JPS5919980B2 - permanent magnet alloy - Google Patents

permanent magnet alloy

Info

Publication number
JPS5919980B2
JPS5919980B2 JP52099575A JP9957577A JPS5919980B2 JP S5919980 B2 JPS5919980 B2 JP S5919980B2 JP 52099575 A JP52099575 A JP 52099575A JP 9957577 A JP9957577 A JP 9957577A JP S5919980 B2 JPS5919980 B2 JP S5919980B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
temperature
earth elements
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52099575A
Other languages
Japanese (ja)
Other versions
JPS5337128A (en
Inventor
雅亮 徳永
和郎 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP52099575A priority Critical patent/JPS5919980B2/en
Publication of JPS5337128A publication Critical patent/JPS5337128A/en
Publication of JPS5919980B2 publication Critical patent/JPS5919980B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は希土類元素とCoからなる永久磁石、特に磁気
特性の温度依存性を改良した永久磁石に係るものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet made of rare earth elements and Co, particularly to a permanent magnet with improved temperature dependence of magnetic properties.

R(以下Rは軽希土類元素でSm、Pr、Ce、Laの
1種または2種以上の組合せ)とCoとの状態図中にあ
る金属間化合物のRC05、R2C017、R2C07
は永久磁石合金としての可能性があわ、実用合金として
は、ECo5を中心とするR2C017からR2C07
までの成分範囲で、これらの金属間化合物の混合した所
謂複合組織を有する合金が特に優れた磁気特性を示して
いる。
RC05, R2C017, R2C07 of intermetallic compounds in the phase diagram of R (hereinafter R is a light rare earth element and one or a combination of two or more of Sm, Pr, Ce, and La) and Co
has the potential to be used as a permanent magnet alloy, and practical alloys include R2C017 to R2C07, mainly ECo5.
Within the above composition range, alloys having a so-called composite structure in which these intermetallic compounds are mixed exhibit particularly excellent magnetic properties.

希土類元素とCoからなる永久磁石合金について種々研
究されており、これに使用出来る希土類元素としてY、
Scを始め、原子番号57番から71番までのランタニ
ド番号と呼ばれるLa、Ce、Pr、Nd、Pm、Sm
、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、
Luのすべての元素について一般文献には示されている
Various studies have been conducted on permanent magnet alloys consisting of rare earth elements and Co, and the rare earth elements that can be used for this include Y,
Including Sc, La, Ce, Pr, Nd, Pm, Sm called lanthanide numbers from atomic number 57 to 71
, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
All elements of Lu are indicated in the general literature.

しかしながら、これらの文献に記されたものの中には天
然に存在しないPmまでも記されているように、実用的
でないものまでもまとめて使用できるものとして示され
ているのみで、実験データは全くないのである。今日ま
で永久磁石合金として実用的な値の報告された、ものは
、希土類元素中、軽希土類元素と呼ばれるLa、Ce、
Pr、Smの4種およびCe分として含有しているCe
ミツシユメタルとCeとの合金のみで、EuからLuま
での重希土類元素については磁気的性質の検討はされて
はいたが、永久磁石合金としての特性は全く報告されて
いないのである。軽希土類元素La、Ce、Pr、Sm
、!■、Coからなる永久磁石合金については現在まで
に、高い残留磁束密度Brと高い保磁力BHC、IHC
が得られておサ、エネルギー積(BH)maxについて
は23〜26MG0eという驚くべき値が得られ、従来
鋳造磁石合金で得られていた最高の値、Alnico9
の11MG0eの2倍以上である。
However, some of the things described in these documents even mention Pm, which does not exist in nature, and even things that are not practical are shown as being usable all at once, and there is no experimental data at all. There isn't. To date, the rare earth elements that have been reported to have practical values as permanent magnet alloys include La, Ce, which is called light rare earth element,
Four types of Pr, Sm and Ce contained as Ce component
Although the magnetic properties of heavy rare earth elements from Eu to Lu have been studied only in alloys of Mitsushi metal and Ce, their properties as permanent magnet alloys have not been reported at all. Light rare earth elements La, Ce, Pr, Sm
,! ■For permanent magnet alloys made of Co, high residual magnetic flux density Br and high coercive force BHC, IHC have been developed.
As a result, an amazing value of 23 to 26 MG0e was obtained for the energy product (BH) max, which is the highest value ever obtained with conventional cast magnet alloys, Alnico9.
This is more than twice that of 11MG0e.

