JPH06232116A - Formation of silicon oxide film - Google Patents

Formation of silicon oxide film

Info

Publication number
JPH06232116A
JPH06232116A JP1628393A JP1628393A JPH06232116A JP H06232116 A JPH06232116 A JP H06232116A JP 1628393 A JP1628393 A JP 1628393A JP 1628393 A JP1628393 A JP 1628393A JP H06232116 A JPH06232116 A JP H06232116A
Authority
JP
Japan
Prior art keywords
gas
silicon oxide
flow rate
oxide film
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1628393A
Other languages
Japanese (ja)
Inventor
Takashi Fukusho
孝 福所
Junji Yamane
淳二 山根
Takeshi Matsuda
健 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1628393A priority Critical patent/JPH06232116A/en
Publication of JPH06232116A publication Critical patent/JPH06232116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a silicon oxide film having the smooth surface, on which hazes (They are considered to be silicon particles.) do not exist, when the silicon oxide film (the so-called HTO film) is formed at high temperature by a low- pressure CVD method. CONSTITUTION:When a silicon oxide film (an HTO film) is formed by a CVD method using SiH4 gas and N2 gas, the interior of a chamber is filled with an N2O gas atmosphere and thereafter, the silicon oxide film is formed in such a way that the SiH4 gas is introduced into the chamber while being increased in a stepwise form to a set flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に用いられ
るシリコン酸化膜の成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon oxide film used in a semiconductor device.

【0002】[0002]

【従来の技術】半導体装置のシリコン酸化膜として、減
圧CVD(化学気相成長)法により800℃程度の高温
で成膜される一般的にHTO膜と呼ばれているシリコン
酸化膜が用いられている。このHTO膜は均一性、膜質
に優れており、ゲート酸化膜等に用いられる。
2. Description of the Related Art As a silicon oxide film of a semiconductor device, a silicon oxide film generally called an HTO film which is formed at a high temperature of about 800 ° C. by a low pressure CVD (chemical vapor deposition) method is used. There is. This HTO film is excellent in uniformity and film quality and is used as a gate oxide film or the like.

【0003】HTO膜の成膜に際しては、シリコン粒と
思われるヘイズが発生し易く、膜表面が凹凸のシリコン
酸化膜となり易い。一般にHTO膜のヘイズ発生原因
は、SiH4 とN2 Oの流量比、即ちある場所での反応
ガスの存在比、に非常に敏感であることが知られてお
り、流量比:N2 O/SiH4 が小さい程、ヘイズが発
生しやすく、これは、主に成膜初期段階において起こり
得る。
When the HTO film is formed, haze, which is considered to be silicon grains, is likely to occur, and the film surface is likely to be a silicon oxide film having irregularities. It is generally known that the cause of haze in the HTO film is very sensitive to the flow rate ratio of SiH 4 and N 2 O, that is, the abundance ratio of the reaction gas at a certain place, and the flow rate ratio: N 2 O / As the SiH 4 is smaller, haze is more likely to occur, which can occur mainly in the initial stage of film formation.

【0004】HTO膜は、半導体ウエハが配された炉内
に亜酸化窒素(N2 O)ガスを導入し炉内をN2 Oガス
で満たした後、シラン(SiH4 )ガスを導入して成膜
するが、通常、SiH4 ガスはマスフローコントローラ
を通じて図4に示すシーケンスで導入され、反応ガスの
流量比はN2 O/SiH4 =40/1とされている。シ
ーケンス中の汎用のマスフローコントローラのソフトス
タートにかかる時間は最大1分間である。しかし、この
シーケンスでは時々ヘイズが発生する事がある。
The HTO film is produced by introducing nitrous oxide (N 2 O) gas into the furnace in which the semiconductor wafer is placed, filling the inside of the furnace with N 2 O gas, and then introducing silane (SiH 4 ) gas. Although a film is formed, the SiH 4 gas is usually introduced through the mass flow controller in the sequence shown in FIG. 4, and the flow rate ratio of the reaction gas is N 2 O / SiH 4 = 40/1. The soft start of the general-purpose mass flow controller during the sequence takes up to 1 minute. However, this sequence can sometimes cause haze.

【0005】ヘイズ発生を防ぐためには元々の流量比を
大きくすることで対応することができ、2つの方法、即
ち、(i)N2 Oの流量を上げる方法。(ii)SiH4
流量を下げる方法がある。
In order to prevent the generation of haze, it is possible to deal with it by increasing the original flow rate ratio, and two methods are available: (i) a method of increasing the flow rate of N 2 O. (ii) There is a method of reducing the flow rate of SiH 4 .

