JPH0541374A - Chemical vapor deposition and apparatus therefor - Google Patents

Chemical vapor deposition and apparatus therefor

Info

Publication number
JPH0541374A
JPH0541374A JP19692691A JP19692691A JPH0541374A JP H0541374 A JPH0541374 A JP H0541374A JP 19692691 A JP19692691 A JP 19692691A JP 19692691 A JP19692691 A JP 19692691A JP H0541374 A JPH0541374 A JP H0541374A
Authority
JP
Japan
Prior art keywords
reaction
reaction tube
reaction gas
valve
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19692691A
Other languages
Japanese (ja)
Other versions
JP3008577B2 (en
Inventor
Masahiro Chijiiwa
雅弘 千々岩
Hajime Koizumi
元 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16365970&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0541374(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3196926A priority Critical patent/JP3008577B2/en
Publication of JPH0541374A publication Critical patent/JPH0541374A/en
Application granted granted Critical
Publication of JP3008577B2 publication Critical patent/JP3008577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent a haze from being produced and to eliminate that an etching residue is produced by a method wherein, when an SiO2 film is chemically vapor-deposited, by using SiH4 and N2O, on a substrate which has been place and heated inside a reaction tube, SiH4 and N2O are mixed in a position at a distance from the reaction tube and, after that, they are introduced into the reaction tube. CONSTITUTION:Gases which are to be used are SiH4 and N2O as reaction gases and N2 as a purge gas. Haze-preventive measures composed of the following conditions are taken. SiH2 and H2O are mixed and, after that, introduced into a reaction tube. A point A as a mixing position is separated from the reaction tube by 2 to 3m. The reaction gases are purged by using the gas in which SiH4 and N2O have already been mixed. The respective gases are not purged independently of each other. A valve V10 in a bent line used to purge the reaction gases, a valve V8 in an N2 purge line for the reaction tube and a valve V9 used to introduce the reaction gases into the reaction tube are arranged in a point 11 as a position where they are brought close to each other as far as possible so that the gases inside pipes can completely be purged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二酸化シリコン(SiO2)膜
の化学気相成長(CVD) 方法および装置に関する。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for chemical vapor deposition (CVD) of silicon dioxide (SiO 2 ) films.

【0002】半導体装置の層間絶縁膜として,特にポリ
シリコン配線とポリシリコン配線間,ポリシリコン配線
とポリサイド,シリサイドまたは金属配線間の絶縁膜に
は,モノシラン(SiH4)ガスと一酸化化二窒素(N2O) ガス
を用いた熱CVD 法により成膜されたSiO2膜が用いられて
きた。
Monosilane (SiH 4 ) gas and dinitrogen monoxide are used as an interlayer insulating film of a semiconductor device, particularly between polysilicon wiring, polysilicon wiring, polysilicon wiring and polycide, silicide or metal wiring. A SiO 2 film formed by a thermal CVD method using (N 2 O) gas has been used.

【0003】本発明はこの成膜に対する改善された方法
および装置として利用できる。
The present invention can be utilized as an improved method and apparatus for this film formation.

【0004】[0004]

【従来の技術】図7は減圧CVD 装置の模式断面図であ
る。図において,1は反応管で石英管,2は反応ガス導
入口,3は排気口,4はヒータ,5は石英ボート,6は
ウエハである。
2. Description of the Related Art FIG. 7 is a schematic sectional view of a low pressure CVD apparatus. In the figure, 1 is a reaction tube, a quartz tube, 2 is a reaction gas introduction port, 3 is an exhaust port, 4 is a heater, 5 is a quartz boat, and 6 is a wafer.

【0005】図8は従来のガス配管系統図である。図に
おいて,Vはバルブ (No.1〜No.10),MFC はマスフロー
コントローラ(質量流量制御器),BGはバラトロンゲー
ジ(圧力計)である。
FIG. 8 is a diagram of a conventional gas piping system. In the figure, V is a valve (No.1 to No.10), MFC is a mass flow controller (mass flow controller), and BG is a baratron gauge (pressure gauge).

【0006】使用するガスは,反応ガスのSiH4およびN2
Oとパージガスの窒素(N2)である。
The gases used are the reaction gases SiH 4 and N 2
O and the purge gas nitrogen (N 2 ).

