JP6693392B2 - R- (Fe, Co) -B system sintered magnet and its manufacturing method - Google Patents

R- (Fe, Co) -B system sintered magnet and its manufacturing method Download PDF

Info

Publication number
JP6693392B2
JP6693392B2 JP2016223227A JP2016223227A JP6693392B2 JP 6693392 B2 JP6693392 B2 JP 6693392B2 JP 2016223227 A JP2016223227 A JP 2016223227A JP 2016223227 A JP2016223227 A JP 2016223227A JP 6693392 B2 JP6693392 B2 JP 6693392B2
Authority
JP
Japan
Prior art keywords
phase
atomic
less
magnet
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016223227A
Other languages
Japanese (ja)
Other versions
JP2018082040A (en
Inventor
晃一 廣田
晃一 廣田
真之 鎌田
真之 鎌田
貴弘 橋本
貴弘 橋本
中村 元
中村  元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JP2018082040A publication Critical patent/JP2018082040A/en
Application granted granted Critical
Publication of JP6693392B2 publication Critical patent/JP6693392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高温で高保磁力を有するR−(Fe,Co)−B系焼結磁石及びその製造方法に関するものである。   The present invention relates to an R— (Fe, Co) —B system sintered magnet having a high coercive force at high temperature and a method for manufacturing the same.

Nd−Fe−B系焼結磁石(以下、Nd磁石という)は、省エネや高機能化に必要不可欠な機能性材料として、その応用範囲と生産量は年々拡大している。これらの用途では、高温環境下で使用されることから、組み込まれるNd磁石には高い残留磁束密度と同時に耐熱性が求められている。一方でNd磁石は温度上昇によって容易に保磁力が低下してしまうため、予め室温での保磁力を十分に高めて使用温度において十分な保磁力が維持されるようにする必要がある。   Nd-Fe-B system sintered magnets (hereinafter referred to as Nd magnets) have been expanding their application range and production year by year as functional materials indispensable for energy saving and high functionality. In these applications, since it is used in a high temperature environment, the incorporated Nd magnet is required to have high residual magnetic flux density and heat resistance. On the other hand, since the coercive force of the Nd magnet is easily lowered due to the temperature rise, it is necessary to increase the coercive force at room temperature in advance so that the coercive force is maintained at the operating temperature.

Nd磁石の保磁力を高める手法として、主相であるNd2Fe14B化合物のNdの一部をDyもしくはTbに置換することが有効だが、これらの元素は、資源埋蔵量が少ないだけでなく、商業的に成立する生産地域が限定され、かつ地政学的要素も含むため価格が不安定で変動が大きいといったリスクがある。このような背景から、DyやTbの添加量を極力抑制した上で、保磁力を増大させる新しい方法又はR−(Fe,Co)−B系磁石の新しい磁石組成の開発が必要である。
このような点から、従来、種々の手法が提案されている。
As a method of increasing the coercive force of the Nd magnet, it is effective to replace a part of Nd of the main phase Nd 2 Fe 14 B compound with Dy or Tb, but these elements not only have a small resource reserve. However, there are risks that prices are unstable and fluctuations are large because the production areas that are commercially established are limited and also include geopolitical factors. From such a background, it is necessary to develop a new method of increasing the coercive force while suppressing the addition amount of Dy or Tb as much as possible or a new magnet composition of the R- (Fe, Co) -B magnet.
From this point of view, various methods have been conventionally proposed.

即ち、特許文献1(特許第3997413号公報)には、原子百分率で12〜17%のR(RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする)、0.1〜3%のSi、5〜5.9%のB、10%以下のCo、及び残部Fe(但し、Feは3原子%以下の置換量でAl,Ti,V,Cr,Mn,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,In,Sn,Sb,Hf,Ta,W,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素で置換されていてもよい)の組成を有し、R2(Fe,(Co),Si)14B金属間化合物を主相とする、少なくとも10kOe以上の保磁力を有するR−(Fe,Co)−B系焼結磁石において、Bリッチ相を含まず、かつ原子百分率で25〜35%のR、2〜8%のSi、8%以下のCo、残部FeからなるR−Fe(Co)−Si粒界相を体積率で少なくとも磁石全体の1%以上有するR−(Fe,Co)−B系焼結磁石が開示されている。この場合、この焼結磁石は、焼結時もしくは焼結後の熱処理時における冷却工程において、少なくとも700〜500℃までの間を0.1〜5℃/分の速度に制御して冷却するか、もしくは冷却途中で少なくとも30分以上一定温度を保持する多段冷却により冷却することにより、組織中にR−Fe(Co)−Si粒界相を形成させたものである。 That is, in Patent Document 1 (Japanese Patent No. 3997413), R of 12 to 17% in atomic percentage (R is at least two or more of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3% Si, 5 to 5.9% B, 10% or less Co, and the balance Fe (provided that Fe is a substitution amount of 3 at% or less of Al, Ti, V, Cr, Mn, Substituted with one or more elements selected from Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, In, Sn, Sb, Hf, Ta, W, Pt, Au, Hg, Pb, Bi R- (Fe, Co) -B-based firing having a coercive force of at least 10 kOe or more, which has a composition of R 2 (Fe, (Co), Si) 14 B intermetallic compound as a main phase. The binder magnet does not contain a B-rich phase and has an atomic percentage of 25 to 35% R, 2 ˜8% Si, 8% or less Co, balance R—Fe (Co) —Si grain boundary phase consisting of at least 1% or more by volume of R— (Fe, Co) —B based firing A binding magnet is disclosed. In this case, this sintered magnet is cooled at a rate of 0.1 to 5 ° C./min at least between 700 and 500 ° C. in the cooling step during sintering or during heat treatment after sintering. Alternatively, the R-Fe (Co) -Si grain boundary phase is formed in the structure by cooling by multi-stage cooling that maintains a constant temperature for at least 30 minutes during cooling.

特許文献2(特表2003−510467号公報)には、硼素分の少ないNd−Fe−B合金が開示されており、この合金から永久磁石を製造する方法として、原材料片を焼結後、300℃以下に冷却するが、その際800℃以上で平均冷却速度をΔT1/Δt1<5K/分で冷却することが記載されている。 Patent Document 2 (Japanese Patent Publication No. 2003-510467) discloses an Nd-Fe-B alloy having a low boron content. As a method for producing a permanent magnet from this alloy, after sintering raw material pieces, 300 It is described that the temperature is cooled to not higher than 0 ° C., and at that time, the average cooling rate is cooled to ΔT 1 / Δt 1 <5 K / min at 800 ° C. or higher.

特許文献3(特許第5572673号公報)には、R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備え、粒界相が希土類元素濃度の高い粒界相(Rリッチ相)と、希土類元素濃度が低く遷移金属元素濃度が高い粒界相(遷移金属リッチ相)とを含むR−T−B系磁石が記載されており、この場合、焼結を800℃〜1200℃で行った後、400℃〜800℃で熱処理を行うことでR−T−B系希土類焼結磁石を製造することが記載されている。 Patent Document 3 (Japanese Patent No. 5572673) includes a main phase mainly containing R 2 Fe 14 B and a grain boundary phase containing more R than the main phase, and the grain boundary phase has a high rare earth element concentration. An R-T-B based magnet including a phase (R-rich phase) and a grain boundary phase (transition metal-rich phase) having a low rare earth element concentration and a high transition metal element concentration is described. It is described that the RTB-based rare earth sintered magnet is manufactured by performing heat treatment at 400 ° C. to 800 ° C. after performing at 800 ° C. to 1200 ° C.

特許文献4(特開2014−132628号公報)には、粒界相が、希土類元素の合計原子濃度が70原子%以上のRリッチ相と、前記希土類元素の合計原子濃度が25〜35原子%であって強磁性である遷移金属リッチ相とを含み、前記粒界相中の前記遷移金属リッチ相の面積率が40%以上であるR−T−B系希土類焼結磁石が記載され、その製造方法として、R−T−B系希土類焼結磁石用合金材料を成形して800℃〜1200℃で焼結する工程と、前記焼結後に、650℃〜900℃の範囲であるが、遷移金属リッチ相の分解温度以下に加熱する第1熱処理工程と、前記第1熱処理工程後200℃以下まで冷却した後に、450℃〜600℃に加熱する第2熱処理工程とを行うことが記載されている。   In Patent Document 4 (JP-A-2014-132628), the grain boundary phase has an R-rich phase in which the total atomic concentration of rare earth elements is 70 atomic% or more, and the total atomic concentration of the rare earth elements is 25 to 35 atomic%. And a transition metal-rich phase that is ferromagnetic, and an area ratio of the transition metal-rich phase in the grain boundary phase is 40% or more, an RTB-based rare earth sintered magnet is described. As a manufacturing method, a step of forming an RTB-based rare earth sintered magnet alloy material and sintering it at 800 ° C. to 1200 ° C., and a range of 650 ° C. to 900 ° C. after the sintering, It is described that a first heat treatment step of heating below the decomposition temperature of the metal-rich phase and a second heat treatment step of heating to 450 ° C. to 600 ° C. after cooling to 200 ° C. or lower after the first heat treatment step are described. There is.

特許文献5(特開2014−146788号公報)には、R2Fe14Bからなる主相と、前記主相よりRを多く含む粒界相とを備えた焼結体からなり、前記主相の磁化方向がc軸方向であり、前記主相の結晶粒子がc軸方向と交差する方向に伸長する楕円状又は長円状であり、前記粒界相が、希土類元素の合計原子濃度が70原子%以上のRリッチ相と、前記希土類元素の合計原子濃度が25〜35原子%である遷移金属リッチ相とを含むR−T−B系希土類焼結磁石が示されている。また、焼結を800℃〜1200℃で行うこと、焼結後、アルゴン雰囲気中で400℃〜800℃にて熱処理を行うことが記載されている。 Patent Document 5 (Japanese Unexamined Patent Publication No. 2014-146788) discloses a sintered body including a main phase composed of R 2 Fe 14 B and a grain boundary phase containing more R than the main phase, and the main phase Has a c-axis direction, the crystal grains of the main phase have an elliptical or elliptical shape extending in a direction intersecting the c-axis direction, and the grain boundary phase has a total atomic concentration of rare earth elements of 70 An R-T-B based rare earth sintered magnet is shown which contains an R rich phase of at least atomic% and a transition metal rich phase in which the total atomic concentration of the rare earth element is 25 to 35 atomic%. Moreover, it is described that the sintering is performed at 800 ° C. to 1200 ° C., and after the sintering, heat treatment is performed at 400 ° C. to 800 ° C. in an argon atmosphere.

