JP2929217B2 - Ferromagnetic material - Google Patents

Ferromagnetic material

Info

Publication number
JP2929217B2
JP2929217B2 JP2087514A JP8751490A JP2929217B2 JP 2929217 B2 JP2929217 B2 JP 2929217B2 JP 2087514 A JP2087514 A JP 2087514A JP 8751490 A JP8751490 A JP 8751490A JP 2929217 B2 JP2929217 B2 JP 2929217B2
Authority
JP
Japan
Prior art keywords
magnetization
compound
rare earth
composition
saturation magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2087514A
Other languages
Japanese (ja)
Other versions
JPH03287737A (en
Inventor
章雄 長谷部
和光 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP2087514A priority Critical patent/JP2929217B2/en
Publication of JPH03287737A publication Critical patent/JPH03287737A/en
Application granted granted Critical
Publication of JP2929217B2 publication Critical patent/JP2929217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,強磁性材料に関し,特に,Prを必須成分と
する希土類元素とCo,Feの少なくとも一種の遷移金属と
の新規金属間化合物である強磁性材料に関する。
Description: FIELD OF THE INVENTION The present invention relates to a ferromagnetic material, and more particularly to a novel intermetallic compound of a rare earth element containing Pr as an essential component and at least one transition metal of Co and Fe. A certain ferromagnetic material.

[従来の技術及び発明が解決しようとする課題]] 現在,希土類強磁性材料としてSmCo5,Sm2Co17,Nd2Fe
14Bの金属間化合物を有し良好な磁石特性を示すSm−Co
系,Nd−Fe−B系永久磁石材料がスピーカー,モーター
等に応用されている。しかし,Sm−Co系磁石材料は,安
価なNdを用いたNd−Fe−B系磁石材料に対し,Smの価格
が高価であることと,磁石特性が劣ることから用途が限
定されている。
[Problems to be Solved by Conventional Techniques and Inventions] Currently, SmCo 5 , Sm 2 Co 17 , and Nd 2 Fe are used as rare earth ferromagnetic materials.
Sm-Co with 14 B intermetallic compound and good magnetic properties
, Nd-Fe-B permanent magnet materials are applied to speakers, motors and the like. However, the use of Sm-Co based magnet materials is limited due to the high price of Sm and inferior magnet properties compared to Nd-Fe-B based magnet materials using inexpensive Nd.

また,Nd−Fe−B系永久磁石材料も,磁石特性の熱安
定性と耐食性に劣る欠点を有するため広範な用途に供す
るものに至っていない。
In addition, Nd-Fe-B permanent magnet materials have not been used in a wide range of applications because of their inferior thermal stability and corrosion resistance of magnet properties.

そこで,本発明者らは,希土類金属と遷移金属の化合
物において,結晶磁気異方性を有し,磁気特性に優れた
強磁性材料存在の可能性を探った。
Thus, the present inventors have explored the possibility of a ferromagnetic material having a crystalline magnetic anisotropy and excellent magnetic properties in a compound of a rare earth metal and a transition metal.

さらに,希土類金属と遷移金属の化合物ではその磁性
は,遷移金属によるところが大きいため遷移金属の組成
比の大きい化合物が優れた磁気特性を有する材料として
適当であると判断し調査を進めた。
Furthermore, since the magnetism of the compound of a rare earth metal and a transition metal largely depends on the transition metal, a compound having a large composition ratio of the transition metal was judged to be suitable as a material having excellent magnetic properties, and the investigation was advanced.

希土類金属と遷移金属の化合物としては,RT5,R2T
17が,既に知られている(K.J−Strat:IEEE Trans.Mag
n.MAG−8,511(1972)(参考例1と呼ぶ))。
As a compound of a rare earth metal and a transition metal, RT 5 , R 2 T
17 are already known (KJ-Strat: IEEE Trans.Mag
n.MAG-8,511 (1972) (referred to as Reference Example 1)).