このように優れた永久磁石特性を示すために、強い磁界
を必要とする機器や、小型化の要求される機器に使用さ
れている。しかしながら、第1表に示すように、この永
久磁石の温度特性は悪く、可逆温度変化についてみても
AlnicO系永久磁石の2倍以上である。
Because they exhibit such excellent permanent magnetic properties, they are used in devices that require strong magnetic fields and devices that require miniaturization. However, as shown in Table 1, the temperature characteristics of this permanent magnet are poor, and the reversible temperature change is more than twice that of AlnicO permanent magnets.

また、不可逆温度変化も大きいために、使用前に一度2
50℃程度まで昇温して「熱からし」なる作業をして、
約5%の減磁を行なつた上で使用するのが通常である。
このために、温度変化の激しい環境で使用することが困
難であつた。
In addition, since there is a large irreversible temperature change, please use the
The temperature is raised to about 50 degrees Celsius to make "heat mustard".
It is usually used after demagnetizing it by about 5%.
For this reason, it has been difficult to use it in environments with severe temperature changes.

また、その優れた磁気特性を充分に利用することもでき
なかつた。本発明の目的は、温度依存性の小さな永久磁
石すなわち泥度が変化してもその磁気的性質、特に磁束
の変化のほとんどない永久磁石を提供するものである。
Furthermore, it has not been possible to fully utilize its excellent magnetic properties. An object of the present invention is to provide a permanent magnet with small temperature dependence, that is, a permanent magnet whose magnetic properties, particularly magnetic flux, hardly change even if the degree of mud changes.

本発明はR2CO7からR2COl7までの成分範囲に
ある軽希土類元素とCOからなる永久磁石において、軽
希土類元素の一部を重希土類元素で置換することによつ
て、永久磁石特性の温度依存性を改善したものである。
The present invention improves the temperature dependence of permanent magnet characteristics by substituting a part of the light rare earth element with a heavy rare earth element in a permanent magnet made of light rare earth elements and CO in the composition range from R2CO7 to R2COl7. This is what I did.

R2CO,からR2COl7の成分範囲においてRの量
は43〜23%(以下重量比で示す)で残部主としてC
Oである。
In the component range from R2CO to R2COl7, the amount of R is 43 to 23% (shown in weight ratio below), and the remainder is mainly C.
It is O.

最も優れた永久磁石特性を示す軽希土類元素はSmであ
り、この一部をCe又はCeの合金であるCeミツシユ
メタルで置換することで永久磁石特性の大きな劣化を伴
なわないで、廉価な永久磁石合金を得ることができる。
このため、本発明においては軽希土類元素としてSmを
基礎としてCeまたはCeミツシユメタルを含むものと
した。またSmの一部をPrで置換することでなお優れ
た特性を得ることが出来るので、本発明においては、軽
希土類元素としてSmを基礎として、CeまたはCeミ
ツシユメタルとPrとを同時に含んで良いことは勿論で
ある。本発明で用いた重希土類元素はHO,Er,Dy
,Tbで軽希土類元素23〜43%O一部をHO,Er
,Dy,Tb、とした場合、良好な性質が得られるので
ある。
The light rare earth element that exhibits the best permanent magnet properties is Sm, and by replacing a part of it with Ce or Ce metal, which is an alloy of Ce, it is possible to create an inexpensive permanent magnet without major deterioration of the permanent magnet properties. Alloys can be obtained.
Therefore, in the present invention, the light rare earth element is based on Sm and includes Ce or Ce metal. Further, excellent properties can be obtained by substituting a part of Sm with Pr, so in the present invention, based on Sm as a light rare earth element, Ce or Ce metal and Pr may be included at the same time. Of course. The heavy rare earth elements used in the present invention are HO, Er, Dy
, Tb with 23-43% O of light rare earth elements, HO, Er
, Dy, Tb, good properties can be obtained.

