JPS62158852A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS62158852A
JPS62158852A JP60299231A JP29923185A JPS62158852A JP S62158852 A JPS62158852 A JP S62158852A JP 60299231 A JP60299231 A JP 60299231A JP 29923185 A JP29923185 A JP 29923185A JP S62158852 A JPS62158852 A JP S62158852A
Authority
JP
Japan
Prior art keywords
elements
coercive force
rare earth
permanent magnet
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60299231A
Other languages
Japanese (ja)
Inventor
Noboru Ichinose
昇 一ノ瀬
Hideetsu Suzuki
秀悦 鈴木
Mitsuyoshi Nishida
西田 光儀
Nobumasa Yoshida
吉田 伸昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S C M KK
Original Assignee
S C M KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S C M KK filed Critical S C M KK
Priority to JP60299231A priority Critical patent/JPS62158852A/en
Publication of JPS62158852A publication Critical patent/JPS62158852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve coercive force and maximum energy product by blending specific amounts of elements each selected from the group consisting of B, C, N, Si, and P and the group consisting of Li, Na, K, Rb, and Cs with rare earth element-Fe-Co. CONSTITUTION:A permanent magnet material has a composition satisfying a composition formula R1-x-y-z-alphaFexCoyXzMalpha: where R is a combination of 1 or <=2 kinds among rare earth elements including Y; X means one or more elements among B, C, N, Si, and P; M means one or more elements among Li, Na, K, Rb, and Cs; and, as to the symbols 'x', 'y', 'z', and 'alpha', 0.50<=x<=0.85, 0<=y<=0.20, 0.01<=z<=0.15, and 0.015<=alpha<=0.05. Owing to the above composition, magnetic properties such as coercive force, maximum energy product, etc., are improved and permanent magnets can be made highly efficient.

Description

【発明の詳細な説明】 発明の・属する技術分野 本発明は希土類元素と鉄を主体とする新規な永久磁石材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel permanent magnet material mainly containing rare earth elements and iron.

従来の技術 希土類元素(R)、鉄(Fe )及び硼素(8)を主成
分とする金属間化合物は大きな結晶磁気異方性と高い飽
和磁束密度を示し、高保磁力、高エネルギー積を有する
永久磁石材料として注目されている。特に希土類−コバ
ルトから成る材料に比して廉価である点と高飽和磁束密
度である点で永久磁石として有望である。
Conventional technology Intermetallic compounds mainly composed of rare earth elements (R), iron (Fe), and boron (8) exhibit large magnetocrystalline anisotropy and high saturation magnetic flux density, and are permanent magnets with high coercive force and high energy product. It is attracting attention as a magnetic material. It is particularly promising as a permanent magnet because it is cheaper than rare earth-cobalt materials and has a high saturation magnetic flux density.

更にFeの一部をCOで置換するとキュリ一点が上昇し
、熱安定性も向上することが見出されている。又BをC
,N、Si 、P等の非金属元素で置換したものなど種
々の材料が知られている。
Furthermore, it has been found that when part of Fe is replaced with CO, the Curie point increases and thermal stability also improves. Also B to C
Various materials are known, including those substituted with nonmetallic elements such as , N, Si, and P.

発明が解決しようとする問題点 本発明は、上述した希土類−鉄系、および希土類−鉄−
コバルト系の永久磁石材料において残留磁束密度、保磁
力および最大エネルギー積で表わされる磁気特性をさら
に向上させることを目的とする。
Problems to be Solved by the Invention The present invention solves the above-mentioned rare earth-iron and rare earth-iron
The purpose of this study is to further improve the magnetic properties expressed by residual magnetic flux density, coercive force, and maximum energy product in cobalt-based permanent magnet materials.

問題点を解決するための手段 本発明の磁石材料は、R+ −X−V−Z−αF ex
COVXZMαなる組成式で表わされる。上記組成式に
おいて、RはYを含む希土類元素即ちY、La、Ce 
 、  Pr  、  Nd  、  Pm  、  
Sm  、  Eu  、  Gd  、Tb 、Dy
 、Ho 、Er 、T+++ 、Yb Xluから選
ばれる1種又は2種以上の組合せであり、XはB、C,
N、Si 、Pから選ばれる1種又は2種以上の組合せ
であり、Mはしi 、Na 、 K、 Rb 。
Means for Solving the Problems The magnetic material of the present invention has R+ -X-V-Z-αF ex
It is represented by the compositional formula COVXZMα. In the above compositional formula, R is a rare earth element containing Y, namely Y, La, Ce.
, Pr, Nd, Pm,
Sm, Eu, Gd, Tb, Dy
, Ho , Er , T +++ , Yb Xlu or a combination of two or more, and X is B, C,
It is one or a combination of two or more selected from N, Si, and P, and M is i, Na, K, and Rb.

