JP2803727B2 - Manufacturing method of permanent magnet - Google Patents

Manufacturing method of permanent magnet

Info

Publication number
JP2803727B2
JP2803727B2 JP62230855A JP23085587A JP2803727B2 JP 2803727 B2 JP2803727 B2 JP 2803727B2 JP 62230855 A JP62230855 A JP 62230855A JP 23085587 A JP23085587 A JP 23085587A JP 2803727 B2 JP2803727 B2 JP 2803727B2
Authority
JP
Japan
Prior art keywords
permanent magnet
alloy
manufacturing
added
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62230855A
Other languages
Japanese (ja)
Other versions
JPS6473602A (en
Inventor
慎一郎 矢萩
吉田  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62230855A priority Critical patent/JP2803727B2/en
Publication of JPS6473602A publication Critical patent/JPS6473602A/en
Application granted granted Critical
Publication of JP2803727B2 publication Critical patent/JP2803727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類−鉄属系の永久磁石の製造方法に関
する。 (従来の技術) 近年の電気・電子機器の小型化、高効率化、高速化の
要求にともない、永久磁石はの高性能化がますます要求
されるようになった。 そのなかでNd−Fe−B系の永久磁石が知られている。 このNd−Fe−B系永久磁石の製造方法は、例えば特開
昭59−64739号に開示されるように、急冷薄帯製造法と
称され、Nd−Fe−Bの各元素を高周波等により溶解し、
それを水冷した銅板上に溶射して急冷し、薄帯を形成
し、次いで、この薄帯を微粒子に粉砕し、ホットプレス
により高密度化して永久磁石を得るものである。 (発明が解決しようとする問題点) このようにして製造された従来の永久磁石は、硬くて
脆いため、加工性が悪いという問題がある。 本発明者らは、この問題点を解決するため実験を重ね
た結果、上記問題点を解決し、加工性および靭性を向上
させる永久磁石の製造方法を見い出し、本発明を完成す
るに至った。 (問題点を解決するための手段) 本発明による永久磁石の製造方法は、重量%でRxFe
100-x-yBy(Rは1種または2種以上の希土類元素、Fe
は鉄または鉄の一部をCo、Ni、Cr、V、Ti、Zr、Nbまた
はCuで置換したもの、Bはボロンまたはボロンの一部を
C、Al、Si、Gaで置換したもの、xおよびyの値は、20
≦x≦40、0.2≦y≦2.0を満足する)からなる合金溶湯
を急冷して薄帯を造り、この薄帯を粉砕して粉末材に
し、この粉末材をホットプレスにより高密度の成形体に
するものであって、 ホットプレスの際に、Mn、Fe、Co、Ni、Crのうち1種
または2種以上の元素またはこれらの合金の粉末を主添
加元素として重量%で0.1〜20%添加することを特徴と
する。また、必要に応じて副添加元素としてAl、Cu、Z
n、Pb、Sn、Biのうち1種または2種以上の元素を主添
加元素より少ない範囲で加えることもできる。 (発明の効果) 得られた永久磁石は、大きな最大エネルギ積の値を示
すとともに、加工性および靭性が良好であって快削性に
優れた磁石になるという効果がある。 (実施例) 以下本発明の実施例について述べる。 実施例1 第1の実施例1では、基本組成が重量比で30Nd−69Fe
−1Bの合金を用い、ホットプレス時に、第1表に示すよ
うに、各種元素および合金を添加した。添加物の種類、
重量%は第1表に示す実施例1の欄のとおりである。 この実施例1による永久磁石の製造方法について述べ
ると、まず重量比で30Nd−69Fe−1Bの組成を有する合金
をAr雰囲気中でアーク溶解して母合金を得る。この母合
金を石英ノズルに挿入し、Ar雰囲気中で高周波溶解し、
この溶融合金を高速回転する銅ロールに噴射して急冷凝
固させ、薄帯を得る。 この合金の薄帯をジェットミルによりN2ガス中で粒径
約10μm程度に粉砕して700℃、1ton/cm2の条件でホッ
トプレスを行ない、このホットプレスの際、薄帯合金に
対し第1表に示す各種金属粉末をバインダーとしてを所
定量添加し、さらにアップセットにより高密度異方性磁
石を得た。 これらの磁石の磁気特性としての最大エネルギ積(B
H)maxおよびビッカース硬さ(Hv)の各値は第1表に示
すとおりである。 第1表より、(BH)maxについては、ホットプレス時
に加える金属バインダーが多いと低下することが判る。
Hvについては、金属バインダーが多いとその値が低下し
軟くなることから、金属バインダーを加えて得られた磁
石は、切削性が良好な磁石であることが判る。 実施例2 第2の実施例2では、基本的には実施例1と同様に組
成が重量比で30Nd−69Fe−1Bの合金を用い、ホットプレ
ス時に第1表に示す各種金属粉末を添加するとともに、
急冷凝固前の母合金にあらかじめ第1表に示すように所
定の添加元素を所定量加えておく。その他の点について
は、実施例1と同様の方法により、高密度異方性磁石を
得た。 実施例2においては、実施例1より硬さが低下するの
で、より快削性が良好であることが判る。このことは、
液体急冷前の母合金に対し、Ca、Pb、Snを添加したこと
に起因するものと推定される。 実施例3 実施例3では、前記実施例1および実施例2と同様
に、基本組成が重量比で30Nd−69Fe−1Bの合金を用い、
液体急冷前の母合金に対し、Caを重量比で0.1〜0.5%添
加した合金を5個作製した。 その他の製造方法については、実施例1と同様の方法
であるので説明を省略する。 得られた磁石について、磁気特性としての最大エネル
ギ積(BH)maxおよびビッカース硬さ(Hv)値を測定し
たところ、第1図に示すとおりとなった。 第1図から明らかなように、母合金に対し、Caを0.1w
t%添加することにより、基本組成30Nd−69Fe−1Bの合
金の硬さよりもかなり軟くなり、切削性が向上すること
が判明した。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rare earth-iron based permanent magnet. (Prior Art) With the recent demand for miniaturization, high efficiency, and high speed of electric and electronic devices, higher performance of permanent magnets has been required more and more. Among them, Nd-Fe-B permanent magnets are known. This method for producing a Nd-Fe-B-based permanent magnet is referred to as a quenched ribbon production method, for example, as disclosed in JP-A-59-64739. Dissolve,
It is sprayed onto a water-cooled copper plate and quenched to form a ribbon, and then the ribbon is pulverized into fine particles and densified by hot pressing to obtain a permanent magnet. (Problems to be Solved by the Invention) The conventional permanent magnet manufactured as described above has a problem that workability is poor because it is hard and brittle. As a result of repeated experiments to solve this problem, the present inventors have found a method of manufacturing a permanent magnet that solves the above problems and improves workability and toughness, and has completed the present invention. Method for producing a permanent magnet according to the present invention (means for solving the problem), R x Fe in weight%
