JPH0617200A - Tetragonal rare earth element-iron-boron type compound - Google Patents
Tetragonal rare earth element-iron-boron type compoundInfo
- Publication number
- JPH0617200A JPH0617200A JP4304352A JP30435292A JPH0617200A JP H0617200 A JPH0617200 A JP H0617200A JP 4304352 A JP4304352 A JP 4304352A JP 30435292 A JP30435292 A JP 30435292A JP H0617200 A JPH0617200 A JP H0617200A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- tetragonal
- permanent magnet
- rare earth
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、希土類・鉄・ボロンを
必須成分とする希土類・鉄・ボロン系正方晶化合物に関
する。この正方晶化合物は、磁性材料等特に永久磁石の
構成化合物として有用な物質発明の対象である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth / iron / boron-based tetragonal compound containing rare earth / iron / boron as an essential component. This tetragonal compound is the object of a substance invention useful as a constituent compound of a magnetic material or the like, particularly a permanent magnet.
【0002】R(希土類元素)とCoは種々の安定な化
合物を形成する。なかでもSmCo5やSm2Co17は高
い飽和磁化、高いキュリー点、大きい磁気異方性定数を
有しており、これらの化合物をベースとして超高性能永
久磁石材料が開発された。現在RCo磁石は小型モータ
や小型スピーカなど様々な用途に広く利用されている。
しかしながら、これらのSmCo系磁石は資源が稀少な
SmがCoを多量に含んでいるので高価である。そのた
めSmやCoをあまり含まないか、あるいは全く含まな
い材料の開発が望まれている。R (rare earth element) and Co form various stable compounds. Among them, SmCo 5 and Sm 2 Co 17 have high saturation magnetization, high Curie point, and large magnetic anisotropy constant, and an ultrahigh performance permanent magnet material was developed based on these compounds. Currently, RCo magnets are widely used in various applications such as small motors and small speakers.
However, these SmCo-based magnets are expensive because Sm, which is a scarce resource, contains a large amount of Co. Therefore, it is desired to develop a material containing little or no Sm or Co.
【0003】この目的に沿った永久磁石材料とする上で
の観点からRCo化合物と同様に巨大な異方性定数をも
っているRFe系化合物が注目された。しかしRFe系
ではRCo系ほど多種類の化合物は存在しない。特にR
元素の中では資源的に豊富なCe、La、Ndなど軽希
土類でR2Fe17型化合物とほんの少数の他の化合物
(例Nd6Fe23、PrFe2)が見出されているにすぎ
ない。これらの化合物はキュリー点も低く、異方性定数
も小さいため、実用的な永久磁石とするのに必要な特性
を示さない。From the viewpoint of making a permanent magnet material for this purpose, an RFe compound having a huge anisotropy constant like an RCo compound has been noted. However, in the RFe system, there are not as many kinds of compounds as in the RCo system. Especially R
Among the elements, resource-rich light rare earths such as Ce, La, and Nd, R 2 Fe 17 type compounds and only a few other compounds (eg Nd 6 Fe 23 , PrFe 2 ) have been found. . Since these compounds have a low Curie point and a small anisotropy constant, they do not exhibit the properties required for a practical permanent magnet.
【0004】最近、RFe系合金の超急冷リボンが高保
磁力を示すことが見出され、永久磁石材料としての関心
が高まっている。しかし、RFe超急冷リボンでは実用
形状、寸法の磁石が得られず、まだ実用永久磁石とはい
えない。また、磁気特性の上でも超急冷リボンは従来の
磁石に比べて低い値しか示さない。Recently, it has been found that an ultra-quenched ribbon of an RFe alloy exhibits a high coercive force, and the interest as a permanent magnet material is increasing. However, the RFe ultra-quenching ribbon cannot provide a magnet having a practical shape and size, and cannot be said to be a practical permanent magnet. Also, in terms of magnetic properties, the ultra-quenched ribbon shows a lower value than the conventional magnet.
【0005】本発明は、上述の従来技術で達成されてい
ないR、Fe及び第3成分を少くとも必須成分とし室温
以上で安定な新規な化合物を提供することを基本的目的
とする。本発明は、特にR、Fe、Bを必須の成分とす
る新規な化合物に基づきさらに置換ないし修飾成分を含
む新規な化合物であって磁性材料及び永久磁石の構成化
合物として有用なものを提供することを基本目的とす
る。本発明はまた、従来必要とされているSmやCoを
実用上は必ずしも多量に用いることなく、優れた実用的
磁気特性を備えた或いは発現可能な磁性材料及び永久磁
石の構成化合物として有用なものを提供せんとするもの
である。The basic object of the present invention is to provide a novel compound which contains R, Fe and the third component, which have not been achieved by the above-mentioned conventional techniques, as at least essential components and which is stable at room temperature or higher. The present invention provides a novel compound further containing a substitution or modification component based on a novel compound containing R, Fe and B as essential components, which is useful as a constituent compound of a magnetic material and a permanent magnet. Is the basic purpose. The present invention is also useful as a constituent compound of a magnetic material and a permanent magnet having or exhibiting excellent practical magnetic characteristics without necessarily using a large amount of Sm and Co which are conventionally required in practical use. Is intended to be provided.
【0006】即ち、本願発明の基礎を成す出願(特願昭
58−94876)の開示によれば、R(RはYを含む
希土類元素の一種以上)、Fe、Bを必須成分とし、格
子定数のc0が約12Åである正方晶系の結晶構造を有
するRFeB正方晶化合物が得られる。このRFeB正
方晶化合物は本願発明の基礎をなす。That is, according to the disclosure of the application forming the basis of the present invention (Japanese Patent Application No. 58-94876), R (R is one or more rare earth elements including Y), Fe and B are essential components, and the lattice constant is An RFeB tetragonal compound having a tetragonal crystal structure with c 0 of about 12Å is obtained. This RFeB tetragonal compound forms the basis of the present invention.
【0007】本発明は第1に、上記RFeB系正方晶化
合物において、FeをCoにて置換したもの即ち、R
(Fe、Co)B正方晶化合物(好ましくは原子比にて
Co50%以下 −以下明記ないときは%は原子比を示
す−)を提供する。CoによるFeの置換は正方晶化合
物のキュリー点の増大の効果がある。The present invention firstly relates to the above-mentioned RFeB type tetragonal compound in which Fe is replaced by Co, that is, R
Provide a (Fe, Co) B tetragonal compound (preferably not more than 50% Co by atomic ratio-% means atomic ratio unless otherwise specified). Substitution of Fe with Co has the effect of increasing the Curie point of a tetragonal compound.
【0008】本発明によれば第2に、かかる化合物が体
積比で全体の1%以上の非磁性金属間化合物相により互
いに隔離されていることにより、優れた磁石特性を発現
できる構成化合物を与える。なお、好ましくはこの場合
(特に焼結体の場合)、正方晶化合物の平均結晶粒径は
1〜100μmである。Secondly, according to the present invention, such compounds are separated from each other by 1% or more by volume of the non-magnetic intermetallic compound phase, thereby providing a constituent compound capable of exhibiting excellent magnet characteristics. . In this case (particularly in the case of a sintered body), the average crystal grain size of the tetragonal compound is preferably 1 to 100 μm.
【0009】さらに本発明において、RFeB基本系、
又はR(Fe、Co)B系の正方晶化合物に下記特定の
A元素を含有したものも同様の正方晶系を示し、磁性材
料及び永久磁石の構成化合物として有用かつ優れたもの
である。但しA元素はTi、Ni、Bi、V、Nb、T
a、Cr、Mo、W、Mn、Al、Sb、Ge、Sn、
Zr、Hf、Cu、S、C、Ca、Mg、Si、O及び
Pの一種以上である。Further, in the present invention, the RFeB basic system,
Alternatively, an R (Fe, Co) B-based tetragonal compound containing the following specific A element also exhibits the same tetragonal system, and is useful and excellent as a constituent compound of a magnetic material and a permanent magnet. However, A element is Ti, Ni, Bi, V, Nb, T
a, Cr, Mo, W, Mn, Al, Sb, Ge, Sn,
It is one or more of Zr, Hf, Cu, S, C, Ca, Mg, Si, O and P.
