JPH0474426A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0474426A
JPH0474426A JP18991690A JP18991690A JPH0474426A JP H0474426 A JPH0474426 A JP H0474426A JP 18991690 A JP18991690 A JP 18991690A JP 18991690 A JP18991690 A JP 18991690A JP H0474426 A JPH0474426 A JP H0474426A
Authority
JP
Japan
Prior art keywords
nitride film
plasma nitride
vacuum
degree
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18991690A
Other languages
Japanese (ja)
Other versions
JP2504306B2 (en
Inventor
Hidefumi Yoshimura
吉村 秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2189916A priority Critical patent/JP2504306B2/en
Publication of JPH0474426A publication Critical patent/JPH0474426A/en
Application granted granted Critical
Publication of JP2504306B2 publication Critical patent/JP2504306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a manufacturing method of a semiconductor device which does not generate a local abnormal discharge at a part whose aluminum area is wide and at the peripheral part of the region by a method wherein, during the deposit production step of plasma nitride films, a first plasma nitride film is deposited at less than a specific degree of vacuum and, after that, a second plasma nitride film is deposited at the specific degree of vacuum or higher. CONSTITUTION:In order to produce a first plasma nitride film 2-1 of a semiconductor device, e.g. a furnace temperature is set at 300 deg.C and a degree of vacuum is set at 1.5Torr at a plasma CVD apparatus, SiH4 and NH3 are made to flow and a glow discharge at an RF is executed. A deposit in 100 to 3000Angstrom is executed at 1.5Torr; at the same deposit production step, a deposit is formed by changing the degree of vacuum from 1.5Torr to 2.5Torr; a second plasma nitride film 2-2 is formed. Since a local abnormal discharge is generated at the interface part with an Al region of the semiconductor device, the deposit is first produced under a condition that the local abnormal discharge is not generated i.e., at a degree of vacuum of less than 2Torr. The first plasma nitride film, a so-called insulator, is formed. Even when the second plasma nitride film is formed at a degree of vacuum of 2Torr or higher, an abnormal glow discharge can be suppressed thanks to the insulator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に係り、さらに詳し
くは、プラズマ窒化膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a plasma nitride film.

〔従来の技術〕[Conventional technology]

第5図は、例えば従来のPチャネル型アルミゲ1、 M
 OS )ランジスタを示す断面図であり、この図にお
いて、1はアルミ配線、2はプラズマ窒化膜、3はフィ
ールド酸化膜、4はゲート酸化膜、5はP+ソース・ド
レイン領域、6はN基板である。また、第2図はプラズ
マ窒化膜を形成するためのシーケンスであり、第3図は
プラズマCVD装置の簡易配管図であるが、これらは後
述するこの発明の詳細な説明でも用いるものである。
FIG. 5 shows, for example, a conventional P-channel type aluminum gate 1, M
OS) This is a cross-sectional view showing a transistor. In this figure, 1 is an aluminum wiring, 2 is a plasma nitride film, 3 is a field oxide film, 4 is a gate oxide film, 5 is a P+ source/drain region, and 6 is an N substrate. be. Further, FIG. 2 shows a sequence for forming a plasma nitride film, and FIG. 3 shows a simplified piping diagram of a plasma CVD apparatus, which will also be used in the detailed explanation of the invention to be described later.

次に、動作について説明する。Next, the operation will be explained.

第5図のプラズマ窒化膜2を生成するために、第3図の
プラズマCVD装置で、例えば炉温を300℃、真空度
を2.5Torrにして、SiH4゜NH,ガスを流し
、RFによるグロー放電を行う。
In order to generate the plasma nitride film 2 shown in FIG. 5, in the plasma CVD apparatus shown in FIG. Perform discharge.

これは第2図のプラズマ窒化膜生成ンーケンスでいうと
、各ステップを経た後の“デボ生成“、つまりプラズマ
窒化膜2をデポジションするステップに当たる。この“
デボ生成パステップの前後には、第2図のように、′ボ
ートのローディング−“荒引き”−“高真空引き”−“
リークチエツク”→“炉温安定”→“RFパワーチエツ
ク”→“高真空引き”−“デポ真空度設定”のステップ
や“高真空引き”−“バックフィル”−“ボートのアン
ローディングという各ステップがある。
In the plasma nitride film production sequence shown in FIG. 2, this corresponds to the "debo formation" after each step, that is, the step of depositing the plasma nitride film 2. this"
Before and after the debo generation step, as shown in Fig.
Leak check → Furnace temperature stabilization → RF power check → High vacuum → Depot vacuum level setting and high vacuum → Backfill → Boat unloading. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置のプラズマ窒化膜2の生成は以上のよ
うな方法で形成されているので、例えば300℃(比較
的低温) 、 2.5Torr (比較的真空度が悪い
)で処理する場合、アルミ面積の広い部分(例えばA/
ターゲットetc)領域や乙の領域の周辺部に“局部的
異常放電”の発生をもたらすことがあるという問題点が
あった。
Since the plasma nitride film 2 of conventional semiconductor devices is formed by the method described above, for example, when processing at 300°C (relatively low temperature) and 2.5 Torr (relatively poor vacuum), aluminum Large areas (e.g. A/
There is a problem in that "local abnormal discharge" may occur in the periphery of the target etc. region or the region B.