特許文献6(特開2014−209546号公報)には、R214B主相結晶粒子と、隣接する二つのR214B主相結晶粒子間の二粒子粒界相とを含み、該二粒子粒界相の厚みは5nm以上500nm以下であり、かつ強磁性体とは異なる磁性を有する相からなる希土類磁石が開示されている。また、[0031]には、二粒子粒界相としてT元素を含みつつも強磁性とはならない化合物を形成するための元素を含み、この目的のためには、Al、Ge、Si、Sn、GaなどのM元素を添加することが好ましいこと、希土類磁石にCuに加えてこれらの元素を添加することで、二粒子粒界相として結晶性の良いLa6Co11Ga3型結晶構造を有する結晶相を均一に幅広く形成できるとともに、該La6Co11Ga3型二粒子粒界相とR214B主相結晶粒子との界面にR−Cu薄層を形成でき、これによって主相界面の格子歪を抑制し、逆磁区の発生を抑制することができることが記載されている。この場合、この磁石の製造方法として、焼結後、500℃〜900℃の温度範囲で熱処理を行うことが記載されているが、冷却速度が100℃/分以上、特に300℃/分以上が好ましいとされている。 Patent Document 6 (Japanese Unexamined Patent Publication No. 2014-209546) includes R 2 T 14 B main phase crystal grains and a two-particle grain boundary phase between two adjacent R 2 T 14 B main phase crystal grains, A rare earth magnet is disclosed, which has a thickness of the two-grain grain boundary phase of 5 nm or more and 500 nm or less and which has a magnetic property different from that of a ferromagnetic material. In addition, [0031] contains an element for forming a compound that does not become ferromagnetic while containing T element as a two-grain grain boundary phase. For this purpose, Al, Ge, Si, Sn, It is preferable to add an M element such as Ga, and by adding these elements in addition to Cu to the rare earth magnet, a La 6 Co 11 Ga 3 type crystal structure having good crystallinity as a two-grain grain boundary phase is obtained. A crystal phase can be formed uniformly and widely, and an R—Cu thin layer can be formed at the interface between the La 6 Co 11 Ga 3 type two-grain grain boundary phase and the R 2 T 14 B main-phase crystal grain, whereby the main phase is formed. It is described that the lattice strain at the interface can be suppressed and the generation of reverse magnetic domains can be suppressed. In this case, as a manufacturing method of this magnet, it is described that after sintering, heat treatment is performed in a temperature range of 500 ° C. to 900 ° C., but if the cooling rate is 100 ° C./min or more, particularly 300 ° C./min or more. It is said to be preferable.

特許文献7(国際公開第2014/157448号)及び特許文献8(国際公開第2014/157451号)には、Nd2Fe14B型化合物を主相とし、前記主相と、二つの主相間に存在する5〜30nm厚の二粒子間粒界と、三つ以上の主相間に存在する粒界三重点とを有するR−T−B系焼結磁石が開示されている。 In Patent Document 7 (International Publication No. 2014/157448) and Patent Document 8 (International Publication No. 2014/157451), an Nd 2 Fe 14 B-type compound is used as a main phase, and the main phase is between the two main phases. Disclosed is an RTB-based sintered magnet having 5 to 30 nm-thick intergranular grain boundaries that exist and grain boundary triple points that exist between three or more main phases.

特許第3997413号公報Japanese Patent No. 3997413 特表2003−510467号公報Japanese Patent Publication No. 2003-510467 特許第5572673号公報Japanese Patent No. 5572673 特開2014−132628号公報JP, 2014-132628, A 特開2014−146788号公報JP, 2014-146788, A 特開2014−209546号公報JP, 2014-209546, A 国際公開第2014/157448号International Publication No. 2014/157448 国際公開第2014/157451号International Publication No. 2014/157451

しかしながら、DyやTbを含有しなくても、或いはDyやTbの含有量が少なくても、高温で高い保磁力を発揮するR−(Fe,Co)−B系焼結磁石が要望される。   However, there is a demand for an R- (Fe, Co) -B system sintered magnet that exhibits a high coercive force at high temperatures even if it does not contain Dy or Tb or if the content of Dy or Tb is small.

本発明は、上記要望に応えたもので、室温及び高温で高い保磁力を有する新規なR−(Fe,Co)−B系焼結磁石及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a novel R- (Fe, Co) -B system sintered magnet having a high coercive force at room temperature and high temperature, and a method for producing the same, in response to the above-mentioned demand.

本発明者らは、かかる目的を達成するために種々検討した結果、微粉砕された焼結磁石用合金粉末を成形、焼結後、400℃以下の温度まで冷却し、次いで700〜1000℃の範囲であって前記Prを5原子%以上含有し、かつ主相としてのR2(Fe,Co)14B金属間化合物よりPr含量が多いR'−(Fe,Co)−M1'相と同一成分からなる化合物の分解温度(Td℃)以上に加熱し、次いで400℃以下まで5〜100℃/分の速度で冷却して、焼結体中のR'−(Fe,Co)−M 1 '相を1体積%以下に消失させる高温熱処理工程と、この高温熱処理工程後に400〜600℃の範囲でかつTd℃以下の温度で1分〜20時間保持することで、最終製品の磁石体に含まれるR'−(Fe,Co)−M1'相の80体積%以上を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行うこと、或いは400℃以下まで5〜100℃/分の速度で冷却して、焼結体中のR'−(Fe,Co)−M 1 '相を1体積%以下に消失させ、次いで400〜600℃の範囲でかつ上記d℃以下の温度で1分〜20時間保持して、最終製品の磁石体に含まれるR'−(Fe,Co)−M1'相の80体積%以上を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行うことにより、R2(Fe,Co)14B金属間化合物を主相とし、粒界三重点にM2ホウ化物相を含み、R1.1Fe44化合物相を含まず、かつ相幅が平均で50nm以上のR'−(Fe,Co)−M'相が主相を50体積%以上被覆したコア/シェル構造を有するR−(Fe,Co)−B系焼結磁石が得られ、この磁石が、10kOe以上の保磁力が得られることを見出すと共に、かかる焼結磁石が高温でも高い保磁力を維持し、耐熱性の優れた焼結磁石であることを知見し、諸条件及び最適組成を確立して本発明を完成させた。 As a result of various studies to achieve such an object, the present inventors have shaped and sintered finely pulverized alloy powder for a sintered magnet, cooled it to a temperature of 400 ° C. or lower, and then 700 to 1000 ° C. a range contains the Pr 5 atomic% or more, and R 2 as main phase (Fe, Co) 14 B Pr content than the intermetallic compound is often R '- (Fe, Co) -M 1' phase and R '-(Fe, Co)-in the sintered body is heated to a temperature equal to or higher than the decomposition temperature (T d ° C) of the compound composed of the same component, and then cooled to 400 ° C or lower at a rate of 5 to 100 ° C / min. A high temperature heat treatment step of eliminating the M 1 'phase to 1 volume% or less, and a temperature of 400 to 600 ° C and a temperature of T d ° C or lower for 1 minute to 20 hours after the high temperature heat treatment step , R contained in the magnet body '- (Fe, Co) -M 1' precipitate than 80 vol% of phases And then perform a low temperature heat treatment step of cooling to 200 ° C. or lower, or cooling to 400 ° C. or lower at a rate of 5 to 100 ° C./min to obtain R ′-(Fe, Co) -M 1 in the sintered body. 'phase is lost less than 1% by volume, then held for 1 minute to 20 hours at and above T d ° C. below the temperature range of 400 to 600 ° C., R included in the magnet body of the final product' - (Fe , Co) -M 1 'phase is deposited at 80% by volume or more, and then a low temperature heat treatment step of cooling to 200 ° C. or less is performed to form R 2 (Fe, Co) 14 B intermetallic compound as a main phase, includes M 2 boride phase field triple point, free of R 1.1 Fe 4 B 4 compound phase, and the phase width of more than 50nm in mean R '- (Fe, Co) -M' phase the main phase 50 An R- (Fe, Co) -B system sintered magnet having a core / shell structure coated with at least volume% is obtained. It was found that this magnet can obtain a coercive force of 10 kOe or more, and it was found that such a sintered magnet maintains a high coercive force even at a high temperature and has excellent heat resistance. The present invention was completed by establishing the optimum composition.

なお、上記特許文献1は、焼結後の冷却速度が遅く、R−(Fe,Co)−Si粒界相が粒界三重点を形成するとしても、実際上、R−(Fe,Co)−Si粒界相が主相を被覆していることはなく、隣接する主相間の二粒子粒界相を形成することはない。また、特許文献2も、同様に冷却速度が遅く、R−(Fe,Co)−M粒界相が主相を被覆する組織を与えない。特許文献3は、焼結後や熱処理後の冷却速度については示されておらず、その組織についての記載からみて、二粒子粒界相は形成されていないものである。特許文献4は、粒界相がRリッチ相と、Rが25〜35原子%で強磁性相の遷移金属リッチ相を含むものであるが、本発明のR−(Fe,Co)−M相は強磁性相ではなく、反強磁性相である。また、特許文献4の第1熱処理はR−(Fe,Co)−M相の分解温度以下で行うのに対し、本発明の高温熱処理はR−(Fe,Co)−M相の分解温度以上で行うものである。
特許文献5には、焼結後アルゴン雰囲気中で400〜800℃にて熱処理を行うことが記載されているが、冷却速度の記載はなく、その組織についての記載からみると、R−(Fe,Co)−M相が主相を被覆する組織を有さないものである。特許文献6は、熱処理後の冷却速度が100℃/分以上、特に300℃/分以上が好ましいとされ、得られる磁石の粒界相はR613M相が結晶性を有し、かつアモルファスもしくは微結晶のR−Cu相で構成される。本発明は、R−(Fe,Co)−M相がアモルファスもしくは微結晶質である。
特許文献7は、第一粒界の厚み(相幅)が小さく、十分な保磁力の向上が得られないという問題がある。特許文献8も、その実施例に記載された焼結磁石の製造方法が特許文献7の磁石の製造方法と実質的に同じであるから、同様に第一粒界の厚み(相幅)が小さいものである。
また、これまで本発明のR−(Fe,Co)−M相におけるPrの含有比率と耐熱性に関する言及はない。
In Patent Document 1, even if the cooling rate after sintering is slow and the R- (Fe, Co) -Si grain boundary phase forms a grain boundary triple point, in reality, R- (Fe, Co). The -Si grain boundary phase does not cover the main phase and does not form a two-grain grain boundary phase between adjacent main phases. Further, in Patent Document 2 as well, the cooling rate is similarly slow and the R- (Fe, Co) -M grain boundary phase does not give a structure in which the main phase is covered. Patent Document 3 does not show the cooling rate after sintering or after heat treatment, and in view of the description of the structure, the two-grain grain boundary phase is not formed. In Patent Document 4, the grain boundary phase includes an R-rich phase and a transition metal-rich phase that is a ferromagnetic phase with R of 25 to 35 atomic%, but the R- (Fe, Co) -M phase of the present invention is strong. It is an antiferromagnetic phase, not a magnetic phase. Further, while the first heat treatment of Patent Document 4 is performed at a decomposition temperature of the R- (Fe, Co) -M phase or lower, the high temperature heat treatment of the present invention is at least the decomposition temperature of the R- (Fe, Co) -M phase. This is what you do.
Patent Document 5 describes performing heat treatment at 400 to 800 ° C. in an argon atmosphere after sintering, but there is no description of the cooling rate, and from the description of the structure, R- (Fe , Co) -M phase does not have a structure covering the main phase. In Patent Document 6, it is said that the cooling rate after heat treatment is preferably 100 ° C./min or higher, particularly preferably 300 ° C./min or higher, and the R 6 T 13 M phase has crystallinity in the grain boundary phase of the obtained magnet, and It is composed of an amorphous or microcrystalline R-Cu phase. In the present invention, the R- (Fe, Co) -M phase is amorphous or microcrystalline.
Patent Document 7 has a problem that the thickness (phase width) of the first grain boundary is small and a sufficient improvement in coercive force cannot be obtained. In Patent Document 8 as well, since the method for manufacturing the sintered magnet described in the example is substantially the same as the method for manufacturing the magnet in Patent Document 7, the thickness (phase width) of the first grain boundary is similarly small. It is a thing.
Further, so far, there is no mention of the Pr content ratio and heat resistance in the R- (Fe, Co) -M phase of the present invention.