【0010】即ち、本発明は第3に、R(但しRはYを
含む希土類元素の一種以上)、Fe、B及び前記A元素
を必須成分とした場合にも格子定数のc0が約12Åで
ある正方晶系の結晶構造を有するRFeBA正方晶化合
物を提供する。That is, the third aspect of the present invention is that when R (where R is one or more rare earth elements including Y), Fe, B and the A element are essential components, the lattice constant c 0 is about 12Å. An RFeBA tetragonal compound having a tetragonal crystal structure is provided.
【0011】本発明において、第4に、このRFeBA
正方晶化合物が体積比で全体の1%以上の非磁性金属間
化合物相で互いに隔離されている状態のとき、永久磁石
の構成化合物として最も優れている。なおこの場合(特
に焼結体の場合)、このRFeBA正方晶化合物の平均
結晶粒径が1〜100μmであることが好ましい。In the present invention, fourthly, this RFeBA
The tetragonal compound is most excellent as a constituent compound of a permanent magnet when it is separated from each other by a nonmagnetic intermetallic compound phase of 1% or more by volume. In this case (particularly in the case of a sintered body), it is preferable that the RFeBA tetragonal compound has an average crystal grain size of 1 to 100 μm.
【0012】本発明は、第5に、上記RFeBA系正方
晶化合物において、FeをCoで一部置換(好ましくは
50%以下のCo)したR(Fe、Co)BA系正方晶
化合物を提供し、さらに第6に、その隔離状態について
前記第4の場合と同様である。Fifth, the present invention provides an R (Fe, Co) BA tetragonal compound in the above RFeBA tetragonal compound, wherein Fe is partially replaced by Co (preferably 50% or less of Co). Further, sixthly, the isolation state is the same as in the fourth case.
【0013】有用な磁気特性を得るため、本発明におい
て、高性能の磁性材料、永久磁石とするためには、正方
晶系(後述参照)の結晶構造を有する化合物を主相とす
る必要がある。ここで主相とは材料中に含まれているい
くつかの相のうち、体積比で50%以上を占める相をい
う。即ち、この主相としては、R(Fe、Co)B化合
物、RFeBA化合物、R(Fe、Co)BA化合物の
一種以上が構成化合物となる。In order to obtain useful magnetic properties, in the present invention, a compound having a tetragonal (see later) crystal structure must be the main phase in order to obtain a high-performance magnetic material or permanent magnet. . Here, the main phase means a phase that occupies 50% or more in volume ratio among some phases contained in the material. That is, as the main phase, one or more of R (Fe, Co) B compounds, RFeBA compounds, and R (Fe, Co) BA compounds are constituent compounds.
【0014】第1〜第6の発明(態様)においてかつ3
正方晶化合物に基づいて磁性材料又は永久磁石を製造す
る場合、そのR−Fe−Bの基本組成はB2〜28%、
R8〜30%、残部実質上Feにおいて優れた磁気特性
が得られ、好ましくはFe40〜90%とし、これを基
本系としてCo置換あるいはA元素添加を行う。In the first to sixth inventions (embodiments) and 3
When manufacturing a magnetic material or a permanent magnet based on a tetragonal compound, the basic composition of R—Fe—B is B2 to 28%,
Excellent magnetic properties are obtained with R 8 to 30% and the balance substantially Fe, and preferably 40 to 90% of Fe is used as a basic system for Co substitution or A element addition.
【0015】なお磁性材料又は永久磁石とする場合、A
元素の量は好ましくは次の通りである: Ti 4.5%以下、 Ni 8.0%以下、 Bi 5.0%以下、 V 9.5%以下、 Nb 12.5%以下、 Ta 10.5%以下、 Cr 8.5%以下、 Mo 9.5%以下、 W 9.5%以下、 Mn 8.0%以下、 Al 9.5%以下、 Sb 2.5%以下、 Ge 7.0%以下、 Sn 3.5%以下、 Zr 5.5%以下、 Hf 5.5%以下、 Cu 3.5%以下、 S 2.0%以下、 C 4.0%以下、 Ca 8.0%以下、 Mg 8.0%以下、 Si 8.0%以下、 O 1.0%以下、および P 3.5% (但しA元素は2以上含むこともでき、その場合、A元
素の合量は、当該含有A元素のうち最大値を有するもの
の値以下含有できる)。When using a magnetic material or a permanent magnet, A
The amounts of the elements are preferably as follows: Ti 4.5% or less, Ni 8.0% or less, Bi 5.0% or less, V 9.5% or less, Nb 12.5% or less, Ta 10.5% or less, Cr 8.5% or less, Mo 9.5%. Below, W 9.5% or less, Mn 8.0% or less, Al 9.5% or less, Sb 2.5% or less, Ge 7.0% or less, Sn 3.5% or less, Zr 5.5% or less, Hf 5.5% or less, Cu 3.5% or less, S 2.0% Hereinafter, C 4.0% or less, Ca 8.0% or less, Mg 8.0% or less, Si 8.0% or less, O 1.0% or less, and P 3.5% (however, the A element may be contained in two or more, and in that case, the combination of the A element is The amount of the element A can be less than or equal to the maximum value of the contained A element).
【0016】以下、本発明について詳述する。The present invention will be described in detail below.
【0017】本発明者らはRFe系化合物の磁気的性質
と構造の関係について従来の研究結果をもとに考察し
た。その結果次のことが明らかになった。The present inventors have discussed the relationship between the magnetic properties and the structure of RFe compounds based on the results of conventional studies. As a result, the following things became clear.
【0018】(1)RFe系化合物の磁気的性質には、
Feどうしの原子間距離や、Fe原子の周囲の環境(最
近核原子の数、種類など)がきわめて大きい役割を果し
ている。(1) The magnetic properties of the RFe compound include
The interatomic distance between Fe atoms and the environment around Fe atoms (such as the number and type of nuclear atoms recently) play an extremely large role.
【0019】(2)RとFeの組合せだけでは結晶状態
で永久磁石として適した化合物は存在しない。(2) There is no compound suitable for a permanent magnet in the crystalline state only by the combination of R and Fe.
【0020】本発明者らは、RFe化合物において、F
e原子の周囲の環境を変え、永久磁石として適した特性
を与えるためには第三の元素の存在が不可欠であるると
判断した。そこで第三の元素Xとして、種々の元素を加
えたRFeX三元化合物について、磁気的性質を詳細に
調べた。その結果XとしてBを含むRFeB基本化合物
を見出した。RFeB基本化合物は未知の化合物であり
従来のRFe化合物よりキュリー点も高く、異方性定数
も大きいため優れた永久磁石材料の構成化合物となりう
ることが明らかとなった。The present inventors have found that in the RFe compound, F
It was judged that the presence of the third element is indispensable in order to change the environment around the e-atom and give the characteristics suitable as a permanent magnet. Therefore, the magnetic properties of the RFeX ternary compound containing various elements as the third element X were examined in detail. As a result, an RFeB basic compound containing B as X was found. It has been revealed that the RFeB basic compound is an unknown compound, has a higher Curie point and a larger anisotropy constant than the conventional RFe compound, and thus can be an excellent constituent compound of a permanent magnet material.
【0021】以下実施例に従いさらに詳細に述べる。Further details will be described below with reference to examples.
【0022】実験方法 (1)原料(純度は重量%) Fe: 電解鉄 99.9% B: フェロボロンまたは99%の純度のB R: 99% Ti、Mo、Mn、Sb、Ni、Ta: 98% Al、Cu: 99.9% Hf: 95% V: フェロバナジウム(81.2%V) Nb: フェロニオブ(67.6%Nb) Cr: フェロクロム(61.9%Cr) Zr: フェロジルコニウム(75.5%Zr)Experimental method (1) Raw material (purity is% by weight) Fe: electrolytic iron 99.9% B: ferroboron or 99% pure BR: 99% Ti, Mo, Mn, Sb, Ni, Ta: 98% Al , Cu: 99.9% Hf: 95% V: Ferrovanadium (81.2% V) Nb: Ferroniobium (67.6% Nb) Cr: Ferrochrome (61.9% Cr) Zr: Ferrozirconium (75.5% Zr)
【0023】(2)実験手順は図2に図示の通りであ
る。実験結果は次の通りであった。なお、手順(A)は
化合物の同定のための実験手順を示し、手順(B)は永
久磁石にした場合の実験手順を示す。(2) The experimental procedure is as shown in FIG. The experimental results were as follows. The procedure (A) shows an experimental procedure for identifying a compound, and the procedure (B) shows an experimental procedure when a permanent magnet is used.