【0007】[0007]

【発明が解決しようとする課題】従来の成長装置, 成長
条件でSiO2を成長すると, SiO2膜にHAZEと呼ばれる異常
組織が発生することがあった。
When SiO 2 is grown under the conventional growth apparatus and growth conditions, an abnormal structure called HAZE sometimes occurs in the SiO 2 film.

【0008】SiO2膜にHAZEが発生した場合, 例えば, ゲ
ート電極にSiO2からなる側壁を形成する際の異方性エッ
チング時, あるいはSiO2膜にコンタクトホールを形成す
る際にエッチング残渣を残し, このために半導体装置の
製造歩留がかなり低下していた。
When HAZE occurs in the SiO 2 film, for example, an etching residue is left during anisotropic etching when forming a sidewall made of SiO 2 on the gate electrode or when forming a contact hole in the SiO 2 film. As a result, the manufacturing yield of semiconductor devices has been considerably reduced.

【0009】本発明はHAZEの発生を防止してエッチング
残渣が生じないようなCVD SiO2膜を得ることを目的とす
る。
It is an object of the present invention to obtain a CVD SiO 2 film which prevents generation of HAZE and does not cause etching residue.

【0010】[0010]

【課題を解決するための手段】上記課題の解決は,1)
反応ガスとしてモノシラン(SiH4)と一酸化化二窒素(N
2O) を用いて,反応管内に載置され且つ加熱された基板
上に二酸化シリコン(SiO2)膜を減圧化学気相成長(CVD)
するに際し,SiH4とN2O を該反応管から離れた位置で混
合した後,該反応管に導入する化学気相成長方法,ある
いは2)配管内を反応ガスによりパージする際,SiH4
N2O とが混合されたガスを用いて行う前記1)記載の化
学気相成長方法,あるいは3)反応ガス圧力を 1.4 Tor
r 以上の減圧状態に設定する前記1)または2)記載の
化学気相成長方法,あるいは,4)複数の反応ガスを混
合した後バルブV9を経由して反応管(1) に接続する反
応ガス供給ラインと,窒素をバルブV8を経由して該バ
ルブV9と該反応管との中間位置に接続する窒素パージ
ラインと,該反応ガス供給ラインの反応ガス供給側と該
バルブV9との中間位置よりバルブV10を経由して該反
応管の排気口に接続する反応ガスパージ用のベントライ
ンとを有し,該バルブV8と該バルブV9と該バルブV
10とが相互に近接して配置した化学気相成長装置,ある
いは,5)反応ガス供給ラインおよび反応管内を常圧窒
素パージする第1段階と,反応ガス供給ラインを常圧窒
素パージしながら, 反応管内を真空引きする第2段階
と,反応ガス供給ラインを真空引きするとともに,反応
管内を減圧窒素パージする第3段階と,反応ガスを混合
して反応ガス供給ラインの反応ガスパージを行うととも
に, 反応管内を減圧窒素パージする第4段階と,混合さ
れた反応ガスを反応管に流してウエハ上に二酸化シリコ
ン膜を成長する第5段階と,反応管内の減圧窒素パージ
と, 反応ガス供給ラインの反応ガス抜きを行う第6段階
と,反応ガス供給ラインを常圧窒素パージするととも
に, 反応管内を減圧窒素パージする第7段階と,真空引
きを止め,反応ガス供給ラインを窒素パージするととも
に, 反応管内を窒素で常圧復帰させる第8段階と,反応
ガス供給ラインを窒素パージするとともに, 常圧に復帰
した反応管内を窒素パージする第9段階とを有する化学
気相成長方法によって達成される。
[Means for Solving the Problems] 1)
Monosilane as a reaction gas (SiH 4) and monoxide of dinitrogen (N
2 O) is used to deposit a silicon dioxide (SiO 2 ) film on a substrate placed in a reaction tube and heated, under reduced pressure chemical vapor deposition (CVD).
Upon which, after mixing SiH 4 and N 2 O at a position apart from the reaction tube, a chemical vapor deposition method is introduced into the reaction tube or 2) when purging the reaction gas in the pipe, and SiH 4
The chemical vapor deposition method described in 1) above, which is performed using a gas mixed with N 2 O, or 3) the reaction gas pressure is 1.4 Torr.
r) The chemical vapor deposition method described in 1) or 2) above, in which the pressure is set to a reduced pressure or more, or 4) a reaction gas which is connected to the reaction tube (1) via a valve V9 after mixing a plurality of reaction gases. From a supply line, a nitrogen purge line connecting nitrogen via a valve V8 to an intermediate position between the valve V9 and the reaction tube, and an intermediate position between the reaction gas supply side of the reaction gas supply line and the valve V9. A reaction gas purging vent line connected to the exhaust port of the reaction tube via a valve V10, and the valve V8, the valve V9, and the valve V.
10 and a chemical vapor deposition apparatus arranged close to each other, or 5) the first step of purging the reaction gas supply line and the inside of the reaction tube with atmospheric pressure nitrogen, while purging the reaction gas supply line with atmospheric pressure nitrogen, The second step of evacuating the inside of the reaction tube, the third step of evacuating the reaction gas supply line, and the third step of purging the inside of the reaction tube under reduced pressure nitrogen, and the reaction gas purging of the reaction gas supply line by mixing the reaction gases, The fourth step of purging the inside of the reaction tube under reduced pressure nitrogen, the fifth step of flowing the mixed reaction gas into the reaction tube to grow a silicon dioxide film on the wafer, the reduced pressure nitrogen purging inside the reaction tube, and the reaction gas supply line The sixth step of degassing the reaction gas, the seventh step of purging the reaction gas supply line at atmospheric pressure with nitrogen, and the seventh step of purging the inside of the reaction tube under decompressed nitrogen, and stopping the evacuation to stop the reaction gas A chemical gas having an eighth step of purging the inside of the reaction tube with nitrogen and returning the inside of the reaction tube to atmospheric pressure with nitrogen, and a ninth step of purging the reaction gas supply line with nitrogen and purging the inside of the reaction tube to atmospheric pressure with nitrogen. It is achieved by the phase growth method.