【0006】[0006]

【発明が解決しようとする課題】しかし乍ら、上述の
(i)のN2 Oの流量を上げる方法では反応ガスの総流
量が大きくなってしまい、ガスの注入口付近のウエハの
成膜均一性(ウエハ面内の均一性)が悪くなる。また(i
i)のSiH4 の流量を下げる方法ではSiH4 の流量が
少なくなると、ガス排出口近くのウエハへ十分にSiH
4 ガスが供給されず、成膜速度がウエハの炉内での位置
により大きく変わってしまい、成膜均一性(ウエハ間の
均一性)が悪くなる。
However, in the above method (i) of increasing the flow rate of N 2 O, the total flow rate of the reaction gas is increased, and the film formation on the wafer is uniform near the gas inlet. Property (uniformity within the wafer surface) deteriorates. Also (i
In the method i) of reducing the flow rate of SiH 4, when the flow rate of SiH 4 decreases, the SiH 4 is sufficiently transferred to the wafer near the gas outlet.
4 Gas is not supplied, and the film formation rate varies greatly depending on the position of the wafer in the furnace, resulting in poor film formation uniformity (uniformity between wafers).

【0007】このようにN2 O/SiH4 の流量比だけ
で対応すると(流量比を40/1以上にする)、成膜均
一性の制御が難しくなり、ヘイズの有無の非常に微妙な
条件で成膜しているのが現状である。
As described above, if the N 2 O / SiH 4 flow rate ratio alone is used (the flow rate ratio is set to 40/1 or more), it becomes difficult to control the film formation uniformity, and a very delicate condition regarding the presence or absence of haze. The current situation is that the film is formed in.

【0008】現状では炉内を当初N2 Oガスで満たして
おき、この状態でSiH4 を流すようにしている。この
SiH4 を流すときには、ラインを真空にして弁を開い
てSiH4 を流すか、又はラインにN2 Oガスを流して
弁を開いてSiH4 を流す等の方法があるが、いずれに
しても、SiH4 ガスを導入する初期段階は、SiH 4
の流量が設定値より大きくなり、所望のSiH4 とN2
Oの流量比が得られない。流量の制御にはマスフローコ
ントローラを用いているが、現状のマスフローコントロ
ーラの性能では、初期段階での流量比を制御することが
できない。
At present, the inside of the furnace is initially N2Fill with O gas
Every time, in this state SiHFourI am trying to flush. this
SiHFourWhen flowing, vacuum the line and open the valve.
SiHFourFlow or N on the line2Flow O gas
Open the valve and SiHFourThere is a method such as pouring, but whichever
Even, SiHFourThe initial stage of introducing gas is SiH Four
Flow rate is higher than the set value and the desired SiHFourAnd N2
The flow rate ratio of O cannot be obtained. Mass flow controller for flow control
Although using a controller, the current mass flow controller
The performance of the controller can control the flow rate ratio in the initial stage.
Can not.

【0009】即ち、図4の破線aで示すようにSiH4
ガス導入直後は炉内へ急激にSiH 4 ガスが導入される
ため、成膜初期ではN2 O/SiH4 の流量比または存
在比が変わってしまう。ヘイズ発生は、この成膜初期段
階であり、図4のシーケンス中の汎用のマスフローコン
トローラの機能の一つであるソフトスタート機能だけで
は対処しがたい。
That is, as shown by the broken line a in FIG.Four
Immediately after introducing the gas, SiH is suddenly introduced into the furnace. FourGas is introduced
Therefore, at the beginning of film formation, N2O / SiHFourFlow rate or
The ratio will change. Haze is generated in the initial stage of film formation.
Is a floor and is a general-purpose mass flow controller in the sequence of FIG.
Only the soft start function which is one of the functions of the tracker
Is hard to deal with.

【0010】本発明は、上述の点に鑑み、成膜均一性に
影響を与えることなく、ヘイズのない表面が滑らかシリ
コン酸化膜の成膜方法を提供するものである。
In view of the above points, the present invention provides a method for forming a silicon oxide film having a haze-free smooth surface without affecting the film formation uniformity.