100-xy B y (R is one or more rare earth elements, Fe
Represents iron or a part of iron substituted with Co, Ni, Cr, V, Ti, Zr, Nb or Cu, B represents boron or a part of boron substituted with C, Al, Si, Ga, x And the value of y is 20
≤ x ≤ 40, 0.2 ≤ y ≤ 2.0) is rapidly quenched to form a ribbon, and the ribbon is pulverized into a powder material. In hot pressing, one or more elements of Mn, Fe, Co, Ni, and Cr or powders of these alloys are used as a main additive element in a weight percent of 0.1 to 20%. It is characterized by being added. Also, if necessary, Al, Cu, Z
One or more of n, Pb, Sn, and Bi can be added in a range smaller than the main additive element. (Effects of the Invention) The obtained permanent magnet has a large maximum energy product value, and has an effect of being excellent in workability and toughness and excellent in free-cutting property. (Example) Hereinafter, an example of the present invention will be described. Example 1 In Example 1, the basic composition was 30Nd-69Fe by weight.
As shown in Table 1, various elements and alloys were added during hot pressing using an alloy of -1B. Types of additives,
The weight% is as shown in the column of Example 1 shown in Table 1. The method of manufacturing a permanent magnet according to the first embodiment will be described. First, an alloy having a composition of 30Nd-69Fe-1B in a weight ratio is arc-melted in an Ar atmosphere to obtain a mother alloy. This master alloy is inserted into a quartz nozzle and melted by high frequency in an Ar atmosphere.
This molten alloy is sprayed onto a high-speed rotating copper roll to be rapidly solidified to obtain a ribbon. The ribbon of this alloy is pulverized to about 10 μm particle size in N 2 gas by a jet mill and hot-pressed at 700 ° C and 1 ton / cm 2 . A predetermined amount of each of the various metal powders shown in Table 1 as a binder was added, and a high density anisotropic magnet was obtained by upsetting. The maximum energy product (B
H) The values of max and Vickers hardness (Hv) are as shown in Table 1. Table 1 shows that (BH) max decreases when the amount of the metal binder added during hot pressing is large.
With respect to Hv, when the amount of the metal binder is large, the value decreases and becomes softer, and it is understood that the magnet obtained by adding the metal binder is a magnet having good machinability. Example 2 In Example 2, basically, an alloy having a composition of 30Nd-69Fe-1B in weight ratio was used as in Example 1, and various metal powders shown in Table 1 were added during hot pressing. With
As shown in Table 1, a predetermined amount of a predetermined additive element is previously added to the mother alloy before rapid solidification. Otherwise, a high-density anisotropic magnet was obtained in the same manner as in Example 1. In Example 2, since the hardness is lower than that in Example 1, it can be seen that the free cutting property is better. This means
It is estimated that Ca, Pb, and Sn were added to the mother alloy before liquid quenching. Example 3 In Example 3, similarly to Examples 1 and 2, the basic composition used an alloy of 30Nd-69Fe-1B in a weight ratio,
Five alloys were prepared by adding 0.1 to 0.5% by weight of Ca to the master alloy before liquid quenching. The other manufacturing method is the same as that of the first embodiment, and the description is omitted. The maximum energy product (BH) max and Vickers hardness (Hv) values as magnetic properties of the obtained magnet were measured, and the results were as shown in FIG. As is clear from FIG. 1, 0.1 w of Ca was added to the master alloy.
It has been found that the addition of t% makes the alloy considerably softer than the alloy having the basic composition of 30Nd-69Fe-1B, and improves the machinability.

