JPH04360501A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH04360501A
JPH04360501A JP3163843A JP16384391A JPH04360501A JP H04360501 A JPH04360501 A JP H04360501A JP 3163843 A JP3163843 A JP 3163843A JP 16384391 A JP16384391 A JP 16384391A JP H04360501 A JPH04360501 A JP H04360501A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
binder
earth magnet
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3163843A
Other languages
Japanese (ja)
Inventor
Yasumasa Kasai
葛西 靖正
Takayuki Nishio
西尾 孝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP3163843A priority Critical patent/JPH04360501A/en
Publication of JPH04360501A publication Critical patent/JPH04360501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a method wherein material powder is hardened in a specified form to obtain a magnet without decomposing R-Fe-N compound in an R-Fe-N based rare earth magnet, and improve magnet characteristics. CONSTITUTION:In the manufacturing method of a rare earth metal manget expressed by a general formula RxFe100-x-yNy (where R is a rare earth element containing Y, and 5<=x<=30 and y<=39 in atomic %), 10wt.% or less of one or more kinds of low melting point metal out of Sn, Zn, Al, Sb, Bi, Se, Gu, Te, In, Cd and Pb is added as binder to the material powder of the rare earth magnet, and hot pess is performed. In another mode, R-Fe based eutectic alloy like low melting point Sm75Fe25 and Nd75Fe25 is used as the binder. Further, in another mode, R-Fe-T constituted by adding a third element is used as the binder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は希土類磁石の製造方法
に関し、詳しくはR−Fe−N系の希土類磁石の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing rare earth magnets, and more particularly to a method for manufacturing R--Fe--N rare earth magnets.

【0002】0002

【発明の背景】近年のエレクトロニクス産業の発達に伴
い、希土類磁石の需要は飛躍的に増大している。近年開
発されたNd−Fe−B系磁石(例えば特開昭59−4
6008号)は、その代表的な例といえる。しかし、こ
の磁石は、キュリー温度が310℃と低いために、自動
車用モーターのような耐熱性を必要とする用途には、い
まだ十分に対応できないのが現状である。これに対して
昨年Coeyらにより発見されたR−Fe−N系希土類
磁石は、約470℃のキュリー温度を有することから、
Nd−Fe−B系磁石よりも優れた耐熱性が期待されて
いる。
BACKGROUND OF THE INVENTION With the recent development of the electronics industry, the demand for rare earth magnets has increased dramatically. Recently developed Nd-Fe-B magnets (for example, JP-A-59-4
No. 6008) can be said to be a typical example. However, since the Curie temperature of this magnet is as low as 310° C., it is currently not suitable for applications that require heat resistance, such as automobile motors. On the other hand, the R-Fe-N rare earth magnet discovered by Coey et al. last year has a Curie temperature of about 470°C.
It is expected to have better heat resistance than Nd-Fe-B magnets.

【0003】このR−Fe−N系化合物は、母合金R−
Fe(例えばR2Fe17)を特定条件で窒化処理する
ことによって得られるが、熱安定性に関して問題があり
、特に700℃以上の高温に長時間(たとえば1時間程
度)さらされると分解するため、焼結体を作ることが困
難であるといった問題がある。
[0003] This R-Fe-N compound is a master alloy R-
It is obtained by nitriding Fe (e.g. R2Fe17) under specific conditions, but there are problems with thermal stability, and it decomposes when exposed to high temperatures of 700°C or higher for a long time (e.g. about 1 hour), so sintering is difficult. There is a problem that it is difficult to build a body.

【0004】即ち従来の希土類磁石の場合一般に粉末を
1100〜1200℃程度の高温で焼結することによっ
て得られるが、このR−Fe−N磁石の場合、同様の方
法で焼結を行うと磁性が失われてしまう。
In other words, conventional rare earth magnets are generally obtained by sintering powder at a high temperature of about 1,100 to 1,200°C, but in the case of this R-Fe-N magnet, magnetic properties can be obtained by sintering in the same manner. will be lost.