【0024】(1)高特性を示すFe−B−Nd基本焼
結体(原子百分比で77Fe−15Nd−8B)につい
て測定した典型的な粉末X線ディフラクトメータのパタ
ーンを図1に示す。このパターンはきわめて複雑で、こ
れまで知られているどのようなRFe系化合物、FeB
化合物、あるいはRB系化合物によっても説明できな
い。(1) A typical powder X-ray diffractometer pattern measured on a Fe-B-Nd basic sintered body (77Fe-15Nd-8B in atomic percentage ratio) showing high characteristics is shown in FIG. This pattern is extremely complex, and any RFe compound known so far, FeB
It cannot be explained by the compound or RB compound.
【0025】(2)(1)の試料のXMA測定による
と、焼結体は三つまたは四つの相からなっている。主相
はFe、B、Rを同時に含んでおり、第二相はRが重量
比で70%以上のR濃縮相、第三相は主相よりもBの富
んだ相である。第四相は酸化物の相である。(2) According to the XMA measurement of the sample of (1), the sintered body is composed of three or four phases. The main phase contains Fe, B, and R at the same time, the second phase is an R-enriched phase in which R is 70% by weight or more, and the third phase is a phase richer in B than the main phase. The fourth phase is the oxide phase.
【0026】(3)図1の粉末X線ディフラクトメータ
のパターンを解析した結果、このパターンに含まれる強
いピークは全部a0=8.80Å、c0=12.23Å の正方晶と
して説明できる。図1各X線ピークのところに指数を示
す。XMA測定において観察された、FeB、Rを同時
に含む主相が、この構造をもっていることが判明した。
この構造の特徴は、格子定数が大変大きいことである。
このように巨大な格子定数をもった正方晶の化合物は、
RFe、FeB、BRいずれの二元系化合物においても
知られていない。(3) As a result of analyzing the pattern of the powder X-ray diffractometer shown in FIG. 1, all the strong peaks contained in this pattern can be explained as tetragonal crystals with a 0 = 8.80Å and c 0 = 12.23Å. Figure 1 shows the index at each X-ray peak. It was found that the main phase simultaneously containing FeB and R observed in XMA measurement has this structure.
The feature of this structure is that the lattice constant is very large.
A tetragonal compound with such a huge lattice constant is
It is not known in any of binary compounds of RFe, FeB and BR.
【0027】(4)種々の組成をもち、かつ前記方法を
含む種々の製造方法によって作成されたFeBR系およ
びFeCoBR系永久磁石について、X線ディフラクト
メータの測定およびXMA測定、光学顕微鏡観察を行っ
た結果、つぎのことが明らかになった。(4) X-ray diffractometer measurement, XMA measurement, and optical microscope observation were performed on FeBR-based and FeCoBR-based permanent magnets having various compositions and prepared by various manufacturing methods including the above-mentioned method. As a result, the following became clear.
【0028】(i)(3)で述べたR、Fe、Bを基本
成分とし格子定数a0約9Å、c0約12Åの巨大ユニッ
トセルを有する正方晶の化合物が存在する場合に、永久
磁石として良好な特性を持つ。代表的なFeBRおよび
FeCoBR系磁石について得られた主相の正方晶化合
物の格子定数は第一表の通りである。(I) In the presence of a tetragonal compound having a giant unit cell having R, Fe and B as basic components described in (3) and having lattice constants a 0 about 9Å and c 0 about 12Å, a permanent magnet is used. With good characteristics. Table 1 shows the lattice constants of the tetragonal compound of the main phase obtained for typical FeBR and FeCoBR magnets.
【0029】RFe、FeB、BRなど従来ある二元系
化合物を基本とする化合物では、良好な永久磁石特性は
得られない。Good permanent magnet characteristics cannot be obtained with compounds based on conventional binary compounds such as RFe, FeB and BR.
【0030】(ii)上記正方晶化合物が適度の結晶粒径
をもち、かつこの化合物がRが多量に含まれた非磁性相
が混在する微細組織の場合に正方晶化合物は、永久磁石
の構成化合物として特に良好な特性を示す。(Ii) In the case where the tetragonal compound has an appropriate crystal grain size and the compound has a fine structure in which a nonmagnetic phase containing a large amount of R is mixed, the tetragonal compound has a structure of a permanent magnet. It exhibits particularly good properties as a compound.
【0031】本正方晶化合物に基づく永久磁石では上述
の正方晶の化合物の平均結晶粒径が1〜100μm(好
ましくは1.5〜90μm、さらに好ましくは1.5〜80μ
m)の範囲にあることが望ましく、1μmより小さいか
100μmより大ではHcが1kOe以下となり、それ
を構成化合物とする材料の工業材料としての価値が低下
する。In the permanent magnet based on the present tetragonal compound, the above-mentioned tetragonal compound has an average crystal grain size of 1 to 100 μm (preferably 1.5 to 90 μm, more preferably 1.5 to 80 μm).
m) is desirable, and when it is smaller than 1 μm or larger than 100 μm, Hc becomes 1 kOe or less, and the value of the material containing it as an industrial material decreases.
【0032】また正方晶化合物の存在形態としては、高
い異方性定数をもつ微粒子が1つ1つ非磁性の相によっ
て隔離されていることが理想であり、このようなときに
高いHcを発現することが判明した。本願発明の正方晶
化合物は、この隔離微粒子を成すことによって理想的組
織を形成でき、この組織形態に基づいて理論的永久磁石
ないし永久磁石材料の設計ができる。そのため非磁性の
相が1体積%以上必要である。Hcが1kOe以上であ
るために非磁性の相が少なくとも体積比で1%以上必要
であるが、45%をこえるのは好ましくない。好ましい
範囲は2〜10%である。非磁性の相は主としてRを多
量に含む金属間化合物相によって構成される。非磁性の
相としては酸化物の相も一部有効に働きうる。The ideal form of the tetragonal compound is that each fine particle having a high anisotropy constant is separated by a non-magnetic phase, and a high Hc is expressed in such a case. It turned out to be. The tetragonal compound of the present invention can form an ideal structure by forming the isolated fine particles, and a theoretical permanent magnet or a permanent magnet material can be designed based on this structure morphology. Therefore, the nonmagnetic phase must be 1% by volume or more. Since Hc is 1 kOe or more, the nonmagnetic phase needs to be at least 1% by volume, but it is not preferable to exceed 45%. The preferred range is 2 to 10%. The nonmagnetic phase is mainly composed of an intermetallic compound phase containing a large amount of R. As the non-magnetic phase, the oxide phase can partly work effectively.
【0033】(iii) 上記RFeB正方晶化合物は広い
組成範囲で生成しうる。またR、Fe、B以外の元素を
添加又は置換しても安定に存在しうる。(Iii) The above RFeB tetragonal compound can be produced in a wide composition range. Further, even if an element other than R, Fe and B is added or substituted, it can exist stably.
【0034】永久磁石として良好な特性を示すための、
材料としての組成範囲はつぎの通りである。原子百分比
で2〜28%のB、8〜30%のRおよび40〜90%
のFeを必須成分とする合金系(I) 。In order to exhibit good characteristics as a permanent magnet,
The composition range of the material is as follows. Atomic percentage of 2-28% B, 8-30% R and 40-90%
Alloy system (I) containing Fe as an essential component.
【0035】また2〜28%のB、8〜30%のR、4
0〜90%のFeおよび50%以下のCoを必須成分と
する合金系(II)。2 to 28% B, 8 to 30% R, 4
An alloy system (II) containing 0 to 90% Fe and 50% or less Co as essential components.
【0036】合金系(I) 、(II)においてB2%以
下、R8%以下ではHcが1kOe以下となり、永久磁
石とした場合の工業的価値が低下する。B28%以上、
R30%以上ではBrが4kG以下となり、ハードフェ
ライトよりも低下してしまう。合金系(II)においては
Feに対する置換Co量の増大にともなって正方晶化合
物のキュリー点が上昇し(300〜750℃)、温度特
性が向上するが、Coが50%以上となると、Hcが1
kOe以下となり永久磁石とした場合の価値は低くな
る。しかし、永久磁石以外の磁性材料としての用途に
は、それでも構わない。In the alloy systems (I) and (II), when B2% or less and R8% or less, Hc becomes 1 kOe or less, and the industrial value of a permanent magnet decreases. B28% or more,
When R is 30% or more, Br becomes 4 kG or less, which is lower than that of hard ferrite. In the alloy system (II), the Curie point of the tetragonal compound rises (300 to 750 ° C.) with an increase in the amount of Co substituted with Fe (300 to 750 ° C.), and the temperature characteristics are improved, but when Co is 50% or more, Hc is 1
The value becomes less than kOe, and the value of the permanent magnet becomes low. However, it may be used as a magnetic material other than the permanent magnet.