C3から選ばれる1種又は2種以上の組合せである。又
、X、y、Z、αはそれぞれ0.50≦×≦0.85.
0≦y≦0.20.0.01≦Z≦0.15.0.01
5≦α≦0.05であることを特徴とする。
It is one type or a combination of two or more types selected from C3. Also, X, y, Z, and α are each 0.50≦×≦0.85.
0≦y≦0.20.0.01≦Z≦0.15.0.01
It is characterized in that 5≦α≦0.05.

本発明において、R−Fe−X又はR−Fe−Co−X
系合金にLi 、Na 、に、Rb 、 C3から選ば
れる1種又は2種以上を添加することにより、磁気特性
、特に保磁力および最大エネルギー積が向上する。これ
らの添加元素は、磁気特性のバランスをさまたげない範
囲で添加することが望ましい。添加するアルカリ金属は
化学活性が極めて高いため、取り扱い上αが0.05以
下の範囲で用いる。又αがo、oisより小さい場合は
磁気特性の改善効果が少なく、加えて鉄及び希土類元素
の酸化防止効果が少ない。
In the present invention, R-Fe-X or R-Fe-Co-X
By adding one or more selected from Li, Na, Rb, and C3 to the alloy, magnetic properties, particularly coercive force and maximum energy product, are improved. It is desirable that these additive elements be added within a range that does not disturb the balance of magnetic properties. Since the alkali metal to be added has extremely high chemical activity, it is used within a range of α of 0.05 or less for handling reasons. Further, if α is smaller than o or ois, the effect of improving magnetic properties is small, and in addition, the effect of preventing oxidation of iron and rare earth elements is small.

尚本発明において、Fe 11′)mが多すぎると残留
磁束密度は向上するものの、保磁力および最大エネルギ
ー積が低下する。一方、Feの量が少なすぎると、残留
磁束密度および最大エネルギー積が減少するので、Fe
の比率は0.50≦x≦0.85の範囲とした。
In the present invention, if Fe 11')m is too large, the residual magnetic flux density will improve, but the coercive force and the maximum energy product will decrease. On the other hand, if the amount of Fe is too small, the residual magnetic flux density and the maximum energy product will decrease, so Fe
The ratio was set in the range of 0.50≦x≦0.85.

COの添加はキュリ一点の上昇、熱安定性の向上に効果
があるが、添加量が0.20を越えると、保磁力の低下
がおこり好ましくない。
Addition of CO is effective in raising the Curie point by one point and improving thermal stability, but if the amount added exceeds 0.20, the coercive force decreases, which is not preferable.

又、Xの比率2が0.15を越える場合は保磁力及び残
留磁束密度が減少し、優れた最大エネルギー積が得られ
ない。一方0.01未満の場合はキュリ一点が上昇せず
、高い保磁力も得られない。
Furthermore, if the ratio 2 of X exceeds 0.15, the coercive force and residual magnetic flux density decrease, making it impossible to obtain an excellent maximum energy product. On the other hand, if it is less than 0.01, the Curie point will not increase and high coercive force will not be obtained.

本発明による永久磁石は、従来公知の方法により各成分
を溶解して得た溶湯を金型等に鋳込んだり、又溶製合金
を粉砕し、粉末冶金法により磁場中で成形、焼結したり
して製造する。溶解は高周波溶解またはアーク溶解等で
不活性ガス中で行う。
The permanent magnet of the present invention can be produced by melting each component using a conventionally known method and casting the molten metal into a mold, etc., or by pulverizing the molten alloy, forming it in a magnetic field using powder metallurgy, and sintering it. Manufactured by Melting is performed in an inert gas using high frequency melting or arc melting.

粉砕はスタンプミル、ディスクミルおよび振動ミル、ボ
ールミル等組み合せて行われる。酸化防止のため、不活
性ガスや有礪溶剤が用いられる。
Grinding is carried out using a combination of stamp mills, disc mills, vibration mills, ball mills, etc. To prevent oxidation, an inert gas or a volatile solvent is used.

磁場成形は配向度向上の目的から加圧力方向と磁場方向
が垂直な横磁場で行われることが望ましい。焼結は不活
性ガス中で行い、焼結後は急冷するのが良い。熱処理は
500〜800℃で行うが、組成によって時間をかえる
ことが望ましい。
For the purpose of improving the degree of orientation, magnetic field shaping is preferably performed in a transverse magnetic field in which the direction of the applied force and the direction of the magnetic field are perpendicular. It is best to perform sintering in an inert gas and rapidly cool it after sintering. The heat treatment is performed at 500 to 800°C, but it is desirable to vary the time depending on the composition.