【0005】[0005]

【課題を解決するための手段】[第一解決手段]本発明
はこのような事情を背景としてなされたものであり、そ
の要旨は、一般式RxFe100−x−yNy(但しR
はYを含む希土類元素、x,yはそれぞれ原子%で5≦
x≦30,y≦30)で表される希土類磁石の製造方法
であって、該希土類磁石の原料粉にバインダーとしてS
n,Zn,Al,Sb,Bi,Se,Ga,Te,In
,Cd,Pbの何れか一種又は二種以上の低融点金属を
10重量%以下の量で添加した後ホットプレスすること
にある。
[Means for Solving the Problems] [First Means for Solving] The present invention was made against the background of the above, and its gist is that the general formula RxFe100-x-yNy (where R
is a rare earth element containing Y, x and y are each atomic% 5≦
x≦30, y≦30), wherein S is added as a binder to the raw material powder of the rare earth magnet.
n, Zn, Al, Sb, Bi, Se, Ga, Te, In
, Cd, and Pb in an amount of 10% by weight or less, followed by hot pressing.

【0006】このように本発明は上記特定の低融点金属
をバインダーとして用い、R−Fe−Nの原料粉末をホ
ットプレスするようにしたものである。かかる本発明に
よればR−Fe−Nを分解させることなくその粉末を所
定形状に固め、磁石とすることができる。
[0006] As described above, the present invention uses the above-mentioned specific low-melting point metal as a binder and hot-presses R-Fe-N raw material powder. According to the present invention, the powder of R-Fe-N can be solidified into a predetermined shape and made into a magnet without decomposing it.

【0007】尚その際、バインダーを添加した後原料粉
末を磁界中で配向させた後ホットプレスすると異方性磁
石を得ることができる。
[0007] At this time, an anisotropic magnet can be obtained by adding a binder, orienting the raw material powder in a magnetic field, and then hot pressing.

【0008】尚ホットプレスに際してR−Fe−Nとバ
インダーとが反応してしまうと磁気特性が損なわれる問
題を生ずる場合があるが、本発明における上記特定の金
属においては何れも極端な磁気特性の低下は認められな
い。
[0008] Incidentally, if R-Fe-N reacts with the binder during hot pressing, a problem may arise in which the magnetic properties are impaired, but the specific metals mentioned above in the present invention all have extremely No decrease was observed.

【0009】本発明においてバインダーの添加量を10
重量%以下に限定しているのは、これを超えて添加する
と磁石特性、特にBrが低下することによる。
In the present invention, the amount of binder added is 10
The reason why it is limited to less than % by weight is that if it is added in excess of this, the magnetic properties, especially Br, will deteriorate.

【0010】[第二解決手段]本願の第二の解決手段は
、一般式RxFe100−x−yNy(但しRはYを含
む希土類元素、x,yはそれぞれ原子%で5≦x≦30
,y≦30)で表される希土類磁石の製造方法であって
、該希土類磁石の原料粉にバインダーとして低融点の希
土類−鉄系共晶合金を10重量%以下の量で添加した後
ホットプレスすることを特徴とする。
[Second solution] The second solution of the present application has the general formula RxFe100-x-yNy (where R is a rare earth element containing Y, and x and y are each 5≦x≦30 in atomic %).
, y≦30), wherein a low melting point rare earth-iron eutectic alloy is added as a binder in an amount of 10% by weight or less to the raw material powder of the rare earth magnet, and then hot-pressed. It is characterized by

【0011】本発明は、バインダーとして前記の低融点
金属に代えてR−Fe系の共晶合金を用いるものである
。R−Fe系共晶合金の中には、例えばSm75Fe2
5,Nd75Fe25等融点が700℃近傍の低融点の
ものがある。
In the present invention, an R-Fe based eutectic alloy is used as a binder in place of the above-mentioned low melting point metal. Among R-Fe-based eutectic alloys, for example, Sm75Fe2
5, Nd75Fe25 has a low melting point of around 700°C.

【0012】本発明はこのような共晶合金をバインダー
として用いるようにしたものであり、これによってもR
−Fe−Nを分解せしめることなく原料粉を所定形状に
固めて成るR−Fe−N系磁石を得ることができる。
[0012] The present invention uses such a eutectic alloy as a binder, which also improves R.
An R--Fe--N magnet can be obtained by solidifying raw material powder into a predetermined shape without decomposing the -Fe--N.

