JPS63272009A - Manufacture of rare earth-fe-b magnet - Google Patents

Manufacture of rare earth-fe-b magnet

Info

Publication number
JPS63272009A
JPS63272009A JP62104368A JP10436887A JPS63272009A JP S63272009 A JPS63272009 A JP S63272009A JP 62104368 A JP62104368 A JP 62104368A JP 10436887 A JP10436887 A JP 10436887A JP S63272009 A JPS63272009 A JP S63272009A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
magnetic
rare earth
hot pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104368A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62104368A priority Critical patent/JPS63272009A/en
Publication of JPS63272009A publication Critical patent/JPS63272009A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To heighten a magnetic powder density; besides, enhance a residual magnetic flux density, coercive force, energy product, and the like and also improve a corrosion resistance by performing a hot pressing at a temperature below a specific temp. after adding and mixing a metallic powder that is in a state of fusion when its hot pressing is applied to magnetic alloy powder. CONSTITUTION:When a rare earth-Fe-B magnet is manufactured by hot-pressing a magnetic alloy powder consisting of main compositions of rare earth elements of more than one sort of rare earth elements, Fe, and B, a hot pressing is carried out at a temperature below 670 deg.C; besides, a metal or alloy powder that is in a state of fusion when the hot pressing is performed is added and mixed to the above magnetic alloy powder and after the hot pressing is performed. For example, an alloy consisting of 25 wt.% Nd, 3 wt.% Pr, 1 wt.% Ce, 0.5 wt.% B, 0.2 wt.% Si, 3 wt.% Co and the rest Fe is used in forming a ribbon-like thin band with a fusion spinning technique and then, the magnetic alloy powder is obtained by pulverizing the above alloy into powder of -60 mesh. Further, 2 wt.% Al powder is added and mixed to the magnetic alloy powder and a rare earch-Fe-B magnet is obtained by hot-pressing the above magnetic alloy powder at a temp. of 660 deg.C and at 2 tonf/cm<2> press pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類−Fe−B系磁石の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a rare earth-Fe-B magnet.

(従来技術及び発明が解決しようとする問題点)従来、
Nd−Fe−B系磁石を始めとする希土類−Fe−B系
磁石を製造する方法の1つとして、これらの各元素を主
成分とする磁性合金粉末を加圧焼結即ちホットプレスし
て所望の形状の磁石とする方法が知られている。このホ
ットプレスによる製造方法は、例えば、前記磁性合金粉
末にエポキシ樹脂等を混合・成形する方法に比べて、高
密度即ち高エネルギー積の磁石が得られるという利点を
有している。
(Prior art and problems to be solved by the invention) Conventionally,
One method for manufacturing rare earth-Fe-B magnets, including Nd-Fe-B magnets, is to pressure-sinter, or hot-press, magnetic alloy powders containing these elements as the main components. A method of making a magnet with the shape of is known. This manufacturing method using hot pressing has an advantage over, for example, the method of mixing and molding the magnetic alloy powder with an epoxy resin or the like in that a magnet with a high density, that is, a high energy product can be obtained.

ところが、上記ホットプレスを適用した製造方法におい
ては、磁性粉末の密度を充分に高め、エネルギー積を向
上させるためには、ホントプレス温度を670℃以上と
する必要があるが、一方、残留磁束密度及び保磁力を高
めるためには670℃以下の温度とすることが好ましい
、従って、このような二律背反する条件を共に満足する
ホットプレス温度の設定が困難であるという問題があっ
た。
However, in the manufacturing method using hot pressing, in order to sufficiently increase the density of magnetic powder and improve the energy product, it is necessary to set the real pressing temperature to 670°C or higher, but on the other hand, the residual magnetic flux density In order to increase the coercive force, it is preferable to set the temperature to 670° C. or lower.Therefore, there has been a problem in that it is difficult to set a hot press temperature that satisfies both of these contradictory conditions.