【0037】上記必須成分に加えて各種の添加元素およ
び原料や製造工程から混入する不純物元素を含む合金も
前記範囲内において主相を正方晶化合物とすることがで
き、その場合に良好な永久磁石特性を示す。In addition to the above essential components, alloys containing various additive elements and impurity elements mixed in from raw materials and manufacturing processes can also have a tetragonal compound as the main phase within the above range, and in that case, a good permanent magnet can be obtained. Show the characteristics.
【0038】また1%以下のH、Li、Na、K、B
e、Sr、Ba、Ag、Zn、N、F、Se、Te、P
bを含んでも上記基本正方晶化合物は安定であり良好な
永久磁石が得られる。Further, H, Li, Na, K, B of 1% or less
e, Sr, Ba, Ag, Zn, N, F, Se, Te, P
Even if b is included, the basic tetragonal compound is stable and a good permanent magnet can be obtained.
【0039】上述のように、RFeB系あるいはR(F
e、Co)B系正方晶化合物は従来全く知られていない
化合物であり、この化合物を主相とすることにより永久
磁石として高い特性が得られることは、新規の事実であ
る。RFeB基本化合物に基づく合金のキュリー点はR
FeB基本化合物に基づき凡そ300〜370℃の範囲
にあり、このような化合物に基づく合金は従来知られて
いない。As described above, the RFeB system or R (F
The (e, Co) B-type tetragonal compound is a compound that has not been known at all, and it is a novel fact that high characteristics as a permanent magnet can be obtained by using this compound as the main phase. The Curie point of an alloy based on the RFeB basic compound is R
It is in the range of about 300 to 370 ° C. based on the FeB basic compound, and an alloy based on such a compound has not been heretofore known.
【0040】従来、RFe系合金において超急冷法によ
るリボン磁石の報告がいくつかあるが、本発明は以下の
点でこれらの公知例とは異なる。すなわち、リボン磁石
は非晶質または凖安定結晶状態から安定な結晶状態に移
行する中途段階において永久磁石としての特性が得られ
る。従来の報告によると、これらの磁石材料が高保磁力
を示すのは非晶質状態が残留した状態または準安定なF
e3BやR6Fe23が主相として存在する状態である。本
発明の正方晶化合物に基づく磁石では非晶質状態の合金
相の残留は検出されず、Fe3BやR6Fe23相は主相で
はない。Conventionally, there have been some reports on ribbon magnets in the RFe alloy by the ultra-quenching method, but the present invention is different from these known examples in the following points. That is, the ribbon magnet has the characteristics of a permanent magnet in the middle of the transition from the amorphous or stable crystalline state to the stable crystalline state. According to previous reports, these magnet materials have a high coercive force because the amorphous state remains or the metastable F
This is a state in which e 3 B and R 6 Fe 23 exist as the main phase. In the magnet based on the tetragonal compound of the present invention, no residual alloy phase in the amorphous state is detected, and the Fe 3 B or R 6 Fe 23 phase is not the main phase.
【0041】本発明の正方晶化合物において希土類元素
RはYを包含し、軽希土類及び重希土類を包含する希土
類元素であり、そのうち一種以上を用いる。即ちこのR
としては、Nd、Pr、La、Ce、Tb、Dy、H
o、Er、Eu、Sm、Gd、Pm、Tm、Yb、Lu
及びYが包含される。Rとしては軽希土類をもって足
り、特にNd、Prが好ましい。また通例Rのうち一種
をもって足りるが、実用上は二種以上の混合物(ミッシ
ュメタル、ジジム等)を入手上の便宜等理由により用い
ることができ、Sm、Y、Er、Tm、Ce、Gd等は
Nd、Prを主体とする他のR(Nd、Pr、Tb、D
y、Ho)との混合物として用いることができる。La
はNd、Prを主体とする他のRとの混合物として用い
る必要がある。なお、このRは純希土類元素でなくとも
よく、工業上入手可能な範囲で製造上不可避な不純物を
含有するもので差支えない。In the tetragonal compound of the present invention, the rare earth element R is a rare earth element including Y and including light rare earth and heavy rare earth, and at least one of them is used. That is, this R
As Nd, Pr, La, Ce, Tb, Dy, H
o, Er, Eu, Sm, Gd, Pm, Tm, Yb, Lu
And Y are included. A light rare earth element is sufficient as R, and Nd and Pr are particularly preferable. Usually, one of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as convenience of availability, and Sm, Y, Er, Tm, Ce, Gd, etc. Is another R (Nd, Pr, Tb, D) mainly composed of Nd and Pr.
y, Ho) can be used as a mixture. La
Must be used as a mixture with other R mainly composed of Nd and Pr. It should be noted that R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within a range that is industrially available.
【0042】B(ホウ素)としては、純ボロン又はフェ
ロボロンを用いることができ、不純物としてAl、S
i、C等を含むものも用いることができる。As B (boron), pure boron or ferroboron can be used, and Al and S as impurities.
Those containing i, C, etc. can also be used.
【0043】以下に本発明の正方晶化合物及びこれを構
成化合物とする永久磁石ないし永久磁石材料について実
施例をもって更に詳説する。The tetragonal compound of the present invention and the permanent magnet or the permanent magnet material containing the tetragonal compound will be described in more detail with reference to examples.
【0044】実施例1(参考例) 6at%B、16at%Pr、残部Feの合金を粉砕し
て平均粒度15μmの粉末を作製した。この粉末を2t
/cm2 の圧力で19kOeの磁場中においてプレス
し、2×10-1TorrのAr中で1090℃ 一時間
焼結した。Example 1 (Reference Example) An alloy of 6 at% B, 16 at% Pr and the balance Fe was pulverized to prepare a powder having an average particle size of 15 μm. 2 t of this powder
It was pressed in a magnetic field of 19 kOe at a pressure of / cm 2 and sintered in Ar at 2 × 10 −1 Torr at 1090 ° C. for 1 hour.
【0045】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.85Å、 c0=12.
26Åであった。XMAおよび光学顕微鏡観察の結果、主
相はFe、B、Prを同時に含み、体積比で90%を占
めていた。主相の粒界相を成す、Rを80%以上含む非
磁性化合物相の合計は体積比3%で、残りは酸化物とポ
ア(空孔)であった。この正方晶化合物の平均結晶粒径
は25μmであった。According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.85Å, c 0 = 12.
It was 26Å. As a result of XMA and optical microscope observation, the main phase simultaneously contained Fe, B, and Pr, and occupied 90% by volume. The total volume of the non-magnetic compound phase containing 80% or more of R forming the grain boundary phase of the main phase was 3% by volume, and the rest was oxides and pores. The average crystal grain size of this tetragonal compound was 25 μm.
【0046】磁気測定の結果はつぎの通りである。Br
=9.9kG、Hc=6.5kOe、(BH)max=18M
GOeこれは従来のリボン磁石材料に比べてはるかに高
い値である。The results of the magnetic measurement are as follows. Br
= 9.9kG, Hc = 6.5kOe, (BH) max = 18M
GOe This is a much higher value than conventional ribbon magnet materials.
【0047】実施例2(参考例) 8at%B、15%atNd、残部Fe合金を粉砕して
平均粒度3μmの粉末を作製した。この粉末を2t/c
m2 の圧力で10kOeの磁場中においてプレスし2×
10-1TorrのAr中で1100℃ 1時間焼結し
た。Example 2 (Reference Example) 8 at% B, 15% at Nd and the balance Fe alloy were pulverized to prepare a powder having an average particle size of 3 μm. 2 t / c of this powder
Pressed in a magnetic field of 10 kOe at a pressure of m 2 for 2 ×
Sintered in Ar at 10 -1 Torr for 1 hour at 1100 ° C.
【0048】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.80Å、c0=12.2
3Å であった。XMAおよび光学顕微鏡観察の結果、主
相は体積比でFe、B、Ndを同時に含み90.5%を占め
ていた。主相の粒界相を成す、Rを80%以上含む非磁
性の化合物相は体積比4%で、残りはほとんど酸化物と
ポアであった。この正方晶化合物の平均結晶粒径は15
μmであった。According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.80Å, c 0 = 12.2.