【0013】本発明においては、バインダーとして添加
する共晶合金の成分元素R,Feが何れもR−Fe−N
磁石の成分元素である利点がある。
In the present invention, the component elements R and Fe of the eutectic alloy added as a binder are both R-Fe-N
It has the advantage of being a component element of magnets.

【0014】従って本発明においては、バインダーとし
て添加した合金と原料粉末とが反応しても何ら問題なく
、むしろ好ましいと言える。即ちこれらが反応すること
によってバインダーの成分元素R,FeをR−Fe−N
系磁石の組成成分として入り込ませることができる。 この場合合金と磁石の原料粉との反応によって最終的に
形成される組成が望ましい組成となるように予め原料粉
の組成を選定しておくのが良い。
Therefore, in the present invention, there is no problem even if the alloy added as a binder reacts with the raw material powder, and it can be said that it is preferable. That is, by these reacting, the component elements R and Fe of the binder are converted into R-Fe-N.
It can be incorporated as a component of the system magnet. In this case, it is preferable to select the composition of the raw material powder in advance so that the final composition formed by the reaction between the alloy and the raw material powder of the magnet is a desired composition.

【0015】[第三解決手段]本願の第三の解決手段は
、一般式RxFe100−x−yNy(但しRはYを含
む希土類元素、x,yはそれぞれ原子%で5≦x≦30
,y≦30)で表される希土類磁石の製造方法であって
、該希土類磁石の原料粉にバインダーとして式(R1−
uFeu)100−vTv(但しTはCu,Ag,Si
,Mg,Ca,Ti,Zr,Hf,Sn,Zn,Al,
Sb,Bi,Se,Ga,Te,In,Cd,Pbの何
れか一種又は二種以上、u,vはそれぞれ0.1≦u≦
0.3,v≦10)で表されるものを10重量%以下の
量で添加した後ホットプレスすることを特徴とする。
[Third solution] The third solution of the present application has the general formula RxFe100-x-yNy (where R is a rare earth element containing Y, and x and y are each atomic % and 5≦x≦30
, y≦30), the method comprises adding the formula (R1-
uFeu) 100-vTv (T is Cu, Ag, Si
, Mg, Ca, Ti, Zr, Hf, Sn, Zn, Al,
Any one or more of Sb, Bi, Se, Ga, Te, In, Cd, Pb, u and v are each 0.1≦u≦
0.3, v≦10) in an amount of 10% by weight or less, followed by hot pressing.

【0016】上記第二解決手段においてバインダーとし
て用いる共晶合金は、R−Fe−N磁石の成分元素から
成るものである点で望ましいものであるが、その融点は
望ましい融点よりも若干高めである。
The eutectic alloy used as the binder in the second solution is desirable in that it consists of the constituent elements of the R-Fe-N magnet, but its melting point is slightly higher than the desired melting point. .

【0017】これに対してR−Feに第三元素を添加し
てR−Fe−Tの形としたものは融点が更に低く、この
ようなものをバインダーとして用いることにより、R−
Fe−Nの分解を更に確実に防止しつつ磁石の原料粉を
ホットプレスにてより緻密に且つ強固に固めることがで
き、磁石特性を一層高めることができる。
On the other hand, when a third element is added to R-Fe to form R-Fe-T, the melting point is even lower, and by using such a material as a binder, R-Fe-T is formed by adding a third element to R-Fe.
While the decomposition of Fe-N is more reliably prevented, the raw material powder of the magnet can be solidified more densely and firmly by hot pressing, and the magnetic properties can be further improved.

【0018】尚第二及び第三解決手段の何れの発明にお
いても等方性の磁石はもとより、予め原料粉を磁界中で
配向させた上ホットプレスすることにより異方性磁石を
得ることが可能である。
[0018] In both the second and third solutions, it is possible to obtain not only isotropic magnets but also anisotropic magnets by orienting the raw material powder in a magnetic field in advance and then hot pressing. It is.