【0011】[0011]

【課題を解決するための手段】本発明は、シラン系ガス
7と酸素を含むガス5を用いてCVD法によりシリコン
酸化膜8を成膜する際、炉、反応容器等のいわゆるチャ
ンバー2内を酸素を含むガス雰囲気にした後、シラン系
ガス7を設定した流量まで階段状(A1 ,A2,A3
に導入してシリコン酸化膜8を成膜する。
According to the present invention, when a silicon oxide film 8 is formed by a CVD method using a silane-based gas 7 and a gas 5 containing oxygen, the inside of a so-called chamber 2 such as a furnace or a reaction vessel is After making the gas atmosphere containing oxygen, stepwise (A 1 , A 2 , A 3 ) up to the set flow rate of the silane-based gas 7.
Then, a silicon oxide film 8 is formed.

【0012】[0012]

【作用】本発明においては、チャンバー2内を酸素を含
むガス雰囲気にした後、シラン系ガス7を設定した流量
まで階段状(A1 ,A2 ,A3 )に導入することによ
り、シラン系ガス7が導入開始直後に急激に導入された
としても第1段階A1 でのシラン系ガス7の流量は成膜
時の設定値A3 に達していないために問題ない。
In the present invention, the silane-based gas is introduced into the chamber 2 in a stepwise manner (A 1 , A 2 , A 3 ) up to the set flow rate after the chamber 2 is set to a gas atmosphere containing oxygen. Even if the gas 7 is rapidly introduced immediately after the start of introduction, there is no problem because the flow rate of the silane-based gas 7 in the first stage A 1 does not reach the set value A 3 at the time of film formation.

【0013】そして、以後段階的にシラン系ガスが増す
も、そのときには、マスフローコントローラ6によるシ
ラン系ガス7の流量により精度よく制御される。従っ
て、シラン系ガス7が設定した流量に達した時点、即ち
成膜初期での酸素を含むガス5とシラン系ガス7の流量
比は、小さくなることはなく、設定された流量比とな
り、ヘイズは発生しない。
Then, even if the silane-based gas increases step by step thereafter, at that time, it is accurately controlled by the flow rate of the silane-based gas 7 by the mass flow controller 6. Therefore, at the time when the silane-based gas 7 reaches the set flow rate, that is, the flow rate ratio between the gas 5 containing oxygen and the silane-based gas 7 at the initial stage of film formation does not become small, but becomes the set flow rate ratio, and the haze Does not occur.

【0014】即ち、酸素を含むガス/シラン系ガスの流
量比を大きくすることなく、ヘイズのない表面が滑らか
なシリコン酸化膜8が得られる。
That is, the silicon oxide film 8 having a smooth surface without haze can be obtained without increasing the flow rate ratio of the gas containing oxygen / silane-based gas.

【0015】[0015]

【実施例】以下、図面を参照して本発明によるシリコン
酸化膜の成膜方法の実施例を説明する。
Embodiments of the method for forming a silicon oxide film according to the present invention will be described below with reference to the drawings.

【0016】図1は、本発明に係るシリコン酸化膜の成
膜装置1の一例を示すもので、炉2内に半導体ウエハ
(例えばシリコンウエハ)3が配置され、この炉2内に
第1のマスフローコントローラ4によって流量設定され
た酸素を含むガス、例えば亜酸化窒素(N2 O)ガス5
が導入されると共に、第2のマスフローコントローラ6
によって流量設定されたシラン系ガス、例えばシラン
(SiH4 )ガス7が導入される。
FIG. 1 shows an example of a silicon oxide film forming apparatus 1 according to the present invention. A semiconductor wafer (for example, a silicon wafer) 3 is placed in a furnace 2, and a first wafer is placed in the furnace 2. A gas containing oxygen whose flow rate is set by the mass flow controller 4, for example, nitrous oxide (N 2 O) gas 5
And the second mass flow controller 6
A silane-based gas whose flow rate is set by, for example, silane (SiH 4 ) gas 7 is introduced.

【0017】しかして、本発明ではSiH4 ガスのマス
フローコントローラ5の設定値を少なくとも2つ以上と
し、SiH4 ガスの流量を設定値まで階段状に増してい
く。
Therefore, in the present invention, the set value of the SiH 4 gas mass flow controller 5 is set to at least two, and the flow rate of the SiH 4 gas is increased stepwise to the set value.