It was 3Å. As a result of observation by XMA and an optical microscope, the main phase contained 90.5% by volume of Fe, B, and Nd at the same time. The nonmagnetic compound phase containing 80% or more of R constituting the grain boundary phase of the main phase had a volume ratio of 4%, and the rest was mostly oxides and pores. The average crystal grain size of this tetragonal compound is 15
was μm.
【0049】磁気特性はBr=12.1kG、Hc=9.3k
Oe、(BH)max=34MGOeであった。これは
従来のリボン磁石に比べてはるかに高い値である。The magnetic characteristics are Br = 12.1kG and Hc = 9.3k.
Oe, (BH) max = 34MGOe. This is a much higher value than the conventional ribbon magnet.
【0050】実施例3 10at%Co、8at%B、15at%Nd、残部F
eの合金を粉砕して平均粒径 1.1μmの粉末を作製し
た。この粉末を2t/cm2 の圧力で12kOeの磁場
中においてプレスし 1.5TorrのAr中、1080℃
で1時間焼結した。Example 3 10 at% Co, 8 at% B, 15 at% Nd, balance F
The alloy of e was pulverized to prepare a powder having an average particle size of 1.1 μm. This powder was pressed in a magnetic field of 12 kOe at a pressure of 2 t / cm 2 and then heated in Ar at 1.5 Torr at 1080 ° C.
Sintered for 1 hour.
【0051】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.79Å、c0=12.2
1Å であった。XMAおよび光学顕微鏡観察の結果、主
相はFe、Co、B、Ndを同時に含み体積比で90%
を占めていた。According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.79Å and c 0 = 12.2.
It was 1Å. As a result of XMA and optical microscope observation, the main phase contains Fe, Co, B, and Nd at the same time, and the volume ratio is 90%.
Was occupied.
【0052】Rを80%以上含む非磁性化合物相は体積
比 4.5%で残りはほとんど酸化物とポアであり、正方晶
化合物の平均結晶粒径は3.1μmであった。The nonmagnetic compound phase containing 80% or more of R was 4.5% in volume ratio, the rest was mostly oxides and pores, and the average crystal grain size of the tetragonal compound was 3.1 μm.
【0053】磁気測定の結果は次の通りである。 Br=12.0kG、iHc=9.2kOe、(BH)max
=34MGOe これは従来のリボン磁石材料に比べてはるかに高い値で
ある。The results of the magnetic measurement are as follows. Br = 12.0 kG, iHc = 9.2 kOe, (BH) max
= 34 MGOe This is a much higher value than the conventional ribbon magnet material.
【0054】実施例4(参考例) 5at%B、7at%Nd、3at%Pr、2at%T
b、残部Feの合金を粉砕して平均粒径 2.1μmの粉末
を作製した。この粉末を2t/cm2 の圧力で15kO
eの磁場中においてプレスし、1TorrのAr中11
30℃で1時間焼結した。Example 4 (Reference Example) 5 at% B, 7 at% Nd, 3 at% Pr, 2 at% T
b, an alloy of the balance Fe was pulverized to prepare a powder having an average particle size of 2.1 μm. This powder was added at a pressure of 2 t / cm 2 to 15 kO
Pressed in the magnetic field of e, 11 in 1 Torr of Ar
Sintered at 30 ° C. for 1 hour.
【0055】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.80Å、c0=12.2
4Å であった。XMAおよび光学顕微鏡観察の結果、主
相はFe、Nd、Pr、Tb、Bを含み体積比で91%
を占めていた。Rを80%以上含む非磁性化合物相は体
積比で 1.5%で、その他にFeリッチの強磁性低保磁力
相が体積比で1%含まれ、残りはほとんど酸化物とポア
であり、正方晶化合物の平均結晶粒径は5μmであっ
た。According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.80Å and c 0 = 12.2.
It was 4Å. As a result of XMA and optical microscope observation, the main phase contained Fe, Nd, Pr, Tb, and B, and the volume ratio was 91%.
Was occupied. The volume ratio of the non-magnetic compound phase containing 80% or more of R is 1.5%, the content of Fe-rich ferromagnetic low coercive force phase is 1% by volume, and the balance is mostly oxides and pores. The average crystal grain size of the compound was 5 μm.
【0056】磁気測定の結果はつぎの通りである。 Br=11.5kG、iHc=4kOe、(BH)max
=17MGOe これは従来のリボン磁石に比べてはるかに高い値であ
る。The results of the magnetic measurement are as follows. Br = 11.5kG, iHc = 4kOe, (BH) max
= 17 MGOe This is a much higher value than the conventional ribbon magnet.
【0057】実施例5(参考例) 17at%B、10at%Nd、3at%La、2at
%、Gd残部Feの合金を粉砕して平均粒径 2.7μmの
粉末を作製した。この粉末を4t/cm2 の圧力で12
kOeの磁場中においてプレスし 1.5TorrのAr中
1080℃で1時間焼結した。Example 5 (reference example) 17 at% B, 10 at% Nd, 3 at% La, 2 at
%, Gd balance Fe alloy was pulverized to prepare a powder having an average particle diameter of 2.7 μm. This powder was applied at a pressure of 4 t / cm 2 to 12
It was pressed in a magnetic field of kOe and sintered in Ar at 1.5 Torr at 1080 ° C. for 1 hour.
【0058】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.82Å、c0=12.2
2Å であった。XMAおよび光学顕微鏡観察の結果、主
相はFe、B、Nd、La、Gdを含み体積比で82%を
占めていた。Rを80%以上含む非磁性化合物相は体積
比12%で、残りはほとんどポアであり、正方晶化合物
の平均結晶粒径は7μmであった。According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.82Å and c 0 = 12.2.
It was 2Å. As a result of XMA and optical microscope observation, the main phase contained Fe, B, Nd, La, and Gd, and occupied 82% by volume. The volume ratio of the non-magnetic compound phase containing 80% or more of R was 12%, the rest was almost pores, and the average crystal grain size of the tetragonal compound was 7 μm.
【0059】磁気測定の結果は次の通りである。 Br=8.2kG、iHc=5.0kOe、(BH)max=
15MGOe これは従来のリボン磁石材料に比べてはるかに高い値で
ある。The results of magnetic measurement are as follows. Br = 8.2 kG, iHc = 5.0 kOe, (BH) max =
15MGOe This is a much higher value than the conventional ribbon magnet material.
【0060】実施例6(参考例) 17at%B、28at%Nd、残部Feの合金を粉砕
して平均粒径5μmの粉末を作製した。この粉末を2t
/cm2 の圧力で12kOeの磁場中においてプレス
し、2×10-1Torr 1050℃、1時間焼結し
た。焼結後Ar気流で冷却した。X線回折によると、こ
の焼結体では正方晶化合物のピークが他の相によるピー
クより低く、この化合物は主相ではない。XMAおよび
光学顕微鏡観察の結果、正方晶化合物は体積比で48%
でRを80%以上含む非磁性化合物相は47%であっ
た。残りはほとんどポアであり、平均結晶粒径は正方晶
化合物の16μmであった。Example 6 (Reference Example) An alloy of 17 at% B, 28 at% Nd and the balance Fe was pulverized to prepare a powder having an average particle diameter of 5 μm. 2 t of this powder
It was pressed in a magnetic field of 12 kOe at a pressure of / cm 2 and sintered at 2 × 10 −1 Torr 1050 ° C. for 1 hour. After sintering, it was cooled with an Ar stream. According to X-ray diffraction, the peak of the tetragonal compound is lower than the peaks of the other phases in this sintered body, and this compound is not the main phase. As a result of XMA and optical microscope observation, the tetragonal compound is 48% by volume.
The non-magnetic compound phase containing 80% or more of R was 47%. The rest was almost pores, and the average crystal grain size was 16 μm of the tetragonal compound.
【0061】磁気測定の結果は次の通りである。 Br=4.2kG、iHc=13.2kOe、(BH)max
=3.7MGOe これはフェライト系磁石の特性より低い。The results of magnetic measurement are as follows. Br = 4.2kG, iHc = 13.2kOe, (BH) max
= 3.7MGOe This is lower than the characteristics of ferrite magnets.