【0019】[0019]

【実施例】次に本発明の特徴を更に明確にすべく、以下
にその実施例を詳述する。 [実施例1]組成がSm2Fe17N2.1で与えられ
る粉末に対して表1に示す種々の低融点金属をバインダ
ーとして3重量%添加し、これを550℃でホットプレ
スして等方性磁石を得た。その磁石特性を測定した結果
が同表に併せて示してある。
EXAMPLES Next, in order to further clarify the characteristics of the present invention, examples thereof will be described in detail below. [Example 1] 3% by weight of various low melting point metals shown in Table 1 were added as a binder to a powder having the composition Sm2Fe17N2.1, and this was hot pressed at 550°C to obtain an isotropic magnet. Ta. The results of measuring the magnetic properties are also shown in the same table.

【0020】[0020]

【表1】[Table 1]

【0021】[実施例2]組成がSm2Fe17N2.
1で与えられる原料粉に対して組成がSm75Fe25
で与えられる共晶合金を10重量%以下の各量で添加し
たものを700℃でホットプレスし、磁石を得た。その
磁石特性が表2に示してある。
[Example 2] The composition is Sm2Fe17N2.
The composition is Sm75Fe25 for the raw material powder given in 1.
A magnet was obtained by hot pressing at 700°C to which each of the eutectic alloys given by 10% by weight or less was added. The magnetic properties are shown in Table 2.

【0022】[0022]

【表2】[Table 2]

【0023】この実験では添加量3重量%で最も良い結
果が得られており、添加量がそれより少なくてもまた多
くても特性が低下している。これは3重量%添加の場合
に望ましい磁石組成が形成されることによるものと考え
られる。
In this experiment, the best results were obtained when the amount added was 3% by weight, and the characteristics deteriorated even if the amount added was smaller or larger. This is considered to be because a desirable magnet composition is formed when 3% by weight is added.

【0024】[実施例3]組成がSm2Fe17N2.
1で与えられる原料粉に、組成が(Sm0.75Fe0
.25)100−xTxで与えられる低融点合金を3重
量%で添加した上550℃でホットプレスし、等方性磁
石を得た。その磁石特性を測定したところ表3の如くで
あった。尚TはSm75Fe25共晶合金の共晶温度を
低下させる元素であり、ここではその量xをx=10と
した。
[Example 3] The composition is Sm2Fe17N2.
The composition of the raw material powder given in 1 is (Sm0.75Fe0
.. 25) A low melting point alloy given by 100-xTx was added at 3% by weight and hot pressed at 550°C to obtain an isotropic magnet. The magnetic properties were measured and were as shown in Table 3. Note that T is an element that lowers the eutectic temperature of the Sm75Fe25 eutectic alloy, and here the amount x thereof was set to x=10.

【0025】[0025]

【表3】[Table 3]

【0026】[実施例4]以上の例は等方性磁石を製造
する場合の例であるが、粉末を磁界方向に配向させた後
にホットプレスすることにより、更に高い磁性が得られ
る。本実施例4では上記実施例1のバインダーを添加し
た粉末を磁界中で配向させた後ホットプレスを行って異
方性磁石を得た。その磁石特性が表4に示してある。
[Example 4] The above example is an example of manufacturing an isotropic magnet, but even higher magnetism can be obtained by hot pressing after orienting the powder in the direction of the magnetic field. In Example 4, the binder-added powder of Example 1 was oriented in a magnetic field and then hot pressed to obtain an anisotropic magnet. The magnetic properties are shown in Table 4.