【0011】[0011]

【作用】図1は本発明の実施例のガス配管系統図であ
る。図において,Vはバルブ (V1〜V10) ,MFC はマ
スフローコントローラ,BGはバラトロンゲージである。
1 is a gas piping system diagram of an embodiment of the present invention. In the figure, V is a valve (V1 to V10), MFC is a mass flow controller, and BG is a baratron gauge.

【0012】使用するガスは,反応ガスのSiH4およびN2
OとパージガスのN2である。本発明は次のような条件か
らなるHAZE防止対策を講じた。 SiH4とN2O を混合し
た後反応管に導入する。混合位置(A点)は反応管から
2〜3 m 離す。 反応ガスパージは,すでにSiH4とN2O
が混合されたガスを用いて行い, それぞれのガス毎に
単独では行わない。 反応ガスパージの際のベントラ
インのバルブV10と, 反応管のN2パージラインのバルブ
V8と, 反応管へ反応ガスを導入する際のバルブV9と
をできるだけ近づけて(20cm以内)配置し(B点), 配
管内のパージを完全に行えるようにする。 SiH4とN2
O の混合位置A点と上記B点を 2〜3 m 離す。 反応
ガス圧力を 1.4〜1.6 Torrに設定する(C点)。
The gases used are the reaction gases SiH 4 and N 2
O and N 2 of purge gas. The present invention has taken HAZE prevention measures under the following conditions. After mixing SiH 4 and N 2 O, the mixture is introduced into a reaction tube. The mixing position (point A) is from the reaction tube
Separate by 2 to 3 m. The reaction gas purge is already done with SiH 4 and N 2 O.
The mixed gas is used for each gas, and not for each gas individually. And vent line valves V10 during the reaction gas purge, and N 2 purge line valve V8 in the reaction tube, as close as possible and the valve V9 in introducing a reactive gas into the reaction tube (within 20 cm) was placed (B point ), Make sure that the inside of the pipe can be completely purged. SiH 4 and N 2
Separate the mixing point A of O and the point B by 2 to 3 m. Set the reaction gas pressure to 1.4 to 1.6 Torr (point C).