更に、上記希土類−Fe−B系磁石は一般に耐蝕性が低
く、使用時に鯖が生じるため、表面をコ−ティングする
ことが必要であった。
Furthermore, the above-mentioned rare earth-Fe-B magnets generally have low corrosion resistance and scorch occurs during use, so it is necessary to coat the surface.

本発明は上記従来の問題点に鑑みてなされたもので、ホ
ットプレス法を適用して希土類−Fe−B系磁石を製造
する方法において、磁性粉末密度を高めると共に、残留
磁束密度、保磁力及びエネルギー積などの磁気特性を高
めることが可能であり、しかも、耐蝕性を向上しうる希
土類−Fe−B系磁石の製造方法を提供することを目的
とする。
The present invention has been made in view of the above-mentioned conventional problems, and is a method for manufacturing rare earth-Fe-B magnets by applying a hot press method, in which the density of magnetic powder is increased, the residual magnetic flux density, coercive force and It is an object of the present invention to provide a method for manufacturing a rare earth-Fe-B magnet that can improve magnetic properties such as energy product and corrosion resistance.

(問題点を解決するための手段及び作用)本発明は、先
ずホットプレス温度を670℃以下として高い保磁力を
確保すると共に、磁性粉末にホットプレス温度で液相と
なる金属もしくは合金粉末を添加混合することにより、
残留磁束密度を向上させると共に、密度を高めてエネル
ギー積を向上させ、更に、耐蝕性の向上を実現したもの
である。
(Means and effects for solving the problems) The present invention first secures a high coercive force by setting the hot press temperature to 670°C or less, and also adds metal or alloy powder that becomes a liquid phase at the hot press temperature to the magnetic powder. By mixing,
In addition to improving the residual magnetic flux density, the density is increased to improve the energy product, and furthermore, corrosion resistance is improved.

即ち、本発明は少なくとも1種の希土類元素、Pe及び
Bを主成分とする磁性合金粉末をホットプレスして希土
1i−Pa−B系磁石を製造する方法において、前記ホ
ットプレスを670℃以下の温度で行うと共に、このホ
ットプレス時に溶融状態にあるような金属もしくは合金
粉末を前記磁性合金粉末に添加混合したのち、前記ホッ
トプレスを行うこととしたものである。
That is, the present invention provides a method for producing a rare earth 1i-Pa-B magnet by hot pressing a magnetic alloy powder containing at least one rare earth element, Pe and B as main components, in which the hot pressing is performed at 670°C or lower. At the same time, the hot pressing is carried out after adding and mixing a metal or alloy powder which is in a molten state at the time of the hot pressing to the magnetic alloy powder.

本発明の希土類−Fe−B系磁石の製造方法において、
先ず、使用する磁性合金粉末としては、少なくとも1種
の希土類元素、Fe及びB主成分とするものである。希
土類元素としては、特に限定されるものではないが、特
に、Nd、Pr、Ce。
In the method for manufacturing a rare earth-Fe-B magnet of the present invention,
First, the magnetic alloy powder used is one containing at least one rare earth element, Fe, and B as main components. Rare earth elements include, but are not particularly limited to, Nd, Pr, and Ce.

[)y、Y、Sm5Ha、Erが好適であり、Dyのよ
うな重希土類元素を添加すると、保磁力を向上させるう
えで効果的である。又、Bの一部をSt。
[)y, Y, Sm5Ha, and Er are preferable, and adding a heavy rare earth element such as Dy is effective in improving the coercive force. Also, a part of B is St.

N、C,P等で置換することもできる。又、Feの一部
をCoで置換すると、キュリ一温度を上昇させるのに効
果的である。
Substitution with N, C, P, etc. is also possible. Furthermore, replacing a portion of Fe with Co is effective in increasing the Curie temperature.

