積層した複数種の合金粉末をプレス成形して成形体となす工程、前記成形体を焼結、時効処理する工程からなる、電気抵抗率の傾斜機能を有する永久磁石の製造方法。Rare earth (except including Y), the main component of a transition metal and boron, the step of particle size in the same composition to prepare a plurality of kinds of alloy powders different in the range of 2.8 μ m ~ 12.5 μ m, the plurality of kinds of alloy powder In a mold for press molding in a desired thickness in the direction of magnetization, a step of press-molding a plurality of laminated alloy powders to form a molded body, and sintering and aging treatment of the molded body A method for producing a permanent magnet having a gradient function of electrical resistivity, comprising steps .
JP14223198A 1998-05-07 1998-05-07 Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof Expired - Lifetime JP4150983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14223198A JP4150983B2 (en) 1998-05-07 1998-05-07 Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14223198A JP4150983B2 (en) 1998-05-07 1998-05-07 Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11329809A JPH11329809A (en) 1999-11-30
JP4150983B2 true JP4150983B2 (en) 2008-09-17

Family

ID=15310483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14223198A Expired - Lifetime JP4150983B2 (en) 1998-05-07 1998-05-07 Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4150983B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132801A1 (en) 2007-04-13 2008-11-06 Hitachi Metals, Ltd. R-t-b sintered magnet and method for producing the same
JP4877609B2 (en) * 2008-02-22 2012-02-15 株式会社安川電機 Low iron loss permanent magnet and permanent magnet type motor using the same
DK2498267T3 (en) * 2011-03-09 2017-08-28 Siemens Ag Layered magnet

Also Published As

Publication number Publication date
JPH11329809A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP5310544B2 (en) Permanent magnet type rotating machine and manufacturing method thereof
JP5206834B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
TWI413137B (en) Functionally graded rare earth permanent magnet
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP4677942B2 (en) Method for producing R-Fe-B rare earth sintered magnet
US20150155082A1 (en) Rare Earth Laminated, Composite Magnets With Increased Electrical Rersistivity
JPH0789521B2 (en) Rare earth iron permanent magnet
JPH01103805A (en) Permanent magnet
CN114391170B (en) Rare earth magnet alloy, method for producing same, rare earth magnet, rotor, and rotary machine
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2000082610A (en) High electric resitivity rare earth permanent magnet and its manufacture
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP4150983B2 (en) Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof
JP2747236B2 (en) Rare earth iron permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine
JP3032385B2 (en) Fe-BR bonded magnet
JPH065410A (en) Rare earth element-fe-b anisotropic permanent magnet having excellent thermal stability
JPH0649882B2 (en) Alloy powder composition for permanent magnets
JP2016158491A (en) Vehicle
JPH05135931A (en) Production of rare-earth iron-based permanent magnet
JPH01123402A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term