【0013】上記の条件が必要である理由は以下の通り
である。条件, , は, HAZEはSiH4とN2O のガス比
がずれてSiリッチの状態で発生することが分かってお
り, SiH4とN2O のガス比が一定の状態で反応管に導入す
るための条件である。
The reason why the above conditions are necessary is as follows. It is known that HAZE occurs in the Si-rich state when the gas ratio of SiH 4 and N 2 O shifts, and HAZE is introduced into the reaction tube with a constant gas ratio of SiH 4 and N 2 O. It is a condition for doing.

【0014】条件は, 配管系統の中で盲腸配管が存在
し, その部分にSiH4が残留した場合, 反応管が常圧に復
帰した際に反応管から拡散してきた空気と残留SiH4が反
応して微粒子を発生し, これが原因でHAZEが発生するの
を抑えるための条件である。
The condition is that when there is a cecal pipe in the piping system and SiH 4 remains in that part, the air diffused from the reaction tube and the residual SiH 4 react when the reaction tube returns to normal pressure. As a result, fine particles are generated, and this is a condition for suppressing the generation of HAZE due to this.

【0015】また、条件は,例えばタングステンシリ
サイド(WSi)等のシリサイド膜を被着したウエハ上にSiO
2膜を成長する際に, シリサイドからの脱ガスによりHAZ
Eが発生するのを防止するための条件である。
The conditions are, for example, SiO 2 on a wafer on which a silicide film such as tungsten silicide (WSi) is deposited.
2 When growing a film, the HAZ is generated by degassing from the silicide.
This is a condition for preventing E from occurring.

【0016】この条件については,現在では詳細に解明
されていないが, 1.4 Torr以上の圧力においてはシリサ
イドからの脱ガスが低減されるので, SiH4リッチな状態
においてもHAZE抑制に対する余裕が大きいと考えられ
る。
Although this condition has not been clarified in detail at present, since degassing from the silicide is reduced at a pressure of 1.4 Torr or more, there is a large margin for suppressing HAZE even in a SiH 4 rich state. Conceivable.

【0017】[0017]

【実施例】図2〜図6は実施例の成長シーケンスの説明
図である。700℃以上のウエハ温度で, SiH4とN2O を用
いて減圧CVD 法によりSiO2膜を成長する際のシーケンス
を以下に説明する。なお,以下の説明において(開)以
外のバルブは(閉)とする。
EXAMPLE FIGS. 2 to 6 are explanatory views of a growth sequence of an example. The sequence for growing a SiO 2 film by the low pressure CVD method using SiH 4 and N 2 O at a wafer temperature of 700 ° C. or higher is described below. In the following description, the valves other than (open) will be (closed).

【0018】図2(A),(B) 参照 ステップ1:バルブV 2, 4, 5, 6, 7, 8, 10 を開に
し, SiH4とN2O ラインを常圧N2パージするとともに,反
応管内も常圧N2パージする。
Referring to FIGS. 2 (A) and 2 (B) Step 1: Open the valves V 2, 4, 5, 6, 7, 8, 10 and purge the SiH 4 and N 2 O lines at atmospheric pressure N 2. , Purge the reaction tube with atmospheric pressure N 2 .

【0019】ステップ2:バルブV 2, 4, 5, 6, 7, 8,
10 を開にし, SiH4とN2O ラインを常圧N2パージしなが
ら, 反応管内を真空引きする。
Step 2: Valve V 2, 4, 5, 6, 7, 8,
Open 10 and evacuate the reaction tube while purging the SiH 4 and N 2 O lines under normal pressure N 2 .

【0020】図3(A),(B) 参照 ステップ3:バルブV 2, 4, 7, 8, 10 を開にし, SiH4
とN2O ラインのN2を真空引きするとともに,反応管内を
減圧N2パージする。
See FIGS. 3 (A) and 3 (B). Step 3: Open valves V 2, 4, 7, 8, 10 and turn SiH 4
And the N 2 in the N 2 O line as well as evacuating the reaction tube under reduced pressure N 2 purge.

【0021】ステップ4:バルブV 1, 2, 3, 4, 7, 8,
10 を開にし, SiH4とN2O を混合してラインの反応ガス
パージを行うとともに, 反応管内を減圧N2パージする。
Step 4: Valve V 1, 2, 3, 4, 7, 8,
Open 10 and mix SiH 4 and N 2 O to purge the reaction gas in the line and purge the inside of the reaction tube with N 2 under reduced pressure.