【0018】本例では、SiH4 ガスとN2 Oガスを用
いて減圧CVD法により、即ちシランが分解する温度以
上、例えば800℃程度でシリコン酸化膜を成膜する際
に、炉2内をN2 Oガス雰囲気にした後、図2に示すよ
うに、マスフローコントローラ6の設定値を3段階
1 ,A2 ,A3 とし、SiH4 ガスの流量を値A1
2 及びA3 と成膜時の設定値A3 まで階段状に増加さ
せる。
In this example, SiHFourGas and N2Use O gas
By the low pressure CVD method, that is, below the temperature at which silane decomposes.
For example, when forming a silicon oxide film at about 800 ° C.
The inside of the furnace 22After making O gas atmosphere, as shown in FIG.
Set the mass flow controller 6 in 3 steps
A1, A2, A3And SiHFourGas flow rate is value A1
A 2And A3And the set value A during film formation3Increased in steps
Let

【0019】例えば設定値A3 が30ccで、10cc
/minで段階的に増加させたとすると、SiH4 ガス
導入開始から3分間かけて設定値A3 までもっていく。
For example, if the set value A 3 is 30 cc, 10 cc
Assuming that the flow rate is increased stepwise at / min, it takes 3 minutes from the start of SiH 4 gas introduction to reach the set value A 3 .

【0020】上述の方法によれば、マスフローコントロ
ーラ6の設定値を3段階A1 ,A2及びA3 としてSi
4 ガスの流量を成膜時の設定値A3 まで階段状に増加
させていくことにより、SiH4 ガス導入初期でSiH
4 ガスが図2の破線bで示すように炉2内に急激に導入
されても成膜時の設定値A3 以下であるために直接の影
響はなく、以後はマスフローコントローラの流量制御が
精度よく行われる。
According to the above method, the set value of the mass flow controller 6 is set to three levels A 1 , A 2 and A 3 and Si is set.
By increasing the flow rate of the H 4 gas to the set value A 3 at the time of film formation stepwise, the SiH 4 gas is introduced at the initial stage.
Even if the 4 gases are suddenly introduced into the furnace 2 as shown by the broken line b in FIG. 2, there is no direct influence because the set value is less than the set value A 3 at the time of film formation, and thereafter the flow rate control of the mass flow controller is accurate. Often done.

【0021】従って、設定値A3 の成膜初期でのN2
/SiH4 の流量比は小さくなることなく、目的の設定
値、例えばN2 O/SiH4 =40/1とすることがで
き、半導体ウエハ2上にヘイズのない表面が滑らかなH
TO膜8が成膜される。
Therefore, N 2 O at the initial stage of film formation with the set value A 3
The flow rate ratio of / SiH 4 can be set to a target setting value, for example, N 2 O / SiH 4 = 40/1 without decreasing, and the haze-free surface on the semiconductor wafer 2 is H.
The TO film 8 is formed.

【0022】また、図2のシーケンスにすると、成膜時
に反応ガスの流量比や総流量にとらわれることなく、成
膜条件の自由度を上げることができる。
Further, according to the sequence shown in FIG. 2, the degree of freedom in film forming conditions can be increased without being restricted by the flow rate ratio and total flow rate of the reaction gas during film formation.

【0023】尚、本発明は、図3に示すように炉2外で
2 Oガス5とSiH4 ガス7を混合して炉2内に導入
するようにした成膜装置9にも適用できる。
The present invention can also be applied to a film forming apparatus 9 in which the N 2 O gas 5 and the SiH 4 gas 7 are mixed outside the furnace 2 and introduced into the furnace 2 as shown in FIG. .

【0024】また、上例では炉を用いたが、その他、炉
を使用せず、例えば常圧CVD等の反応容器内でシリコ
ン酸化膜を形成する場合にも適用できる。
Although the furnace is used in the above example, the present invention can also be applied to the case where the silicon oxide film is formed in a reaction vessel such as atmospheric pressure CVD without using the furnace.

【0025】[0025]

【発明の効果】本発明によれば、ヘイズのない表面が滑
らかなシリコン酸化膜を確実に成膜することができる。
また成膜時の反応ガスの流量比や総流量にとらわれるこ
となく、成膜条件の自由度を上げることができる。
According to the present invention, it is possible to surely form a silicon oxide film having a smooth surface without haze.
Further, the degree of freedom in film forming conditions can be increased without being restricted by the flow rate ratio and total flow rate of the reaction gas during film formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシリコン酸化膜の成膜装置の一例
を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a silicon oxide film forming apparatus according to the present invention.

【図2】本実施例のSiH4 ガスを導入する際の流量と
時間の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the flow rate and the time when SiH 4 gas is introduced in this example.

【図3】本発明に係るシリコン酸化膜の成膜装置の他の
例を示す構成図である。
FIG. 3 is a configuration diagram showing another example of a silicon oxide film forming apparatus according to the present invention.

【図4】従来のSiH4 ガスを導入する際の流量と時間
の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a flow rate and time when a conventional SiH 4 gas is introduced.