【0027】[0027]

【表4】[Table 4]

【0028】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において、当業者の知識に基づき様々な変更を加えた
態様で実施可能である。
Although the embodiments of the present invention have been described in detail above, this is merely an example, and the present invention can be implemented with various modifications based on the knowledge of those skilled in the art without departing from the spirit thereof. be.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  一般式RxFe100−x−yNy(
但しRはYを含む希土類元素、x,yはそれぞれ原子%
で5≦x≦30,y≦30)で表される希土類磁石の製
造方法であって、該希土類磁石の原料粉にバインダーと
してSn,Zn,Al,Sb,Bi,Se,Ga,Te
,In,Cd,Pbの何れか一種又は二種以上の低融点
金属を10重量%以下の量で添加した後ホットプレスす
ることを特徴とする希土類磁石の製造方法。
Claim 1: General formula RxFe100-x-yNy (
However, R is a rare earth element including Y, and x and y are each atomic%.
5≦x≦30, y≦30), the manufacturing method includes adding Sn, Zn, Al, Sb, Bi, Se, Ga, Te as a binder to the raw material powder of the rare earth magnet.
, In, Cd, and Pb, in an amount of 10% by weight or less, followed by hot pressing.
【請求項2】  一般式RxFe100−x−yNy(
但しRはYを含む希土類元素、x,yはそれぞれ原子%
で5≦x≦30,y≦30)で表される希土類磁石の製
造方法であって、該希土類磁石の原料粉にバインダーと
して低融点の希土類−鉄系共晶合金を10重量%以下の
量で添加した後ホットプレスすることを特徴とする希土
類磁石の製造方法。
Claim 2: General formula RxFe100-x-yNy (
However, R is a rare earth element including Y, and x and y are each atomic%.
5≦x≦30, y≦30) A method for manufacturing a rare earth magnet represented by 5≦x≦30, y≦30), wherein a low melting point rare earth-iron eutectic alloy is added as a binder to raw material powder of the rare earth magnet in an amount of 10% by weight or less. A method for producing a rare earth magnet, which comprises hot-pressing the magnet.
【請求項3】  一般式RxFe100−x−yNy(
但しRはYを含む希土類元素、x,yはそれぞれ原子%
で5≦x≦30,y≦30)で表される希土類磁石の製
造方法であって、該希土類磁石の原料粉にバインダーと
して式(R1−uFeu)100−vTv(但しTはC
u,Ag,Si,Mg,Ca,Ti,Zr,Hf,Sn
,Zn,Al,Sb,Bi,Se,Ga,Te,In,
Cd,Pbの何れか一種又は二種以上、u,vはそれぞ
れ0.1≦u≦0.3,v≦10)で表されるものを1
0重量%以下の量で添加した後ホットプレスすることを
特徴とする希土類磁石の製造方法。
Claim 3: General formula RxFe100-x-yNy (
However, R is a rare earth element including Y, and x and y are each atomic%.
5≦x≦30, y≦30), the manufacturing method of a rare earth magnet represented by formula (R1-uFeu)100-vTv (where T is C
u, Ag, Si, Mg, Ca, Ti, Zr, Hf, Sn
, Zn, Al, Sb, Bi, Se, Ga, Te, In,
One or more of Cd, Pb, u, v are 0.1≦u≦0.3, v≦10), respectively.
A method for producing a rare earth magnet, which comprises hot pressing after adding the rare earth magnet in an amount of 0% by weight or less.
JP3163843A 1991-06-07 1991-06-07 Manufacture of rare earth magnet Pending JPH04360501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163843A JPH04360501A (en) 1991-06-07 1991-06-07 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3163843A JPH04360501A (en) 1991-06-07 1991-06-07 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPH04360501A true JPH04360501A (en) 1992-12-14