次いで、かかる磁性合金粉末に添加混合する金属もしく
は合金としては、670℃以下のホットプレス時に溶融
状態にあるものであれば、特に限定されるものではない
、一般的には、大気圧中での融点が670℃以下の金属
もしくは合金が使用されるが、ホットプレス時には温度
のみならず圧力も印加されるので、実際には、大気圧中
の融点がホットプレス温度よりも多少高めのものも使用
できる場合がある。以下に、かかる金属もしくは合金の
具体例を示すと、L i、Na%Mg、Aj’。
Next, the metal or alloy to be added to and mixed with the magnetic alloy powder is not particularly limited as long as it is in a molten state when hot pressed at 670°C or lower. A metal or alloy with a melting point of 670°C or less is used, but since not only temperature but also pressure is applied during hot pressing, in reality, metals or alloys with a melting point at atmospheric pressure slightly higher than the hot pressing temperature are also used. There are cases where it is possible. Specific examples of such metals or alloys are shown below: Li, Na%Mg, Aj'.

P、  S、  K、  ZnS Ga、  Se、 
 Rh、  Cds  In、Sn、5bSTo、L 
Cs、TI、Pb、B1%PO1At、Fr等の金属、
5n−Pb系、Cu−3n系、Cr−3b系、Co−3
n系、Aj−8i系、Aj−Zn系合金等の2元系合金
、5n−3b−Cu系、5n−3b−Pb系、5n−C
u−Zn系、Al−3n−Cu系、Cd−N1−’ln
系、Cd−Ag−Cu系合金等の3元系合金、5n−3
b−Pb−Cu系、An−3n−Cu−Ni系、B1−
Pb−3n−Cd系合金等の4元系合金などをあげるこ
とができる。
P, S, K, ZnS Ga, Se,
Rh, Cds In, Sn, 5bSTo, L
Metals such as Cs, TI, Pb, B1%PO1At, Fr,
5n-Pb system, Cu-3n system, Cr-3b system, Co-3
Binary alloys such as n series, Aj-8i series, Aj-Zn series alloys, 5n-3b-Cu series, 5n-3b-Pb series, 5n-C
u-Zn series, Al-3n-Cu series, Cd-N1-'ln
ternary alloys such as Cd-Ag-Cu alloys, 5n-3
b-Pb-Cu system, An-3n-Cu-Ni system, B1-
Examples include quaternary alloys such as Pb-3n-Cd alloys.

以下に本発明の製造工程を順次説明する。先ず、前記磁
性粉末に上記の金属もしくは合金粉末を添加混合する。
The manufacturing steps of the present invention will be sequentially explained below. First, the above-mentioned metal or alloy powder is added and mixed with the above-mentioned magnetic powder.

この金属もしくは合金粉末の添加量は特に限定されるも
のではなく、又、この金属もしくは合金の種類、或いは
、磁性合金粉末の種類によっても異なるが、一般に、磁
性合金粉末に対して、1〜50重量%に設定することが
望ましい。
The amount of the metal or alloy powder to be added is not particularly limited and varies depending on the type of metal or alloy or the type of magnetic alloy powder, but generally it is 1 to 50% of the magnetic alloy powder. It is desirable to set it to % by weight.

この添加量が1重量%未満であると、充分な添加効果が
得られず、磁性粉末成形体の密度を向上することができ
ない場合があり、50重量%を超えると、単位体積当た
りの磁性粉末の量が減少して充分な磁気特性が得られな
い場合がある。
If the amount added is less than 1% by weight, a sufficient addition effect may not be obtained and the density of the magnetic powder compact may not be improved. If it exceeds 50% by weight, the amount of magnetic powder per unit volume may not be improved. There are cases where sufficient magnetic properties cannot be obtained due to a decrease in the amount of .

次いで、上記の混合粉末をホットプレスして目的とする
磁石を製造する。この時の温度は、670℃以下で、且
つ、上記した添加金属もしくは合金を完全に溶融しうろ
温度に設定する必要がある。
Next, the above mixed powder is hot pressed to produce the intended magnet. The temperature at this time must be set at 670° C. or lower and at a temperature at which the above-mentioned additive metal or alloy is completely melted.