軽希土類元素の一部をHO,Er,Dy,Tbで置換し
た希土類コバルト永久磁石の磁束の温度係数αはその絶
対値で−50〜100゜Cにおいて1α1は0.04%
/℃以下となる。本明細書および図面で使用している磁
束の可逆温度係数αは次のように定義される。
The temperature coefficient α of the magnetic flux of a rare earth cobalt permanent magnet in which a part of the light rare earth elements is replaced with HO, Er, Dy, or Tb is its absolute value, and 1α1 is 0.04% at -50 to 100°C.
/℃ or below. The reversible temperature coefficient α of magnetic flux used in this specification and drawings is defined as follows.

すなわち、Ta℃〜Tb℃の温度範囲での温度係数αは
、Ta℃における永久磁石の磁束をφa(Maxwel
l)、Tb℃に卦ける永久磁石の磁束をφb(Maxw
ell)とおくと、この間の磁束変化△φ−φa−φB
.温度変化△T−Ta−Tbなので、44γ α=】×100/△T(%/C)となる。
In other words, the temperature coefficient α in the temperature range of Ta°C to Tb°C is the magnetic flux of the permanent magnet at Ta°C
l), Tb°C, the magnetic flux of the permanent magnet is φb(Maxw
ell), the magnetic flux change during this period △φ−φa−φB
.. Since the temperature change is ΔT-Ta-Tb, 44γ α=]×100/ΔT (%/C).

本発明の永久磁石にHO,Er,Dy,Tb以外にGd
を加えると更に良好な温度特性が得られる。
The permanent magnet of the present invention has Gd in addition to HO, Er, Dy, and Tb.
Even better temperature characteristics can be obtained by adding .

Gdを加えることによジ、渦度特性の渦度依存性に直線
性がよくなる。このため、広い温度範囲に訃いても温度
係数が小さくなb、−50〜200℃に卦いてαの絶対
値は0.03%/℃以下となる。HO,Erを含有する
場合には常温における温度特性が改善され、Dy,Tb
を含有する場合には比較的高泥における温度特性が改善
されるのである。HOを含有する場合と、Er,Dy,
Tbを含有する場合を比較すると、常温においてHOを
含有する永久磁石の磁気特性は優れて訃ジ、特にエネル
ギー積(BH)Maxにおいて優れている。これら重希
土類元素は単独して希土類元素とコバルトからなる永久
磁石合金に含有させてもよく複合添加させてもよい。H
Oは希土類元素コバルトからなる永久磁石合金中に3〜
18%含有させることが適当である。
By adding Gd, the vorticity dependence of the vorticity characteristics becomes more linear. For this reason, the temperature coefficient b is small even in a wide temperature range, and the absolute value of α is 0.03%/°C or less from -50 to 200°C. When containing HO, Er, the temperature characteristics at room temperature are improved, and Dy, Tb
When containing , the temperature characteristics at relatively high mud levels are improved. In the case containing HO and in the case containing Er, Dy,
When compared with the case containing Tb, the magnetic properties of the permanent magnet containing HO at room temperature are excellent, particularly in terms of energy product (BH) Max. These heavy rare earth elements may be contained singly in a permanent magnet alloy consisting of a rare earth element and cobalt, or may be added in combination. H
O is present in the permanent magnet alloy consisting of the rare earth element cobalt.
It is appropriate to contain 18%.

この成分限定の理由は後の実施例に示したように、3%
以下の添加では温度特性改善の効果がなく、18%以上
の添加では残留磁束密度の低下が大きいためである。E
rは8〜17%.Dyは2〜15%、Tbは2〜15%
含有させるのである。
The reason for this limitation of ingredients is 3% as shown in the later examples.
This is because additions of less than 1% have no effect of improving temperature characteristics, and additions of 18% or more result in a large decrease in residual magnetic flux density. E
r is 8-17%. Dy is 2-15%, Tb is 2-15%
It is made to contain.