Family

ID=15781808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163843A Pending JPH04360501A (en) 1991-06-07 1991-06-07 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPH04360501A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670578A1 (en) * 1994-03-02 1995-09-06 Alcatel Process for manufacturing a magnetic material in solid form from an intermetallic powder of the Sm2 Fe17 N3-X type
KR20000014040A (en) * 1998-08-17 2000-03-06 밍 루 method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
KR100446453B1 (en) * 2001-08-30 2004-09-01 대한민국(충남대학교) FABRICATION METHOD OF ANISOTROPIC NdFeB PERMANENT MAGNET
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
JP2017010960A (en) * 2015-06-16 2017-01-12 日産自動車株式会社 SmFeN BASED METAL BOND MAGNET COMPACT WITH LARGE SPECIFIC RESISTANCE
CN106384639A (en) * 2016-10-28 2017-02-08 北京科技大学 Preparation method for high-performance bonded neodymium iron boron permanent magnet material
WO2018163967A1 (en) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717002A1 (en) * 1994-03-02 1995-09-08 Alsthom Cge Alcatel Process for the preparation of a magnetic material in solid form from an Fe2 Fe17 N3-x type intermetallic nitride powder
US5573603A (en) * 1994-03-02 1996-11-12 Alcatel Alsthom Compagnie Generale D'electricite Method of making a solid magnetic material from Sm2 Fe17 N3-X type intermetallic nitride powder
EP0670578A1 (en) * 1994-03-02 1995-09-06 Alcatel Process for manufacturing a magnetic material in solid form from an intermetallic powder of the Sm2 Fe17 N3-X type
KR20000014040A (en) * 1998-08-17 2000-03-06 밍 루 method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
KR100446453B1 (en) * 2001-08-30 2004-09-01 대한민국(충남대학교) FABRICATION METHOD OF ANISOTROPIC NdFeB PERMANENT MAGNET
JPWO2015199096A1 (en) * 2014-06-24 2017-04-20 日産自動車株式会社 Method for producing rare earth magnet compact
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
WO2015198396A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing molded rare earth magnet
JP2017010960A (en) * 2015-06-16 2017-01-12 日産自動車株式会社 SmFeN BASED METAL BOND MAGNET COMPACT WITH LARGE SPECIFIC RESISTANCE
CN106384639A (en) * 2016-10-28 2017-02-08 北京科技大学 Preparation method for high-performance bonded neodymium iron boron permanent magnet material
CN106384639B (en) * 2016-10-28 2018-04-03 北京科技大学 A kind of preparation method of high-performance binding Nd-Fe-B permanent magnetic material
WO2018163967A1 (en) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet
CN110168674A (en) * 2017-03-10 2019-08-23 国立研究开发法人产业技术综合研究所 Magnet powder containing Sm-Fe-N system crystal grain and the sintered magnet manufactured by the magnet powder and their manufacturing method
US20190333661A1 (en) * 2017-03-10 2019-10-31 National Institute Of Advanced Industrial Science And Technology MAGNETIC POWDER CONTAINING Sm-Fe-N-BASED CRYSTAL PARTICLES, SINTERED MAGNET PRODUCED FROM SAME, METHOD FOR PRODUCING SAID MAGNETIC POWDER, AND METHOD FOR PRODUCING SAID SINTERED MAGNET
JPWO2018163967A1 (en) * 2017-03-10 2019-11-07 国立研究開発法人産業技術総合研究所 Magnet powder containing Sm-Fe-N-based crystal particles, sintered magnet produced therefrom, and production method thereof
US11594353B2 (en) 2017-03-10 2023-02-28 National Institute Of Advanced Industrial Science And Technology Magnetic powder containing Sm—Fe—N-based crystal particles, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet

Similar Documents

Publication Publication Date Title
JPH07106110A (en) Powder composition for manufacturing bond magnet, and magnetic anisotropic permanent magnet, and manufacture of magnetic anisotropic permanent magnet
JPH04360501A (en) Manufacture of rare earth magnet
US4221613A (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPH03188241A (en) Sintered permanent magnet material and its manufacture
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH01219143A (en) Sintered permanent magnet material and its production
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
EP0320064A1 (en) Hard magnetic material of a rare earth metal, iron and carbon
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH0617200A (en) Tetragonal rare earth element-iron-boron type compound
JPS609104A (en) Permanent magnet
JPS59219453A (en) Permanent magnet material and its production
JPH0644526B2 (en) Rare earth magnet manufacturing method
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3023512B2 (en) Ferromagnetic material
JP2002175909A (en) Bonded magnetic having superior thermal stability, and its manufacturing method
JPS59215466A (en) Permanent magnet material and its production
JP2581161B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JP2929217B2 (en) Ferromagnetic material
JPS63272009A (en) Manufacture of rare earth-fe-b magnet
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JPH089752B2 (en) Method for manufacturing R1R2FeCoB-based permanent magnet
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPH0645119A (en) Permanent magnet material and manufacture thereof