従って、本発明は、下記のR−Fe−B系焼結磁石及びその製造方法を提供する。
〔1〕
12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で,かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる2種以上の元素であり、かつSiを必須とする),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,0.5原子%以下の炭素,1.5原子%以下の酸素,0.5原子%以下の窒素及び残部Feの組成を有し、R2(Fe,Co)14B金属間化合物を主相として、室温で少なくとも10kOe以上の保磁力を有するR−(Fe,Co)−B系焼結磁石であって、粒界三重点にM2ホウ化物相を含み、かつR1.1Fe44化合物相を含まず、更に25〜35原子%のR'(R'の5原子%以上のPrを必須とし、残部はNdと、Yを含む希土類元素であり、更にR'中のPr含量は主相としてのR2(Fe,Co)14B金属間化合物中のPr含量よりも多い),2〜8原子%のM1'(M1'は、Siが0.5〜50原子%を占め、残部がAl,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素),8原子%以下のCo,残部Feからなるアモルファス及び/又は微結晶質のR'−(Fe,Co)−M1'相,又は該R'−(Fe,Co)−M1'相とR'が50原子%以上のアモルファスもしくは微結晶質のR'−M1”相(M1”はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素)とからなる粒界相によって前記主相を被覆されたコア/シェル構造を有し、前記R'−(Fe,Co)−M1'相の前記主相に対する被覆率が50体積%以上であるとともに、前記主相二粒子に挟まれた前記粒界相の幅が平均で50nm以上であることを特徴とするR−(Fe,Co)−B系焼結磁石。

前記R'−(Fe,Co)−M1'相におけるM1'としてGaが1.0〜80原子%を占め、残部がSi,Al,Mn,Ni,Cu,Zn,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素であることを特徴とする〔1〕記載のR−(Fe,Co)−B系焼結磁石。

前記R'−(Fe,Co)−M1'相におけるM1'としてAlが0.5〜50原子%を占め、残部がSi,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素であることを特徴とする〔1〕記載のR−(Fe,Co)−B系焼結磁石。

前記R'−(Fe,Co)−M1'相におけるM1'としてCuが0.5〜50原子%を占め、残部がSi,Al,Mn,Ni,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素であることを特徴とする〔1〕記載のR−(Fe,Co)−B系焼結磁石。

Dy,Tb,Hoの合計含有量が5.5原子%以下であることを特徴とする〔1〕〜〔〕のいずれかに記載のR−Fe−B系焼結磁石。

〔1〕〜〔5〕のいずれか記載のR−(Fe,Co)−B系焼結磁石を製造する方法であって、
12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる2種以上の元素であり、かつSiを必須とする),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,及び残部Feの組成を有し、平均微粉粒径が5.0μm以下に微粉砕された焼結磁石用合金粉末を成形し、1000〜1150℃の温度で焼結後、400℃以下の温度まで冷却し、次いで700〜1000℃の範囲であって前記R'−(Fe,Co)−M1'相と同一成分からなる化合物の分解温度(Td℃)以上に加熱し、次いで400℃以下まで5〜100℃/分の速度で冷却して、焼結体中のR'−(Fe,Co)−M 1 '相を1体積%以下に消失させる高温熱処理工程と、この高温熱処理工程後に400〜600℃の範囲でかつTd℃以下の温度で1分〜20時間保持することで、製造される磁石体に含まれるR'−(Fe,Co)−M1'相の80体積%以上を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行うことを特徴とするR−(Fe,Co)−B系焼結磁石の製造方法。

〔1〕〜〔5〕のいずれか記載のR−(Fe,Co)−B系焼結磁石を製造する方法であって、
12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる2種以上の元素であり、かつSiを必須とする),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,及び残部Feの組成を有し、平均微粉粒径が5.0μm以下に微粉砕された焼結磁石用合金粉末を成形し、1000〜1150℃の温度で焼結後、400℃以下まで5〜100℃/分の速度で冷却して、R'−(Fe,Co)−M 1 '相の含有量が1体積%以下の焼結体を得、次いで400〜600℃の範囲でかつ前記R'−(Fe,Co)−M 1 '相と同一成分からなる化合物の分解温度(T d ℃)以下の温度で1分〜20時間保持して、製造される磁石体に含まれるR'−(Fe,Co)−M1'相の80体積%以上を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行うことを特徴とするR−(Fe,Co)−B系焼結磁石の製造方法。

前記焼結磁石用合金におけるDy及び/又はTbの含有量が0〜5.0原子%であることを特徴とする請求項6又は7記載のR−(Fe,Co)−B系焼結磁石の製造方法。
Therefore, the present invention provides the following R-Fe-B based sintered magnet and a method for producing the same.
[1]
12 to 17 atomic% of R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% of M 1 (M 1 is Si, Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi are two or more elements selected , and Si is essential. to), 0.05 to 0.5 atomic% of M 2 (M 2 is one or more elements selected Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, from W), 4.8 + 2 × m to 5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, 0.5 atomic% or less carbon, 1.5 atomic% or less oxygen, 0.5 atomic % has the following composition of nitrogen and the balance Fe, an R 2 (Fe, Co) 14 B intermetallic compound as a main phase, at least 10k at room temperature R- (Fe, Co) having the above coercive force e a -B based sintered magnet includes M 2 boride phase at the grain boundary triple point, and contains no R 1.1 Fe 4 B 4 compound phase, Further, 25 to 35 atom% of R '(requires at least 5 atom% of R's Pr, the balance is a rare earth element containing Nd and Y, and the content of Pr in R'is R 2 as a main phase. (Fe, Co) 14 B is more than Pr content in the intermetallic compound), 2 to 8 atomic% of M 1 ′ (M 1, Si occupies 0.5 to 50 atomic%, balance is Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi), Co of 8 atomic% or less, amorphous and / or microcrystalline the balance being Fe R '- (Fe, Co ) -M 1' phase, or the R '- (Fe, Co) -M 1' phase and 'Amorphous than 50 atomic% or microcrystalline R'-M 1 "phase (M 1" of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn , Sb, Pt, Au, Hg, Pb, Bi) and a core / shell structure in which the main phase is covered with a grain boundary phase of R ′-(Fe, The coverage of the Co) -M 1 'phase with respect to the main phase is 50% by volume or more, and the width of the grain boundary phase sandwiched between the two main phase particles is 50 nm or more on average. R- (Fe, Co) -B system sintered magnet.
[ 2 ]
Ga accounts for 1.0 to 80 atomic% as M 1 'in the R'-(Fe, Co) -M 1 'phase, and the balance is Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag. , Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi, one or more elements selected from the R- (Fe, Co) -B system sintering described in [1]. magnet.
[ 3 ]
Al accounts for 0.5 to 50 atomic% as M 1 'in the R'-(Fe, Co) -M 1 'phase, and the balance is Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag. , Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi, one or more elements selected from the R- (Fe, Co) -B system sintering described in [1]. magnet.
[ 4 ]
Cu accounts for 0.5 to 50 atomic% as M 1 'in the R'-(Fe, Co) -M 1 'phase, and the balance is Si, Al, Mn, Ni, Zn, Ga, Ge, Pd, Ag. , Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi, one or more elements selected from the R- (Fe, Co) -B system sintering described in [1]. magnet.
[ 5 ]
The R-Fe-B system sintered magnet according to any one of [1] to [ 4 ], wherein the total content of Dy, Tb, and Ho is 5.5 atomic% or less.
[ 6 ]
A method for producing the R- (Fe, Co) -B system sintered magnet according to any one of [1] to [5], comprising:
12 to 17 atomic% R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% M 1 (M 1 is Si, Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi are two or more elements selected , and Si is essential. to), 0.05 to 0.5 atomic% of M 2 (M 2 is one or more elements selected Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, from W), 4.8 + 2 × m-5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, and balance Fe composition, and finely pulverized to an average fine particle diameter of 5.0 μm or less. The alloy powder for a sintered magnet is molded, sintered at a temperature of 1000 to 1150 ° C., cooled to a temperature of 400 ° C. or lower, and then Wherein in the range of 00~1000 ℃ R '- (Fe, Co) -M 1' decomposition temperatures (T d ° C.) of the phase and compounds having the same ingredients were heated above, then up to 400 ° C. or less 5-100 ° C. / cooled at a rate, R in the sintered body '- (Fe, Co) -M 1' and the high-temperature heat treatment step of eliminating phase below 1 vol%, 400 to 600 ° C. after this high-temperature heat treatment step 1 minute by holding to 20 hours in the range a and T d ° C. below the temperature of, R included in the magnet body produced '- (Fe, Co) -M 1' to precipitate more than 80% by volume of phase , then 200 ° C. you and performing low temperature heat treatment step of cooling to below R - (Fe, Co) -B based sintered magnet manufacturing method of.
[ 7 ]
A method for producing the R- (Fe, Co) -B system sintered magnet according to any one of [1] to [5], comprising:
12 to 17 atomic% R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% M 1 (M 1 is Si, Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi are two or more elements selected , and Si is essential. to), 0.05 to 0.5 atomic% of M 2 (M 2 is one or more elements selected Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, from W), 4.8 + 2 × m-5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, and balance Fe composition, and finely pulverized to an average fine particle diameter of 5.0 μm or less. The alloy powder for a sintered magnet is molded and sintered at a temperature of 1000 to 1150 ° C., and then a speed of 5 to 100 ° C./min up to 400 ° C. or less. In cooled, R '- (Fe, Co ) -M 1' content of phase to give a 1% by volume or less of the sintered body, followed by 400 to 600 in the range of ℃ and the R '- (Fe, Co ) -M 1 'phase and a hold for 1 minute to 20 hours at a decomposition temperature (T d ° C.) below the temperature of the compound of the same components, R included in the magnet body produced' - (Fe, Co) - M 1 'is deposited over 80% by volume of phase, then 200 ° C. you and performing low temperature heat treatment step of cooling to below R - (Fe, Co) -B based sintered magnet manufacturing method of.
[ 8 ]
Content of Dy and / or Tb in the said alloy for sintered magnets is 0-5.0 atomic%, The R- (Fe, Co) -B type | system | group sintered magnet of Claim 6 or 7 characterized by the above-mentioned. Manufacturing method.