実施例 実施例1 Nd 0.15 Fe o、5s−aco 0.2(l
 B a、+o L i a (但しα、= 0.01
5)なる組成の合金を、高周波溶解炉を用い、アルゴン
雰囲気中で溶製した。次いで溶製合金をスタンプミルで
粗粉砕し、振動ミルで平均粒径3.4^l程度まで粉砕
した。この粉末を10KOeの磁場中で約1,5t/c
Jの圧力をかけて型成形し、(りられた成形体をアルゴ
ン雰囲気中、1150℃で2時間焼結し、次いで鉱物油
中で空温まで急冷し、更に750℃で熱処理を行って磁
石を製造した。
Examples Example 1 Nd 0.15 Fe o, 5s-aco 0.2 (l
B a, +o L i a (However, α, = 0.01
5) An alloy having the following composition was melted in an argon atmosphere using a high frequency melting furnace. Next, the ingot alloy was coarsely ground with a stamp mill, and then ground with a vibration mill to an average particle size of about 3.4L. Approximately 1.5 t/c of this powder in a magnetic field of 10 KOe
The molded body was molded under a pressure of was manufactured.

j!7られた磁石材料の残留磁束密度(Sr ) 、保
磁力(rHc ) 、最大エネルギー積(B H) m
axを調べたところ、表1に示す結果が得られた。
j! 7 Residual magnetic flux density (Sr), coercive force (rHc), maximum energy product (BH) m
When ax was investigated, the results shown in Table 1 were obtained.

実施例2.3 Llの比率αを表1のとおりとする以外は実施例1と同
様にして、それぞれ磁石を製造し、特性を表1に示した
Example 2.3 Magnets were manufactured in the same manner as in Example 1 except that the ratio α of Ll was as shown in Table 1, and the characteristics are shown in Table 1.

比較例1 1−iを添加しない以外は実施例1と同様にして磁石を
製造し、特性を表1に示した。
Comparative Example 1 A magnet was manufactured in the same manner as in Example 1 except that 1-i was not added, and the characteristics are shown in Table 1.

比較例2.3 Liの比率αを表1のとおりとする以外は実施例1と同
様にして磁石を製造し、特性を表1に示した。
Comparative Example 2.3 A magnet was manufactured in the same manner as in Example 1 except that the Li ratio α was as shown in Table 1, and the characteristics are shown in Table 1.

実施例4〜6 Nd  o、+5Pr O,05Fe o、ss−ac
o O,+5B o、+o Naa(但しex = 0
.015〜0.05 )なる組成の合金磁石を実施例1
と同様の方法で製造し、特性を表2に示した。
Examples 4-6 Ndo, +5PrO, 05Feo, ss-ac
o O, +5B o, +o Naa (ex = 0
.. Example 1 An alloy magnet having a composition of 015 to 0.05)
It was manufactured in the same manner as above, and the characteristics are shown in Table 2.

比較例4〜6 Naの比率αを表2のとおりとする以外は実施例4と同
様にして磁石を製造し、特性を表2に示した。
Comparative Examples 4 to 6 Magnets were manufactured in the same manner as in Example 4 except that the Na ratio α was as shown in Table 2, and the characteristics are shown in Table 2.

表1 表2 実施例7〜9 Nd o、+s Fe o、co−aCo 0.1!5
 B o、+o K a (但しα= 0.015〜O
,OS >なる組成の合金磁石を、実施例1と同様の方
法で製造し、特性を表3に示した。
Table 1 Table 2 Examples 7 to 9 Ndo, +s Fe o, co-aCo 0.1!5
Bo, +o Ka (however, α= 0.015~O
, OS> was manufactured in the same manner as in Example 1, and the characteristics are shown in Table 3.

比較例7〜9 にの添加量αを表3のとおりとする以外は実施例7と同
様にして磁石を製造し、特性を表3に示した。
Comparative Examples 7 to 9 Magnets were manufactured in the same manner as in Example 7, except that the amounts α added were as shown in Table 3, and the characteristics are shown in Table 3.

表3 実施例10〜12 Nd  0.12 Pr  o、o+s Fe  o、
6o−aCo  O,138o、+。
Table 3 Examples 10-12 Nd 0.12 Pro o, o+s Fe o,
6o-aCo O, 138o, +.

Rbα(但しα−0,015〜0.05 )なる組成の
合金磁石を実施例1と同様の方法で製造し、特性を表4
に示した。
An alloy magnet having a composition of Rbα (α-0.015 to 0.05) was manufactured in the same manner as in Example 1, and the characteristics are shown in Table 4.
It was shown to.