この各元素の下限以下の添加では温度特性の改善の効果
がなく、上限以上添加させた場合は磁石特性の低下が大
きいのである。Smの一部をCeで置換した場合、Ce
の成分限度は1〜34%である。
If each element is added below the lower limit, there is no effect of improving the temperature characteristics, and if it is added above the upper limit, the magnetic properties are significantly deteriorated. When a part of Sm is replaced with Ce, Ce
The component limit for is 1-34%.

Ceが1%以下の添加も可能であるが、これ以下ではC
eを添加する意味がない。Ceの添加量が多くなるに従
い、原料費が安くなるが、その磁気特性も劣化して、3
4%以上では使用に耐えなくなる。な卦、本発明の永久
磁石中のCOを一部を遷移元素Ni,Fe,Cu,Mn
等で置換し、合金中にSi,Ca,Al,Zrの少量を
添加してもよい。
It is possible to add less than 1% of Ce, but below this amount, C
There is no point in adding e. As the amount of Ce added increases, the raw material cost decreases, but its magnetic properties also deteriorate, resulting in
If it exceeds 4%, it becomes unusable. A part of the CO in the permanent magnet of the present invention is replaced by transition elements Ni, Fe, Cu, and Mn.
Alternatively, a small amount of Si, Ca, Al, or Zr may be added to the alloy.

この場合、CO量の20%をCuで、またCO量の10
%をFe,Mnで置換しても、本発明の効果に悪影響を
及ぼさない。本発明によ虱軽希土類元素とCOからなる
合金に重希土類元素を加えた永久磁石合金は低泥から2
00土Cの範囲で磁束の温度変化の極めて少ない永久磁
石となるのである。
In this case, 20% of the CO amount is Cu, and 10% of the CO amount is Cu.
Even if % is replaced with Fe or Mn, the effects of the present invention are not adversely affected. According to the present invention, a permanent magnet alloy in which a heavy rare earth element is added to an alloy consisting of a light rare earth element and CO can be produced from low mud to 2.
It becomes a permanent magnet with very little change in magnetic flux due to temperature in the range of 0.00 Celsius.

以下実施例により本発明の実施の態様卦よひ効果を具体
的に示す。
EXAMPLES The effects of the embodiments of the present invention will be specifically illustrated below with reference to Examples.

実施例 Sml3.6%、Ceミツシユメタル19%、HO9.
5%、CO63%なる合金をアーク溶解により昨成し、
これを粉砕して平均粒径3。
Example Sml 3.6%, Ce Mitsushimetal 19%, HO9.
An alloy of 5% CO and 63% CO was previously formed by arc melting.
This was crushed to an average particle size of 3.

8μmの微粉末とした。It was made into a fine powder of 8 μm.

これを8K0eの磁界中で10t0n/への圧力で成形
して、径10mm×長さ7mmの成型体を得た。この成
型体を1160゜Cで1時間Ar気流中で焼結し、次に
2゜C/Minの速度で冷却し90『Cに達したところ
からAr気流中に急冷した。づあつた。
This was molded in a magnetic field of 8K0e under a pressure of 10t0n/ to obtain a molded body with a diameter of 10mm and a length of 7mm. This molded body was sintered at 1160°C for 1 hour in an Ar flow, then cooled at a rate of 2°C/min, and when it reached 90°C, it was quenched in an Ar flow. Zutsuta.

ただし本磁石の温度特件はパーミアンス係数2で行なつ
た。上記温度特性は22.3Sm−1467Ce−63
.0Ceなる成分を有する永久磁石合金の場合の不可逆
減磁率6%、α−0.060%/゜Cと比較すると極め
て優れた温度特件を有して卦り、これは0を含有させる
ことで得られたのである。
However, the temperature characteristics of this magnet were determined using a permeance coefficient of 2. The above temperature characteristics are 22.3Sm-1467Ce-63
.. Compared to the irreversible demagnetization rate of 6% and α-0.060%/°C in the case of a permanent magnet alloy having a component of 0Ce, it has extremely excellent temperature characteristics, and this is due to the inclusion of 0Ce. It was obtained.