第7図は参考例1によるRCo5とR2Co17の飽和磁化を示
す図である。この図において,Pr2Co17,Nd2Co17が高い飽
和磁化特性を有する。
FIG. 7 is a diagram showing the saturation magnetization of RCo 5 and R 2 Co 17 according to Reference Example 1. In this figure, Pr 2 Co 17 and Nd 2 Co 17 have high saturation magnetization characteristics.

しかしながら,第8図(A.E.Rayand K.J.Strnat:IEEE
Trans.Magn.MAG−8,517(1972),以下,参考例2と呼
ぶ)に見られるように,Pr2Co17,Nd2Co17のいずれの化合
物もその磁化容易方向は結晶のC面内にあり,磁場配向
の際,磁化方向が容易に回転が回転してしまい,弱い特
性の磁石しか得られず永久磁石材料としては不適当であ
ると推察される。
However, Figure 8 (AERayand KJStrnat: IEEE
Trans. Magn. MAG-8,517 (1972), hereinafter referred to as Reference Example 2), both of Pr 2 Co 17 and Nd 2 Co 17 have their easy magnetization directions in the C plane of the crystal. In addition, when the magnetic field is oriented, the magnetization direction is easily rotated, and only a magnet having a weak characteristic is obtained, which is presumed to be inappropriate as a permanent magnet material.

そこで,本発明の技術的課題は,Pr,Co,Feを主元素と
し,Pr2T17金属間化合物に他の金属元素を添加すること
により,結晶c軸方向が,磁化容易軸である一軸結晶磁
気異方性を有し,磁気特性に優れた強磁性材料を提供す
ることにある。
Therefore, the technical problem of the present invention is to make the crystal c-axis direction uniaxial, which is the axis of easy magnetization, by using Pr, Co, and Fe as main elements and adding another metal element to the Pr 2 T 17 intermetallic compound. An object of the present invention is to provide a ferromagnetic material having crystal magnetic anisotropy and having excellent magnetic properties.

[課題を解決するための手段] 本発明者らは,希土類金属としてPrに着目し,さらに
Pr,Co,Feを主元素とし第3の元素Mを添加する事によ
り,R2(T1-yMy17の式で表される組成の一軸磁気異方
性,即ち,c軸方向に磁化容易軸を有する化合物の存在を
調査し良好な結果を得た。
[Means for Solving the Problems] The present inventors have focused on Pr as a rare earth metal,
By adding Pr, Co, Fe as the main element and adding the third element M, the uniaxial magnetic anisotropy of the composition represented by the formula of R 2 (T 1 -y M y ) 17 , that is, the c-axis direction The presence of a compound having an axis of easy magnetization was investigated and good results were obtained.

本発明によれば、化学式、(Pr1-xRx(T1-yMy
17(但し、RはPr以外のYを含む希土類元素の内の少な
くとも1種、xは0〜0.4の数、Tは、Co,Feの内の少な
くとも1種の遷移金属、MはTi,V,Cr,Mn,Zr,Nb,Mo,Hf,T
a,Wの内の少なくとも1種、yは0.01〜0.2の数を表
す。)で表される金属間化合物であることを特徴とする
強磁性材料が得られる。
According to the present invention, the chemical formula: (Pr 1-x R x ) 2 (T 1-y M y )
17 (where R is at least one of the rare earth elements containing Y other than Pr, x is a number from 0 to 0.4, T is at least one transition metal of Co and Fe, and M is Ti, V , Cr, Mn, Zr, Nb, Mo, Hf, T
At least one of a and W, y represents a number of 0.01 to 0.2. A ferromagnetic material characterized by being an intermetallic compound represented by the formula (1) is obtained.