【0022】図4(A),(B) 参照 ステップ5:バルブV 1, 2, 3, 4, 9を開にし, SiH4
N2O ガスを反応管に流してウエハ上にSiO2膜を成長す
る。
Refer to FIGS. 4 (A) and 4 (B). Step 5: Open valves V 1, 2, 3, 4, 9 and turn SiH 4 on.
N 2 O gas is flown into the reaction tube to grow a SiO 2 film on the wafer.

【0023】ステップ6:バルブV 2, 4, 7, 8, 10 を
開にし, 反応管内の減圧N2パージと, SiH4とN2Oライン
の反応ガス抜きを行う。
Step 6: The valves V 2, 4, 7, 8, 10 are opened, and the decompression N 2 purge in the reaction tube and the reaction gas venting of the SiH 4 and N 2 O lines are performed.

【0024】図5(A),(B) 参照 ステップ7:バルブV 2, 4, 5, 6, 7, 8, 10 を開に
し, SiH4とN2O ラインを常圧N2パージするとともに, 反
応管内の減圧N2パージを行う。
5 (A) and 5 (B) Step 7: Open the valves V 2, 4, 5, 6, 7, 8, 10 and purge the SiH 4 and N 2 O lines at atmospheric pressure N 2 and Then, a reduced pressure N 2 purge in the reaction tube is performed.

【0025】ステップ8:ポンプを止め, バルブV 2,
4, 5, 6, 7, 8, 10 を開にし, SiH4とN2O ラインをN2
ージするとともに, 反応管内をN2で常圧復帰させる。
Step 8: Stop pump, valve V 2,
4, 5, 6, 7, and 8, 10 to open, and SiH 4 and N 2 O line as well as N 2 purge, to atmospheric pressure returning the reaction tube with N 2.

【0026】図6参照 ステップ9:バルブV 2, 4, 5, 6, 7, 8, 10 を開に
し, SiH4とN2O ラインをN2パージするとともに, 常圧に
復帰した反応管内をN2パージする。
See FIG. 6 Step 9: Open the valves V 2, 4, 5, 6, 7, 8, 10 to purge the SiH 4 and N 2 O lines with N 2 and to purge the inside of the reaction tube to normal pressure. Purge with N 2 .

【0027】次に, 実施例の効果を示す数値例を従来例
と対比して示す。 (1) 配管, シーケンス変更前後のHAZEの発生状況は,ウ
エハ上のカウント数で変更前は9083個であったのが,変
更後87個に激減した。 (2) WSi 膜を被着したウエハのHAZEの発生状況は以下の
ようである。
Next, numerical examples showing the effect of the embodiment will be shown in comparison with the conventional example. (1) The number of HAZE occurrences before and after the change of piping and sequence was 9083 before the change in the count on the wafer, but it decreased to 87 after the change. (2) The HAZE occurrence status of the wafer coated with WSi film is as follows.

【0028】 なお, 1.3 Torrの場合のカウント数は17であった
が, 詳細な顕微鏡検査によりHAZEが確認された。
[0028] In addition, the number of counts at 1.3 Torr was 17, but HAZE was confirmed by detailed microscopic examination.

【0029】以上の結果は, レーザ式表面微粒子検査装
置によった。
The above results were obtained by the laser type surface fine particle inspection device.

【0030】[0030]

【発明の効果】HAZEの発生を防止してエッチング残渣が
生じないようなCVD SiO2膜を得ることができた。
EFFECTS OF THE INVENTION It was possible to obtain a CVD SiO 2 film that prevents the generation of HAZE and does not cause etching residues.

【0031】この結果,エッチング残渣によるデバイス
の歩留低下を抑えることができた。
As a result, it was possible to suppress a decrease in device yield due to etching residues.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のガス配管系統図FIG. 1 is a gas piping system diagram of an embodiment.