【0062】焼結後5℃/minで制御冷却したところ
磁気特性はつぎのように上昇した。 Br=4.5kG、iHc=13.3kOe、(BH)max
=4.2MGOeWhen controlled cooling was performed at 5 ° C./min after sintering, the magnetic characteristics were increased as follows. Br = 4.5 kG, iHc = 13.3 kOe, (BH) max
= 4.2 MGOe
【0063】徐冷試料のX線回折によると、正方晶化合
物のピークは強くなった。XMA測定および光学顕微鏡
観察によると正方晶化合物は体積比53%になり、Rを
80%以上含む非磁性化合物相は体積比43%であっ
た。残りはほとんどポアであり、正方晶化合物の平均結
晶粒径は17μmであった。According to X-ray diffraction of the slowly cooled sample, the peak of the tetragonal compound became stronger. According to XMA measurement and optical microscope observation, the tetragonal compound had a volume ratio of 53%, and the nonmagnetic compound phase containing 80% or more of R had a volume ratio of 43%. The remainder was mostly pores, and the average crystal grain size of the tetragonal compound was 17 μm.
【0064】実施例7(参考例) 表1に示す組成の合金を高周波溶解し、図2Aの工程に
より資料を作製して、X線回折により主相の構造を決定
した。その結果を表1に示す。これにより正方晶化合物
はFe−B−Nd系の広い組成範囲において常温から焼
結温度に至るまで安定であることがわかる。Example 7 (Reference Example) Alloys having the compositions shown in Table 1 were subjected to high frequency melting, a material was prepared by the process of FIG. 2A, and the structure of the main phase was determined by X-ray diffraction. The results are shown in Table 1. This shows that the tetragonal compound is stable from room temperature to the sintering temperature in a wide composition range of Fe-B-Nd system.
【0065】これらRFeB正方晶化合物は、従来のR
Fe、FeB、RBのどの組合せによっても実現できな
いユニークな特徴を有している磁性材料の構成化合物で
あり、工業用材料としての価値が大変大きい。These RFeB tetragonal compounds are conventional R
It is a constituent compound of a magnetic material having unique characteristics that cannot be realized by any combination of Fe, FeB, and RB, and is extremely valuable as an industrial material.
【0066】なお上記RFeB化合物はほとんどの場
合、a軸、b軸、c軸各方向のなす角度は測定誤差の範
囲で90°であり、かつ、a0=b0≠c0 である°から
ごくわずかにずれることもありうる(例えば約1°以
内)。またa0とb0がほんのわずか違う場合も含める。
しかし、この場合にも、実質的な意味で正方晶と呼ぶ。In most of the RFeB compounds, the angle formed by each of the a-axis, b-axis, and c-axis directions is 90 ° within the measurement error range, and a 0 = b 0 ≠ c 0 . It can also be slightly off (eg within about 1 °). It also includes the case where a 0 and b 0 are slightly different.
However, also in this case, it is called a tetragonal crystal in a substantial sense.
【0067】[0067]
【表1】 [Table 1]
【0068】図3は、つぎの工程によって作製した種々
のFeCoBRA化合物を構成化合物とする永久磁石体
の代表例(1)Fe−10Co−9B−14Nd−2M
o及び(2)Fe−20Co−8B−15Pr−2Zr
について正方晶化合物の平均結晶粒径Dとの磁気特性の
関係を示す。図4〜図6はさらに種々のA元素(M)を
用いた場合の磁気特性とMの含有量の関係を示す。FIG. 3 is a typical example of a permanent magnet body (1) Fe-10Co-9B-14Nd-2M which has various FeCoBRA compounds prepared by the following steps as constituent compounds.
o and (2) Fe-20Co-8B-15Pr-2Zr
Regarding the magnetic properties with the average crystal grain size D of the tetragonal compound. 4 to 6 show the relationship between the magnetic characteristics and the M content when various A elements (M) are used.
【0069】(1)合金を高周波溶解し、水冷銅鋳型に
鋳造、出発原料はFeとして純度99.9%の電解鉄、Bと
してフェロボロン合金(19.38 %B、5.32%Al、0.74
%Si、0.03%C、残部Fe)、Rとして純度99.7%以
上(不純物は主として他の希土類金属)を使用。(1) The alloy was melted by high frequency and cast in a water-cooled copper mold, the starting materials were electrolytic iron having a purity of 99.9% as Fe, and ferroboron alloy as B (19.38% B, 5.32% Al, 0.74).
% Si, 0.03% C, balance Fe), and a purity of 99.7% or more as R (impurities are mainly other rare earth metals).
【0070】Coは純度99.9%の電解Coを使用した。As Co, electrolytic Co having a purity of 99.9% was used.
【0071】A元素(M)としては純度99%のTi、M
o、Bi、Mn、Sb、Ni、Ta、Ge、98%の
W、99.9%のAl、Sn、95%のHf、またVとして
81.2%のVを含むフェロバハジウム、Nbとして67.6%
のNbを含むフェロニオブ、Crとして61.9%のCrを
含むフェロクロムおよびZrとして75.5%のZrを含む
フェロジルコニウムを使用した。As the A element (M), Ti and M having a purity of 99%
As o, Bi, Mn, Sb, Ni, Ta, Ge, 98% W, 99.9% Al, Sn, 95% Hf, and V
Ferrobadium containing 81.2% V, 67.6% as Nb
Of Nb-containing ferroniobium, Cr of 61.9% Cr of ferrochrome and Zr of 75.5% of Zr of ferrozirconium were used.
【0072】(2)粉砕 スタンプミルにより35メッ
シュスルーまでに粗粉砕し、次いでボールミルにより3
時間微粉砕(3〜10μm)。(2) Pulverization Coarse pulverization was performed by a stamp mill to a size of 35 mesh through, and then 3 by a ball mill.
Finely pulverized for 3 hours (3 to 10 μm).
【0073】(3)磁界 (10kOe)中配向・成形
( 1.5t/cm2にて加圧。)(3) Orientation and molding in a magnetic field (10 kOe) (pressurized at 1.5 t / cm 2 ).
【0074】(4)焼結 1000〜1200℃1時間
Ar中、焼結後放冷。(4) Sintering: 1000 to 1200 ° C., 1 hour in Ar, after sintering, let cool.
【0075】次に、前記の方法中(2)粉砕をFish
er社製のサブ・シーブ・サイザ(sub−sieve
−sizer)での平均粒度測定値が 0.5〜100μm
の各値をとるよう適当に粉砕時間を変更して行い、各種
組成の試料を作製した。Next, in the above-mentioned method, (2) crushing is performed with Fish.
er sub-sieve sizer (sub-sieve)
-Sizer) has an average particle size measured value of 0.5 to 100 μm
Samples of various compositions were prepared by appropriately changing the crushing time so as to take each value of.
【0076】比較例:100μm以上の結晶粒径とする
ため、焼結後に焼結温度よりも5〜20℃低い温度でA
r雰囲気中にて長時間保持した。Comparative Example: In order to obtain a crystal grain size of 100 μm or more, after the sintering, the temperature A was 5 to 20 ° C. lower than the sintering temperature.
It was kept in the atmosphere for a long time.
【0077】このようにして得られた各組成の試料につ
いて磁石化の検討を行い、磁石特性及び正方晶化合物の
平均結晶粒径を測定した。その結果を図3に示す。ここ
で平均結晶粒径とは、試料面を研摩、腐蝕後光学顕微鏡
を用いて×100〜×1000の倍率の顕微鏡写真を撮
影し、既知面積の円を描いて円を八等分する直線を描
き、直径上にある平均粒子数を数え、算出した。但し、
境界上(円周上)にて区切られた粒子は1/2個として
数える(この方法はHeynの方法として知られてい
る)。空孔の部分は計算より省く。Magnetization was examined for the samples of the respective compositions thus obtained, and the magnet characteristics and the average crystal grain size of the tetragonal compound were measured. The result is shown in FIG. Here, the average crystal grain size means a straight line that divides the circle into eight equal parts by drawing a circle of a known area by taking a photomicrograph of × 100 to × 1000 using an optical microscope after polishing and corroding the sample surface. It was drawn and the average number of particles on the diameter was counted and calculated. However,
The number of particles separated on the boundary (on the circumference) is counted as 1/2 (this method is known as the Heyn method). Omit the voids from the calculation.
【0078】組成(1)の試料は平均結晶粒径D 9.2μ
mのときエネルギ積(BH)max28.5MGOeを示
し、組成(2)の試料はD 4.6μmのとき、(BH)m
ax25.4MGOeを示した。The sample of composition (1) has an average crystal grain size D of 9.2 μm.