上記実施例はHOを含有▲せたものについて述べたが、
第2表に示すように、他の重希土類元素Er,[)Y,
Tb,Gdについても同様に温度特注緻善するのに有効
なことが判るのである。
The above example described the one containing ▲ HO,
As shown in Table 2, other heavy rare earth elements Er, [)Y,
It turns out that Tb and Gd are similarly effective in customizing and fine-tuning the temperature.

Claims (1)

【特許請求の範囲】 1 重量比で3〜18%のHo、8〜17%のEr、2
〜15%のDy、2〜15%のTbから選ばれた1種以
上の元素と、1〜34%のCeもしくはCeミツシユメ
タルと、Smとの総量が23〜43%となるように、こ
れら希土類元素を含有し、残部が主としてCoからなる
ことを特徴とする永久磁石合金。 2 重量比で3〜18%のHo、8〜17%のEr、2
〜15%のDy、2〜15%のTbから選ばれた1種以
上の元素と、3〜20%のGdと、1〜34%のCeも
しくはCeミツシユメタルと、Smとの総量が23〜4
3%となるように、これら希土類元素を含有し、残部が
主としてCoからなることを特徴とする永久磁石合金。
[Claims] 1. 3 to 18% of Ho, 8 to 17% of Er, 2.
These rare earth elements are mixed so that the total amount of one or more elements selected from ~15% Dy, 2~15% Tb, 1~34% Ce or Ce metal, and Sm is 23~43%. 1. A permanent magnetic alloy characterized in that it contains an element, and the remainder mainly consists of Co. 2 3-18% Ho, 8-17% Er, 2 by weight
The total amount of one or more elements selected from ~15% Dy, 2~15% Tb, 3~20% Gd, 1~34% Ce or Ce metal, and Sm is 23~4
A permanent magnet alloy containing these rare earth elements in an amount of 3%, with the remainder mainly consisting of Co.
JP52099575A 1977-08-22 1977-08-22 permanent magnet alloy Expired JPS5919980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52099575A JPS5919980B2 (en) 1977-08-22 1977-08-22 permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52099575A JPS5919980B2 (en) 1977-08-22 1977-08-22 permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS5337128A JPS5337128A (en) 1978-04-06
JPS5919980B2 true JPS5919980B2 (en) 1984-05-10

Family

ID=14250897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52099575A Expired JPS5919980B2 (en) 1977-08-22 1977-08-22 permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS5919980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790957U (en) * 1980-11-25 1982-06-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030735B2 (en) * 1972-01-14 1975-10-03

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030735U (en) * 1973-07-12 1975-04-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030735B2 (en) * 1972-01-14 1975-10-03

Also Published As

Publication number Publication date
JPS5337128A (en) 1978-04-06

Similar Documents

Publication Publication Date Title
US5096512A (en) Magnetic materials and permanent magnets
CA1315571C (en) Magnetic materials and permanent magnets
JPH01298704A (en) Rare earth permanent magnet
US3997371A (en) Permanent magnet
JPS62206802A (en) Rare-earth permanent magnet
JPH0316761B2 (en)
JP2005197533A (en) R-t-b-based rare earth permanent magnet
JPS62136551A (en) Permanent magnet material
US4721538A (en) Permanent magnet alloy
JPH0474426B2 (en)
JPS5919980B2 (en) permanent magnet alloy
JPH0146575B2 (en)
US5183516A (en) Magnetic materials and permanent magnets
JPH0146574B2 (en)
JPS609104A (en) Permanent magnet
JPH0426525B2 (en)
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JP3995677B2 (en) Method for producing RTB-based rare earth permanent magnet
JPS63241142A (en) Ferromagnetic alloy
US4789521A (en) Permanent magnet alloy
JP2929217B2 (en) Ferromagnetic material
JPS601808A (en) Permanent magnet
JP3023512B2 (en) Ferromagnetic material
JPH0453083B2 (en)
JPS62158852A (en) Permanent magnet material