【符号の説明】[Explanation of symbols]

1,9 成膜装置 2 炉 3 半導体ウエハ 4,6 マスフローコントローラ 5 N2 Oガス 7 SiH4 ガス 8 シリコン酸化膜(HTO膜)1,9 Film forming device 2 Furnace 3 Semiconductor wafer 4,6 Mass flow controller 5 N 2 O gas 7 SiH 4 gas 8 Silicon oxide film (HTO film)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シラン系ガスと酸素を含むガスを用いて
CVD法によりシリコン酸化膜を成膜する際、チャンバ
ー内を前記酸素を含むガス雰囲気にした後、前記シラン
系ガスを設定した流量まで階段状に導入することを特徴
とするシリコン酸化膜の成膜方法。
1. When forming a silicon oxide film by a CVD method using a silane-based gas and a gas containing oxygen, the chamber is made to have a gas atmosphere containing the oxygen, and then the silane-based gas is supplied up to a set flow rate. A method for forming a silicon oxide film, which is characterized in that the silicon oxide film is introduced stepwise.
JP1628393A 1993-02-03 1993-02-03 Formation of silicon oxide film Pending JPH06232116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1628393A JPH06232116A (en) 1993-02-03 1993-02-03 Formation of silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1628393A JPH06232116A (en) 1993-02-03 1993-02-03 Formation of silicon oxide film

Publications (1)

Publication Number Publication Date
JPH06232116A true JPH06232116A (en) 1994-08-19

Family

ID=11912233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1628393A Pending JPH06232116A (en) 1993-02-03 1993-02-03 Formation of silicon oxide film

Country Status (1)

Country Link
JP (1) JPH06232116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123998A (en) * 2007-11-16 2009-06-04 Elpida Memory Inc Manufacturing method of semiconductor device
JP2013110385A (en) * 2011-10-28 2013-06-06 Tokyo Electron Ltd Film formation method of silicon oxide film
JP2019220656A (en) * 2018-06-22 2019-12-26 東京エレクトロン株式会社 Film forming method and film forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123998A (en) * 2007-11-16 2009-06-04 Elpida Memory Inc Manufacturing method of semiconductor device
JP2013110385A (en) * 2011-10-28 2013-06-06 Tokyo Electron Ltd Film formation method of silicon oxide film
JP2019220656A (en) * 2018-06-22 2019-12-26 東京エレクトロン株式会社 Film forming method and film forming apparatus
CN110629198A (en) * 2018-06-22 2019-12-31 东京毅力科创株式会社 Film forming method and film forming apparatus
CN110629198B (en) * 2018-06-22 2022-09-06 东京毅力科创株式会社 Film forming method and film forming apparatus
US11965246B2 (en) 2018-06-22 2024-04-23 Tokyo Electron Limited Deposition method and deposition apparatus

Similar Documents

Publication Publication Date Title
JP3265042B2 (en) Film formation method
US4855258A (en) Native oxide reduction for sealing nitride deposition
US8410003B2 (en) Method of manufacturing semiconductor device, method of processing substrate, and substrate processing apparatus
TWI741445B (en) Substrate processing device, semiconductor device manufacturing method and recording medium
TW202035762A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JPH0794506A (en) Manufacture of semiconductor device
US7432215B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
US20240055259A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
US20020028567A1 (en) Film formation method and film formation apparatus
JPH06232116A (en) Formation of silicon oxide film
JPH1116903A (en) Forming method of thin oxide film using wet oxidation
US20220238311A1 (en) Substrate processing method and substrate processing apparatus
KR100381961B1 (en) Method for forming a nitridized interface on a semiconductor substrate
US6821874B2 (en) Method for depositing tungsten silicide film and method for preparing gate electrode/wiring
US6602560B2 (en) Method for removing residual fluorine in HDP-CVD chamber
JPH07245268A (en) Thin-film forming method
CN110034019B (en) Method for etching silicon-containing film, computer storage medium, and apparatus for etching silicon-containing film
JP2000332012A (en) Method of forming silicon nitride film
JPH06181205A (en) Method of manufacturing semiconductor device
JP4498503B2 (en) Thin film forming apparatus and thin film forming method
JPH04345024A (en) Manufacture of semiconductor device
JPH0541374A (en) Chemical vapor deposition and apparatus therefor
KR940008371B1 (en) Forming method of silicon oxide film-polysilicon film-nitride film and forming apparatus therefor
JP2000340561A (en) Method for forming film
JPH0653209A (en) Manufacture of semiconductor device