The energy product (BH) max28.5MGOe is shown at m, and the sample of the composition (2) has (BH) m at D 4.6 μm.
It showed ax25.4 MGOe.
【0079】[0079]
【発明の効果】本願発明は、常温から焼結温度に至るま
で安定に存在する新規なRFeB基本系正方晶化合物を
基礎として、さらにFeをCoにより置換(特に部分的
に)したR(Fe、Co)B系とし、さらに特定元素A
を含む新規なRFeBA系及びR(Fe、Co)BA系
の新規な正方晶化合物を提供したものである。詳しく
は、Coの置換によりFeBR基本系正方晶化合物のキ
ュリー温度を大きく増大させ、さらに特定元素Aを含む
ことによってもその基本的磁気特性を失わずに安定に存
在し得ることのみならず、これにより様々な修飾ないし
改良が所望の特性に応じて可能となるという優れた有用
性を備える。正方晶化合物のキュリー温度の増大は、永
久磁石の構成要素の化合物としてとりもなおさず、高温
下にも高い性能を失わない永久磁石の開発の具体的可能
性を担保するものである。EFFECTS OF THE INVENTION The present invention is based on a novel RFeB basic tetragonal compound that exists stably from room temperature to the sintering temperature, and R (Fe, Co) B type, and the specific element A
A novel tetragonal compound of RFeBA type and R (Fe, Co) BA type containing is provided. Specifically, not only does the substitution of Co significantly increase the Curie temperature of the FeBR basic tetragonal compound, and the inclusion of the specific element A not only allows it to exist stably without losing its basic magnetic properties, It has the excellent utility that various modifications or improvements can be made depending on desired properties. The increase in the Curie temperature of the tetragonal compound guarantees the specific possibility of developing a permanent magnet that does not lose its high performance even at high temperatures, as a compound of a constituent element of the permanent magnet.
【0080】また所定の非磁性金属間化合物相により互
いに隔離された正方晶化合物は、永久磁石としての理想
的な微細組織を明らかにしたものであり画期的なもので
ある。このような隔離構造によって理想的な永久磁石の
設計の技術的基礎が確立されたものである。Further, the tetragonal compounds separated from each other by the predetermined non-magnetic intermetallic compound phase are epoch-making because they reveal the ideal microstructure as a permanent magnet. Such an isolation structure establishes the technical basis for the design of an ideal permanent magnet.
【0081】かくて、本願発明において、これらの正方
晶化合物及びその隔離構造は、物質発明としての意義を
有し、この知見に到達する手がかりとなった焼結永久磁
石材料とは次元を異にする基本的な技術思想であり、焼
結永久磁石のさらなる改良及び理論値に近い高性能磁石
の開発の指針を与えると共に、さらに、これらの正方晶
化合物を基礎とした様々な磁石の設計、開発の科学的、
実際的な指針を与えるものである。即ち、その永久磁石
分野における科学上の意義は言うに及ばず、永久磁石に
止まらず様々な磁性材料関連技術及び産業の発展の一大
エポックを画するブレークスルーを成すものである。Thus, in the present invention, these tetragonal compounds and their isolated structures have significance as inventions of the material, and are different in dimension from the sintered permanent magnet material that was the clue to reach this finding. It is a basic technical idea to provide further improvement of sintered permanent magnets and guidelines for development of high-performance magnets close to theoretical values, and further design and development of various magnets based on these tetragonal compounds. Scientific,
It gives practical guidance. That is, not to mention its scientific significance in the field of permanent magnets, it is a breakthrough that marks a major epoch in the development of various magnetic material-related technologies and industries beyond permanent magnets.
【図1】本発明の参考例たる代表的Fe−B−Nd焼結
体試料の粉末X線ディフラクトメータの測定結果パター
ンを示す写真である。FIG. 1 is a photograph showing a measurement result pattern of a representative Fe—B—Nd sintered body sample, which is a reference example of the present invention, by a powder X-ray diffractometer.
【図2】実験の手順を示すフローチャートである。
((A)は化合物の同定、(B)は永久磁石にした場
合)FIG. 2 is a flowchart showing the procedure of an experiment.
((A) shows compound identification, (B) shows permanent magnet)
【図3】平均結晶粒径D(μm)と保磁力iHcとの関
係を示すグラフである。FIG. 3 is a graph showing the relationship between the average crystal grain size D (μm) and the coercive force iHc.
【図4】FeCoBRA系永久磁石のA元素(M)含有
量とiHcの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the A element (M) content of a FeCoBRA permanent magnet and iHc.
【図5】FeCoBRA系永久磁石のA元素(M)含有
量とiHcの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the A element (M) content of the FeCoBRA permanent magnet and iHc.
【図6】FeCoBRA系永久磁石のA元素(M)含有
量とiHcの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the A element (M) content of the FeCoBRA permanent magnet and iHc.
【手続補正書】[Procedure amendment]
【提出日】平成5年6月8日[Submission date] June 8, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図1[Name of item to be corrected] Figure 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】本発明の参考例たる代表的Fe−B−Nd焼結
体試料の粉末X線ディフラクトメータの測定結果パター
ンを示す図である。FIG. 1 is a diagram showing a measurement result pattern of a powder X-ray diffractometer of a representative Fe—B—Nd sintered body sample as a reference example of the present invention.
Claims (6)
上)、Fe、Co、Bを必須成分とし、格子定数のc0
が約12Åの正方晶系の結晶構造を有するR(Fe、C
o)B正方晶化合物。1. R (where R is one or more rare earth elements including Y), Fe, Co and B are essential components, and the lattice constant c 0 is
Has a tetragonal crystal structure of about 12Å
o) B tetragonal compound.
上)、Fe、Co、Bを必須成分とし、格子定数のc0
が約12Åの正方晶系の結晶構造を有する化合物であっ
て、全体の1体積%以上の非磁性金属間化合物相によっ
て互いに隔離されていることを特徴とするR(Fe、C
o)B正方晶化合物。2. R (where R is one or more rare earth elements including Y), Fe, Co and B are essential components, and the lattice constant c 0 is
Is a compound having a tetragonal crystal structure of about 12Å and is isolated from each other by 1% by volume or more of the whole non-magnetic intermetallic compound phase.
o) B tetragonal compound.
上)、Fe、B及びA元素(但し、A元素は下記のA元
素の1種以上)を必須成分とし、格子定数のc0が約1
2Åの正方晶系の結晶構造を有するRFeBA正方晶化
合物(A元素:Ti、Ni、Bi、V、Nb、Ta、C
r、Mo、W、Mn、Al、Sb、Ge、Sn、Zr、
Hf、Cu、S、C、Ca、Mg、Si、O、および
P)。3. R (where R is one or more rare earth elements including Y), Fe, B and A elements (where A element is one or more of the following A elements) are essential components and have a lattice constant c. 0 is about 1
RFeBA tetragonal compound having a 2Å tetragonal crystal structure (A element: Ti, Ni, Bi, V, Nb, Ta, C
r, Mo, W, Mn, Al, Sb, Ge, Sn, Zr,
Hf, Cu, S, C, Ca, Mg, Si, O, and P).
上)、Fe、B及びA元素(但し、A元素は下記のA元
素の1種以上)を必須成分とし、格子定数のc0が約1
2Åの正方晶系の結晶構造を有する化合物であって、体
積比で全体の1%以上の非磁性金属間化合物相によって
互いに隔離されていることを特徴とするRFeBA正方
晶化合物(A元素:Ti、Ni、Bi、V、Nb、T
a、Cr、Mo、W、Mn、Al、Sb、Ge、Sn、
Zr、Hf、Cu、S、C、Ca、Mg、Si、O、お
よびP)。4. R (where R is one or more rare earth elements including Y), Fe, B and A elements (where A element is one or more of the following A elements) are essential components and have a lattice constant c. 0 is about 1
An RFeBA tetragonal compound (A element: Ti), which is a compound having a 2Å tetragonal crystal structure and is isolated from each other by a nonmagnetic intermetallic compound phase of 1% or more of the whole by volume ratio. , Ni, Bi, V, Nb, T
a, Cr, Mo, W, Mn, Al, Sb, Ge, Sn,
Zr, Hf, Cu, S, C, Ca, Mg, Si, O, and P).