比較例10〜12 Rbの添加量αを表4のとおりとする以外は実施例10
と同様にして磁石を製造し、特性を表4に示した。
Comparative Examples 10 to 12 Example 10 except that the amount α of Rb added was as shown in Table 4.
A magnet was manufactured in the same manner as above, and the characteristics are shown in Table 4.

表4 実施例13〜15 Nd o、+o l”e o、5s−aco o、+s
 B o、+o Os a (但しα= 0.015〜
O,OS )なる組成の合金磁石を実施例1と同様の方
法で製造し、特性を表5に示した。
Table 4 Examples 13 to 15 Ndo, +o l”e o, 5s-aco o, +s
B o, +o Os a (however, α= 0.015~
An alloy magnet having the composition (O, OS) was manufactured in the same manner as in Example 1, and the characteristics are shown in Table 5.

比較例13〜15 C3の添加mαを表5のとおりとする以外は実施例13
と同様にして磁石を製造し、特性を表5に示した。
Comparative Examples 13 to 15 Example 13 except that the addition mα of C3 was as shown in Table 5.
A magnet was manufactured in the same manner as above, and the characteristics are shown in Table 5.

表5 発明の効果 実施例からも明らかなように、本発明の永久磁石材料は
、従来のR−Fe−X、又はR−Fe−Go −X系合
金にLi 、Na、に、Rb 、C3から選ばれる1種
又は2種以上を添加することにより、特に保磁力および
最大エネルギー積が改善され高性能化が実現できたもの
で、実用上極めて優れた磁石材料である。
Table 5 Effects of the Invention As is clear from the examples, the permanent magnet material of the present invention has a conventional R-Fe-X or R-Fe-Go-X alloy with Li, Na, Rb, and C3. By adding one or more selected from the following, coercive force and maximum energy product in particular are improved, and high performance can be achieved, making it an extremely excellent magnetic material in practical use.

Claims (1)

【特許請求の範囲】 1 R_1_−_x_−_y_−_z_−_αFe_x
Co_yX_zM_αなる組成式で表わされ、上記組成
式においてRはYを含む希土類元素の1種または2種以
上の組合せであり、xはB、C、N、Si、Pから選ば
れる1種又は2種以上の組合せであり、MはLi、Na
、K、Rb、Csから選ばれる1種又は2種以上の組合
せであり、 0.50≦x≦0.85、0≦y≦0.20、0.01
≦z≦0.15、0.015≦α≦0.05であること
を特徴とする永久磁石材料。
[Claims] 1 R_1_-_x_-_y_-_z_-_αFe_x
It is represented by the compositional formula Co_yX_zM_α, in which R is one or a combination of two or more rare earth elements including Y, and x is one or two selected from B, C, N, Si, and P. It is a combination of species or more, and M is Li, Na
, K, Rb, and Cs, or a combination of two or more thereof, 0.50≦x≦0.85, 0≦y≦0.20, 0.01
A permanent magnetic material characterized in that ≦z≦0.15, 0.015≦α≦0.05.
JP60299231A 1985-12-28 1985-12-28 Permanent magnet material Pending JPS62158852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299231A JPS62158852A (en) 1985-12-28 1985-12-28 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299231A JPS62158852A (en) 1985-12-28 1985-12-28 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS62158852A true JPS62158852A (en) 1987-07-14

Family

ID=17869838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299231A Pending JPS62158852A (en) 1985-12-28 1985-12-28 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS62158852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268052A (en) * 1991-02-22 1992-09-24 Dowa Mining Co Ltd R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
CN111009368A (en) * 2019-11-07 2020-04-14 宁波合力磁材技术有限公司 Neodymium-iron-boron magnetic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JPH04268052A (en) * 1991-02-22 1992-09-24 Dowa Mining Co Ltd R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
CN111009368A (en) * 2019-11-07 2020-04-14 宁波合力磁材技术有限公司 Neodymium-iron-boron magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS62206802A (en) Rare-earth permanent magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JPS60243247A (en) Permanent magnet alloy
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS61195954A (en) Permanent magnet alloy
JP3291836B2 (en) Rare earth permanent magnet raw material
JPS62158852A (en) Permanent magnet material
JPH0353505A (en) Bonded magnet and magnetization thereof
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPH0146575B2 (en)
JPS60159152A (en) Permanent magnet alloy
JPS60144908A (en) Permanent magnet material
JPS62241304A (en) Rare earth permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS62158854A (en) Permanaent magnet material
JPS62116756A (en) Permanent magnet alloy
JPH0513207A (en) Manufacture of r-t-b-based permanent magnet
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine
JPS62188746A (en) Permanent magnet material made of alloy containing fluorine
JPS62136550A (en) Permanent magnet material
JPS63216307A (en) Alloy powder for magnet
JPS6271201A (en) Bond magnet
JPS61245505A (en) Manufacture of rare-earth iron magnet