本発明のR−(Fe,Co)−B系焼結磁石は、Dy及びTbを含まなくても、或いはDy及びTbの含有量が少なくても、10kOe以上の保磁力を与える。   The R- (Fe, Co) -B system sintered magnet of the present invention gives a coercive force of 10 kOe or more even if it does not contain Dy and Tb or has a small content of Dy and Tb.

実施例1で作製した焼結磁石の断面を電子線プローブマイクロアナライザー(EPMA)にて観察した図(倍率3000倍)である。3 is a view (magnification: 3000 times) of the cross section of the sintered magnet produced in Example 1, observed by an electron probe microanalyzer (EPMA). FIG. 実施例1で作製した焼結磁石の粒界相を透過電子顕微鏡で観察した図である。FIG. 3 is a diagram in which a grain boundary phase of the sintered magnet manufactured in Example 1 is observed with a transmission electron microscope.

以下、本発明を更に詳細に説明する。
まず、本発明の磁石組成について説明すると、原子百分率で12〜17原子%のR、好ましくは13〜16原子%のR、0.1〜3原子%のM1、好ましくは0.5〜2.5原子%のM1、0.05〜0.5原子%のM2、好ましくは0.07〜0.4原子%のM2、4.8+2×m〜5.9+2×m原子%のB、好ましくは4.9+2×m〜5.7+2×m原子%のB(mはM2の原子%である。)、10原子%以下のCo、及び残部Feからなる組成を有する。
Hereinafter, the present invention will be described in more detail.
First, the magnet composition of the present invention will be described. In terms of atomic percentage, R of 12 to 17 atom%, preferably 13 to 16 atom% of R, 0.1 to 3 atom% of M 1 , and preferably 0.5 to 2 are used. 0.5 atomic% M 1 , 0.05 to 0.5 atomic% M 2 , preferably 0.07 to 0.4 atomic% M 2 , 4.8 + 2 × m to 5.9 + 2 × m atomic%. B, preferably 4.9 + 2 × m to 5.7 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, and the balance Fe.

ここで、RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする。Nd及びPrの比率はその合計が80〜100原子%であることが好ましい。Rは原子百分率で12原子%未満では、磁石の保磁力が極端に低下し、17原子%を超えると残留磁束密度Brが低下する。なお、RとしてDy、Tbは含有しなくてもよく、含有する場合はDyとTbの合計量として5.0原子%以下(0〜5.0原子%)、好ましくは2.0原子%以下(0〜2.0原子%)、特に1.5原子%以下(0〜1.5原子%)である。   Here, R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential. The total ratio of Nd and Pr is preferably 80 to 100 atom%. When the atomic percentage of R is less than 12 atomic%, the coercive force of the magnet is extremely reduced, and when it exceeds 17 atomic%, the residual magnetic flux density Br is reduced. It should be noted that R may not contain Dy and Tb, and when it is contained, the total amount of Dy and Tb is 5.0 atomic% or less (0 to 5.0 atomic%), preferably 2.0 atomic% or less. (0 to 2.0 atom%), particularly 1.5 atom% or less (0 to 1.5 atom%).

1は、Si,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素で構成され、R'−(Fe,Co)−M1'相及びR'−M1''相を構成する元素として添加する。M1が0.1原子%未満では、焼結体中にR'−(Fe,Co)−M1'相の生成量が少なく主相のR2(Fe,Co)14B相を十分に被覆することができないため角形性が悪化する。更に当該粒界相の幅が縮小し、期待する保磁力の向上効果が得られず好ましくない。またM1が3原子%を超える場合、残留磁束密度Brが低下するため好ましくない。 M 1 is one or more elements selected from Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi. And is added as an element that constitutes the R ′-(Fe, Co) -M 1 ′ phase and the R′-M 1 ″ phase. When M 1 is less than 0.1 atomic%, the amount of R ′-(Fe, Co) -M 1 ′ phase generated in the sintered body is small and the main phase R 2 (Fe, Co) 14 B phase is sufficiently contained. Since it cannot be covered, the squareness deteriorates. Further, the width of the grain boundary phase is reduced, and the expected effect of improving the coercive force cannot be obtained, which is not preferable. Further, when M 1 exceeds 3 atomic%, the residual magnetic flux density Br decreases, which is not preferable.

2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素で構成され、焼結磁石中で主相のR2(Fe,Co)14B相より熱力学的に安定なホウ化物(例えばTiB2,ZrB2,NbB2など)を形成する元素として添加する。このホウ化物は焼結磁石中の粒界三重点に生成し、焼結時において主相結晶粒の異常粒成長を抑制する効果がある。異常粒成長が発生することで悪化する角形性の抑制効果が期待できる。更に、本系組成のB量では,原料合金中に初晶のα−Feが過剰に残存しやすく、その結果、焼結磁石の角形性が悪化する。M2の添加によりα−Fe相の析出を抑制した結果、焼結磁石の角形性を改善する効果がある。M2が0.05原子%未満では、磁石中に形成するホウ化物の量が少なく角形性を改善する効果が小さいため好ましくない。0.5原子%を超えると、残留磁束密度Brが低下するため好ましくない。
B量は4.8+2×m〜5.9+2×m原子%の範囲であり、B量が5.9+2×m原子%より多いと、R'−(Fe,Co)−M1'相が生成しないため保磁力が低下する。4.8+2×m原子%より少ないと、残留磁束密度Brが大きく低下するため好ましくない。
M 2 is composed of one or more elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, and is the main phase R 2 (Fe, Co) 14 B phase in the sintered magnet. It is added as an element that forms a more thermodynamically stable boride (for example, TiB 2 , ZrB 2 , NbB 2, etc.). This boride is generated at the grain boundary triple points in the sintered magnet, and has an effect of suppressing abnormal grain growth of main phase crystal grains during sintering. An effect of suppressing the squareness, which is exacerbated by the occurrence of abnormal grain growth, can be expected. Further, with the B content of this system composition, the primary crystal α-Fe tends to remain excessively in the raw material alloy, and as a result, the squareness of the sintered magnet deteriorates. As a result of suppressing the precipitation of the α-Fe phase by adding M 2 , there is an effect of improving the squareness of the sintered magnet. When M 2 is less than 0.05 atomic%, the amount of boride formed in the magnet is small and the effect of improving the squareness is small, which is not preferable. If it exceeds 0.5 atom%, the residual magnetic flux density Br decreases, which is not preferable.
The amount of B is in the range of 4.8 + 2 × m to 5.9 + 2 × m at%, and when the amount of B is more than 5.9 + 2 × m at%, an R ′-(Fe, Co) -M 1 ′ phase is produced. If not, the coercive force will decrease. When it is less than 4.8 + 2 × m atom%, the residual magnetic flux density Br is significantly reduced, which is not preferable.

Coは含有しなくてもよいが、キュリー温度及び耐食性の向上を目的として、10原子%以下、好ましくは5原子%以下を添加してもよいが、10原子%を超えるCo置換は、保磁力の大幅な低下を招くので好ましくない。   Co may not be contained, but 10 atom% or less, preferably 5 atom% or less may be added for the purpose of improving the Curie temperature and corrosion resistance. This is not preferable because it causes a significant decrease in

また、本発明の磁石は、酸素、炭素、窒素の含有量が少ないほうが望ましいが、製造工程上、混入が不可避であり、酸素含有量が1.5原子%以下、特に1.2原子%以下、炭素含有量が0.5原子%以下、特に0.4原子%以下、窒素含有量が0.5原子%以下、特に0.3原子%以下まで許容し得る。その他、不純物としては、H,F,Mg,P,S,Cl,Ca等の元素を0.1質量%以下含むことを許容するが、これらの元素も少ないほうが好ましい。   The magnet of the present invention preferably has a low content of oxygen, carbon, and nitrogen, but it is inevitable to mix in the manufacturing process, and the oxygen content is 1.5 atomic% or less, particularly 1.2 atomic% or less. A carbon content of up to 0.5 atom%, especially up to 0.4 atom%, and a nitrogen content of up to 0.5 atom%, especially up to 0.3 atom%, are acceptable. In addition, as impurities, elements such as H, F, Mg, P, S, Cl and Ca are allowed to be contained in an amount of 0.1% by mass or less, but it is preferable that these elements are also small.

なお、Feの量は残部であるが、好ましくは70〜80原子%、特に75〜80原子%が好ましい。   Although the amount of Fe is the balance, it is preferably 70 to 80 atom%, particularly preferably 75 to 80 atom%.

本発明の磁石の組織は、R2(Fe,Co)14B相を主相とし、また粒界相は、25〜35原子%のR'(R'の5原子%以上のPrを必須とし、残部はNdと、Yを含む希土類元素であり、更にR'中のPr含量は主相としてのR2(Fe,Co)14B金属間化合物中のPr含量よりも多い),2〜8原子%のM1'(M1'はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素),8原子%以下のCo,残部Feからなるアモルファス及び/又は微結晶質のR'−(Fe,Co)−M1'相,及びR'が50原子%以上のアモルファスもしくは微結晶質のR'−M1''相(M1''はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素)とからなる。粒界三重点には、高融点化合物のR酸化物相,又はR炭化物相,R窒化物相,R酸フッ化物相及びこれらの混合相,ならびにM2ホウ化物相(例えばTiB2,ZrB2,NbB2など)が形成される。一方で、R2(Fe,Co)17相及びR1.1Fe44化合物相は存在しない。 The structure of the magnet of the present invention has the R 2 (Fe, Co) 14 B phase as the main phase, and the grain boundary phase essentially contains 25 to 35 atomic% of R ′ (5 atomic% or more of Pr of R ′ is essential). The balance is a rare earth element containing Nd and Y, and the Pr content in R ′ is higher than the Pr content in the R 2 (Fe, Co) 14 B intermetallic compound as the main phase), 2 to 8 Atomic% M 1 '(M 1 ' is selected from Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi. At least one element), 8 atomic% or less of Co, the balance Fe and an amorphous and / or microcrystalline R ′-(Fe, Co) -M 1 ′ phase, and R ′ of 50 atomic% or more. R'-M 1 '' phase (M 1 'amorphous or microcrystalline' is Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Consists d, In, Sn, Sb, Pt, Au, Hg, Pb, 1 or more elements selected from Bi) and. At the grain boundary triple point, the R oxide phase of the high melting point compound, or the R carbide phase, the R nitride phase, the R oxyfluoride phase and their mixed phase, and the M 2 boride phase (for example, TiB 2 , ZrB 2 , NbB 2 ) are formed. On the other hand, the R 2 (Fe, Co) 17 phase and the R 1.1 Fe 4 B 4 compound phase do not exist.