【図2】 実施例のシーケンスの説明図(1)FIG. 2 is an explanatory diagram of the sequence of the embodiment (1)

【図3】 実施例のシーケンスの説明図(2)FIG. 3 is an explanatory diagram of the sequence of the embodiment (2)

【図4】 実施例のシーケンスの説明図(3)FIG. 4 is an explanatory diagram of the sequence of the embodiment (3)

【図5】 実施例のシーケンスの説明図(4)FIG. 5 is an explanatory diagram of the sequence of the embodiment (4)

【図6】 実施例のシーケンスの説明図(5)FIG. 6 is an explanatory diagram of the sequence of the embodiment (5)

【図7】 減圧CVD 装置の模式断面図[Fig. 7] Schematic cross-sectional view of a low pressure CVD apparatus

【図8】 従来のガス配管系統図[Figure 8] Conventional gas piping system diagram

【符号の説明】[Explanation of symbols]

1 反応管で石英管 2 反応ガス導入口 3 排気口 4はヒータ 5 石英ボート 6 ウエハ V バルブ (V1〜V10) MFC マスフローコントローラ BG バラトロンゲージ 1 Quartz tube as a reaction tube 2 Reaction gas inlet 3 Exhaust port 4 is a heater 5 Quartz boat 6 Wafer V valve (V1 to V10) MFC Mass flow controller BG Baratron gauge

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 反応ガスとしてモノシラン(SiH4)と一
酸化化二窒素(N2O)を用いて,反応管内に載置され且つ
加熱された基板上に二酸化シリコン(SiO2)膜を減圧化学
気相成長(CVD) するに際し, SiH4とN2O を該反応管から離れた位置で混合した後,該
反応管に導入することを特徴とする化学気相成長方法。
1. A silicon dioxide (SiO 2 ) film is decompressed on a substrate placed in a reaction tube and heated by using monosilane (SiH 4 ) and dinitrogen monoxide (N 2 O) as a reaction gas. In chemical vapor deposition (CVD), SiH 4 and N 2 O are mixed at a position apart from the reaction tube and then introduced into the reaction tube.
【請求項2】 配管内を反応ガスによりパージする
際,SiH4とN2O とが混合されたガスを用いて行うことを
特徴とする請求項1記載の化学気相成長方法。
2. The chemical vapor deposition method according to claim 1, wherein when purging the inside of the pipe with a reaction gas, a gas in which SiH 4 and N 2 O are mixed is used.
【請求項3】 反応ガス圧力を 1.4 Torr 以上の減圧
状態に設定することを特徴とする請求項1または2記載
の化学気相成長方法。
3. The chemical vapor deposition method according to claim 1, wherein the reaction gas pressure is set to a reduced pressure state of 1.4 Torr or more.
【請求項4】 複数の反応ガスを混合した後バルブV
9を経由して反応管(1) に接続する反応ガス供給ライン
と,窒素をバルブV8を経由して該バルブV9と該反応
管との中間位置に接続する窒素パージラインと,該反応
ガス供給ラインの反応ガス供給側と該バルブV9との中
間位置よりバルブV10を経由して該反応管の排気口に接
続する反応ガスパージ用のベントラインとを有し,該バ
ルブV8と該バルブV9と該バルブV10とが相互に近接
して配置したことを特徴とする化学気相成長装置。
4. A valve V after mixing a plurality of reaction gases
9, a reaction gas supply line connected to the reaction tube (1) via 9, a nitrogen purge line connecting nitrogen to an intermediate position between the valve V9 and the reaction tube via a valve V8, and the reaction gas supply The reaction gas supply side of the line and a vent line for purging the reaction gas connected to the exhaust port of the reaction tube via the valve V10 from an intermediate position between the valve V9, the valve V8, the valve V9 and the vent line. A chemical vapor deposition apparatus characterized in that a valve V10 and a valve V10 are arranged close to each other.
【請求項5】 反応ガス供給ラインおよび反応管内を
常圧窒素パージする第1段階と, 反応ガス供給ラインを常圧窒素パージしながら, 反応管
内を真空引きする第2段階と, 反応ガス供給ラインを真空引きするとともに,反応管内
を減圧窒素パージする第3段階と, 反応ガスを混合して反応ガス供給ラインの反応ガスパー
ジを行うとともに, 反応管内を減圧窒素パージする第4
段階と, 混合された反応ガスを反応管に流してウエハ上に二酸化
シリコン膜を成長する第5段階と, 反応管内の減圧窒素パージと, 反応ガス供給ラインの反
応ガス抜きを行う第6段階と, 反応ガス供給ラインを常圧窒素パージするとともに, 反
応管内を減圧窒素パージする第7段階と, 真空引きを止め,反応ガス供給ラインを窒素パージする
とともに, 反応管内を窒素で常圧復帰させる第8段階
と, 反応ガス供給ラインを窒素パージするとともに, 常圧に
復帰した反応管内を窒素パージする第9段階とを有する
ことを特徴とする化学気相成長方法。
5. A first step of purging the reaction gas supply line and the inside of the reaction tube with atmospheric pressure nitrogen, a second step of vacuuming the inside of the reaction tube while purging the reaction gas supply line with atmospheric pressure nitrogen, and a reaction gas supply line Vacuuming and purging the inside of the reaction tube under a reduced pressure in the third stage, and mixing the reaction gas to purge the reaction gas in the reaction gas supply line and purging under a reduced pressure in the reaction tube.
A step, a step of flowing a mixed reaction gas into the reaction tube to grow a silicon dioxide film on the wafer, a step of decompressing nitrogen gas in the reaction tube, and a step of removing the reaction gas from the reaction gas supply line. The 7th step of purging the reaction gas supply line with nitrogen under normal pressure and the pressure inside the reaction tube under reduced pressure nitrogen, and stopping the evacuation, purging the reaction gas supply line with nitrogen, and returning the inside of the reaction tube to atmospheric pressure with nitrogen A chemical vapor deposition method comprising eight steps and a ninth step of purging the reaction gas supply line with nitrogen and purging the inside of the reaction tube returned to normal pressure with nitrogen.
JP3196926A 1991-08-07 1991-08-07 Chemical vapor deposition method and apparatus Expired - Lifetime JP3008577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3196926A JP3008577B2 (en) 1991-08-07 1991-08-07 Chemical vapor deposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196926A JP3008577B2 (en) 1991-08-07 1991-08-07 Chemical vapor deposition method and apparatus