即ち,本発明は,前述したようにR2T17組成の化合物
のR,Tに対して,他の元素Mを皮較的少量添加すること
により,永久磁石材料に適した一軸磁気異方性,即ち,
結晶c軸方向に磁化容易軸を有する菱面体晶構造の(Pr
1-xRx(T1-yMy17(但し、RはPr以外のYを含む
希土類元素の内の少なくとも1種、xは0〜0.4の数)
の式で表される組成の金属間化合物を得ることができる
ことを見出したものである。
That is, as described above, the present invention provides a uniaxial magnetic anisotropy suitable for a permanent magnet material by adding a relatively small amount of another element M to R and T of a compound having an R 2 T 17 composition. That is,
(Pr with a rhombohedral structure having an easy axis of magnetization in the c-axis direction of the crystal
1-x R x) 2 ( T 1-y M y) 17 ( provided that at least one of rare earth element R, including a Y other than Pr, x is the number of 0 to 0.4)
It has been found that an intermetallic compound having a composition represented by the following formula can be obtained.

さらに,本発明における上記式の金属間化合物は前述
した既存のR2T17組成の菱面体晶構造の化合物より大き
い単位胞,及びc/a比を有し,一軸結晶磁気異方性を有
することを特徴とする菱面体晶構造の強磁性材料であ
る。
Further, the intermetallic compound of the above formula in the present invention has a unit cell larger than the above-mentioned compound having a rhombohedral structure of the R 2 T 17 composition, a c / a ratio, and has a uniaxial magnetic magnetic anisotropy. This is a ferromagnetic material having a rhombohedral structure.

尚,上記式中,yは0.01よりも小さいか,または0.2よ
り大きい場合には所望の磁気特性を有する金属間化合物
は得られない。
In the above formula, if y is smaller than 0.01 or larger than 0.2, an intermetallic compound having desired magnetic properties cannot be obtained.

本発明における上記式中の金属間化合物は一軸異方性
を有し,高い飽和磁化と400℃以上のキューリー温度を
有する磁気特性に優れた強磁性材料である。
The intermetallic compound in the above formula in the present invention is a ferromagnetic material having a uniaxial anisotropy, a high saturation magnetization and a Curie temperature of 400 ° C. or more and excellent in magnetic properties.

尚,上記式中RとしてPr以外のYを含む他の希土類金
属と置換しても同様の金属化合物が得られることは容易
に推察できる。また,上記化合物の製造方法は限定され
るものではない。
Incidentally, it can be easily inferred that a similar metal compound can be obtained even when R is replaced with another rare earth metal containing Y other than Pr as R in the above formula. The method for producing the above compound is not limited.

[実施例] 本発明の実施例について図面を参照して説明する。Example An example of the present invention will be described with reference to the drawings.

(実施例1) Pr2(Co0.93Ti0.0717の組成を相対分量Pr:23.0wt
%,Co:72.5wt%,Ti:4.5wt%で融解することにより得
た。融解中の蒸発損失を補償するため融解開始時,若干
過剰のPrを存在させた。
(Example 1) The composition of Pr 2 (Co 0.93 Ti 0.07 ) 17 was changed to a relative amount Pr: 23.0 wt.
%, Co: 72.5 wt%, and Ti: 4.5 wt%. At the start of melting, a slight excess of Pr was present to compensate for evaporation loss during melting.

得られたPr2(Co0.97Ti0.0717の合金を粉砕し,そ
の粉末を磁場中で成形した。振動試料型磁力計(V.S.
M)を用い,得られた成形体に対して,磁場中成形した
際の印加磁場と平行な方向()と垂直な方向(⊥)に
外部磁場を序々に与えた時の室温での磁化変化を測定し
た。
The obtained Pr 2 (Co 0.97 Ti 0.07 ) 17 alloy was pulverized, and the powder was formed in a magnetic field. Vibrating sample magnetometer (VS
Magnetization change at room temperature when an external magnetic field is gradually applied to the obtained molded body in a direction parallel to the applied magnetic field (M) and a direction perpendicular to the applied magnetic field (() and perpendicular to the applied magnetic field (⊥). Was measured.