ホットプレス温度が670℃を超えると、前述したよう
に、磁性粉末の磁気特性が大幅に低下してしまう、又、
ホットプレス温度が、上記添加金属もしくは合金粉末を
溶融する温度より低い場合は、当該金属もしくは合金粉
末の添加効果が発揮されず、磁性粉末成形体の密度を高
めることができないと同時に、耐蝕性の向上も期待でき
ないという不都合が生じる。
If the hot press temperature exceeds 670°C, as mentioned above, the magnetic properties of the magnetic powder will decrease significantly;
If the hot pressing temperature is lower than the temperature at which the above-mentioned additive metal or alloy powder is melted, the effect of adding the metal or alloy powder will not be exhibited, and the density of the magnetic powder compact will not be increased, and at the same time, the corrosion resistance will deteriorate. This causes the inconvenience that no improvement can be expected.

このように、磁性粉末に、670℃以下のホットプレス
時に溶融する金属もしくは合金粉末を添加することによ
って前記磁性粉末成形体の密度が向上する原因は、溶融
金属もしくは合金が潤滑作用を有しており、この潤滑作
用によって磁性粉末のホットプレス時の空孔の発生が防
止されるためであると考えられる。
As described above, the reason why the density of the magnetic powder compact is improved by adding a metal or alloy powder that melts during hot pressing at 670°C or less to the magnetic powder is that the molten metal or alloy has a lubricating effect. This is thought to be because this lubricating action prevents the generation of voids during hot pressing of the magnetic powder.

更に、ホットプレス時に金属もしくは合金粉末が熔融し
て磁性粉末を云わばコーティングするため、当該磁性粉
末の耐蝕性が向上するという利点がある。
Furthermore, since the metal or alloy powder melts during hot pressing and coats the magnetic powder, there is an advantage that the corrosion resistance of the magnetic powder is improved.

(実施例) 11   1〜4、 重量%で、Nd:25%、Pr:3%、Ce:1%、B
:0.5%、Si:0.2%、Co:3%、及び、残部
Feよりなる組成の合金を誘導炉にて製造した。この合
金を溶融スピニング法によりリボン状薄帯としたのち、
−60メツシユに粉砕して磁性合金粉末を得た0次いで
、この磁性合金粉末にAj(融点:660℃)粉末を第
1表に示した各添加量(重量%)で添加混合し、しかる
のち、この混合粉末を第1表に示した条件でホットプレ
スすることにより、希±19−Fe−B系磁石を製造し
た。
(Example) 11 1 to 4, in weight%, Nd: 25%, Pr: 3%, Ce: 1%, B
An alloy having a composition of: 0.5%, Si: 0.2%, Co: 3%, and the balance Fe was produced in an induction furnace. After making this alloy into a ribbon-like thin strip by melt spinning method,
Aj (melting point: 660°C) powder was added to the magnetic alloy powder in the amount (wt%) shown in Table 1 and then mixed. By hot pressing this mixed powder under the conditions shown in Table 1, rare ±19-Fe-B magnets were manufactured.

上記により得られた各磁石につき、その磁気特性、密度
を夫々測定して第1表中に示した。尚、表に示したB−
H磁気特性において、上段の数値はプレス方向と平行な
方向の値、下段の数値はプレス方向と直角な方向の値を
夫々示しである。更に、実際の残留磁束密度の評価は、
プレス方向と平行方向の残留磁束密度(B rll )
と直角方向の残留磁束密度(Br上)との和に、体積%
による補正係数を乗じたものを算出することにより行っ
た。即ち、実際の残留磁束密度Br□。1.。は、次式
(i):’ Br1LaLall  −1/ F (B r77 +
B rl )  ・=(11であり、Fは、次式(2)
: %式% (但し、式(2)中、ρは測定された磁性粉末成形体の
密度、ρ、は磁性粉末の真密度、Xは磁性粉末の重量%
を夫々示し、結果として、Fは磁性粉末の体積%を表し
ている。)である。
The magnetic properties and density of each of the magnets obtained above were measured and shown in Table 1. In addition, B- shown in the table
In the H magnetic properties, the numerical values in the upper row indicate values in the direction parallel to the pressing direction, and the numerical values in the lower row indicate the values in the direction perpendicular to the pressing direction. Furthermore, the actual evaluation of residual magnetic flux density is
Residual magnetic flux density in the direction parallel to the pressing direction (B rll )
and the residual magnetic flux density in the perpendicular direction (on Br), volume %
This was done by calculating the value multiplied by a correction coefficient. That is, the actual residual magnetic flux density Br□. 1. . is the following formula (i):' Br1LaLall -1/F (Br77 +
B rl ) ・= (11, and F is the following formula (2)
: % formula % (However, in formula (2), ρ is the measured density of the magnetic powder compact, ρ is the true density of the magnetic powder, and X is the weight % of the magnetic powder.
As a result, F represents the volume percent of the magnetic powder. ).