上)、Fe、Co、B及びA元素(但し、A元素は下記
のA元素の1種以上)を必須成分とし、格子定数のc0
が約12Åである正方晶系の結晶構造を有するR(F
e、Co)BA正方晶化合物(A元素:Ti、Ni、B
i、V、Nb、Ta、Cr、Mo、W、Mn、Al、S
b、Ge、Sn、Zr、Hf、Cu、S、C、Ca、M
g、Si、O、およびP)。5. A lattice constant, wherein R (where R is one or more rare earth elements including Y), Fe, Co, B and A elements (where A element is one or more of the following A elements) are essential components, and C 0
With a tetragonal crystal structure in which R is about 12Å
e, Co) BA tetragonal compound (A element: Ti, Ni, B)
i, V, Nb, Ta, Cr, Mo, W, Mn, Al, S
b, Ge, Sn, Zr, Hf, Cu, S, C, Ca, M
g, Si, O, and P).
上)、Fe、Co、B及びA元素(但し、A元素は下記
のA元素の1種以上)を必須成分とし、格子定数のc0
が約12Åである正方晶系の結晶構造を有するR(F
e、Co)BA正方晶化合物であって、該正方晶化合物
は全体の1体積%以上の非磁性金属間化合物相によって
互いに隔離されていることを特徴とするR(Fe、C
o)BRA正方晶化合物(A元素:Ti、Ni、Bi、
V、Nb、Ta、Cr、Mo、W、Mn、Al、Sb、
Ge、Sn、Zr、Hf、Cu、S、C、Ca、Mg、
Si、O、およびP)。6. A lattice constant comprising R (provided that R is one or more rare earth elements including Y), Fe, Co, B and A elements (provided that A is at least one of the following A elements) as essential components. C 0
With a tetragonal crystal structure in which R is about 12Å
e, Co) BA tetragonal compound, characterized in that the tetragonal compound is separated from each other by 1% by volume or more of the whole non-magnetic intermetallic compound phase.
o) BRA tetragonal compound (A element: Ti, Ni, Bi,
V, Nb, Ta, Cr, Mo, W, Mn, Al, Sb,
Ge, Sn, Zr, Hf, Cu, S, C, Ca, Mg,
Si, O, and P).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4304352A JP2684140B2 (en) | 1992-10-19 | 1992-10-19 | Rare earth / iron / cobalt / boron tetragonal compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4304352A JP2684140B2 (en) | 1992-10-19 | 1992-10-19 | Rare earth / iron / cobalt / boron tetragonal compounds |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58094876A Division JPH0778269B2 (en) | 1982-08-21 | 1983-05-31 | Rare earth / iron / boron tetragonal compound for permanent magnet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7348303A Division JP2665658B2 (en) | 1995-12-18 | 1995-12-18 | Rare earth / iron / cobalt / boron tetragonal compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0617200A true JPH0617200A (en) | 1994-01-25 |
JP2684140B2 JP2684140B2 (en) | 1997-12-03 |
Family
ID=17931988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4304352A Expired - Lifetime JP2684140B2 (en) | 1992-10-19 | 1992-10-19 | Rare earth / iron / cobalt / boron tetragonal compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2684140B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031208A (en) * | 1983-07-29 | 1985-02-18 | Sumitomo Special Metals Co Ltd | Permanent magnet |
KR19990081728A (en) * | 1998-04-22 | 1999-11-15 | 히로지 사토 | Composition for permanent magnets |
WO2002103719A1 (en) * | 2001-06-19 | 2002-12-27 | Mitsubishi Denki Kabushiki Kaisha | Rare earth element permanent magnet material |
JP2015213146A (en) * | 2014-04-15 | 2015-11-26 | Tdk株式会社 | Permanent magnet and variable magnetic flux motor |
JP2022072860A (en) * | 2020-10-30 | 2022-05-17 | トヨタ自動車株式会社 | Rare earth magnet and production method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102114614B (en) * | 2010-01-05 | 2015-05-20 | 北京中科三环高技术股份有限公司 | Method for improving grinding finished product ratio of thin-walled annular rare earth permanent-magnet material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS609852A (en) * | 1983-06-24 | 1985-01-18 | ゼネラル・モ−タ−ズ・コ−ポレ−シヨン | High energy stored rare earth-iron magnetic alloy |
JPS6365742A (en) * | 1986-09-06 | 1988-03-24 | Sumitomo Electric Ind Ltd | Demodulation circuit |
JPH044385A (en) * | 1990-04-20 | 1992-01-08 | Mitsubishi Plastics Ind Ltd | Synthetic resin tube with rib |
JPH044386A (en) * | 1990-04-19 | 1992-01-08 | Sekisui Chem Co Ltd | Complex tube |
JPH0474426A (en) * | 1990-07-16 | 1992-03-09 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPH0474425A (en) * | 1990-07-16 | 1992-03-09 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH052735A (en) * | 1991-06-25 | 1993-01-08 | Kao Corp | Magnetic recording medium |
-
1992
- 1992-10-19 JP JP4304352A patent/JP2684140B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS609852A (en) * | 1983-06-24 | 1985-01-18 | ゼネラル・モ−タ−ズ・コ−ポレ−シヨン | High energy stored rare earth-iron magnetic alloy |
JPS6365742A (en) * | 1986-09-06 | 1988-03-24 | Sumitomo Electric Ind Ltd | Demodulation circuit |
JPH044386A (en) * | 1990-04-19 | 1992-01-08 | Sekisui Chem Co Ltd | Complex tube |
JPH044385A (en) * | 1990-04-20 | 1992-01-08 | Mitsubishi Plastics Ind Ltd | Synthetic resin tube with rib |
JPH0474426A (en) * | 1990-07-16 | 1992-03-09 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPH0474425A (en) * | 1990-07-16 | 1992-03-09 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH052735A (en) * | 1991-06-25 | 1993-01-08 | Kao Corp | Magnetic recording medium |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031208A (en) * | 1983-07-29 | 1985-02-18 | Sumitomo Special Metals Co Ltd | Permanent magnet |
KR19990081728A (en) * | 1998-04-22 | 1999-11-15 | 히로지 사토 | Composition for permanent magnets |
WO2002103719A1 (en) * | 2001-06-19 | 2002-12-27 | Mitsubishi Denki Kabushiki Kaisha | Rare earth element permanent magnet material |
EP1398800A1 (en) * | 2001-06-19 | 2004-03-17 | Mitsubishi Denki Kabushiki Kaisha | Rare earth element permanent magnet material |
US7175718B2 (en) | 2001-06-19 | 2007-02-13 | Mitsubishi Denki Kabushiki Kaisha | Rare earth element permanent magnet material |
JP2015213146A (en) * | 2014-04-15 | 2015-11-26 | Tdk株式会社 | Permanent magnet and variable magnetic flux motor |
JP2022072860A (en) * | 2020-10-30 | 2022-05-17 | トヨタ自動車株式会社 | Rare earth magnet and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2684140B2 (en) | 1997-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0778269B2 (en) | Rare earth / iron / boron tetragonal compound for permanent magnet | |
US5096512A (en) | Magnetic materials and permanent magnets | |
US4792368A (en) | Magnetic materials and permanent magnets | |
US5766372A (en) | Method of making magnetic precursor for permanent magnets | |
US4767474A (en) | Isotropic magnets and process for producing same | |
JPS6134242B2 (en) | ||
EP0124655B1 (en) | Isotropic permanent magnets and process for producing same | |
US4840684A (en) | Isotropic permanent magnets and process for producing same | |
JPH0232761B2 (en) | ||
JPH0316761B2 (en) | ||
US5194098A (en) | Magnetic materials | |
JP2665658B2 (en) | Rare earth / iron / cobalt / boron tetragonal compounds | |
JP2684140B2 (en) | Rare earth / iron / cobalt / boron tetragonal compounds | |
JPH06207203A (en) | Production of rare earth permanent magnet | |
JPH085664B2 (en) | Rare earth / iron / boron tetragonal compound | |
JPH0316762B2 (en) | ||
JPH0474426B2 (en) | ||
US5192372A (en) | Process for producing isotropic permanent magnets and materials | |
JPH06207204A (en) | Production of rare earth permanent magnet | |
US5183516A (en) | Magnetic materials and permanent magnets | |
JPH0535210B2 (en) | ||
JPH052735B2 (en) | ||
JPS609104A (en) | Permanent magnet | |
JPS60187662A (en) | Ferromagnetic alloy | |
JPH0467324B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970715 |