その結果を第1図に示す。 The result is shown in FIG.

Pr2(Co0.93Ti0.0717金属間化合物は,室温でその
異方性磁場は,約20KOe,飽和磁化は約11.5KGであり,優
れた磁気特性を有する。
At room temperature, Pr 2 (Co 0.93 Ti 0.07 ) 17 intermetallic compound has an anisotropic magnetic field of about 20 KOe and a saturation magnetization of about 11.5 KG, and has excellent magnetic properties.

さらに,Pr2(Co0.93Ti0.0717の結晶構造と磁化容易
方向を決定するため,磁場中成形した成形体のX線回折
を行った。第2図は成形時の印加磁場方向と垂直な面の
2つの面に対してX線回折を行った際の回折図形であ
る。
Furthermore, to determine the crystal structure and easy magnetization direction of Pr 2 (Co 0.93 Ti 0.07 ) 17 , X-ray diffraction was performed on the compact formed in a magnetic field. FIG. 2 is a diffraction pattern obtained by performing X-ray diffraction on two surfaces perpendicular to the direction of the applied magnetic field during molding.

Pr2(Co0.93Ti0.0717金属間化合物は,Th2Zn17型の
菱面体結晶構造で,その格子定数及びc/aの比,単位胞
の体積は,それぞれa=8.476Å,c=12.170Å,c/a=1.4
53,V=766.5Åであり,Tiを添加しないPr2Co7金属間化
合物(a=8.415Å,c=12.170Å,c/a=1.446Å,V=746.
3Å)より大きいc/a比及び単位胞を有する。各面に対
する回折図形を比較すると,垂直面に対する回折図形で
は,(006)面からの回折ピークの相対強度が増加し,
逆に平行面に対する回折図形では,(300),(220)両
面からの回折ピークの相対強度尾が増加する。これらの
事実からPr2(Co0.93Ti0.0717金属間化合物は菱面体
晶構造でc軸方向に磁化容易方向を有するものである。
The Pr 2 (Co 0.93 Ti 0.07 ) 17 intermetallic compound has a rhombohedral crystal structure of Th 2 Zn 17 type, and its lattice constant, c / a ratio, and unit cell volume are a = 8.476Å and c = 12.170Å, c / a = 1.4
53, V = 766.5Å is 3, Pr 2 Co 7 intermetallic compound without the addition of Ti (a = 8.415Å, c = 12.170Å, c / a = 1.446Å, V = 746.
3 ) It has a larger c / a ratio and unit cell. Comparing the diffraction patterns for each plane, the relative intensity of the diffraction peak from the (006) plane increases in the diffraction pattern for the vertical plane.
Conversely, in the diffraction pattern for the parallel plane, the relative intensity tails of the diffraction peaks from both the (300) and (220) surfaces increase. From these facts, the Pr 2 (Co 0.93 Ti 0.07 ) 17 intermetallic compound has a rhombohedral structure and an easy magnetization direction in the c-axis direction.

このように,Pr2Co17のCoの一部をTiで置換することに
より,磁化容易方向を結晶C面内からc軸方向に変化せ
しめることが可能であり,そのため,Pr2(Co0.93T
i0.0717は結晶c軸方向に磁化容易方向を有すること
により,永久磁石への応用に対し,本材料は極めて有用
である。
Thus, by substituting a part of Co of Pr 2 Co 17 with Ti, it is possible to change the easy magnetization direction from within the crystal C plane to the c-axis direction. Therefore, Pr 2 (Co 0.93 T
Since i0.07 ) 17 has an easy magnetization direction in the crystal c-axis direction, this material is extremely useful for application to permanent magnets.

また,Pr2(Co0.93Ti0.0717合金の飽和磁化の温度変
化を測定し,キューリー温度を決定した。本材料のキュ
ーリーは,約800℃と高いことから,実用を考えた場
合,使用温度による制限は少なく,広範な用途に供する
ことが可能である。
The Curie temperature was determined by measuring the temperature change of the saturation magnetization of the Pr 2 (Co 0.93 Ti 0.07 ) 17 alloy. Since the Curie of this material is as high as about 800 ° C, it is possible to use it for a wide range of applications because there is little restriction on the operating temperature when considering practical use.