このR'−(Fe,Co)−M1'粒界相は、Fe又はFeとCoを含有する化合物で、I4/mcmなる結晶構造をもつ金属間化合物相であると考えられ、例えばR6Fe13Ga1などが挙げられる。電子線プローブマイクロアナライザー(EPMA)などの分析手法を用いて定量分析すると、測定誤差を含めて25〜35原子%のR'、2〜8原子%のM1'、0〜8原子%のCo、残部Feなる範囲にある。なお、磁石組成としてCoを含まない場合もあるが、このとき当然ながら、主相及びR'−(Fe,Co)−M1'粒界相にはCoが含まれない。同相が二粒子粒界相などの粒界相に主相を被覆するように分布することで、隣接する主相を磁気的に分断した結果、保磁力を向上させることができる。 The R '- (Fe, Co) -M 1' grain boundary phase is a compound containing Fe, or Fe and Co, it is considered to be an intermetallic compound phase having I4 / mcm becomes crystal structure, for example R 6 such as Fe 13 Ga 1 can be mentioned. When quantitative analysis using an analytical technique such as electron probe microanalyzer (EPMA), 25 to 35 atomic%, including the measurement error R ', 2 to 8 atom% of M 1', 0 to 8 atomic% of Co , The balance is Fe. In some cases, the magnet composition does not include Co, but at this time, the main phase and the R ′-(Fe, Co) -M 1 ′ grain boundary phase naturally do not include Co. By distributing the same phase in a grain boundary phase such as a two-grain grain boundary phase so as to cover the main phase, the adjacent main phases are magnetically separated, so that the coercive force can be improved.

R'−(Fe,Co)−M1'粒界相は、主相であるR2(Fe,Co)14B相と高温で液相となるR'−M1''との包晶反応による生成すると考えられる。つまりR'−(Fe,Co)−M1'は、この包晶点以下で安定相を形成する。R'−(Fe,Co)−M1'の包晶点は添加元素M1'の種類によって異なる。例えばR'=100%Ndの場合、M1'=Cuのとき640℃、M1'=Alのとき750〜820℃、M1'=Gaのとき850℃、M1'=Siのとき890℃、M1'=Snのとき1080℃である。 R '- (Fe, Co) -M 1' grain boundary phase, the main phase R 2 (Fe, Co) 14 becomes a liquid phase in the B phase and the high temperature R'-M 1 peritectic reaction with '' It is thought to be generated by. That is, R ′-(Fe, Co) -M 1 ′ forms a stable phase below this peritectic point. R - peritectic point of '(Fe, Co) -M 1 ' depends on the type of additive element M 1 '. For example, when R ′ = 100% Nd, 640 ° C. when M 1 ′ = Cu, 750 to 820 ° C. when M 1 ′ = Al, 850 ° C. when M 1 ′ = Ga, 890 ° C. when M 1 ′ = Si ℃, when M 1 '= Sn is 1080 ℃.

R'−(Fe,Co)−M1'粒界相を構成するR'のうち、5原子%以上のPrを含むのが好ましい。一般に主相のR2Fe14B化合物の異方性磁場を向上させるため、保磁力向上の観点からPrが添加されるが、保磁力の温度係数(β[%/℃])が低下するため、高温で保磁力が低下してしまう。一方、本系磁石において形成するR'−(Fe,Co)−M1'相はNdよりもPrの方が安定な相を形成するため、R'−(Fe,Co)−M1'中のPr量は主相のPr量よりも濃度が高く、主相のR2(Fe,Co)14B相のPr含有量が相対的に低下する。このPrの組成分布により室温での保磁力を高めると同時に、高温でも高い保磁力を維持することを見出した。更にR'−(Fe,Co)−M1'中のPr量が高くなることで、R'−(Fe,Co)−M1'相の包晶点が低下し、後述の主相を被覆するためのR'−(Fe,Co)−M1'相の析出条件を緩和できる。例えばR'=78原子%Nd+22原子%Prの場合、M1'=Gaのとき810℃となる。 R ′-(Fe, Co) -M 1 ′ It is preferable that Pr of 5 atom% or more is contained in R ′ constituting the grain boundary phase. Generally, Pr is added from the viewpoint of improving the coercive force in order to improve the anisotropic magnetic field of the R 2 Fe 14 B compound of the main phase, but the temperature coefficient of coercive force (β [% / ° C.]) decreases. , The coercive force decreases at high temperature. On the other hand, in the R ′-(Fe, Co) -M 1 ′ phase formed in the present magnet, Pr is more stable than Nd, so that the R ′-(Fe, Co) -M 1 ′ medium Has a higher concentration than the Pr content of the main phase, and the Pr content of the R 2 (Fe, Co) 14 B phase of the main phase relatively decreases. It has been found that this compositional distribution of Pr enhances the coercive force at room temperature and at the same time maintains a high coercive force even at high temperature. Moreover R '- (Fe, Co) -M 1' by Pr amount increases in, R '- (Fe, Co) -M 1' peritectic point of phase is lowered, cover the main phase described below The R ′-(Fe, Co) -M 1 ′ phase precipitation conditions for the purpose can be relaxed. For example, in the case of R ′ = 78 atomic% Nd + 22 atomic% Pr, the temperature becomes 810 ° C. when M 1 ′ = Ga.

R'−(Fe,Co)−M1'相が二粒子間粒界に分布したときの相幅は平均値で50nm以上であることが好ましい。より好ましくは平均値で50〜500nm、更に好ましくは平均値で100〜500nmである。相幅が平均値で50nmより狭いと磁気分断による十分な保磁力向上効果が得られない。 When the R ′-(Fe, Co) -M 1 ′ phase is distributed in the grain boundary between two particles, the average phase width is preferably 50 nm or more. The average value is more preferably 50 to 500 nm, still more preferably the average value is 100 to 500 nm. If the phase width is narrower than 50 nm on average, sufficient effect of improving coercive force due to magnetic separation cannot be obtained.

R'−(Fe,Co)−M1'相は、上記のように隣接する主相間に二粒子粒界相として介在し、主相を被覆するように存在して、主相とでいわばコア/シェル構造を形成する。R'−(Fe,Co)−M1'粒界相による主相に対する被覆率は50体積%以上であり、好ましくは60体積%以上、更に好ましくは70体積%以上で、主相全体を被覆してもよい。なお、主相を被覆する二粒子粒界相の残部はR'が50原子%以上のR'−M1''相である。 The R ′-(Fe, Co) -M 1 ′ phase is present as a two-grain grain boundary phase between the adjacent main phases as described above, and exists so as to cover the main phase, so to speak, it is a core. / Form a shell structure. The coverage of the main phase with the R ′-(Fe, Co) -M 1 ′ grain boundary phase is 50% by volume or more, preferably 60% by volume or more, more preferably 70% by volume or more, and the entire main phase is coated. You may. Note that the remainder of the second grain grain boundary phase that covers the main phase R 'is R'-M 1 of 50 atom%' is' phase.

R'−(Fe,Co)−M1'相はアモルファスもしくは微結晶、又はアモルファスを含んだ微結晶質であり、R'−M1''相はアモルファスもしくは微結晶質である。本発明において、微結晶質とは、透過電子顕微鏡観察による電子照射径範囲内において複数の方向に配向した結晶集団で、結晶のサイズはおよそ10nm以下であり、結晶質とは、電子照射径範囲内において一方向に配向した単結晶体で、結晶のサイズはおよそ10nmを超えるものと定義する。 The R ′-(Fe, Co) -M 1 ′ phase is amorphous or microcrystalline, or microcrystalline containing amorphous, and the R′-M 1 ″ phase is amorphous or microcrystalline. In the present invention, microcrystalline refers to a group of crystals oriented in a plurality of directions within an electron irradiation diameter range observed by a transmission electron microscope, the size of the crystal is approximately 10 nm or less, and crystalline refers to an electron irradiation diameter range. It is defined as a single crystal body oriented in one direction and having a crystal size of more than about 10 nm.

本発明の磁石の平均結晶粒径は保磁力向上の観点から6μm以下、好ましくは1.5〜5.5μm、より好ましくは2.0〜5.0μmであり、主相のC軸配向度が98%以上であることが好ましい。平均結晶粒径の測定方法は、次の手順で行う。まず焼結磁石の断面を鏡面になるまで研磨したあと、例えばビレラ液(グリセリン:硝酸:塩酸混合比が3:1:2の混合液)等を用いて粒界を選択的にエッチングした面をレーザー顕微鏡にて観察する。得られた観察像をもとに、画像解析にて個々の粒子の断面積を測定し、等価な円としての直径を算出する。各粒度の占める面積分率のデータを基に平均粒径を求める。
焼結体の平均結晶粒径の制御は、微粉砕時の焼結磁石合金粉末の平均粒度を下げることで行う。
The average crystal grain size of the magnet of the present invention is 6 μm or less, preferably 1.5 to 5.5 μm, more preferably 2.0 to 5.0 μm from the viewpoint of improving coercive force, and the degree of C-axis orientation of the main phase is It is preferably at least 98%. The average crystal grain size is measured by the following procedure. First, the cross section of the sintered magnet is polished to a mirror surface, and then the surface where the grain boundaries are selectively etched using, for example, a villera solution (mixed solution of glycerin: nitric acid: hydrochloric acid at a mixing ratio of 3: 1: 2) is prepared. Observe with a laser microscope. Based on the obtained observation image, the cross-sectional area of each particle is measured by image analysis, and the diameter as an equivalent circle is calculated. The average particle size is calculated based on the data of the area fraction occupied by each particle size.
The average grain size of the sintered body is controlled by lowering the average grain size of the sintered magnet alloy powder during fine pulverization.