この発明は、上記のような問題点を解消するためになさ
れたもので、アルミ面積の広い部分や、この領域の周辺
部に“局部的異常放電”の発生しない半導体装置の製造
方法を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a method for manufacturing a semiconductor device in which "local abnormal discharge" does not occur in a large area of aluminum or in the periphery of this area. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、プラズマ窒化
膜のデポレション生成ステップで、真空度2 Torr
未濁で第1のプラズマ窒化膜を100〜3000大にデ
ポジションし、その後、真空度2Torr以上で第2の
プラズマ窒化膜をデポジションするものである。
In the method for manufacturing a semiconductor device according to the present invention, in the plasma nitride film deposition step, the vacuum level is 2 Torr.
A first plasma nitride film is deposited to a thickness of 100 to 3,000 in an unturbid state, and then a second plasma nitride film is deposited at a vacuum degree of 2 Torr or more.

〔作用〕[Effect]

この発明においては、問題となる“″局部的異常放電”
は、半導体装置のAl領域との界面部にて発生するので
、Al領域との界面部とのデボ生成をまず真空度2 T
orr未渦の“′局部的異常放電“の発生しない条件で
デポジションすることで第1のプラズマ窒化膜、いわば
絶縁体が形成され、この絶縁体のため、その後、真空度
2 Torr以上において第2のプラズマ窒化膜を形成
しても異常なグロ放電は抑えられる。
In this invention, the problematic "local abnormal discharge"
Since this occurs at the interface with the Al region of the semiconductor device, the formation of the deposit at the interface with the Al region is first performed at a vacuum level of 2 T.
The first plasma nitride film, so to speak, an insulator, is formed by deposition under conditions that do not cause "local abnormal discharge" with no vortices. Even if the plasma nitride film of 2 is formed, abnormal glow discharge can be suppressed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明による半導体装置の一実施例を示す断
面図である。第1図において、1はアルミ配線、2−1
は局部的異常放電を発生しない条件、すなわち真空度2
Torr以下、例えば1.5 Torrてデポジション
した第1のプラズマ窒化膜、22はこの第1プラズマ窒
化膜2−1の上に、真空度2 Torr以上、例えば2
,5Torrでデポジションした第2のプラズマ窒化膜
、3はフィールド酸化膜、4はゲート酸化膜、5はP+
ソース・ドレイン領域、6はN基板である、また、第2
図は、第1図の第1.第2のプラズマ窒化膜2−1およ
び2−2を生成するためのシーケンスである。また、第
3図は第1.第2のプラズマ窒化膜2−18よび2−2
を生成するためのプラズマCVD装置の簡易配管図であ
る。第3図において、11はノーマリクローズエアバル
ブ、12はノーマリオープンエアバルブ、13は流量計
、14はロータリポンプ、15はブローワポンプ、16
は石英チュブ、17はマスフローコントローラである。
FIG. 1 is a sectional view showing an embodiment of a semiconductor device according to the present invention. In Figure 1, 1 is aluminum wiring, 2-1
is the condition that local abnormal discharge does not occur, that is, the degree of vacuum is 2.
A first plasma nitride film 22 is deposited at a vacuum of 2 Torr or less, for example 1.5 Torr, on top of the first plasma nitride film 2-1, at a vacuum level of 2 Torr or more, for example 2
, a second plasma nitride film deposited at 5 Torr, 3 a field oxide film, 4 a gate oxide film, 5 a P+
The source/drain region 6 is an N substrate, and the second
The figure is 1. This is a sequence for generating second plasma nitride films 2-1 and 2-2. In addition, Fig. 3 shows Fig. 1. Second plasma nitride film 2-18 and 2-2
FIG. 2 is a simplified piping diagram of a plasma CVD apparatus for generating . In FIG. 3, 11 is a normally closed air valve, 12 is a normally open air valve, 13 is a flow meter, 14 is a rotary pump, 15 is a blower pump, and 16 is a normally closed air valve.
is a quartz tube, and 17 is a mass flow controller.

次に、動作について説明する。Next, the operation will be explained.