(実施例2) 実施例1と同様の方法により,Pr2(Co1-yTiy17(た
だしyは0.01〜0.20)で表される種々の組成を有する強
磁性材料を作製した。
Example 2 Ferromagnetic materials having various compositions represented by Pr 2 (Co 1-y Ti y ) 17 (where y is 0.01 to 0.20) were produced in the same manner as in Example 1.

得られた各組成の材料の飽和磁化を,室温でV.S.Mを
用いて測定した。第3図にPr2(Co1-yTiy17の組成に
対する飽和磁化の変化を示す。本材料は,Tiに対し広い
固溶範囲を許しながらも,良好な磁気特性を有する。
The saturation magnetization of the obtained material of each composition was measured using a VSM at room temperature. FIG. 3 shows a change in saturation magnetization with respect to the composition of Pr 2 (Co 1 -y Ti y ) 17 . This material has good magnetic properties while allowing a wide solid solution range for Ti.

また,本材料の磁化容易方向は,上記組成範囲(y:0.
01〜0.20)で,結晶c軸方向である。
Also, the direction of easy magnetization of this material is in the above composition range (y: 0.
01 to 0.20) in the crystal c-axis direction.

すなわち,本材料は,永久磁石への応用に対して有用
であることに加え,歩留り等,製造上有利であるといえ
る。
That is, it can be said that this material is not only useful for application to permanent magnets, but also advantageous in production such as yield.

尚,本材料は,Tiの固溶量yが0.01より小さい場合,
結晶C面内に磁化容易方向を有し,0.20より大きい場合
は安定に得られない。
In addition, this material, when the solid solution amount y of Ti is less than 0.01,
It has an easy magnetization direction in the crystal C plane, and if it is larger than 0.20, it cannot be obtained stably.

(実施例3) 実施例1,2と同様の方法により,Pr2(Co1-x-yFexTiy
17(xは0〜1.0,yは0.01〜0.20)で表される種々の組
成を有する強磁性材料を作製した。
(Example 3) Pr 2 (Co 1-xy Fe x Ti y ) was obtained in the same manner as in Examples 1 and 2.
Ferromagnetic materials having various compositions represented by 17 (x is 0 to 1.0, y is 0.01 to 0.20) were produced.

得られた各組成の材料の飽和磁化を室温でV.S.Mを用
いて測定した。
The saturation magnetization of the obtained material of each composition was measured at room temperature using a VSM.

第4図にPr2(Co1-x-yFexTiy17の組成に対する飽和
磁化の変化を示す。本材料はCoをFeで置換可能であり,F
eの含有量が増加するに伴ない,飽和磁化は向上し,約
x=0.7で最も高い飽和磁化を示す。
FIG. 4 shows the change in saturation magnetization with respect to the composition of Pr 2 (Co 1-xy F x Ti y ) 17 . In this material, Co can be replaced by Fe, and F
As the content of e increases, the saturation magnetization increases, showing the highest saturation magnetization at about x = 0.7.

また,Tiの組成に対しても良好な磁気特性を示す。本
材料は,TiのみならずFeに対しても広い固溶範囲を有
し,良好な磁気特性を有することから,製造上より有利
であるといえる。
It also shows good magnetic properties for the composition of Ti. Since this material has a wide solid solution range not only for Ti but also for Fe and has good magnetic properties, it can be said that it is more advantageous in manufacturing.