尚、第1表中には、参考例として、上記と同様の磁性合
金粉末を真空中600℃で1時間熱処理したのち、エポ
キシ樹脂を21i量%混合し、成形圧カフ tonf/
−でプレス成形してなる所謂プラスチック磁石を製造し
て、その磁気特性及び密度を併せて示した。
In Table 1, as a reference example, the same magnetic alloy powder as above was heat-treated at 600°C in vacuum for 1 hour, and then 21i% of epoxy resin was mixed therein, and the molding pressure cuff tonf/
- A so-called plastic magnet was produced by press molding, and its magnetic properties and density were also shown.

2、   5〜7 重量%で、Nd:2T%、Dy:1重量%、B:0.4
%、N1.01%、st:o、t%、C:0.1%、及
び、残部Feよりなる組成の磁性合金を誘導炉にて製造
した。この合金を溶融スピニング法によりリボン状薄帯
としたのち、−60メツシユに粉砕して磁性合金粉末を
得た0次いで、この磁性合金粉末にはんだ合金(63重
量%5n−37重量%pb、融点:183℃)粉末を第
2表に示した各添加量(重量%)で添加混合し、しかる
のち、この混合粉末を第2表に示した条件でホットプレ
スすることにより、希土類−Fe−B系磁石を製造した
2, 5-7% by weight, Nd: 2T%, Dy: 1% by weight, B: 0.4
%, N 1.01%, st: o, t%, C: 0.1%, and the balance was produced in an induction furnace. This alloy was made into a ribbon-like thin strip by a melt spinning method, and then ground into a -60 mesh to obtain a magnetic alloy powder.Next, this magnetic alloy powder was mixed with a solder alloy (63% by weight 5N-37% by weight PB, melting point : 183℃) powder in the amounts (wt%) shown in Table 2, and then hot-pressed this mixed powder under the conditions shown in Table 2 to form rare earth -Fe-B. A system magnet was manufactured.

このようにして得られた各磁石について、上記と同様そ
の磁気特性及び密度を測定し、第2表中に示した。更に
、これらの磁石の耐蝕性を調べるために、各磁石を温度
50℃、相対湿度98%の雰囲気中に96時間保持する
耐蝕試験を行い、磁石の全面積に対する鯖の発生面積の
比を算出して第2表中に併記した。
The magnetic properties and density of each magnet thus obtained were measured in the same manner as above, and are shown in Table 2. Furthermore, in order to examine the corrosion resistance of these magnets, we conducted a corrosion resistance test in which each magnet was held in an atmosphere with a temperature of 50°C and a relative humidity of 98% for 96 hours, and the ratio of the area where mackerel was generated to the total area of the magnet was calculated. and are also listed in Table 2.

(以下余白) 第1表において、ホットプレス温度が670℃を超える
場合はAJを添加するしないにかかわらず、保磁力が低
下してしまう(比較例2.4)。
(The following is a blank space) In Table 1, when the hot press temperature exceeds 670°C, the coercive force decreases regardless of whether AJ is added or not (Comparative Example 2.4).