Publications (2)

Publication Number Publication Date
JPH0541374A true JPH0541374A (en) 1993-02-19
JP3008577B2 JP3008577B2 (en) 2000-02-14

Family

ID=16365970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196926A Expired - Lifetime JP3008577B2 (en) 1991-08-07 1991-08-07 Chemical vapor deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP3008577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518653A (en) * 1998-06-08 2005-06-23 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド Chemical delivery system with purge system using combined purge technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518653A (en) * 1998-06-08 2005-06-23 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド Chemical delivery system with purge system using combined purge technology

Also Published As

Publication number Publication date
JP3008577B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US11837466B2 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
US5584963A (en) Semiconductor device manufacturing apparatus and cleaning method for the apparatus
KR102368311B1 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and program
KR102345313B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and program
JP2001345279A (en) Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
TWI821626B (en) Substrate processing method, semiconductor device manufacturing method, substrate processing device and program
TWI733492B (en) Semiconductor device manufacturing method, substrate processing device and program
KR102297247B1 (en) Method of cleaning member in process container, method of manufacturing semiconductor device, substrate processing apparatus, and program
TWI752452B (en) Manufacturing method of semiconductor device, substrate processing method, substrate processing apparatus and program
JP3008577B2 (en) Chemical vapor deposition method and apparatus
JPH11260734A (en) Manufacture of semiconductor device
US12033852B2 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7135190B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
JPH06232116A (en) Formation of silicon oxide film
JPH10256183A (en) Manufacture of semiconductor device
KR960012621B1 (en) Oxide film removing method of wafer surface
JPH1050617A (en) Manufacture of semiconductor device
JP2022087143A (en) Substrate processing method, semiconductor device manufacturing method, substrate processing device, and program
JPH07109574A (en) Formation of silicon nitride film
JP2022174756A (en) Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program
JP3806753B2 (en) Thin film forming apparatus and method for semiconductor device
JPH06267857A (en) Manufacture of semiconductor device
JPH05251347A (en) Film formation method
JPH1079386A (en) Method of forming silicon dioxide film
JPS6273729A (en) Forming method for sio2 film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102