第1図の半導体装置の第1のプラズマ窒化膜2−1を生
成するためにプラズマCVD装置で、例えば炉温を30
0℃、真空度を1.5 Torrにして、第3図に示し
た簡易配管図にあるSiH,、NH3を流し、RFによ
るグロー放電を行う。これは第2図のプラズマ窒化膜生
成簡易シーケンスでいうと各ステップを経た後のパデボ
生成”ステップにあたる。この1.5 Torrによる
デポジションを100〜3000六行い、さらに同一パ
デポ生成”ステップにおいて、真空度のみを1.5 T
orrから2.5Torrにしてデポジションを行い、
第2のプラズマ窒化膜2−2を生成する。
In order to generate the first plasma nitride film 2-1 of the semiconductor device shown in FIG.
At 0° C. and a vacuum degree of 1.5 Torr, SiH, NH3 as shown in the simple piping diagram shown in FIG. 3 are flowed, and glow discharge is performed by RF. In the simple plasma nitride film production sequence shown in Fig. 2, this corresponds to the ``paddebo generation'' step after passing through each step.This 1.5 Torr deposition is performed for 100~30006 times, and then in the same paddepot generation'' step, Only the degree of vacuum is 1.5 T
Perform deposition from orr to 2.5 Torr,
A second plasma nitride film 2-2 is generated.

ここで、仮に“デボ生成”ステ・ツブにおいて、全て真
空度1.5 Torrで行っても゛局部的異常放電″は
避けられるが、膜厚が1μmを越えるとアルミ配線のボ
イド(欠損)発生という新たな問題を生してしまう。1
 、5 Torr ”デボ生成”は2 、5 Torr
による“デボ生成″より同一膜厚であれば圧縮側のスト
レスが掛かるためである。
Here, in the "devo generation" stage, even if the vacuum level is 1.5 Torr, "local abnormal discharge" can be avoided, but if the film thickness exceeds 1 μm, voids (defects) will occur in the aluminum wiring. This creates a new problem.1.
, 5 Torr “debo generation” is 2 , 5 Torr
This is because, if the film thickness is the same, stress on the compression side will be applied due to "devo generation".

第4図に局部的異常放電発生データを示す。この発明に
よれば、2000枚ウェハ処理中発生ウェハは零である
Figure 4 shows local abnormal discharge occurrence data. According to this invention, the number of wafers generated during processing of 2000 wafers is zero.

なお、上記実施例ではPチャネル型アルミゲートMo5
t、ランレスタを例にとったが、Nチャネル型シリコン
ゲー1− M OS I−ラノジスク等のAZおよびA
 l / S iおよびAI/Si/Cu配線を使うデ
バイスであってもよい。
Note that in the above embodiment, the P-channel type aluminum gate Mo5
t, Lan Restor is taken as an example, but AZ and A
Devices using l/Si and AI/Si/Cu interconnects may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、乙の発明は、プラズマ窒化膜のデ
ポジショノ生成ステップで、真空度2以上Torr未満
で第1のプラズマ窒化膜を100〜3000六にデポジ
ションし、その後、真空度2Torrで第2のプラズマ
窒化膜をデポジションするので、アルミ面積の広い部分
、例えばAIターゲット領域等やその周辺部に゛局部的
異常放電′″は発生しな(なるとともに、プラズマ窒化
膜ストレスによるアルミ配線のボイド(欠損)の発生も
ないという効果がある。
As explained above, in the plasma nitride film deposition step, the first plasma nitride film is deposited at a vacuum level of 100 to 30,006 Torr at a vacuum level of 2 Torr or more, and then the first plasma nitride film is deposited at a vacuum level of 2 Torr or more and Since the plasma nitride film described in step 2 is deposited, "local abnormal discharge" does not occur in areas with large aluminum areas, such as the AI target area and its surrounding areas (and at the same time, the aluminum wiring due to stress on the plasma nitride film is prevented). This has the effect that voids (deficiencies) do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるPチャネル型アルミ
ゲ−1−M OS +−ラノジスタを示す断面図、第2
図はプラズマ窒化膜生成簡易シーケンスを示す図、第3
図はプラズマCVD装置の簡易配管図、第4図は局部的
異常放電発生データを示す図、第5図は従来のPチャネ
ル型アルミゲ−1−M OS I、ランジスタを示す断
面図である。 図において、1はアルミ:配線、2−1.2−2は第1
.第2のプラズマ窒化膜、3はフィールド酸化膜、4は
ゲート酸化膜、5はP+ソース、ドレイン領域、6はN
基板である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 第3図 ′)I4 NH3シト411す2   N2 I6 N墨板 第 図 局部的異常放電発生データ 第 図
FIG. 1 is a sectional view showing a P-channel type aluminum gate 1-M OS +-lanogistor according to an embodiment of the present invention, and FIG.
The figure shows a simple sequence for plasma nitride film production, Part 3.
The figure is a simplified piping diagram of a plasma CVD apparatus, FIG. 4 is a diagram showing local abnormal discharge occurrence data, and FIG. 5 is a sectional view showing a conventional P-channel type aluminum gate 1-MOS I transistor. In the figure, 1 is aluminum: wiring, 2-1.2-2 is the first
.. 2nd plasma nitride film, 3 is field oxide film, 4 is gate oxide film, 5 is P+ source and drain region, 6 is N
It is a board. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 3') I4 NH3 site 411s2 N2 I6 N Ink board Figure Local abnormal discharge occurrence data Figure