そして、ホットプレス温度が670℃以下の場合、An
を添加し、且つAIの融点660℃以上の温度の場合は
磁性粉末成形体の密度も高く、磁気特性も全て向上する
(実施例1)が、ANを添加しない場合は磁性粉末成形
体の密度が小さく (比較例3) 、Aj!を添加して
もAIが溶融しないような温度の場合は、磁性粉末成形
体の密度は極めて小さくなりエネルギー積が低下してし
まう(比較例1)ことが1iii!された。
And when the hot press temperature is 670°C or less, An
When AN is added and the temperature is higher than the melting point of AI, 660°C, the density of the magnetic powder compact is high and all magnetic properties are improved (Example 1), but when AN is not added, the density of the magnetic powder compact is high. is small (Comparative Example 3), Aj! If the temperature is such that AI does not melt even if it is added, the density of the magnetic powder compact becomes extremely small and the energy product decreases (Comparative Example 1). It was done.

又、第2表において、磁気特性と磁性粉末成形体の密度
については、上記第1表と同様の結果が得られた。更に
、はんだ合金を添加していないものは、鯖の発生面積が
極めて大きく (比較例6.7)、又、はんだ合金を添
加してもこれが溶融しないような温度でホットプレスし
たものは、やはり鯖の発生面積が大きく1.添加効果が
殆ど発現していない(比較例5)が、はんだ合金を添加
し且つはんだ合金が溶融する温度でホットプレスしたも
のは、錆の発生面積が激減し、耐蝕性が著しく向上して
いることが明らかとなつた(実施例2)。
Furthermore, in Table 2, the same results as in Table 1 above were obtained regarding the magnetic properties and the density of the magnetic powder compacts. Furthermore, the area where solder alloy is not added is extremely large (Comparative Example 6.7), and the product that is hot-pressed at a temperature that does not melt even if solder alloy is added is still 1. The area where mackerel occurs is large. Although almost no effect of the addition was observed (Comparative Example 5), the product to which solder alloy was added and hot-pressed at a temperature where the solder alloy melted had a drastic reduction in the area where rust occurred and significantly improved corrosion resistance. This became clear (Example 2).

(発明の効果ン 以上説明したように本発明によれば、少なくとも1種の
希土類元素、Fe及びBを主成分とする磁性合金粉末を
ホットプレスして希土類−Fe−B系磁石を製造する方
法において、前記ホントプレスを670℃以下の温度で
行うと共に、このホットプレス時に溶融状態にあるよう
な金属もしくは合金粉末を前記磁性合金粉末に添加混合
したのち、前記ホットプレスを行うこととしたので、比
較的低温におけるホットプレスにより磁気特性特に保磁
力を確保すると共に、ホットプレス時に溶融して液相を
形成する金属もしくは合金の作用により磁性粉末成形体
の密度を高めて、残留磁束密度及びエネルギー積を向上
させることができる。更に、得られた磁石の耐蝕性を向
上させる効果も有する。
(Effects of the Invention) As explained above, according to the present invention, a method for producing a rare earth-Fe-B magnet by hot pressing a magnetic alloy powder containing at least one rare earth element, Fe and B as main components. In this case, the hot pressing is performed at a temperature of 670° C. or lower, and after adding and mixing a metal or alloy powder that is in a molten state at the time of the hot pressing to the magnetic alloy powder, Hot pressing at a relatively low temperature ensures magnetic properties, especially coercive force, and the density of the magnetic powder compact is increased by the action of the metal or alloy that melts during hot pressing to form a liquid phase, resulting in improved residual magnetic flux density and energy product. Further, it has the effect of improving the corrosion resistance of the obtained magnet.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも1種の希土類元素、Fe及びBを主成
分とする磁性合金粉末をホットプレスして希土類−Fe
−B系磁石を製造する方法において、前記ホットプレス
を670℃以下の温度で行うと共に、このホットプレス
時に溶融状態にあるような金属もしくは合金粉末を前記
磁性合金粉末に添加混合したのち、前記ホットプレスを
行うことを特徴とする希土類−Fe−B系磁石の製造方
法。
(1) Hot pressing magnetic alloy powder containing at least one rare earth element, Fe and B as main components to produce rare earth-Fe
- In the method of manufacturing a B-based magnet, the hot pressing is performed at a temperature of 670°C or lower, and after adding and mixing a metal or alloy powder that is in a molten state at the time of the hot pressing to the magnetic alloy powder, A method for manufacturing a rare earth-Fe-B magnet, which comprises pressing.
(2)前記金属もしくは合金粉末を、前記磁性合金粉末
に対して1〜50重量%添加混合することを特徴とする
特許請求の範囲第1項記載の希土類−Fe−B系磁石の
製造方法。
(2) The method for manufacturing a rare earth-Fe-B magnet according to claim 1, characterized in that the metal or alloy powder is added and mixed in an amount of 1 to 50% by weight with respect to the magnetic alloy powder.
JP62104368A 1987-04-30 1987-04-30 Manufacture of rare earth-fe-b magnet Pending JPS63272009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104368A JPS63272009A (en) 1987-04-30 1987-04-30 Manufacture of rare earth-fe-b magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104368A JPS63272009A (en) 1987-04-30 1987-04-30 Manufacture of rare earth-fe-b magnet