本発明の焼結磁石の着磁率は96%以上、特に97%以上である。着磁率の定義は、熱消磁状態から磁化配向方向に平行に640kA/mの磁場を印加した時のPc=1における磁気分極を、熱消磁状態から磁化配向方向に平行に1590kA/mの磁場を印加した時のPc=1における磁気分極で規格化し算出する。   The magnetization rate of the sintered magnet of the present invention is 96% or more, and particularly 97% or more. The magnetic susceptibility is defined as the magnetic polarization at Pc = 1 when a magnetic field of 640 kA / m is applied parallel to the magnetization orientation direction from the thermal demagnetization state, and a magnetic field of 1590 kA / m from the thermal demagnetization state parallel to the magnetization orientation direction. It is standardized and calculated by the magnetic polarization at Pc = 1 when applied.

本発明の上記組織を有するR−(Fe,Co)−B系焼結磁石を得る場合は、まず常法に従い、母合金を粗粉砕、微粉砕、成形、焼結させる。
母合金は原料金属又は合金を真空又は不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、又はストリップキャストにより鋳造することで得ることができる。また、主相であるR2−(Fe,Co)14−B1相の組成に近い母合金と、焼結温度において液相としてRリッチな組成を有する焼結助剤合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる2合金法も本発明には適用可能である。この場合、鋳造合金は、鋳造時の冷却速度に依存してα−Feが残存し易いため、R2−(Fe,Co)14−B1相の量を増やす目的で、必要に応じて、真空又はAr雰囲気中で700〜1200℃で1時間以上熱処理する均質化処理を施す。焼結助剤合金については鋳造法の他に、いわゆる液体急冷法も適用できる。
In order to obtain the R- (Fe, Co) -B system sintered magnet having the above structure of the present invention, the mother alloy is first coarsely pulverized, finely pulverized, molded and sintered according to a conventional method.
The mother alloy can be obtained by melting a raw material metal or alloy in a vacuum or an inert gas, preferably Ar atmosphere, and then casting it into a flat mold or a book mold, or casting by strip casting. Further, a mother alloy having a composition close to that of the main phase R 2- (Fe, Co) 14 -B 1 phase and a sintering aid alloy having an R-rich composition as a liquid phase at the sintering temperature are separately prepared. However, a so-called two-alloy method in which coarse pulverization is followed by weighing and mixing is also applicable to the present invention. In this case, in the cast alloy, α-Fe tends to remain depending on the cooling rate at the time of casting. Therefore, in order to increase the amount of the R 2 — (Fe, Co) 14 —B 1 phase, if necessary, A homogenization treatment is performed by performing heat treatment at 700 to 1200 ° C. for 1 hour or more in a vacuum or an Ar atmosphere. For the sintering aid alloy, a so-called liquid quenching method can be applied in addition to the casting method.

上記合金は、通常0.05〜3mm、特に0.05〜1.5mmに粗粉砕される。粗粉砕工程にはブラウンミル、水素粉砕などが用いられ、ストリップキャストにより作製された合金の場合は水素粉砕が好ましい。粗粉は、例えば高圧窒素を用いたジェットミルなどにより、通常5μm以下に微粉砕される。また、酸素濃度は微粉砕時における酸素濃度と水分量を下げて制御する。なお、合金の粗粉砕、混合、微粉砕のいずれかの工程において、必要に応じて、潤滑剤等の添加剤を添加することができる。   The above alloy is generally crushed to a size of 0.05 to 3 mm, especially 0.05 to 1.5 mm. A brown mill, hydrogen crushing or the like is used in the coarse crushing step, and hydrogen crushing is preferable in the case of an alloy produced by strip casting. The coarse powder is usually finely pulverized to 5 μm or less by, for example, a jet mill using high pressure nitrogen. The oxygen concentration is controlled by lowering the oxygen concentration and water content during fine pulverization. If necessary, an additive such as a lubricant can be added in any of the steps of coarse crushing, mixing, and fine crushing of the alloy.

この場合、合金組成は、12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,及び残部Feの組成である。 In this case, the alloy composition is 12 to 17 atomic% R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% M 1 (M 1 is one or more elements selected from Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi). , 0.05 to 0.5 atomic% M 2 (M 2 is one or more elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W), 4.8 + 2 × m The composition is 5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, and the balance Fe.

上記微粉砕されたR−(Fe,Co)−B系焼結磁石用合金は、磁界中圧縮成形機で成形され、焼結される。焼結は真空又は不活性ガス雰囲気中、通常900〜1250℃、特に1000〜1150℃で、0.5〜5時間行うことが好ましい。   The above-mentioned finely pulverized R- (Fe, Co) -B based alloy for sintered magnet is molded in a magnetic field compression molding machine and sintered. Sintering is preferably performed at 900 to 1250 ° C., particularly at 1000 to 1150 ° C. in a vacuum or an inert gas atmosphere for 0.5 to 5 hours.

本発明において、上記組織形態の焼結磁石を得る第一の方法は、成形体を以上のように焼結した後、400℃以下、特に300℃以下(通常、室温)まで冷却する。この場合の冷却速度は特に制限されない。次に、700〜1000℃の範囲であって、R'−(Fe,Co)−M1'相と同一成分からなる化合物の分解温度(Td℃)以上に加熱する。この場合の昇温速度も特に限定されないが、1〜20℃/分、特に2〜10℃/分が好ましい。上記の通り分解温度は添加元素Mの種類によって異なる。なお、上記温度での保持時間は1時間以上が好ましく、より好ましくは1〜10時間、更に好ましくは1〜5時間である。なお、熱処理雰囲気は、真空又はArガスなどの不活性ガス雰囲気であることが好ましい。 In the present invention, the first method of obtaining a sintered magnet having the above-mentioned texture is to sinter the molded body as described above and then cool it to 400 ° C or lower, particularly 300 ° C or lower (usually room temperature). The cooling rate in this case is not particularly limited. Next, it is heated in the range of 700 to 1000 ° C. to the decomposition temperature (Td ° C.) or higher of the compound composed of the same components as the R ′-(Fe, Co) -M 1 ′ phase. The heating rate in this case is also not particularly limited, but is preferably 1 to 20 ° C./min, and particularly 2 to 10 ° C./min. As described above, the decomposition temperature depends on the type of the additional element M. The holding time at the above temperature is preferably 1 hour or longer, more preferably 1 to 10 hours, further preferably 1 to 5 hours. The heat treatment atmosphere is preferably vacuum or an inert gas atmosphere such as Ar gas.

上記の高温熱処理後、400℃以下、特に300℃以下に冷却する。この場合、少なくとも400℃までの冷却速度は5〜100℃/分、好ましくは5〜80℃/分、より好ましくは5〜50℃/分の速度で冷却する。冷却後の組織には、R'−(Fe,Co)−M1'相が1体積%以下に消失し、主にR2(Fe,Co)14B相、R'−M1''相,R酸化物相,及びM2ホウ化物相で構成され、R炭化物相,R窒化物相,R酸フッ化物相又はこれらの混合相を同時に含む可能性がある。冷却速度が5℃/分未満の場合、R'−(Fe,Co)−M1'相が過剰に析出して粒界三重点に大きく偏析してしまい、結果的に磁気特性を大きく低下させてしまう。一方、100℃/分を超える冷却速度は冷却過程においてR'−(Fe,Co)−M1'相の析出を抑制することができるが、冷却後にR'−M1''相が粒界三重点に偏析してしまうため、その後の低温熱処理でR'−(Fe,Co)−M1'相及びR'−M1''相を二粒子間粒界相に連続かつ均一に析出,分布させることができない。 After the above high temperature heat treatment, it is cooled to 400 ° C. or lower, particularly 300 ° C. or lower. In this case, the cooling rate up to at least 400 ° C. is 5 to 100 ° C./min, preferably 5 to 80 ° C./min, and more preferably 5 to 50 ° C./min. In the structure after cooling, the R ′-(Fe, Co) -M 1 ′ phase disappeared to 1 volume% or less, and the R 2 (Fe, Co) 14 B phase and the R′-M 1 ″ phase were mainly contained. , R oxide phase, and M 2 boride phase, and may simultaneously include R carbide phase, R nitride phase, R oxyfluoride phase, or a mixed phase thereof. If the cooling rate is less than 5 ° C./min, the R ′-(Fe, Co) -M 1 ′ phase excessively precipitates and segregates largely at the grain boundary triple points, resulting in a large decrease in magnetic properties. Will end up. On the other hand, a cooling rate of more than 100 ° C./min can suppress the precipitation of the R ′-(Fe, Co) -M 1 ′ phase in the cooling process, but after cooling, the R′-M 1 ″ phase becomes grain boundary. Since it segregates into three points, the R ′-(Fe, Co) -M 1 ′ phase and the R′-M 1 ″ phase are continuously and uniformly precipitated in the intergranular grain boundary phase in the subsequent low temperature heat treatment, Cannot be distributed.

次に、上記高温熱処理工程後に400〜600℃の範囲のR'−(Fe,Co)−M1'相の分解温度以下の温度に保持してR'−(Fe,Co)−M1'相を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行う。この場合、上記400〜600℃の温度範囲への昇温速度は特に制限されない。この低温熱処理は400〜600℃、より好ましくは400〜550℃、更に好ましくは450〜550℃において1〜50時間、より好ましくは1〜20時間で、真空もしくは不活性ガス雰囲気中で行うのが望ましい。先に述べたR'−(Fe,Co)−M1'粒界相の分解温度以下で、低温からR'−(Fe,Co)−M1'粒界相を析出させることで、主相をR'−(Fe,Co)−M1'粒界相で被覆した組織が得られる。400℃未満は反応速度が遅く実用的ではない。一方、600℃を超えると反応速度が速く、R'−(Fe,Co)−M1'粒界相が過剰に析出して粒界三重点に大きく偏析してしまい、結果的に磁気特性を大きく低下させてしまう。 Next, R in the range of 400 to 600 ° C. after the high-temperature heat treatment step '- (Fe, Co) -M 1' holds the decomposition temperature below the temperature of the phase R '- (Fe, Co) -M 1' A low temperature heat treatment step of precipitating the phase and then cooling to 200 ° C. or lower is performed. In this case, the heating rate to the temperature range of 400 to 600 ° C. is not particularly limited. This low temperature heat treatment is carried out at 400 to 600 ° C., more preferably 400 to 550 ° C., further preferably 450 to 550 ° C. for 1 to 50 hours, more preferably 1 to 20 hours in a vacuum or an inert gas atmosphere. desirable. Previously mentioned R '- (Fe, Co) -M 1' below the decomposition temperature of the grain boundary phase, the low-temperature R - By '(Fe, Co) -M 1 ' precipitating a grain boundary phase, the main phase the R '- (Fe, Co) -M 1' coated with the grain boundary phase structure is obtained. If it is less than 400 ° C, the reaction rate is too slow to be practical. On the other hand, when the temperature exceeds 600 ° C., the reaction rate is fast, and the R ′-(Fe, Co) -M 1 ′ grain boundary phase is excessively precipitated and largely segregated at the grain boundary triple point, resulting in the magnetic properties being reduced. Will greatly reduce.