【図面の簡単な説明】 第1図は母合金に対しCaを添加した磁石の最大エネルギ
積および硬さを示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the maximum energy product and hardness of a magnet obtained by adding Ca to a mother alloy.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 1/04 C22C 1/04 C22C 38/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01F 1/04 C22C 1/04 C22C 38/00

Claims (1)

(57)【特許請求の範囲】 1.重量%でRxFe100-x-yBy(Rは1種または2種以上
の希土類元素、Feは鉄または鉄の一部をCo、Ni、Cr、
V、Ti、Zr、NbまたはCuで置換したもの、Bはボロンま
たはボロンの一部をC、Al、Si、Gaで置換したもの、x
およびyの値は、20≦x≦40、0.2≦y≦2.0を満足す
る)からなる合金溶湯を急冷して薄帯を造り、この薄帯
を粉砕して粉末材にし、この粉末材をホットプレスによ
り高密度の成形体にする永久磁石の製造方法において、 ホットプレスの際に、Mn、Fe、Co、Ni、Crのうち1種ま
たは2種以上の元素またはこれらの合金の粉末を重量%
で0.1〜20%添加することを特徴とする永久磁石の製造
方法。
(57) [Claims] R x Fe 100-xy B y (R is one or more rare earth elements in weight%, Fe is a part of the iron or iron Co, Ni, Cr,
V, Ti, Zr, Nb or Cu substituted, B is boron or a part of boron substituted by C, Al, Si, Ga, x
And the values of y satisfy 20 ≦ x ≦ 40 and 0.2 ≦ y ≦ 2.0), thereby rapidly cooling the molten alloy to form a thin strip, pulverizing the thin strip into a powder material, and hot-dipping the powder material. In a method for producing a permanent magnet which is formed into a high-density compact by pressing, a powder of one or more of Mn, Fe, Co, Ni, Cr or an alloy of these elements or a powder of an alloy thereof is used in hot pressing.
A method for producing a permanent magnet, wherein 0.1-20% is added.
JP62230855A 1987-09-14 1987-09-14 Manufacturing method of permanent magnet Expired - Lifetime JP2803727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62230855A JP2803727B2 (en) 1987-09-14 1987-09-14 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62230855A JP2803727B2 (en) 1987-09-14 1987-09-14 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPS6473602A JPS6473602A (en) 1989-03-17
JP2803727B2 true JP2803727B2 (en) 1998-09-24

Family

ID=16914355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62230855A Expired - Lifetime JP2803727B2 (en) 1987-09-14 1987-09-14 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP2803727B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69203405T3 (en) * 1991-01-28 2004-05-06 Mitsubishi Materials Corp. Anisotropic rare earth magnet.
US5395462A (en) * 1991-01-28 1995-03-07 Mitsubishi Materials Corporation Anisotropic rare earth-Fe-B system and rare earth-Fe-Co-B system magnet
CN1038167C (en) * 1992-07-14 1998-04-22 东北工学院 Magnetic material and mfg. method thereof
CN109778085B (en) * 2019-03-14 2020-04-17 安徽智磁新材料科技有限公司 Amorphous alloy with good toughness and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386502A (en) * 1986-09-30 1988-04-16 Tokin Corp Rare earth magnet and manufacture thereof

Also Published As

Publication number Publication date
JPS6473602A (en) 1989-03-17

Similar Documents

Publication Publication Date Title
CN101521068B (en) Rare earth permanent magnet and method of manufacturing the same
US8182618B2 (en) Rare earth sintered magnet and method for producing same
JP2001189206A (en) Permanent magnet
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JPH044387B2 (en)
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
USRE31317E (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JPS6043900B2 (en) permanent magnet material
JP2803727B2 (en) Manufacturing method of permanent magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JPS6320411A (en) Production of material for permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JPS59219453A (en) Permanent magnet material and its production
JPH02138706A (en) Anisotropic permanent magnet
JP2823076B2 (en) Warm magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS6144155A (en) Permanent magnet alloy
JPS63111602A (en) High performance rare earth cast magnet