(実施例4) 次式,Pr2(Co1-x-yFexMy17,(Mは,V,Cr,Mn,Zr,Nb,
Mo,Hf,Ta,W)で表される種々の組成を有する強磁性材料
を作製した。上記Mに対し,上式で表される組成化合物
が安定に存在するx,yの範囲をMに対して第1表に示
す。
(Example 4) the following equation, Pr 2 (Co 1-xy Fe x M y) 17, (M is, V, Cr, Mn, Zr , Nb,
Ferromagnetic materials having various compositions represented by (Mo, Hf, Ta, W) were prepared. Table 1 shows the range of x and y in which the composition compound represented by the above formula is stably present with respect to M.

また,第1表に示したM,x,yの組成に対し,本材料は
良好な磁気特性を示す。
In addition, this material shows good magnetic properties for the compositions of M, x, and y shown in Table 1.

(実施例5) (Pr1-xRx)(Co0.93Ti0.0717(但し,RはLa,Ce,N
d,xは0〜0.4)で表される種々の組成を有する強磁性材
料を作製した。
(Example 5) (Pr 1-x Rx) 2 (Co 0.93 Ti 0.07 ) 17 (where R is La, Ce, N
d, x were ferromagnetic materials having various compositions represented by 0 to 0.4).

Prを上記Rで置換した場合も,上式で表される組成化
合物は安定に存在し,結晶c軸の磁化容易軸を有する。
Even when Pr is substituted by R, the composition compound represented by the above formula exists stably and has an easy axis of crystal c-axis.

第5図はRおよびXに対する(Pr1-xRx)(Co0.93T
i0.0717の組成化合物の飽和磁化を示す図である。
FIG. 5 shows (Pr 1-x Rx) 2 (Co 0.93 T
i 0.07) is a diagram showing the saturation magnetization of the composition the compound of 17.

第5図において,いずれのRの置換に対しても良好な
磁気特性を示す。それ故,本材料は純度の高いPrを原料
として使用せずとも磁気特性を大きく低下せしめず作製
可能であり製造上有利であると共に,コストパフォーマ
ンスにより優れるものであるといえる。また,上記Rの
うち2種以上の置換に対しても本材料を得ることが可能
であることは容易に推察できる。
In FIG. 5, good magnetic characteristics are exhibited for any substitution of R. Therefore, it can be said that the present material can be produced without using a highly pure Pr as a raw material without significantly deteriorating the magnetic properties, is advantageous in production, and is superior in cost performance. Further, it can be easily inferred that the present material can be obtained even when two or more kinds of R are substituted.

(実施例6) (Pr1-xRx)(Co0.93Ti0.0717(但し,RはSm,Gd,T
b,xは0〜0.3)で表される種々の組成を有する強磁性材
料を作製した。
(Example 6) (Pr 1-x Rx) 2 (Co 0.93 Ti 0.07 ) 17 (where R is Sm, Gd, T
b, x were ferromagnetic materials having various compositions represented by 0 to 0.3).

Prを上記Rで置換した場合も上式で表される組成化合
物は安定に存在し結晶c軸方向に磁化容易軸を有する。
第6図は,Rおよびxに対する(Pr1-xRx)(Co0.93Ti
0.0717の組成化合物の飽和磁化を示す図である。
Even when Pr is substituted by R, the composition compound represented by the above formula is stably present and has an easy axis of magnetization in the crystal c-axis direction.
FIG. 6 shows that (Pr 1-x Rx) 2 (Co 0.93 Ti
0.07 ) It is a figure which shows the saturation magnetization of the composition compound of 17 .

第6図において,いずれのRの置換に対しても飽和磁
化の低下がみられるが強磁性材料として供するに十分良
好な磁気特性を示す。更に,上記R以外の重希土類元素
の置換に対しても,本材料を得ることが可能であると推
察される。また,前記実施例5と本実施例からPrの一部
をYを含む他の希土類元素で置換しても,磁気特性の良
好な本材料を得ることが可能であることは容易に推察で
きる。
In FIG. 6, the saturation magnetization is reduced for any substitution of R, but the magnetic properties are good enough to be used as a ferromagnetic material. Further, it is presumed that the present material can be obtained even for the substitution of heavy rare earth elements other than R. Further, from Example 5 and the present example, it can be easily inferred that even if a part of Pr is replaced with another rare earth element containing Y, it is possible to obtain the present material having good magnetic properties.