また、上記組織形態の焼結磁石を得る第二の方法は、上記のように焼結した後、400℃以下、特に300℃以下に冷却するものであるが、この場合はその冷却速度が重要で、少なくとも400℃までの冷却速度は5〜100℃/分、好ましくは5〜80℃/分、より好ましくは5〜50℃/分の速度で冷却する。なお、冷却速度が遅すぎる場合及び早すぎる場合の問題は第一の方法の高温熱処理後の冷却速度の場合と同じである。このように400℃以下に冷却することでR'−(Fe,Co)−M1'相の体積分率が1体積%以下の組織が得られる。 A second method of obtaining a sintered magnet having the above-mentioned structure is to cool the sintered magnet to 400 ° C. or lower, particularly 300 ° C. or lower after sintering as described above. In this case, the cooling rate is important. Then, the cooling rate up to at least 400 ° C. is 5 to 100 ° C./min, preferably 5 to 80 ° C./min, and more preferably 5 to 50 ° C./min. The problems when the cooling rate is too slow or too fast are the same as in the case of the cooling rate after the high temperature heat treatment of the first method. By cooling to 400 ° C. or less, a structure having a volume fraction of the R ′-(Fe, Co) -M 1 ′ phase of 1 vol% or less can be obtained.

次に、上記のように冷却した後、上記第一の方法における低温熱処理と同様の熱処理を行う。即ち、400〜600℃の範囲のR'−(Fe,Co)−M1'相の分解温度以下の温度に保持してR'−(Fe,Co)−M1'相を析出させる。なお、その方法、条件等は第一の方法の低温熱処理の場合と同様であるので、その説明を省略する。 Next, after cooling as described above, the same heat treatment as the low temperature heat treatment in the first method is performed. I.e., R in the range of 400~600 ℃ '- (Fe, Co ) -M 1' holds the decomposition temperature below the temperature of the phase R '- (Fe, Co) -M 1' phase is precipitated. The method, conditions, etc. are the same as those in the case of the low temperature heat treatment of the first method, and therefore the description thereof will be omitted.

以下、本発明に対する実施例及び比較例を具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Examples and comparative examples for the present invention will be specifically described below, but the present invention is not limited to the following examples.

[実施例1〜3,参考例1,比較例1〜3]
所定の組成となるように秤量されたRメタル(RはNd及びPr,又はジジム),電解鉄,Co,その他メタル及びフェロボロンを使用し、Ar雰囲気中で高周波溶解後、ストリップキャスト法により0.2〜0.3mm厚の合金薄帯を作製した。次に、作製した合金薄帯を常温で水素吸蔵処理を行った後、真空中600℃で加熱し脱水素化を行った。得られた合金粉末に潤滑剤としてステアリン酸を0.07質量%加えて混合した。次に得られた粗粉末を窒素気流中のジェットミルで微粉砕して平均粒径3μm程度の微粉末を作製した。その後、不活性ガス雰囲気中でこれらの微粉末を成形装置の金型に充填し、15kOeの磁界中で配向させながら、磁界に対して垂直方向に加圧成形した。この成形体を真空中において1050〜1100℃で3時間焼結した。得られた焼結体は、400℃以下まで冷却した後、900℃で1時間保持の高温熱処理後、200℃まで冷却し、更に2時間の低温熱処理後、200℃以下に冷却した。表1に磁石の組成を、表2に900℃の高温熱処理後、200℃までの冷却速度、低温熱処理温度、低温熱処理後の磁気特性及び組織形態等を示す。
実施例1で作製した焼結磁石の断面を電子線プローブマイクロアナライザー(EPMA)にて観察したところ、図1に示すように、実施例1の組織は、主相よりPrリッチな粒界相が主相を被覆する組織が観察された(なお、図1において、TREは全希土類量を示す)。また、Pr/(全希土類量)を示す図において、黒い方にPrが濃い。実施例1の組織を透過型電子顕微鏡(TEM)にて観察したところ、図2に示すように粒界相の厚みは約50〜130nmであった。表3に実施例1〜3,参考例1及び比較例1〜3のR'−M1''相とR'−(Fe,Co)−M1'相及び主相のEDXによる半定量値を示す。その結果、実施例1〜3,参考例1においてR'−M1''相及びR'−(Fe,Co)−M1'相のPrの含有率は主相のそれより高かった。
[Examples 1 to 3, Reference Example 1 , Comparative Examples 1 to 3]
R metal (R is Nd and Pr, or didymium), electrolytic iron, Co, other metals and ferroboron, which are weighed so as to have a predetermined composition, are used. An alloy ribbon having a thickness of 2 to 0.3 mm was produced. Next, the produced alloy ribbon was subjected to hydrogen absorption treatment at room temperature, and then heated at 600 ° C. in vacuum for dehydrogenation. 0.07% by mass of stearic acid as a lubricant was added to and mixed with the obtained alloy powder. Next, the obtained coarse powder was finely pulverized with a jet mill in a nitrogen stream to produce fine powder having an average particle size of about 3 μm. Then, these fine powders were filled in a mold of a molding apparatus in an inert gas atmosphere, and pressure-molded in a direction perpendicular to the magnetic field while orienting in a magnetic field of 15 kOe. The compact was sintered in vacuum at 1050-1100 ° C. for 3 hours. The obtained sintered body was cooled to 400 ° C. or lower, subjected to high temperature heat treatment of 900 ° C. for 1 hour, cooled to 200 ° C., further low temperature heat treatment for 2 hours, and cooled to 200 ° C. or lower. Table 1 shows the composition of the magnet, and Table 2 shows the cooling rate up to 200 ° C. after the high temperature heat treatment at 900 ° C., the low temperature heat treatment temperature, the magnetic properties and the structure morphology after the low temperature heat treatment.
When the cross section of the sintered magnet produced in Example 1 was observed with an electron probe microanalyzer (EPMA), as shown in FIG. 1, the structure of Example 1 had a grain boundary phase richer in Pr than the main phase. A structure covering the main phase was observed (note that in FIG. 1, TRE represents the total rare earth content). In addition, in the figure showing Pr / (total rare earth content), Pr is darker on the black side. When the structure of Example 1 was observed with a transmission electron microscope (TEM), the thickness of the grain boundary phase was about 50 to 130 nm as shown in FIG. In Table 3, semi-quantitative values by EDX of the R′-M 1 ″ phase and R ′-(Fe, Co) -M 1 ′ phase and the main phase of Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 3 are shown. Indicates. As a result, Examples 1 to 3, R'-M 1 'in Reference Example 1' phase and R '- (Fe, Co) content of Pr in -M 1' phase was higher than that of the main phase.

Claims (8)