Publications (1)

Publication Number Publication Date
JPS63272009A true JPS63272009A (en) 1988-11-09

Family

ID=14378869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104368A Pending JPS63272009A (en) 1987-04-30 1987-04-30 Manufacture of rare earth-fe-b magnet

Country Status (1)

Country Link
JP (1) JPS63272009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434113A2 (en) * 1989-12-19 1991-06-26 General Motors Corporation Alloying low-level additives into hot-worked Nd-Fe-B magnets
WO1997017709A1 (en) * 1995-11-10 1997-05-15 Magnetfabrik Schramberg Gmbh & Co. MAGNETIC MATERIAL AND PERMANENT MAGNET OF THE NdFeB TYPE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386502A (en) * 1986-09-30 1988-04-16 Tokin Corp Rare earth magnet and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386502A (en) * 1986-09-30 1988-04-16 Tokin Corp Rare earth magnet and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434113A2 (en) * 1989-12-19 1991-06-26 General Motors Corporation Alloying low-level additives into hot-worked Nd-Fe-B magnets
WO1997017709A1 (en) * 1995-11-10 1997-05-15 Magnetfabrik Schramberg Gmbh & Co. MAGNETIC MATERIAL AND PERMANENT MAGNET OF THE NdFeB TYPE

Similar Documents

Publication Publication Date Title
WO1997038426A1 (en) Bonded magnet with low losses and easy saturation
JPH07106110A (en) Powder composition for manufacturing bond magnet, and magnetic anisotropic permanent magnet, and manufacture of magnetic anisotropic permanent magnet
US5589009A (en) RE-Fe-B magnets and manufacturing method for the same
JPH03188241A (en) Sintered permanent magnet material and its manufacture
JPS63272009A (en) Manufacture of rare earth-fe-b magnet
JPH0352529B2 (en)
JP4573918B2 (en) Flat Fe-based alloy powder for magnetic shield
JPH04360501A (en) Manufacture of rare earth magnet
JP2803727B2 (en) Manufacturing method of permanent magnet
JPS62177147A (en) Manufacture of permanent magnet material
JPS59219453A (en) Permanent magnet material and its production
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH02298231A (en) Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics
JPH0248611B2 (en)
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
CA1086048A (en) Magnetic particles and compacts thereof
JPH0569906B2 (en)
JPH02220412A (en) Rare earth alloy powder for bond magnet and bond magnet
JPS5940211B2 (en) Cobalt-based sintered alloy for permanent magnets
JPH01305504A (en) Manufacture of highly corrosion resistant rare earth metal-b-fe sintered magnet
JP2689544B2 (en) Method for manufacturing giant magnetostrictive alloy and giant magnetostrictive material
JPS5887253A (en) Permanent magnet alloy
JPH02305902A (en) Rare earth alloy powder for bond magnet and bond magnet
JPS6014407A (en) Permanent magnet material
JPH02224205A (en) Rare-earth alloy powder for bonded magnet and bonded magnet