[発明の効果] 以上述べたように本発明によれば,Prを主とする希土
類金属と遷移金属の2元系で存在する(Pr1-xRx2T17
化合物(但し、RはYを含むPr以外の希土類元素、xは
0〜0.4の数)に,他の元素Mを添加することにより,
結晶c軸方向に磁化容易軸を有する(Pr1-x−Rx(T
1-yMy17(但し、Tは、Co,Feの内の少なくとも1種の
遷移金属、MはTi,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,Wの内の少
なくとも1種、yは0.01〜0.2の数を表す。)強磁性材
料を得ることができ,かつ,磁気特性,コストパフォー
マンスに優れた(Pr1-x−Rx(T1-yMy17強磁性材
料を提供することができる。
[Effects of the Invention] As described above, according to the present invention, (Pr 1-x R x ) 2 T 17 exists in a binary system of a rare earth metal and a transition metal mainly containing Pr.
By adding another element M to a compound (where R is a rare earth element other than Pr containing Y and x is a number from 0 to 0.4),
It has an easy axis of magnetization in the crystal c-axis direction (Pr 1-x −R x ) 2 (T
1-y M y ) 17 (where T is at least one transition metal of Co and Fe, and M is Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W At least one kind, y represents a number of 0.01 to 0.2.) A ferromagnetic material can be obtained, and magnetic properties and cost performance are excellent (Pr 1−x −R x ) 2 (T 1−y M y ) 17 ferromagnetic materials can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はPr2(Co0.93Ti0.0717の初磁化曲線を示す
図,第2図(1),(2)はPr2−(Co0.93Ti0.0717
のX線回折図形を示す図で,(1)は印加磁場方向に対
し垂直面(2)は印加磁場方向に対し平行面を示す。第
3図はPr2(Co1-yTiy17の飽和磁化を示す図,第4図
はPr2(Co1-x-yFexTiy17の飽和磁化を示す図,第5図
は(Pr1-xRx)−(Co0.93Ti0.0717の飽和磁化を示
す図,第6図は(Pr1-xRx)(Co0.93Ti0.0717の飽
和磁化の他の例を示す図,第7図は従来のRCo5,R2Co17
の飽和磁化の例を示す図,第8図は従来のR2(Co1-xF
ex17の磁化容易軸方向を示す図である。
FIG. 1 is a diagram showing an initial magnetization curve of Pr 2 (Co 0.93 Ti 0.07 ) 17 , and FIGS. 2 (1) and (2) are diagrams showing Pr 2 − (Co 0.93 Ti 0.07 ) 17
(1) shows a plane perpendicular to the direction of the applied magnetic field, and (2) shows a plane parallel to the direction of the applied magnetic field. FIG. 3 is a diagram showing the saturation magnetization of Pr 2 (Co 1 -y Ti x ) 17 , FIG. 4 is a diagram showing the saturation magnetization of Pr 2 (Co 1 -xy F x Ti y ) 17 , and FIG. FIG. 6 shows the saturation magnetization of (Pr 1-x Rx) 2 − (Co 0.93 Ti 0.07 ) 17. FIG. 6 shows another example of the saturation magnetization of (Pr 1 -x Rx) 2 (Co 0.93 Ti 0.07 ) 17. Figure 7 shows the conventional RCo 5 , R 2 Co 17
FIG. 8 shows an example of the saturation magnetization of a conventional R 2 (Co 1-x F
It is a diagram showing a magnetization easy axis of the e x) 17.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 19/07 E C22C 1/04 H C22C 38/00 303 D H01F 1/04 A ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C22C 19/07 E C22C 1/04 H C22C 38/00 303 D H01F 1/04 A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】化学式、(Pr1-xRx(T1-yMy17(但
し、RはPr以外のYを含む希土類元素の内の少なくとも
1種、xは0〜0.4の数、Tは、Co,Feの内の少なくとも
1種の遷移金属、MはTi,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,Wの
内の少なくとも1種、yは0.01〜0.2の数を表す。)で
表される金属間化合物であることを特徴とする強磁性材
料。
1. The chemical formula: (Pr 1-x R x ) 2 (T 1- y My ) 17 (where R is at least one kind of rare earth element containing Y other than Pr, and x is 0 to 0.4) T is at least one transition metal of Co and Fe, M is at least one of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W, and y is 0.01 The ferromagnetic material is an intermetallic compound represented by the following formula:
【請求項2】化学式、(Pr1-xRx(T1-yMy17(但
し、RはPr以外のYを含む希土類元素の内の少なくとも
1種、xは0〜0.4の数、Tは、Co,Feの内の少なくとも
1種の遷移金属、MはTi,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,Wの
少なくとも1種、yは0.01〜0.2の数を表す。)で表さ
れ、菱面体構造の金属間化合物であることを特徴とする
強磁性材料。
2. The chemical formula, (Pr 1-x R x ) 2 (T 1- y My ) 17 (where R is at least one of rare earth elements including Y other than Pr, and x is 0 to 0.4) T is at least one transition metal of Co and Fe, M is at least one of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W, and y is 0.01 to 0.2. Which is a rhombohedral intermetallic compound.
JP2087514A 1990-04-03 1990-04-03 Ferromagnetic material Expired - Fee Related JP2929217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087514A JP2929217B2 (en) 1990-04-03 1990-04-03 Ferromagnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087514A JP2929217B2 (en) 1990-04-03 1990-04-03 Ferromagnetic material