12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で,かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる2種以上の元素であり、かつSiを必須とする),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,0.5原子%以下の炭素,1.5原子%以下の酸素,0.5原子%以下の窒素及び残部Feの組成を有し、R2(Fe,Co)14B金属間化合物を主相として、室温で少なくとも10kOe以上の保磁力を有するR−(Fe,Co)−B系焼結磁石であって、粒界三重点にM2ホウ化物相を含み、かつR1.1Fe44化合物相を含まず、更に25〜35原子%のR'(R'の5原子%以上のPrを必須とし、残部はNdと、Yを含む希土類元素であり、更にR'中のPr含量は主相としてのR2(Fe,Co)14B金属間化合物中のPr含量よりも多い),2〜8原子%のM1'(M1'は、Siが0.5〜50原子%を占め、残部がAl,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素),8原子%以下のCo,残部Feからなるアモルファス及び/又は微結晶質のR'−(Fe,Co)−M1'相,又は該R'−(Fe,Co)−M1'相とR'が50原子%以上のアモルファスもしくは微結晶質のR'−M1”相(M1”はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素)とからなる粒界相によって前記主相を被覆されたコア/シェル構造を有し、前記R'−(Fe,Co)−M1'相の前記主相に対する被覆率が50体積%以上であるとともに、前記主相二粒子に挟まれた前記粒界相の幅が平均で50nm以上であることを特徴とするR−(Fe,Co)−B系焼結磁石。 12 to 17 atomic% of R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% of M 1 (M 1 is Si, Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi are two or more elements selected , and Si is essential. to), 0.05 to 0.5 atomic% of M 2 (M 2 is one or more elements selected Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, from W), 4.8 + 2 × m to 5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, 0.5 atomic% or less carbon, 1.5 atomic% or less oxygen, 0.5 atomic % has the following composition of nitrogen and the balance Fe, an R 2 (Fe, Co) 14 B intermetallic compound as a main phase, at least 10k at room temperature R- (Fe, Co) having the above coercive force e a -B based sintered magnet includes M 2 boride phase at the grain boundary triple point, and contains no R 1.1 Fe 4 B 4 compound phase, Further, 25 to 35 atom% of R '(requires at least 5 atom% of R's Pr, the balance is a rare earth element containing Nd and Y, and the content of Pr in R'is R 2 as a main phase. (Fe, Co) 14 B is more than Pr content in the intermetallic compound), 2 to 8 atomic% of M 1 ′ (M 1, Si occupies 0.5 to 50 atomic%, balance is Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi), Co of 8 atomic% or less, amorphous and / or microcrystalline the balance being Fe R '- (Fe, Co ) -M 1' phase, or the R '- (Fe, Co) -M 1' phase and 'Amorphous than 50 atomic% or microcrystalline R'-M 1 "phase (M 1" of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn , Sb, Pt, Au, Hg, Pb, Bi) and a core / shell structure in which the main phase is covered with a grain boundary phase of R ′-(Fe, The coverage of the Co) -M 1 'phase with respect to the main phase is 50% by volume or more, and the width of the grain boundary phase sandwiched between the two main phase particles is 50 nm or more on average. R- (Fe, Co) -B system sintered magnet. 前記R'−(Fe,Co)−M1'相におけるM1'としてGaが1.0〜80原子%を占め、残部がSi,Al,Mn,Ni,Cu,Zn,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素であることを特徴とする請求項1記載のR−(Fe,Co)−B系焼結磁石。 Ga accounts for 1.0 to 80 atomic% as M 1 'in the R'-(Fe, Co) -M 1 'phase, and the balance is Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag. 2. The R- (Fe, Co) -B based sintering according to claim 1, wherein the R- (Fe, Co) -B system is one or more kinds of elements selected from Cd, In, Sn, Sb, Pt, Au, Hg, Pb and Bi. magnet. 前記R'−(Fe,Co)−M1'相におけるM1'としてAlが0.5〜50原子%を占め、残部がSi,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素であることを特徴とする請求項1記載のR−(Fe,Co)−B系焼結磁石。 Al accounts for 0.5 to 50 atomic% as M 1 'in the R'-(Fe, Co) -M 1 'phase, and the balance is Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag. 2. The R- (Fe, Co) -B based sintering according to claim 1, wherein the R- (Fe, Co) -B system is one or more kinds of elements selected from Cd, In, Sn, Sb, Pt, Au, Hg, Pb and Bi. magnet. 前記R'−(Fe,Co)−M1'相におけるM1'としてCuが0.5〜50原子%を占め、残部がSi,Al,Mn,Ni,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる1種以上の元素であることを特徴とする請求項1記載のR−(Fe,Co)−B系焼結磁石。 Cu accounts for 0.5 to 50 atomic% as M 1 'in the R'-(Fe, Co) -M 1 'phase, and the balance is Si, Al, Mn, Ni, Zn, Ga, Ge, Pd, Ag. 2. The R- (Fe, Co) -B based sintering according to claim 1, wherein the R- (Fe, Co) -B system is one or more kinds of elements selected from Cd, In, Sn, Sb, Pt, Au, Hg, Pb and Bi. magnet. Dy及び/又はTbの含有量が0〜5.0原子%であることを特徴とする請求項1〜のいずれか1項記載のR−(Fe,Co)−B系焼結磁石。 Dy and / or Tb claim 1 or one of claims R- (Fe, Co) of 4 content characterized in that it is a 0 to 5.0 atomic% of -B based sintered magnet. 請求項1〜5のいずれか1項記載のR−(Fe,Co)−B系焼結磁石を製造する方法であって、
12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる2種以上の元素であり、かつSiを必須とする),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,及び残部Feの組成を有し、平均微粉粒径が5.0μm以下に微粉砕された焼結磁石用合金粉末を成形し、1000〜1150℃の温度で焼結後、400℃以下の温度まで冷却し、次いで700〜1000℃の範囲であって前記R'−(Fe,Co)−M1'相と同一成分からなる化合物の分解温度(Td℃)以上に加熱し、次いで400℃以下まで5〜100℃/分の速度で冷却して、焼結体中のR'−(Fe,Co)−M 1 '相を1体積%以下に消失させる高温熱処理工程と、この高温熱処理工程後に400〜600℃の範囲でかつTd℃以下の温度で1分〜20時間保持することで、製造される磁石体に含まれるR'−(Fe,Co)−M1'相の80体積%以上を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行うことを特徴とするR−(Fe,Co)−B系焼結磁石の製造方法。
A method for producing the R- (Fe, Co) -B system sintered magnet according to claim 1.
12 to 17 atomic% R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% M 1 (M 1 is Si, Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi are two or more elements selected , and Si is essential. to), 0.05 to 0.5 atomic% of M 2 (M 2 is one or more elements selected Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, from W), 4.8 + 2 × m-5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, and balance Fe composition, and finely pulverized to an average fine particle diameter of 5.0 μm or less. The alloy powder for a sintered magnet is molded, sintered at a temperature of 1000 to 1150 ° C., cooled to a temperature of 400 ° C. or lower, and then Wherein in the range of 00~1000 ℃ R '- (Fe, Co) -M 1' decomposition temperatures (T d ° C.) of the phase and compounds having the same ingredients were heated above, then up to 400 ° C. or less 5-100 ° C. / cooled at a rate, R in the sintered body '- (Fe, Co) -M 1' and the high-temperature heat treatment step of eliminating phase below 1 vol%, 400 to 600 ° C. after this high-temperature heat treatment step 1 minute by holding to 20 hours in the range a and T d ° C. below the temperature of, R included in the magnet body produced '- (Fe, Co) -M 1' to precipitate more than 80% by volume of phase , then 200 ° C. you and performing low temperature heat treatment step of cooling to below R - (Fe, Co) -B based sintered magnet manufacturing method of.
請求項1〜5のいずれか1項記載のR−(Fe,Co)−B系焼結磁石を製造する方法であって、
12〜17原子%のR(RはYを含む希土類元素のうち少なくとも2種以上で、かつNd及びPrを必須とする),0.1〜3原子%のM1(M1はSi,Al,Mn,Ni,Cu,Zn,Ga,Ge,Pd,Ag,Cd,In,Sn,Sb,Pt,Au,Hg,Pb,Biから選ばれる2種以上の元素であり、かつSiを必須とする),0.05〜0.5原子%のM2(M2はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選ばれる1種以上の元素),4.8+2×m〜5.9+2×m原子%のB(mはM2の原子%),10原子%以下のCo,及び残部Feの組成を有し、平均微粉粒径が5.0μm以下に微粉砕された焼結磁石用合金粉末を成形し、1000〜1150℃の温度で焼結後、400℃以下まで5〜100℃/分の速度で冷却して、R'−(Fe,Co)−M 1 '相の含有量が1体積%以下の焼結体を得、次いで400〜600℃の範囲でかつ前記R'−(Fe,Co)−M 1 '相と同一成分からなる化合物の分解温度(T d ℃)以下の温度で1分〜20時間保持して、製造される磁石体に含まれるR'−(Fe,Co)−M1'相の80体積%以上を析出させ、次いで200℃以下まで冷却する低温熱処理工程を行うことを特徴とするR−(Fe,Co)−B系焼結磁石の製造方法。
A method for producing the R- (Fe, Co) -B system sintered magnet according to claim 1.
12 to 17 atomic% R (R is at least two kinds of rare earth elements including Y, and Nd and Pr are essential), 0.1 to 3 atomic% M 1 (M 1 is Si, Al , Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, Bi are two or more elements selected , and Si is essential. to), 0.05 to 0.5 atomic% of M 2 (M 2 is one or more elements selected Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, from W), 4.8 + 2 × m-5.9 + 2 × m atomic% B (m is atomic% of M 2 ), 10 atomic% or less Co, and balance Fe composition, and finely pulverized to an average fine particle diameter of 5.0 μm or less. The alloy powder for a sintered magnet is molded and sintered at a temperature of 1000 to 1150 ° C., and then a speed of 5 to 100 ° C./min up to 400 ° C. or less. In cooled, R '- (Fe, Co ) -M 1' content of phase to give a 1% by volume or less of the sintered body, followed by 400 to 600 in the range of ℃ and the R '- (Fe, Co ) -M 1 'phase and a hold for 1 minute to 20 hours at a decomposition temperature (T d ° C.) below the temperature of the compound of the same components, R included in the magnet body produced' - (Fe, Co) - M 1 'is deposited over 80% by volume of phase, then 200 ° C. you and performing low temperature heat treatment step of cooling to below R - (Fe, Co) -B based sintered magnet manufacturing method of.
前記焼結磁石用合金におけるDy及び/又はTbの含有量が0〜5.0原子%であることを特徴とする請求項6又は7記載のR−(Fe,Co)−B系焼結磁石の製造方法。 Content of Dy and / or Tb in the said alloy for sintered magnets is 0-5.0 atomic%, The R- (Fe, Co) -B type | system | group sintered magnet of Claim 6 or 7 characterized by the above-mentioned. Manufacturing method.
JP2016223227A 2015-11-18 2016-11-16 R- (Fe, Co) -B system sintered magnet and its manufacturing method Active JP6693392B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015225300 2015-11-18
JP2015225300 2015-11-18
JP2016217195 2016-11-07
JP2016217195 2016-11-07

Publications (2)

Publication Number Publication Date
JP2018082040A JP2018082040A (en) 2018-05-24
JP6693392B2 true JP6693392B2 (en) 2020-05-13

Family

ID=62198293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223227A Active JP6693392B2 (en) 2015-11-18 2016-11-16 R- (Fe, Co) -B system sintered magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6693392B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110619984B (en) * 2018-06-19 2021-12-07 厦门钨业股份有限公司 R-Fe-B sintered magnet with low B content and preparation method thereof
JP7196468B2 (en) * 2018-08-29 2022-12-27 大同特殊鋼株式会社 RTB system sintered magnet
CN110106454B (en) * 2019-05-27 2021-05-07 大连理工大学 Boron-based amorphous alloy and preparation method thereof
CN110648813B (en) * 2019-09-30 2020-11-27 厦门钨业股份有限公司 R-T-B series permanent magnetic material, raw material composition, preparation method and application
CN110993232B (en) * 2019-12-04 2021-03-26 厦门钨业股份有限公司 R-T-B series permanent magnetic material, preparation method and application
JP7243609B2 (en) * 2019-12-13 2023-03-22 信越化学工業株式会社 rare earth sintered magnet
EP4102685A4 (en) * 2020-02-07 2023-03-22 Mitsubishi Electric Corporation Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device
CN113838620B (en) * 2020-06-23 2023-03-14 比亚迪股份有限公司 Rare earth permanent magnetic material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143221A (en) * 1990-10-03 1992-05-18 Seiko Epson Corp Production of permanent magnet
JP2747236B2 (en) * 1995-01-27 1998-05-06 株式会社東芝 Rare earth iron permanent magnet
JP3997413B2 (en) * 2002-11-14 2007-10-24 信越化学工業株式会社 R-Fe-B sintered magnet and method for producing the same
JP2011211071A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
CN105453195B (en) * 2013-08-12 2018-11-16 日立金属株式会社 The manufacturing method of R-T-B based sintered magnet and R-T-B based sintered magnet
JP6288095B2 (en) * 2013-09-02 2018-03-07 日立金属株式会社 Method for producing RTB-based sintered magnet

Also Published As

Publication number Publication date
JP2018082040A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
CN106710766B (en) R- (Fe, Co) -B sintered magnet and method for producing same
JP6693392B2 (en) R- (Fe, Co) -B system sintered magnet and its manufacturing method
JP6489052B2 (en) R-Fe-B sintered magnet and method for producing the same
JP6555170B2 (en) R-Fe-B sintered magnet and method for producing the same
CN107871582B (en) R-Fe-B sintered magnet
JP6520789B2 (en) R-Fe-B sintered magnet and method of manufacturing the same
CN109964290B (en) Method for producing R-T-B sintered magnet
JP6724865B2 (en) R-Fe-B system sintered magnet and manufacturing method thereof
CN107871581B (en) Method for preparing R-Fe-B sintered magnet
JP6142792B2 (en) Rare earth magnets
US11600413B2 (en) R—Fe—B sintered magnet and production method therefor
JP6142793B2 (en) Rare earth magnets
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP7179799B2 (en) R-Fe-B system sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150