Claims (1)

【特許請求の範囲】[Claims]  半導体装置のアルミ配線上にプラズマCVD装置でプ
ラズマ窒化膜を生成する方法において、前記プラズマ窒
化膜のデポジション生成ステップで、真空度2Torr
未満で第1のプラズマ窒化膜を100〜3000Åにデ
ポジションし、その後、真空度2Torr以上で第2の
プラズマ窒化膜をデポジションすることを特徴とする半
導体装置の製造方法。
In a method for producing a plasma nitride film on aluminum wiring of a semiconductor device using a plasma CVD apparatus, in the plasma nitride film deposition step, the vacuum degree is 2 Torr.
1. A method for manufacturing a semiconductor device, comprising depositing a first plasma nitride film to a thickness of 100 to 3000 Å at a vacuum level of 2 Torr or more, and then depositing a second plasma nitride film at a vacuum level of 2 Torr or higher.
JP2189916A 1990-07-16 1990-07-16 Method for manufacturing semiconductor device Expired - Lifetime JP2504306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189916A JP2504306B2 (en) 1990-07-16 1990-07-16 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189916A JP2504306B2 (en) 1990-07-16 1990-07-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0474426A true JPH0474426A (en) 1992-03-09
JP2504306B2 JP2504306B2 (en) 1996-06-05

Family

ID=16249357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189916A Expired - Lifetime JP2504306B2 (en) 1990-07-16 1990-07-16 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2504306B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617200A (en) * 1992-10-19 1994-01-25 Sumitomo Special Metals Co Ltd Tetragonal rare earth element-iron-boron type compound
US7579264B2 (en) 2005-03-10 2009-08-25 Oki Semiconductor Co., Ltd. Method for manufacturing an electrode structure of a MOS semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155626A (en) * 1986-12-18 1988-06-28 Oki Electric Ind Co Ltd Surface-protective film for semiconductor device and formation thereof
JPS6447032A (en) * 1987-08-18 1989-02-21 Oki Electric Ind Co Ltd Formation of surface protective film for semiconductor device
JPS6468967A (en) * 1987-09-09 1989-03-15 Fujitsu Ltd Thin film transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155626A (en) * 1986-12-18 1988-06-28 Oki Electric Ind Co Ltd Surface-protective film for semiconductor device and formation thereof
JPS6447032A (en) * 1987-08-18 1989-02-21 Oki Electric Ind Co Ltd Formation of surface protective film for semiconductor device
JPS6468967A (en) * 1987-09-09 1989-03-15 Fujitsu Ltd Thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617200A (en) * 1992-10-19 1994-01-25 Sumitomo Special Metals Co Ltd Tetragonal rare earth element-iron-boron type compound
US7579264B2 (en) 2005-03-10 2009-08-25 Oki Semiconductor Co., Ltd. Method for manufacturing an electrode structure of a MOS semiconductor device

Also Published As

Publication number Publication date
JP2504306B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US5051380A (en) Process for producing semiconductor device
JPH05315284A (en) Formation of contact section
JPH05259297A (en) Manufacture of semiconductor device
JPH0474426A (en) Manufacture of semiconductor device
US6242367B1 (en) Method of forming silicon nitride films
JPH0629222A (en) Manufacture of semiconductor device
JP3036185B2 (en) Method for manufacturing semiconductor device
JPH04294532A (en) Method for forming tungsten silicide film
JP2000332012A (en) Method of forming silicon nitride film
JPH02187030A (en) Formation of protective film on semiconductor device
US6232234B1 (en) Method of reducing in film particle number in semiconductor manufacture
CN107557751A (en) A kind of membrane deposition method
JPH01186627A (en) Preparation of passivation film of semiconductor device
JPH09115901A (en) Forming method for sinx/psg laminated construction
JP3008577B2 (en) Chemical vapor deposition method and apparatus
JPH07161709A (en) Semiconductor device and its manufacture
JPS62160732A (en) Forming method for silicon oxynitride films
JP3123494B2 (en) Semiconductor device and manufacturing method thereof
JPH03238821A (en) Manufacture of semiconductor device
JPH06232116A (en) Formation of silicon oxide film
TW546709B (en) Method to reduce the reflectivity of polysilicon layer
JP2001308086A (en) Film-forming method
JPH04129223A (en) Manufacture of semiconductor device
KR100513805B1 (en) Gap filling method of semiconductor device
JPH05152280A (en) Manufacture of semiconductor device