Publications (2)

Publication Number Publication Date
JPH03287737A JPH03287737A (en) 1991-12-18
JP2929217B2 true JP2929217B2 (en) 1999-08-03

Family

ID=13917099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087514A Expired - Fee Related JP2929217B2 (en) 1990-04-03 1990-04-03 Ferromagnetic material

Country Status (1)

Country Link
JP (1) JP2929217B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549197B1 (en) * 2002-09-06 2011-08-24 Koninklijke Philips Electronics N.V. Magnetic force devices and systems for resisting tissue collapse within the pharyngal conduit

Also Published As

Publication number Publication date
JPH03287737A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US3560200A (en) Permanent magnetic materials
JPH0510806B2 (en)
EP0253428B1 (en) Hard magnetic material
JP3215700B2 (en) Hard magnetic material and magnet having the material
JP2929217B2 (en) Ferromagnetic material
JPH08124730A (en) Rare-earth resin magnet having low coercive force
Lee The future of rare earth‐transition metal magnets of type RE2TM17
Zijlstra Trends in permanent magnet material development
JPH04322405A (en) Rare earth permanent magnet
JP3023512B2 (en) Ferromagnetic material
JPH04322406A (en) Rare earth permanent magnet
KR0168495B1 (en) Ñß-FE BASE RE-FE-B NM CRYSTAL ALLOY AND ITS PRODUCING METHOD AND USE
JP3360938B2 (en) Permanent magnet material
JPH07161515A (en) Rare earth permanent magnet material
JPH03177544A (en) Permanent magnet alloy
JPH116038A (en) Rare earth permanent magnet material
JP2935126B2 (en) Ferromagnetic material
JPH05112852A (en) Permanent magnet alloy
JPH0869907A (en) Material for permanent magnet and material for bonded magnet using the same
JPH06346200A (en) Permanent magnet alloy
JPS5919980B2 (en) permanent magnet alloy
JPH07142220A (en) Material for permanent magnet
JPS61119651A (en) Rare earth element-iron type permanent magnet
JPH07335415A (en) Material for permanent magnet
JPS63273303A (en) Rare earth permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees